- 10-21 P. Butta', P. Negrini
- On the Stability Problem of Stationary Solutions for the Euler Equation on a 2-Dimensional Torus
(246K, PDF)
Jan 26, 10
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. We study the linear stability problem of the stationary solution $\psi^* = - \cos y$ for the Euler equation on a $2$-dimensional flat torus of sides $2\pi L$ and $2\pi$. We show that $\psi^*$ is stable if $L\in (0,1)$ and that exponentially unstable modes occur in a right neighborhood of $L=n$ for any integer $n$. As a corollary, we gain exponentially instability for any $L$ large enough and an unbounded growth of the number of unstable modes as $L$ diverges.
- Files:
10-21.src(
10-21.keywords ,
bn_euler.pdf.mm )