- 95-507 S. De Bievre, G. Forni
- On the growth of averaged Weyl sums for rigid rotations
(37K, Latex)
Nov 28, 95
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. Let $\omega\in\R\setminus\Q$ and $f\in L^2(\To)$. We study the asymptotic
behaviour of the {\it Weyl sums } $S(m,\omega)f(x) =\sum^{m-1}_{k = 0} f (x+k
\omega)$
and their averages ${\hat S}(m,\omega)f(x) ={1\over m}\sum^{m}_{j = 1}
S(j,\omega)f(x)$, in the $L^2$-norm. In particular, for a suitable
class of Liouville rotation numbers $\omega\in \R\setminus\Q$,
we are able to construct examples of functions $f\in H^s(\To)$,
$s>0$, such that, for all $\epsilon>0$, $||{\hat S}(m,\omega)f||_2
\geq C_{\epsilon} m^{{1\over {1+s}}-\epsilon}$ as $m\to \infty$.
In addition, for all $f\in H^s(\To)$, $\liminf m^{-{1\over{1+s}}}
(\log m)^{-1/2} \parallel {\hat S}(m,\omega)f \parallel_2<\infty$,
for all $\omega\in\R\setminus\Q$.
- Files:
95-507.tex