Content-Type: multipart/mixed; boundary="-------------0011091627298"
This is a multi-part message in MIME format.
---------------0011091627298
Content-Type: text/plain; name="00-444.comments"
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename="00-444.comments"
AMS-Code: Primary 22E45, 22E70, 43A32, 44A20, 46L60, 47B49; Secondary 81R05, 81R30, 81T05.
Dedicated to the memories of Irving E. Segal and Harish-Chandra.
Appears in The Mathematical Legacy of Harish-Chandra: A Celebration of Representation Theory and Harmonic Analysis (R. Doran and V. Varadarajan, eds.), Proc. Sympos. Pure Math., vol. 68, American Mathematical Society, Providence, R.I., 2000, pp. 333--401.
---------------0011091627298
Content-Type: text/plain; name="00-444.keywords"
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename="00-444.keywords"
Representations, Hilbert space, positivity, quantum theory, Segal-Bargmann transform, Lie groups, semisimple, Heisenberg group, reflection symmetry, spectrum, highest weight modules, discrete series, holomorphic series, Feynman-Kac formula, functional integral, isometric embedding, symmetric space, Cayley-type, complementary series, hyperbolic cone, ax+b group, duality
---------------0011091627298
Content-Type: application/x-tex; name="hcpaper4.tex"
Content-Transfer-Encoding: 7bit
Content-Disposition: inline; filename="hcpaper4.tex"
% Equation numbers corrected to start with .1 in each section,
% and cross-references checked, 1/13/2000 --BFT
% Revised according to authors' marks 6/1/1999 --BFT
%% This document created by Scientific Word (R) Version 3.0
\documentclass{amsproc}
\usepackage{amsxtra}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{latexsym}
\usepackage{amsfonts}
\usepackage{amssymb}
%TCIDATA{OutputFilter=latex2.dll}
%TCIDATA{CSTFile=amsprtci.cst}
%TCIDATA{LastRevised=Thu Apr 15 16:36:01 1999}
%TCIDATA{}
%TCIDATA{Language=American English}
\theoremstyle{definition}
\newtheorem{definition}{Definition}[section]
\newtheorem{remark}[definition]{Remark}
\newtheorem{example}[definition]{Example}
\newtheorem{conjecture}[definition]{Conjecture}
\theoremstyle{plain}
\newtheorem{theorem}[definition]{Theorem}
\newtheorem{lemma}[definition]{Lemma}
\newtheorem{corollary}[definition]{Corollary}
\newtheorem{proposition}[definition]{Proposition}
\theoremstyle{remark}
\newtheorem*{acknowledgements}{Acknowledgements}
%\input inner
\newbox\ipbox
\newcommand{\ip}[2]{\left\langle #1\mathrel{\mathchoice
{\setbox\ipbox=\hbox{$\displaystyle \left\langle\mathstrut #1#2\right\rangle$}
\vrule height\ht\ipbox width0.25pt depth\dp\ipbox}
{\setbox\ipbox=\hbox{$\textstyle \left\langle\mathstrut #1#2\right\rangle$}
\vrule height\ht\ipbox width0.25pt depth\dp\ipbox}
{\setbox\ipbox=\hbox{$\scriptstyle \left\langle\mathstrut #1#2\right\rangle$}
\vrule height\ht\ipbox width0.25pt depth\dp\ipbox}
{\setbox\ipbox=\hbox{$\scriptscriptstyle \left\langle\mathstrut #1#2\right\rangle$}
\vrule height\ht\ipbox width0.25pt depth\dp\ipbox}
} #2\right\rangle}
%\input openone
\def\openone%{\hbox{\upshape \small1\kern-3.3pt\normalsize1}}
{\mathchoice
{\hbox{\upshape \small1\kern-3.3pt\normalsize1}}
{\hbox{\upshape \small1\kern-3.3pt\normalsize1}}
{\hbox{\upshape \tiny1\kern-2.3pt\SMALL1}}
{\hbox{\upshape \Tiny1\kern-2pt\tiny1}}}
\newlength{\customskipamount}
\setlength{\customskipamount}{5pt plus2.5pt minus1pt}
\newlength{\customleftmargin}
\settowidth{\customleftmargin}{PR2)}
\addtolength{\customleftmargin}{1.1em}
\addtolength{\customleftmargin}{\labelsep}
\renewcommand{\theequation}{\thesection .\arabic{equation}}
\renewcommand{\theenumi}{\roman{enumi}}
\renewcommand{\labelenumi}{(\theenumi)}
\setlength{\headheight}{1.2\headheight}
\newlength{\qedskip}
\newlength{\qedadjust}
\input cyracc.def
\font\eightcyr=wncyr8
\def\cyr{\eightcyr\cyracc}
\renewcommand{\emptyset}{\varnothing}
\def\F{\Phi}
\def\G{\Gamma}
\def\D{\Delta}
\def\L{\Lambda}
\def\go{\omega}
\def\P{\Psi}
\def\gS{\Sigma}
\def\Ps{\Psi}
\def\T{\Theta}
\def\X{\Xi}
\def\a{\alpha}
\def\b{\beta}
\def\d{\delta}
\def\k{\kappa}
\def\e{\epsilon}
\def\f{\varphi}
\def\g{\gamma}
\def\h{\eta}
\def\l{\lambda}
\def\m{\mu}
\def\n{\nu}
\def\gO{\Omega}
\def\p{\pi}
\def\ps{\psi }
\def\t{\tau}
\def\r{\rho}
\def\s{\sigma}
\def\hooklongrightarrow{\lhook\joinrel\longrightarrow}
\begin{document}
\title[Unitary Representations and O-S Duality]{Unitary Representations and Osterwalder-Schrader Duality}
\author{Palle E. T. Jorgensen}
\address{Department of Mathematics\\
University of Iowa\\
Iowa City\\
IA 52242}
\email{jorgen@math.uiowa.edu}
\author{Gestur \'Olafsson}
\address{Department of Mathematics\\
Louisiana State University\\
Baton Rouge\\
LA 70803}
\email{olafsson@math.lsu.edu}
\thanks{Both authors are supported in part by the U.S. National Science Foundation.}
\thanks{The second author was supported by LEQSF grant
(1996-99)-RD-A-12.}
\dedicatory{Dedicated to the memory of Irving E. Segal}
\begin{abstract}
The notions of reflection, symmetry, and positivity from quantum field theory
are shown to induce a duality operation for a general class of unitary
representations of Lie groups. The semisimple Lie groups which have this
$c$-duality are identified and they are placed in the context of
Harish-Chandra's legacy for the unitary representations program. Our paper
begins with a discussion of path space measures, which is the setting where
reflection positivity (Osterwalder-Schrader) was first identified as a useful
tool of analysis.
\end{abstract}\maketitle
\begin{center}
\textit{Le plus court chemin entre deux v\'{e}rit\'{e}s dans}\linebreak
\textit{le domaine r\'{e}el passe par le domaine complexe.\bigskip}%
\linebreak \settowidth{\qedskip}{\textit{le domaine r{\'{e}}%
el passe par le domaine complexe.}}\makebox[\qedskip]{\hfill\textsc
{---Jacques Hadamard}}\vspace{24pt}
\end{center}
\section*{\label{Introduction}Introduction}
In this paper, we present an idea which serves to unify the following six
different developments:
\begin{enumerate}
\item \label{IntCat(1)}reflection positivity of quantum field theory,
\item \label{IntCat(2)}the role of reflection positivity in functional integration,
\item \label{IntCat(3)}the spectral theory of unitary one-parameter groups in
Hilbert space,
\item \label{IntCat(4)}an extension principle for operators in Hilbert space,
\item \label{IntCat(5)}the Bargmann transform, and
\item \label{IntCat(6)}reflection positivity and unitary highest weight
modules for semisimple Lie groups.
\end{enumerate}
The emphasis is on (\ref{IntCat(6)}), but the common thread in our paper is
the unity of the six areas, which, on the face of it, may perhaps appear to be
unrelated. We also stress the interconnection between the six projects, and
especially the impact on (\ref{IntCat(6)}) from (\ref{IntCat(1)}%
)--(\ref{IntCat(5)}).
Readers who may not be familiar with all six of the subjects (\ref{IntCat(1)}%
)--(\ref{IntCat(6)}) may wish to consult the bibliography; for example
\cite{GlJa87} is an excellent background reference on (\ref{IntCat(1)}%
)--(\ref{IntCat(2)}), \cite{FOS83} is especially useful on (\ref{IntCat(2)}),
and \cite{Arv84} covers the theory underlying (\ref{IntCat(3)}). Area
(\ref{IntCat(4)}) is covered in \cite{Jor80} and \cite{JoMu80}, while
\cite{BH94} and \cite{OO96} cover (\ref{IntCat(5)}). Background references on
(\ref{IntCat(6)}) include \cite{JO97}, \cite{Jor86}, and \cite{Jor87}.
Our main point is to show how the concepts of reflection, symmetry and
positivity, which are central notions in quantum field theory, are related to
a duality operation for certain unitary representations of semisimple Lie
groups. On the group level this duality corresponds to the $c$-duality of
causal symmetric spaces, a duality relating the ``compactly causal'' spaces to
the ``non-compactly causal'' spaces. On the level of representations one
starts with a unitary representation of a group $G$ with an involution $\tau$
corresponding to a non-compactly causal space, then uses an involution on the
representation space satisfying a certain positivity condition on a subspace
to produce a contraction representation of a semigroup $H\exp\left( C\right)
$, where $H=G^{\tau}$ and $C$ is an $H$-invariant convex cone lying in the
space of $\tau$-fixed points in the Lie algebra. Now a general result of
L\"uscher and Mack and the co-authors can be used to produce a unitary
representation of the $c$-dual group $G^{c}$ on the same space. (See
\cite{HO95}, \cite{HiNe93},
\cite{LM75}, and \cite{O98} for these terms.)
We aim to address several target audiences: workers in representation theory,
mathematical physicists, and specialists in transform theory. This diversity
has necessitated the inclusion of a bit more background material than would
perhaps otherwise be called for: certain ideas are typically explained
slightly differently in the context of mathematical physics from what is
customary among specialists in one or more of the other areas.
The symmetry group for classical mechanics is the \textit{Euclidean motion
group} $E_{n}=SO(n)\times_{\mathrm{sp}}\mathbb{R}^{n}$, where the subscript
${}_{\mathrm{sp}}$ stands for semidirect product. Here the action of
$(A,\mathbf{x})\in E_{n}$ on $\mathbb{R}^{n}$ is given by $(A,\mathbf{x}%
)\cdot\mathbf{v}=A(\mathbf{v})+\mathbf{x}$, that is $SO(n)$ acts by rotations
and $\mathbb{R}^{n}$ acts by translations. The connected symmetry group for
the space-time of relativity is the \textit{Poincar\'{e} group} $P_{n}%
=SO_{o}(n-1,1)\otimes_{sp}\mathbb{R}^{n}$. Let $x_{n}$ stand for the time
coordinate, that is $t=x_{n}$. Those two symmetry groups of physics are
related by transition to imaginary time, that is multiplying $x_{n}$ by $i$.
This in particular changes the usual Euclidean form $(\mathbf{x}\mid
\mathbf{y})=x_{1}y_{n}+\cdots+x_{n}y_{n}$ into the Lorentz form $q_{n-1,1}%
(\mathbf{x},\mathbf{y})=x_{1}y_{1}+\cdots+x_{n-1}y_{n-1}-x_{n}y_{n}$, which is
invariant under the group $SO_{o}(n-1,1)$. Those groups and the corresponding
geometry can be related by the $c$-duality. Define an involution $\tau\colon
E_{n}\rightarrow E_{n}$ by
\[
\tau(A,\mathbf{x})=(I_{n-1,1}AI_{n-1,1},I_{n-1,1}\mathbf{x})\,,\qquad
I_{n-1,1}=\left(
\begin{array}
[c]{cc}%
I_{n-1} & 0\\
0 & -1
\end{array}
\right) \,.
\]
The differential $\tau\colon\frak{e}_{n}\rightarrow\frak{e}_{n}$ is given by
the same formula, and $\tau$ is an involution on $\frak{{e}_{n}}$. Let
\begin{align*}
\frak{h}:= & \{X\in\frak{e}_{n}\mid\tau(X)=X\}\simeq\frak{s}\frak{o}%
(n-1)\times_{sp}\mathbb{R}^{n-1}\\
\frak{q}:= & \{X\in\frak{e}_{n}\mid\tau(X)=-X\}
\end{align*}
The $c$-dual Lie algebra $\frak{e}^{c}$ is defined by:
\[
\frak{e}_{n}^{c}:=\frak{h}\oplus i\frak{q}\,.
\]
A simple calculation shows that $\frak{e}_{n}\simeq\frak{p}_{n}$. Let
$G=E_{n}$ and let $G^{c}$ denote the simply connected Lie group with Lie
algebra $\frak{{e}^{c}}$. Then $G^{c}=\tilde{P}_{n}$, the universal covering
group of $P_{n}$.
Given that a physical system is determined by a \textit{unitary
representation} $(\pi,\mathbf{H}(\pi))$ of the symmetry group, in our case
$E_{n}$ and $P_{n}$, the problem is reduced to use ``analytic continuation''
to move unitary representations of $E_{n}$ to unitary representations of
$P_{n}$ by passing over to imaginary time. This idea was used in the paper by
J. Fr\"{o}hlich, K. Osterwalder, and E. Seiler in \cite{FOS83}, see also
\cite{KlLa83}, to \textit{construct quantum field theoretical systems using
Euclidean field theory}. In this paper we will give some general constructions
and ideas related to this problem in the context of the applications
(\ref{IntCat(1)})--(\ref{IntCat(5)}) mentioned above, and work out some simple examples.
In \cite{Sch86} R. Schrader used this idea to construct, from a
\textit{complementary series representation} of $SL(2n,\mathbb{C})$, a unitary
representation of the group $SU(n,n)\times SU(n,n)$. In that paper the
similarities to the \textit{Yang-Baxter} relation were also discussed, a theme
that we will leave out in this exposition. What was missing in R.~Schrader's
paper was the \textit{identification} of the resulting representations and a
general procedure \textit{how} to construct those representations. We will see
that we can do this for all simple Lie groups where the associated Riemannian
symmetric space $G/K$ is a tube domain, and the that the duality works between
complementary series representations and highest weight representations.
In general this problem can be formulated in terms of $c$\textit{-duality} of
Lie groups and the analytic continuation of unitary representations from one
real form to another. (See \cite{HO95} for these terms.) The representations
that show up in the case of semisimple groups are generalized principal series
representations on the one side and highest weight representations on the
other. The symmetric spaces are the causal symmetric spaces, and the duality
is between non-compactly causal symmetric spaces and compactly causal
symmetric spaces. The latter correspond bijectively to real forms of bounded
symmetric domains. Therefore both the geometry and the representations are
closely related to the work of Harish-Chandra on bounded symmetric domains and
the holomorphic discrete series \cite{HCIV,HCV,HCVI}. But the ideas are also
related to the work of I. Segal and S. Paneitz through the notion of causality
and invariant cones, \cite{Segal,Paneitz81,Paneitz84}. A more complete
exposure can be found in the joint paper by the coauthors: \textit{Unitary
Representations of Lie Groups with Reflection Symmetry}, \cite{JO97}.
There are other interesting and related questions, problems, and directions.
In particular we would like to mention the analytic continuation of the
$H$-invariant character of the highest weight representations, and the
reproducing kernel of the Hardy space realization of this representation to a
spherical distribution character (spherical function) of the generalized
principal series representation that we started with. This connects the
representations that show up in the duality on the level of distribution
characters. For this we refer to \cite{O98, BK98}.
The paper is organized as follows. The list also includes some sources for
additional background references:\bigskip\newline
\ref{Considerations}.
Some Spectral Considerations Related to Reflection Positivity
\cite{FOS83,OsSc73,OsSc75}
\hrulefill\ \pageref{Considerations}\newline
\ref{uopg}.
Unitary One-Parameter Groups and Path Space Integrals
\cite{Arv84,KlLa81}
\hrulefill\ \pageref{uopg}\newline
\ref{axbg}.
The $(ax+b)$-Group
\cite{JO97,Ped90}
\hrulefill\ \pageref{axbg}\newline
\ref{Hilbert}.
The Hilbert Transform
\cite{GF89,Seg98}
\hrulefill\ \pageref{Hilbert}\newline
\ref{RemConsiderationsMar.1}.
One-Parameter Groups
\hrulefill\ \pageref{RemConsiderationsMar.1}\newline
\ref{Setting}.
The General Setting
\cite{JO97}
\hrulefill\ \pageref{Setting}\newline
\ref{Preliminaries}.
Preliminaries
\cite{GlJa87,Phil,Sto51,Mac}
\hrulefill\ \pageref{Preliminaries}\newline
\ref{Basic}.
A Basic Lemma
\cite{JO97}
\hrulefill\ \pageref{Basic}\newline
\ref{S-Hrep}.
Holomorphic Representations
\cite{HC65,HC70,Nee94,'OO88a,'OO88b}
\hrulefill\ \pageref{S-Hrep}\newline
\ref{LM}.
The L\"uscher-Mack Theorem
\cite{LM75}
\hrulefill\ \pageref{LM}\newline
\ref{SSS}.
Bounded Symmetric Domains
\cite{HiNe93,HO95,Hel62,He78}
\hrulefill\ \pageref{SSS}\newline
\ref{S-hwm}.
Highest Weight Modules
\cite{EHW83,Stanton,Ne94,Ne99,FK94,HO,Ja83,KNO98}
\hrulefill\ \pageref{S-hwm}\newline
\ref{S:Ex}.
An Example: $SU(1,1)$
\cite{JO97}
\hrulefill\ \pageref{S:Ex}\newline
\ref{S:Sssp}.
Reflection Symmetry for Semisimple Symmetric Spaces
\cite{Jor86,Jor87,JO97,Sch86}
\hrulefill\ \pageref{S:Sssp}\newline
\ref{S:Bargmann}.
The Segal-Bargmann Transform
\cite{OO96}
\hrulefill\ \pageref{S:Bargmann}\newline
\ref{Diagonal}.
The Heisenberg Group
\cite{BH94,Jor88,JO97}
\hrulefill\ \pageref{Diagonal}\newline
\ref{axb}.
The $(ax+b)$-Group Revisited
\cite{JO97,LaPh,Hel64}
\hrulefill\ \pageref{axb}\newline
References
\hrulefill\ \pageref{refpage}
\section{\label{Considerations}Some Spectral Considerations Related to
Reflection Positivity}
\setcounter{equation}{0}
\subsection{\label{uopg}Unitary One-Parameter Groups and Path Space Integrals}
The term \emph{reflection positivity} is from quantum field theory (QFT) where
it refers to a certain reflection in the time-variable. As we explained in the
introduction this reflection is also the one which makes the analytic
continuation between the (Newtonian) group of rigid motions and the
Poincar\'{e} group of relativity. This is the approach to QFT of Osterwalder
and Schrader \cite{OsSc73,OsSc75}. The approach implies a change of the inner
product, and the new Hilbert space which carries a \emph{unitary}
representation $\tilde{\pi}$ of the Poincar\'{e} group $P_{4}$ results from
the corresponding ``old'' one by passing to a subspace where the positivity
(the so-called Osterwalder-Schrader positivity) is satisfied. An energy
operator may then be associated with this ``new'' unitary representation
$\tilde{\pi}$ of $P_{4}$. This representation $\tilde{\pi}$ is ``physical'' in
that the corresponding energy is positive. The basic connection between the
two groups may further be understood from the corresponding quadratic forms on
space-time $\left( x,t\right) $, $x=\left( x_{1},x_{2},x_{3}\right) $,
$\left( x,t\right) \mapsto\left\| x\right\| ^{2}+t^{2}$ with $\left\|
x\right\| ^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$. The analytic continuation
$t\mapsto it$, $i=\sqrt{-1}$, turns this into the form $\left\| x\right\|
^{2}-t^{2}$ of relativity. This same philosophy may also be used in an
analytic continuation argument connecting Feynman measure with the Wiener
measure on path space. This is important since the Wiener measure seems to be
the most efficient way of making precise the Feynman measure, which involves
infinite ``renormalizations'' if given a literal interpretation. We refer to
\cite{GlJa87} and \cite{Nel64} for more details on this point.
For the convenience of the reader we include here a simple instance of
reflection positivity for a path space measure which will be needed later: Let
$\mathcal{D}=\mathcal{D}\left( \mathbb{R}\right) =C_{c}^{\infty}\left(
\mathbb{R}\right) $ denote the usual test functions on $\mathbb{R}$, and the
dual space $\mathcal{D}^{\prime}=\mathcal{D}^{\prime}\left( \mathbb{R}%
\right) $ of distributions. (We use the notation $q\left( f\right) $,
$q\in\mathcal{D}^{\prime}$, $f\in\mathcal{D}$.) Let $H_{0}=-\frac{1}%
{2}\bigtriangleup+\frac{1}{2}q^{2}-\frac{1}{2}$ be the harmonic oscillator
Hamiltonian, and form $\hat{H}=H_{0}-E_{0}$ picking $E_{0}$ such that $\hat
{H}\geq0$ and $\hat{H}\Omega=0$ for a ground state vector $\Omega$. Then by
\cite{GlJa87} there is a unique path-space measure $\phi_{0}$ on
$\mathcal{D}^{\prime}$ such that
\begin{align*}
\int q\left( t\right) \,d\phi_{0}\left( q\right) & =0,\\
\int q\left( t_{1}\right) q\left( t_{2}\right) \,d\phi_{0}\left(
q\right) & =\frac{1}{2}e^{-\left| t_{1}-t_{2}\right| }.
\end{align*}
One rigorous interpretation (see \cite{Nel64,Nel73}) is to view $\left(
q\left( t\right) \right) $ here as a stochastic process, i.e., a family of
random variables indexed by $t$. Further, for each $t>0$, and for each ``even
+ linear'' real potential $V\left( q\right) $, there is a unique measure
$\mu_{t}$ on $\mathcal{D}^{\prime}$ such that
\[
d\mu_{t}=Z_{t}^{-1}\exp\left( -\int_{-t/2}^{t/2}V\left( q\left( s\right)
\right) \,ds\right) \,d\phi_{0}\left( q\right)
\]
with
\[
Z_{t}=\int\exp\left( -\int_{-t/2}^{t/2}V\left( q\left( s\right) \right)
\,ds\right) \,d\phi_{0}\left( q\right) .
\]
The consideration leading to the relation between the measures $d\phi_{0}$ and
$d\mu_{t}$ is the Trotter approximation for the (analytically continued)
semigroup,%
\[
e^{-it\left( -\frac{1}{2}\bigtriangleup+V\right) }=\lim_{n\rightarrow\infty
}\left( e^{\left( it/2n\right) \bigtriangleup}e^{-\left( it/n\right)
V}\right) ^{n}.
\]
See \cite{Nel64} for more details on this point. When the operator $\left(
\cdots\right) ^{n}$ on the right-hand side is computed, we find the integral
kernel
\[
K^{\left( n\right) }\left( x_{0},x_{n},t\right) =\frac{1}{N_{n}}\int
e^{i\mathcal{S}\left( x_{0},\dots,x_{n},t\right) }\,dx_{1}\,\cdots\,dx_{n-1}%
\]
with%
\[
N_{n}=\left( \frac{2\pi it}{n}\right) ^{3n/2}%
\]
and%
\[
\mathcal{S}\left( x_{0},\dots,x_{n},t\right) =\frac{1}{2}\sum_{j=1}%
^{n}\left| x_{j-1}-x_{j}\right| ^{2}\left( \frac{t}{n}\right) ^{-1}%
-\sum_{j=1}^{n}V\left( x_{j}\right) \left( \frac{t}{n}\right) .
\]
The heuristic motivation for $\phi_{0}$ and $\mu_{t}$ is then the ``action''
$\mathcal{S}$ approximating%
\[
\mathcal{S}\left( q\right) =\frac{1}{2}\int_{0}^{t}\left( \dot{q}\left(
s\right) \right) ^{2}\,ds-\int_{0}^{t}V\left( q\left( s\right) \right)
\,ds
\]
via%
\[
q\left( t_{j}\right) =x_{j},\qquad\bigtriangleup t_{j}=\frac{t}{n},
\]
and%
\[
\dot{q}\left( t_{j}\right) \sim\frac{x_{j}-x_{j-1}}{t/n}%
\]
If $-t/20,\,b\in\mathbb{R} $. We take $Q=
\mathbb{R}$ and $H=\mathbb{R}^{+}$. Then $\tau$ is given by $\tau
(a,b)\;=(a,-b)$.
\textbf{5. The Heisenberg group:} Let $H_{n}$ be the $(2n+1)$-dimensional
Heisenberg group. We write
\[
H_{n}=\left\{ h(\mathbf{x},\mathbf{y},z)=\left(
\begin{array}
[c]{lll}%
1 & \mathbf{x}^{t} & z\\
0 & I_{n-1} & \mathbf{y}\\
0 & 0 & 1
\end{array}
\right) \,\,\mathbf{x},\mathbf{y}\in\mathbb{R}^{n},\,z\in\mathbb{R}\right\}
\simeq\mathbb{R}^{n}\times\mathbb{R}^{n}\times\mathbb{R}%
\]
with multiplication given by
\[
h(\mathbf{x},\mathbf{y},z)h(\mathbf{x}^{\prime},\mathbf{y}^{\prime},z^{\prime
})=h(\mathbf{x}+\mathbf{x}^{\prime},\mathbf{y}+\mathbf{y}^{\prime}%
,z+z^{\prime}+(\mathbf{x}\mid\mathbf{y}^{\prime}))\,.
\]
In particular $h(\mathbf{x},\mathbf{y},z)^{-1}=h(-\mathbf{x},-\mathbf{y}%
,(\mathbf{x}\mid\mathbf{y})-z)$. In this case we take $H=\{h(\mathbf{x}%
,0,0)\}\simeq\mathbb{R}^{n}$, which is abelian, and $Q=\{h(0,\mathbf{y},z)\in
H_{n}\mid\mathbf{y}\in\mathbb{R}^{n},\,z\in\mathbb{R}\}\simeq\mathbb{R}^{n+1}%
$. The involution is given by
\[
\tau(h(\mathbf{x},\mathbf{y},z)):=h(\mathbf{x},-\mathbf{y},-z)\,.
\]
Starting from the pair $(G,\tau)$ and a unitary representation $(\pi
,\mathbf{H}(\pi))$ of $G$ we need a compactible involution on the Hilbert
space $\mathbf{H}(\pi)$, that is a unitary linear map $J\colon\mathbf{H}%
(\pi)\rightarrow\mathbf{H}(\pi)$ intertwining $\pi$ and $\pi\circ\tau$. Thus
\[
J\pi(g)=\pi(\tau(g))J\qquad\forall g\in G\,.
\]
We will also need a semigroup $S$ such that $H\subset S$ or at least
$H\subset\overline{S}$ where the bar denotes topological closure. We shall
consider closed subspaces $\mathbf{K}_{0}\subset\mathbf{H}(\pi)$, where
$\mathbf{H}(\pi)$ is the Hilbert space of $\pi$, such that $\mathbf{K}_{0}$ is
invariant under $\pi(S^{o})$. Let $J\colon\mathbf{H}(\pi)\rightarrow
\mathbf{H}(\pi)$ be a unitary intertwining operator for $\pi$ and $\pi
\circ\tau$ such that $J^{2}=\operatorname*{id}$. We assume that $\mathbf{K}%
_{0}$ may be chosen such that $\Vert v\Vert_{J}^{2}:=%
%TCIMACRO{\TeXButton{ip}{\ip{v}{Jv}}}%
%BeginExpansion
\ip{v}{Jv}%
%EndExpansion
\geq0$ for all $v\in\mathbf{K}_{0}$. We will always assume our inner product
conjugate linear in the first argument. We form, in the usual way, the Hilbert
space $\mathbf{K}=\left( \mathbf{K}_{0}/\mathbf{N}\right) \sptilde$ by
dividing out with $\mathbf{N}=\{v\in\mathbf{K}_{0}\mid%
%TCIMACRO{\TeXButton{ip}{\ip{v}{Jv}}}%
%BeginExpansion
\ip{v}{Jv}%
%EndExpansion
=0\}$ and completing in the norm $\Vert\cdot\Vert_{J}$. (This is of course a
variation of the Gelfand-Naimark-Segal (GNS) construction.) With the
properties of $(G,\pi,\mathbf{H}(\pi),\mathbf{K})$ as stated, we show, using
the L\"uscher-Mack theorem, that the simply connected Lie group $G^{c}$ with
Lie algebra $\frak{g}^{c}=\frak{h}\oplus i\frak{q}$ carries a \textit{unitary}
representation $\pi^{c}$ on $\mathbf{K}$ such that $\{\pi^{c}(h\exp(iY))\mid
h\in H,Y\in C^{o}\}$ is obtained from $\pi$ by passing the corresponding
operators $\pi(h\exp Y)$ to the quotient $\mathbf{K}_{0}/\mathbf{N}$. To see
that this leads to a unitary representation $\pi_{c}$ of $G^{c}$ we use a
basic result of L\"uscher and Mack \cite{LM75} and in a more general context
one of Jorgensen \cite{Jor86}. In fact, when $Y\in C$, the selfadjoint
operator $d\pi(Y)$ on $\mathbf{K}$ has spectrum contained in $(-\infty,0]$. As
in
Lemma \ref{MNoughtZero},
we show that in the case where $C$ extends to
an $G^{c}$ invariant regular cone in $i\frak{g}^{c}=i\frak{h}\oplus\frak{q}$
and $\pi^{c}$ is injective, then each $\pi^{c}$ (as a unitary representation
of $G^{c}$) must be a direct integral of highest-weight representations of
$G^{c}$. The examples show that one can relax the condition in different ways,
that is one can avoid using the L\"uscher-Mack theorem by instead
constructing local representations and using only cones that are neither
generating nor $H$-invariant.
Assume now that $G$ is a semidirect product of $H$ and $N$ with $N$ normal and
abelian. Define $\tau\colon G\rightarrow G$ by $\tau(hn)=hn^{-1}$. Let $\pi
\in\hat{H}$ (the unitary dual) and extend $\pi$ to a unitary representation of
$G$ by setting $\pi(hn)=\pi(h)$. In this case, $G^{c}$ is locally isomorphic
to $G$, and $\pi$ gives rise to a unitary representation $\pi^{c}$ of $G^{c}$
by the formula $d\pi^{c}(X)=d\pi(X)$, $X\in\frak{h}$, and $d\pi^{c}%
|_{i\frak{q}}=0$. A special case of this is the $3$-dimensional Heisenberg
group, and the $(ax+b)$-group. In Sections \ref{Diagonal} and \ref{axb}, we
show that, if we induce instead a character of the subgroup $N$ to $G$, then
we have $\left( \mathbf{K}_{0}/\mathbf{N}\right) \sptilde=\{0\}$.
Our approach to the general representation correspondence $\pi\mapsto\pi^{c} $
is related to the integrability problem for representations of Lie groups (see
\cite{JoMo84}); but the present positivity viewpoint comes from
Osterwalder-Schrader positivity; see \cite{OsSc73, OsSc75}. In addition the
following other papers are relevant in this connection:
\cite{FOS83,Jor86,Jor87,KlLa83,Pra89,Sch86}.
\section{\label{Preliminaries}Preliminaries}
\setcounter{equation}{0}
The setting for the paper is a general Lie group $G$ with a nontrivial
involutive automorphism $\tau$.
\begin{definition}
\label{ReflectionSymmetric}A unitary representation $\pi$ acting on a Hilbert
space $\mathbf{H}(\pi)$ is said to be \textit{reflection symmetric} if there
is a unitary operator $J\colon\mathbf{H}(\pi)\rightarrow\mathbf{H}(\pi)$ such
that \begin{list}{}{\setlength{\leftmargin}{\customleftmargin}
\setlength{\itemsep}{0.5\customskipamount}
\setlength{\parsep}{0.5\customskipamount}
\setlength{\topsep}{\customskipamount}
\setlength{\parindent}{0pt}}
\item[\hss\llap{\rm R1)}] ${\displaystyle J^2 = \operatorname*{id}}$;
\item[\hss\llap{\rm R2)}] ${\displaystyle J\pi(g) = \pi(\tau(g))J\, ,
\quad g\in G}$.
\end{list}
\end{definition}
If (R1) holds, then $\pi$ and $\pi\circ\tau$ are equivalent. Furthermore,
generally from (R2) we have $J^{2}\pi(g) = \pi(g) J^{2}$. Thus, if $\pi$ is
irreducible, then we can always renormalize $J$ such that (R1) holds. Let $H =
G^{\tau}= \{g\in G\mid\tau(g) = g\}$ and let $\frak{h}$ be the Lie algebra of
$H$. Then $\frak{h} = \{ X\in\frak{g}\mid\tau(X) = X\}$. Define $\frak{q} =
\{Y\in\frak{g}\mid\tau(Y) = -Y\}$. Then $\frak{g} = \frak{h} \oplus\frak{q}$,
$[\frak{h},\frak{q}]\subset\frak{q}$ and $[\frak{q},\frak{q}]\subset\frak{h}$.
\begin{definition}
\label{Hyperbolic}A closed convex cone $C\subset\frak{q}$ is
\textit{hyperbolic} if $C^{o}\not =\emptyset$ and if $\operatorname{ad}X$ is
semisimple with real eigenvalues for every $X\in C^{o}$.
\end{definition}
We will assume the following for $(G, \pi,\tau, J)$: \begin{list}{}%
{\setlength{\leftmargin}{\customleftmargin}
\setlength{\itemsep}{0.5\customskipamount}
\setlength{\parsep}{0.5\customskipamount}
\setlength{\topsep}{\customskipamount}}
\item[\hss\llap{{\rm PR1)}}] $\pi
$ is reflection symmetric with reflection $J$;
\item[\hss\llap{{\rm PR2)}}] there is an $H$-invariant hyperbolic cone
$C\subset\frak{q}$ such that $S(C) = H\exp C$ is a closed semigroup and
$S(C)^o = H\exp C^o$ is diffeomorphic to $H\times C^o$;
\item[\hss\llap{{\rm PR3)}}] there is a subspace ${0}\not=
\mathbf{K}_0\subset\mathbf{H}(\pi
)$ invariant under $S(C)$ satisfying the positivity
condition
\[ \ip{v}{v}_J:= \ip{v}{J(v)} \ge0,\quad\forall v\in\mathbf{K}_0\, .\]
\end{list}
\begin{remark}
\label{WhatToAssume}In (PR3) we can always assume that $\mathbf{K}_{0}$ is
closed, as the invariance and the positivity pass over to the closure. In
(PR2) it is only necessary to assume that $\mathbf{K}_{0}$ is invariant under
$\exp C$, as one can always replace $\mathbf{K}_{0}$ by $\overline
{\left\langle \pi(H)\mathbf{K}_{0}\right\rangle }$, the closed space generated
by $\pi(H)\mathbf{K}_{0}$, which is $S(C)$-invariant, as $C$ is $H$-invariant.
For the exact conditions on the cone for (PR2) to hold see the original paper
by J. Lawson \cite{JL94}, or the monograph \cite[pp. 194 ff.]{HiNe93}.
\end{remark}
In some of the examples we will replace (PR2)and (PR3) by the following:
weaker conditions \begin{list}{}{\setlength{\leftmargin}{\customleftmargin}
\setlength{\itemsep}{0.5\customskipamount}
\setlength{\parsep}{0.5\customskipamount}
\setlength{\topsep}{\customskipamount}}
\item[\hss\llap{\rm PR2$^{\prime}$)}] $C$ is (merely) some nontrivial
cone in $\frak{q} $.
\item[\hss\llap{\rm PR3$^{\prime}$)}] There is a subspace
$0\not= \mathbf{K}_0\subset\mathbf{H} (\pi)$ invariant under $H$ and $\exp C$
satisfying the positivity condition from (PR3).
\end{list}
(See Section \ref{Diagonal} for further details.)
Since the operators $\{\pi(h)\mid h\in H\}$ commute with $J$, they clearly
pass to the quotient by
\[
\mathbf{N}:=\{v\in\mathbf{K}_{0}\mid%
%TCIMACRO{\TeXButton{ip}{\ip{v}{ Jv}}}%
%BeginExpansion
\ip{v}{ Jv}%
%EndExpansion
=0\}
\]
and implement unitary operators on $\mathbf{K}:=\left( \mathbf{K}%
_{0}/\mathbf{N}\right) \sptilde$ relative to the inner product induced by
\begin{equation}%
%TCIMACRO{\TeXButton{ip}{\ip{u}{v}}}%
%BeginExpansion
\ip{u}{v}%
%EndExpansion
_{J}:=%
%TCIMACRO{\TeXButton{ip}{\ip{u}{J(v)}}}%
%BeginExpansion
\ip{u}{J(v)}%
%EndExpansion
\,. \label{E:innerpr}%
\end{equation}
which will be denoted by the same symbol. Hence we shall be concerned with
passing the operators $\{\pi(\exp Y)\mid Y\in C\}$ to the quotient
$\mathbf{K}_{0}/\mathbf{N}$, and for this we need a basic Lemma.
In general, when $\left( \mathbf{K}_{0},J\right) $ is given, satisfying the
positivity axiom, then the corresponding composite quotient mapping
\[
\mathbf{K}_{0}\longrightarrow\mathbf{K}_{0}/\mathbf{N}\hooklongrightarrow
\left( \mathbf{K}_{0}/\mathbf{N}\right) \sptilde=:\mathbf{K}%
\]
is \emph{contractive} relative to the respective Hilbert norms. The resulting
(contractive) mapping will be denoted $\beta$. An operator $\gamma$ on
$\mathbf{H}$ which leaves $\mathbf{K}_{0}$ invariant is said to \emph{induce}
the operator $\tilde{\gamma}$ on $\mathbf{K}$ if $\beta\circ\gamma
=\tilde{\gamma}\circ\beta$ holds on $\mathbf{K}_{0}$. In general, an induced
operation $\gamma\mapsto\tilde{\gamma}$ may not exist; and, if it does,
$\tilde{\gamma}$ may fail to be bounded, even if $\gamma$ is bounded.
This above-mentioned operator-theoretic formulation of reflection positivity
has applications to the Feynman-Kac formula in mathematical physics, and there
is a considerable literature on that subject, with work by E. Nelson
\cite{Nel64,Nel73}, A. Klein and L.J. Landau \cite{Kle78,KlLa75,KlLa81}, B.
Simon, and W.B. Arveson \cite{Arv84}. Since we shall not use path space
measures here, we will omit those applications, and instead refer the reader
to the survey paper \cite{Arv84} (lecture 4) by W.B. Arveson. In addition to
mathematical physics, our motivation also derives from recent papers on
non-commutative harmonic analysis which explore analytic continuation of the
underlying representations; see, e.g., \cite{HOO91,BK98,Nee94,'O90a,O93,Ol82}.
\section{\label{Basic}A Basic Lemma}
\setcounter{equation}{0}
\begin{lemma}
\label{BasicLemma}
\begin{enumerate}
\item [\hss\llap{\rm1)}]Let $J$ be a period-$2$ unitary operator on a Hilbert
space $\mathbf{H}$, and let $\mathbf{K}_{0}\subset\mathbf{H}$ be a closed
subspace such that $%
%TCIMACRO{\TeXButton{ip}{\ip{v}{J(v)}}}%
%BeginExpansion
\ip{v}{J(v)}%
%EndExpansion
\geq0$, $v\in\mathbf{K}_{0}$. Let $\gamma$ be an invertible operator on
$\mathbf{H}$ such that $J\gamma=\gamma^{-1}J$ and which leaves $\mathbf{K}%
_{0}$ invariant and has $(\gamma^{-1})^{\ast}\gamma$ bounded on $\mathbf{H}$.
Then $\gamma$ induces a bounded operator $\tilde{\gamma}$ on $\mathbf{K}%
=\left( \mathbf{K}_{0}/\mathbf{N}\right) \sptilde$, where $\mathbf{N}%
=\{v\in\mathbf{K}_{0}\mid%
%TCIMACRO{\TeXButton{ip}{\ip{v}{Jv}}}%
%BeginExpansion
\ip{v}{Jv}%
%EndExpansion
=0\}$, and the norm of $\tilde{\gamma}$ relative to the $J$-inner product in
$\mathbf{K}$ satisfies
\begin{equation}
\Vert\tilde{\gamma}\Vert\leq\Vert(\gamma^{-1})^{\ast}\gamma\Vert_{sp}^{1/2}\,,
\label{E:3.1}%
\end{equation}
where $\Vert\cdot\Vert_{sp}$ is the spectral radius.
\item[\hss\llap{\rm2)}] If we have a semigroup $S$ of operators on
$\mathbf{H}$ satisfying the conditions in \textup{(1)}, then
\begin{equation}
(\gamma_{1}\gamma_{2})\sptilde=\tilde{\gamma_{1}}\tilde{\gamma_{2}}%
\,,\quad\gamma_{1},\gamma_{2}\in S\,. \label{E:3.2}%
\end{equation}
\end{enumerate}
\end{lemma}
\begin{proof}
For $v\in\mathbf{K}_{0}$, $v\not =0$, we have
\begin{align*}
\Vert\gamma(v)\Vert_{J}^{2} & =%
%TCIMACRO{\TeXButton{ip}{\ip{\gamma(v)}{J\gamma(v)}}}%
%BeginExpansion
\ip{\gamma(v)}{J\gamma(v)}%
%EndExpansion
\\
& =%
%TCIMACRO{\TeXButton{ip}{\ip{\gamma(v)}{\gamma^{-1}J(v)}}}%
%BeginExpansion
\ip{\gamma(v)}{\gamma^{-1}J(v)}%
%EndExpansion
\\
& =%
%TCIMACRO{\TeXButton{ip}{\ip{(\gamma^{-1})^{*}\gamma(v)}{J(v)}}}%
%BeginExpansion
\ip{(\gamma^{-1})^{*}\gamma(v)}{J(v)}%
%EndExpansion
\\
& =%
%TCIMACRO{\TeXButton{ip}{\ip{(\gamma^{-1})^{*}\gamma(v)}{v}}}%
%BeginExpansion
\ip{(\gamma^{-1})^{*}\gamma(v)}{v}%
%EndExpansion
_{J}\\
& \leq\Vert(\gamma^{-1})^{\ast}\gamma(v)\Vert_{J}\Vert v\Vert_{J}\\
& \leq\Vert((\gamma^{-1})^{\ast}\gamma)^{2}(v)\Vert_{J}^{1/2}\Vert v\Vert
_{J}^{1+1/2}\\
& \mkern4.5mu\vdots\\
& \leq\Vert((\gamma^{-1})^{\ast}\gamma)^{2^{n}}(v)\Vert_{J}^{1/2^{n}}\Vert
v\Vert_{J}^{1+1/2+\cdots+1/2^{n}}\\
& \leq\left( \Vert((\gamma^{-1})^{\ast}\gamma)^{2^{n}}\Vert\Vert
v\Vert\right) ^{1/2^{n}}\Vert v\Vert_{J}^{2}\,.
\end{align*}
Since $\displaystyle{\lim_{n\rightarrow\infty}\Vert((\gamma^{-1})^{\ast}%
\gamma)^{2^{n}}\Vert^{1/2^{n}}=\Vert(\gamma^{-1})^{\ast}\gamma\Vert_{sp}}$,
and ${\displaystyle
\lim_{n\rightarrow\infty}\Vert v\Vert^{1/2^{n}}=1}$, the result follows.
By this we get
\[%
%TCIMACRO{\TeXButton{ip}{\ip{\gamma(v)}{J\gamma(v)}}}%
%BeginExpansion
\ip{\gamma(v)}{J\gamma(v)}%
%EndExpansion
\leq\Vert(\gamma^{-1})^{\ast}\gamma\Vert_{sp}%
%TCIMACRO{\TeXButton{ip}{\ip
%{v}{J(v)}}}%
%BeginExpansion
\ip
{v}{J(v)}%
%EndExpansion
\]
which shows that $\gamma(\mathbf{N})\subset\mathbf{N}$, whence $\gamma$ passes
to a bounded operator on the quotient $\mathbf{K}_{0}/\mathbf{N}$ and then
also on $\mathbf{K}$ satisfying the estimate stated in (1). If both the
operators in (\ref{E:3.2}) leave $\mathbf{N}$ invariant, so does $\gamma
_{1}\gamma_{2}$ and the operator induced by $\gamma_{1}\gamma_{2}$ is
$\tilde{\gamma_{1}}\tilde{\gamma_{2}}$ as stated.
\end{proof}
\begin{corollary}
\label{GammaContraction}Let the notation be as above and assume that $\gamma$
is unitary on $\mathbf{H}$. Then the constant on the right in
\textup{(\ref{E:3.1})} is one. Hence $\tilde{\gamma}$ is a contraction on
$\mathbf{K}$.
\end{corollary}
To understand the assumptions on the space $\mathbf{K}_{0}$, that is
positivity and invariance, we include the following which is based on an idea
of R.S. Phillips \cite{Phil}.
\begin{proposition}
\label{P:3.3}Let $\mathbf{H}$ be a Hilbert space and let $J$ be a period-$2$
unitary operator on $\mathbf{H}$. Let $S$ be a commutative semigroup of
unitary operators on $\mathbf{H}$ such that $S=S_{+}S_{-}$ with $S_{+}%
=\{\gamma\in S\mid J\gamma=\gamma J\}$ and $S_{-}=\{\gamma\in S\mid
J\gamma=\gamma^{-1}J\}$. Then $\mathbf{H}$ possesses a maximal positive and
invariant subspace, that is a subspace $\mathbf{K}_{0}$ such that $%
%TCIMACRO{\TeXButton{ip}{\ip{v}{J(v)}}}%
%BeginExpansion
\ip{v}{J(v)}%
%EndExpansion
\geq0$, $v\in\mathbf{K}_{0}$, and $\gamma\mathbf{K}_{0}\subset\mathbf{K}_{0}$,
$\gamma\in S$.
\end{proposition}
\begin{proof}
The basic idea is contained in \cite[pp. 386 ff.]{Phil}.
\end{proof}
\begin{remark}
\label{RemBasicNew.1}
A nice application is to the case $\mathbf{H}=L^{2}\left( X,m\right) $
where $X$ is a Stone space. There is a $m$-a.e.-defined automorphism
$\theta\colon X\rightarrow X$ such that
\[
J\left( f\right) =f\circ \theta ,\qquad f\in L^{2}\left( X,m\right)
\]
and $S$ is represented by multiplication operators on
$L^{2}\left(
X,m\right) $.
By \cite{Phil} we know that there are clopen subsets $A,B\subset X$
such that with $M_{0}:=\left\{ x\in X\mid \theta \left( x\right) =x\right\} $
and $M_{1}=X\setminus M_{0}$
we have $A,B\subset M_{1}$, $A\cap B=\varnothing $,
$A\cup B=M_{1}$ and $\theta \left( A\right) =B$.
Let $\mathbf{K}_{0}:=L^{2}\left( M_{0}\cup A\right) $.
Then $\mathbf{K}_{0}$ is a maximal
positive and invariant subspace.
\end{remark}
\begin{lemma}
\label{MNoughtZero}If $M_{0}\subset X$ is of measure zero, then the space
$\mathbf{K}$ is trivial, that is $%
%TCIMACRO{\TeXButton{ip}{\ip{f}{J(f)}}}%
%BeginExpansion
\ip{f}{J(f)}%
%EndExpansion
=0$ for all $f\in\mathbf{K}_{0}$.
\end{lemma}
\begin{remark}
\label{AbelianSubspace}Assume that we have (PR1) and (PR2).
By \cite{KrNe96} there is an
abelian subspace $\frak{a}\subset\frak{q}$ such that
$C^{o}=\operatorname{Ad}(H)(C^{o}\cap\frak{a})$. Let $S_{A}=\exp(C^{o}%
\cap\frak{a})$. Then $S_{A}$ is an abelian semigroup, so one can use
Proposition \ref{P:3.3} to construct a maximal positive and invariant subspace
for $S_{A}$. But in general we can not expect this space to be invariant under
$S$.
\end{remark}
We read off from the basic Lemma the following Proposition:
\begin{proposition}
\label{Contractive}Let $\pi$ be a unitary representation of the group $G$.
Assume that $(\tau,J,C,\mathbf{K}_{0})$ satisfies the conditions
\textup{(PR1), (PR2}$^{\prime}$\textup{),} and \textup{(PR3}$^{\prime}%
$\textup{).} If $Y\in C$, then $\pi(\exp Y)$ induces a contractive selfadjoint
operator $\tilde{\pi}(\exp Y)$ on $\mathbf{K}$.
\end{proposition}
\begin{proof}
If $Y\in C$, then $\pi(\exp Y)\mathbf{K}_{0}\subset\mathbf{K}_{0}$, and
$\pi(\exp Y)$ is unitary on $\mathbf{H}(\pi)$. Thus
\begin{align*}%
%TCIMACRO{\TeXButton{ip}{\ip{\pi(\exp Y)u}{J(v)}}}%
%BeginExpansion
\ip{\pi(\exp Y)u}{J(v)}%
%EndExpansion
& =%
%TCIMACRO{\TeXButton{ip}{\ip{u}{\pi(\exp(-Y))J(v)}}}%
%BeginExpansion
\ip{u}{\pi(\exp(-Y))J(v)}%
%EndExpansion
\\
& =%
%TCIMACRO{\TeXButton{ip}{\ip{u}{J(\pi(\exp Y)v)}}}%
%BeginExpansion
\ip{u}{J(\pi(\exp Y)v)}%
%EndExpansion
\,,
\end{align*}
proving that $\pi(\exp Y)$ is selfadjoint in the $J$-inner product. Since
$\pi(\exp Y)$ is unitary on $\mathbf{H}(\pi)$
\[
\Vert\pi(\exp Y)\Vert=\Vert\pi(\exp Y)\Vert_{sp}=1\,,
\]
and the contractivity property follows.
\end{proof}
\begin{lemma}
\label{HolomorphicRPlus}Let $\pi$ be a unitary representation of $G$ such that
$(\tau,J,C,\mathbf{K}_{0})$ satisfies the conditions \textup{(PR1),
(PR2}$^{\prime}$\textup{),} and \textup{(PR3}$^{\prime}$\textup{).} Then for
$Y\in C$ there is a selfadjoint operator $d\tilde{\pi}(Y)$ in $\mathbf{K}%
=\left( \mathbf{K}_{0}/\mathbf{N}\right) \sptilde$, with spectrum contained
in $(-\infty,0]$, such that
\[
\tilde{\pi}(\exp(tY))=e^{t\,d\tilde{\pi}(Y)},\quad t\in\mathbb{R}_{+}%
\]
is a contractive semigroup on $\mathbf{K}$. Furthermore the following hold:
\begin{enumerate}
\item [\hss\llap{\rm1)}]$t\mapsto e^{t\,d\tilde{\pi}(Y)}$ extends to a
continuous map $z\mapsto e^{z\,d\tilde{\pi}(Y)}$ on $\{z\in\mathbb{C}%
\mid\operatorname{Re}(z)\geq0\}$ holomorphic on the open right half-plane, and
such that $e^{(z+w)\,d\tilde{\pi}(Y)}=e^{z\,d\tilde{\pi}(Y)}e^{w\,d\tilde{\pi
}(Y)}$.
\item[\hss\llap{\rm2)}] There exists a one-parameter group of unitary
operators
\[
\tilde{\pi}\left( \exp(itY)\right) :=e^{it\,d\tilde{\pi}(Y)},\quad
t\in\mathbb{R}%
\]
on $\mathbf{K}$.
\end{enumerate}
\end{lemma}
\begin{proof}
The last statement follows by the spectral theorem. By construction
$\{\tilde{\pi}(\exp(tY))\mid t\in\mathbb{R}_{+}\}$ is a semigroup of
selfadjoint contractive operators on $\mathbf{K}$. The existence of the
operators $d\tilde{\pi}(Y)$ as stated then follows from a general result in
operator theory; see, e.g., \cite{Fr80} or \cite{KlLa81}.
\end{proof}
\begin{corollary}
\label{Id}Let the situation be as in the last corollary. If $Y\in C\cap-C$
then $e^{t\,d\tilde{\pi}(Y)}=\operatorname*{id}$ for all $t\in\mathbb{R}_{+}$.
In particular $d\tilde{\pi}(Y)=0$ for every $Y\in C\cap-C$.
\end{corollary}
\begin{proof}
This follows as the spectrum of $d\tilde{\pi}(Y)$ and $d\tilde{\pi}(-Y)$ is
contained in $(-\infty,0]$.
\end{proof}
We remark here that we have introduced the map $d\pi$ without using the space
of \textit{smooth vectors} for the representation $\pi$. Let us recall that a
vector $\mathbf{v}\in\mathbf{H}(\pi)$ is called \textit{smooth} if the map
\[
\mathbb{R}\ni t\longmapsto\hat{\mathbf{v}}(t):=\pi(\exp tX)\mathbf{v}%
\in\mathbf{H}(\pi)
\]
is smooth for all $X\in\frak{g}$. The vector is \textit{analytic} if the above
map is analytic. We denote by $\mathbf{H}^{\infty}(\pi)$ the space of smooth
vectors and by $\mathbf{H}^{\omega}(\pi)$ the space of analytic vectors.
Both $\mathbf{H}^{\omega}(\pi)$ and
$\mathbf{H}^{\infty}(\pi)$
are
$G$-invariant dense subspaces of $\mathbf{H}%
(\pi)$. We define a representation of $\frak{g}$ on $\mathbf{H}^{\infty}(\pi)$
by
\[
d\pi(X)\mathbf{v}=\lim_{t\rightarrow0}\frac{\pi(\exp tX)\mathbf{v}-\mathbf{v}%
}{t}\,.
\]
Recall that if $\pi$ is infinite-dimensional, then $d\pi$ is a representation
of $\frak{g}$ by unbounded operator on $\mathbf{H} (\pi)$, but the analytic
vectors and the $C^{\infty}$-vectors form dense domains for $d\pi$; see
\cite{Nel59,Pou92,WaI72}.
The operator $d\tilde{\pi}(X)$ in the above statements is an extension of the
operator $d\tilde{\pi}(X)$ on the space of smooth vectors. This allows us to
use the same notation for those two objects. We extend this representation to
$\frak{g}_{{\mathbb{C}}}$ by complex linearity, $d\pi(X+iY)=d\pi
(X)+i\,d\pi(Y)$, $X,Y\in\frak{g}$. Let $U(\frak{g})$ denote the universal
enveloping algebra of $\frak{g}_{{\mathbb{C}}}$. Then $d\pi$ extends to a
representation on $U(\frak{g})$, again denoted by $d\pi$. The space
$\mathbf{H}^{\infty}(\pi)$ is a topological vector space in a natural way,
cf.\ \cite{WaI72}. Furthermore $\mathbf{H}^{\infty}(\pi)$ is invariant under
$G$ and $U(\frak{g})$. As $\pi(g)\pi(\exp(tX))\mathbf{v}=\pi(\exp
(t\operatorname{Ad}(g)X))\pi(g)\mathbf{v}$, we get
\[
\pi(g)\,d\pi(X)\mathbf{v}=d\pi(\operatorname{Ad}(g)X)\pi(g)\mathbf{v},
\qquad \mathbf{v}\in\mathbf{H}^{\infty}(\pi)
\]
for all $g\in G$ and all $X\in\frak{g}$. Define $Z^{\ast}=-\sigma(Z)$,
$Z\in\frak{g}_{{\mathbb{C}}}$,
where $\sigma$ is the conjugation $X+iY\mapsto X-iY$, $X,Y\in\frak{g}$.
Then a simple calculation shows that for the
densely defined operator $\pi(Z)$, $Z\in\frak{g}_{{\mathbb{C}}}$, we have
$\pi(Z)^{\ast}=\pi(Z^{\ast})$
on $\mathbf{H}^{\infty}(\pi)$.
When (R1--2) and (PR1--3) hold, and $Y\in C$, we showed in
Lemma
\ref{HolomorphicRPlus} that the operator $\tilde{\pi}\left( Y\right) $ is
selfadjoint in $\mathbf{K}=\left( \mathbf{K}_{0}/\mathbf{N}\right) \sptilde$
with spectrum in $\left[ 0,\infty\right) $. Once $\tilde{\pi}$ is identified
as a unitary representation of $G^{c}$, then $\tilde{\pi}\left( iY\right) $
is automatically a selfadjoint operator in $\mathbf{K}$ by \cite{NeSt59}, but
semiboundedness of the corresponding spectrum of $\tilde{\pi}\left( Y\right)
$ only holds for $Y\in C$. Yet if $\tilde{\pi}$ is obtained, as in
Lemma
\ref{HolomorphicRPlus}, from a unitary representation $\pi$ of $G$ acting on
$\mathbf{H}$, then the spectrum of $\pi\left( Y\right) $ is contained in the
purely imaginary axis $i\mathbb{R}$, and yet $\tilde{\pi}\left( Y\right) $
has spectrum in $\left[ 0,\infty\right) \subset\mathbb{R}$. The explanation
is that the Hilbert spaces $\mathbf{H}$ and $\mathbf{K}$ are different for the
two representations $\pi$ and $\tilde{\pi}$.
\section{\label{S-Hrep}Holomorphic Representations}
\setcounter{equation}{0}
The unitary representations that show up in the duality are direct integrals
of highest weight $G^{c}$-modules. Those representations can also be viewed as
\textit{holomorphic representations} of a semigroup related to an extension of
the $H$-invariant cone $C$ that we started with. We will therefore give a
short overview over this theory, while
referring to the forthcoming monograph \cite{Ne99} for more details.
The theory of highest weight modules and holomorphic representations will
always be related to the name of Harish-Chandra because of his fundamental
work on bounded symmetric domains and the holomorphic discrete series,
\cite{HCIV,HCV,HCVI}. Later Gelfand and Gindikin in \cite{GG}
proposed a new approach for studying the Plancherel formula for
semisimple Lie group $G$. Their idea was to consider functions in
$\mathbf{L}^{2}(G)$ as the sum of boundary values of holomorphic functions
defined on domains in $G_{{\mathbb{C}}}$. The first deep results in this
direction are due to Ol'shanskii \cite{Ol82} and Stanton \cite{Stanton}, who
realized the holomorphic discrete series of the group $G$ in a Hardy space of
a local tube domain containing $G$ in the boundary. The generalization to
noncompactly causal symmetric spaces was carried out in
\cite{HO95,HOO91,'OO88a,'OO88b}. This program was carried out for solvable
groups in \cite{HO} and for general groups in \cite{BK95,Nee94}.
Let $G_{{\mathbb{C}}}$ be a complex Lie group with Lie algebra $\frak{g}%
_{{\mathbb{C}}}$ and let $\frak{g}$ be a real form of $\frak{g}_{{\mathbb{C}}%
}$. We assume for simplicity that $G$, the analytic subgroup of
$G_{{\mathbb{C}}}$ with Lie algebra $\frak{g}$, is closed in $G_{{\mathbb{C}}%
}$. Let $C$ be a regular $G$-invariant cone in $\frak{g}$ such that the set
$S(C)=G\exp iC$ is a closed semigroup in $G_{{\mathbb{C}}}$. Moreover, we
assume that the map
\[
G\times C\ni(a,X)\longmapsto a\exp iX\in S(C)
\]
is a homeomorphism and even a diffeomorphism when restricted to $G\times
C^{o}$. Finally, we assume that there exists a real automorphism $\sigma$ of
$G_{{\mathbb{C}}}$ whose differential is the complex conjugation of
$\frak{g}_{{\mathbb{C}}}$ with respect to $\frak{g}$, that is $\sigma
(X+iY)=X-iY$ for $X,Y\in\frak{g}$. We notice that in this case $G_{{\mathbb{C}%
}}/G$ is a symmetric space and that the corresponding subspace $\frak{q}$ is
just $i\frak{g}$. Those hypotheses are also satisfied for Hermitian Lie groups
and also for some solvable Lie groups; cf.\ \cite{HO}. Define%
\begin{equation}
W(\pi):=\{X\in\frak{g}\mid\forall u\in\mathbf{H}^{\infty}(\pi)\,:\,\ip
{i\,d\pi(X)u}{u}\leq0\}\,. \label{Cpi}%
\end{equation}
Thus $W(\pi)$ is the set of elements of $\frak{g}$ for which $d\pi(iX)$ is
\textit{negative}. The elements of $W(\pi)$ are called \textit{negative
elements} for the representation $\pi$.
\begin{lemma}
\label{LemS-HrepNew.1}$W(\pi)$ is a closed $G$-invariant convex cone in
$\frak{g}$.
\end{lemma}
\begin{definition}
\label{DefS-HrepMar.1}Let $W$ be a $G$-invariant cone in $\frak{g}$. We denote
the set of all unitary representations $\pi$ of $G$ with $W\subset W(\pi)$ by
$\mathcal{A}(W)$. A unitary representation $\pi$ is called \textit{$W$%
}\emph{-admissible} if $\pi\in\mathcal{A}(W)$.
\end{definition}
The representations in $\mathcal{A}(W)$ will be studied in detail in Section
\ref{S-hwm} below. We show in Theorem \ref{AChw} that a $\rho\in
\mathcal{A}(W)$ which is irreducible is in fact a \emph{highest weight
representation}, and the corresponding $K^{c}$-weights are determined. The
representations are then identified as discrete summands in $\mathbf{L}%
^{2}\left( G^{c}\right) $.
Let $S$ be a semigroup with unit and let $\sharp\colon S\rightarrow S$ be a
bijective involutive antihomomorphism, that is%
\[
(ab)^{\sharp}=b^{\sharp}a^{\sharp}\qquad\text{and}\qquad\quad a^{\sharp\sharp
}=a
\]
We call $\sharp$ an \textit{involution} on the semigroup $S$, and we call the
pair $(S,\sharp)$ a \textit{semigroup with involution} or an
\textit{involutive semigroup}. For us the important examples are the
semigroups of the form $S(C)=H\exp C$ with $\gamma^{\sharp}=\tau(\gamma^{-1}%
)$. Another class of examples consists of the \textit{contractive semigroups}
on a Hilbert space $\mathbf{H}$. Let $S(\mathbf{H})=\{T\in B(\mathbf{H}%
)\mid\Vert T\Vert\leq1\}$. Denote by $T^{\ast}$ the adjoint of $T$ with
respect to the inner product on $\mathbf{H}$. Then $(S,\ast)$ is a semigroup
with involution.
\begin{definition}
Let $(S,\sharp)$ be a topological semigroup with involution: then a semigroup
homomorphism $\rho\colon S\rightarrow S(\mathbf{H})$ is called a contractive
representation of $(S,\sharp)$ if $\rho(g^{\sharp})=\rho(g)^{\ast}$ and $\rho$
is continuous with respect to the weak operator topology of $S(\mathbf{H})$. A
contractive representation is called irreducible\label{irr} if there is no
closed nontrivial subspace of $\mathbf{H}$ invariant under $\rho(S)$.
\end{definition}
\begin{definition}
\label{DefS-HrepNew.3}Let $\rho$ be a contractive representation of the
semigroup $S(W)=G\exp iW\subset G_{{\mathbb{C}}}$. Then $\rho$ is holomorphic
if the function $\rho\colon S(C)^{o}\rightarrow B(\mathbf{V})$ is holomorphic.
\end{definition}
The following lemma shows that, if a unitary representation of the group $G$
extends to a holomorphic representation of $S (C)$, then this extension is unique.
\begin{lemma}
\label{unique} If $f\colon S(W)\rightarrow S(\mathbf{H})$ is continuous and
$f|_{S(W)^{o}}$ is holomorphic such that $f|_{G}=0$, then $f=0$.
\end{lemma}
To construct a holomorphic extension $\rho$ of a representation $\pi$ we have
to assume that $\pi\in\mathcal{A}(W)$. Then for any $X\in W$, the operator
$i\,d\pi(X)$ generates a self adjoint contraction semigroup which we denote by%
\[
T_{X}(t)=e^{ti\,d\pi(X)}\,.
\]
For $s=g\exp iX\in S(C)$ we define%
\begin{equation}
\rho(s):=\rho(g)T_{X}(1) \label{extension}%
\end{equation}
\begin{theorem}
\label{Th:extension} $\rho$ is a contractive and holomorphic representation of
the semigroup $S(W)$. In particular, every representation $\pi\in
\mathcal{A}(W)$ extends uniquely to a holomorphic representation of $S(W)$
which is uniquely determined by $\pi$.
\end{theorem}
We will usually denote the holomorphic extension of the representation $\pi$
by the same letter. For the converse of Theorem \ref{Th:extension}, we remark
the following simple fact: Let $(S,\sharp)$ be a semigroup with involution and
let $\rho$ be a contractive representation of $S$. Let
\[
G(S):=\{s\in S\mid s^{\sharp}s=ss^{\sharp}=1\}
\]
Then $G(S)$ is a closed subgroup of $S$ and $\pi:=\rho|_{G(S)}$ is a unitary
representation of $G(S)$. Obviously,
\[
G\subset G(S(W))\,.
\]
Thus every holomorphic representation of $S(W)$ defines a unique unitary
representation of $G$ by restriction.
\begin{theorem}
\label{ThmS-HrepNew.6}Let $\rho$ be a holomorphic representation of $S(W)$.
Then $\rho|_{G}\in\mathcal{A}(W)$ and the $\rho$ agrees with the extension of
$\rho|_{G}$ to $S(W)$.
\end{theorem}
Two representations $\rho$ and $\pi$ of the semigroup $S(W)$ are said to (be
unitarily) equivalent if there exists a unitary isomorphism $U\colon
\mathbf{H}(\rho)\rightarrow\mathbf{H}(\pi)$ such that
\[
U\rho(s)=\pi(s)U\quad\forall s\in S(W)
\]
In particular, two contractive representations $\rho$ and $\pi$ of $S(W)$ are
equivalent if and only if $\rho|_{G}$ and $\pi|_{G}$ are unitarily equivalent.
We call a holomorphic contractive representation $\rho$ of $S(W)$
$W$-\textit{admissible} if $\rho|_{G}\in\mathcal{A}(W)$ and write $\rho
\in\mathcal{A}(W)$.
We denote by $\widehat{S(W)}$ the set of equivalence classes of irreducible
holomorphic representations of $S(W)$.
We say that a representation $\rho$ is bounded if
$\Vert\rho(s)\Vert\leq 1$
for all $s\in S(W)$. Note that this depends only on the unitary equivalence
class of $\rho$. We denote by $\widehat{S(W)}_{b}$ the subset in
$\widehat{S(W)}$ of bounded representations. Let $\rho$ and $\pi$ be
holomorphic representations of $S(W)$. Define a representation of $S(W)$ in
$\mathbf{H}(\rho)\hat{\otimes}\mathbf{H}(\pi)$ by%
\[
\lbrack\rho\otimes\pi](s):=\rho(s)\otimes\pi(s)
\]
Then $\rho\otimes\pi\in\mathcal{A}(W)$. We denote the representation
$s\mapsto\operatorname*{id}$ by $\iota$.
\begin{theorem}
[Neeb, Ol'shanskii \cite{HO95,Nee94,Ne99}]\label{DirInt} Let $\rho$ be a
holomorphic representation of $S(W)_{b}$.
Then there exists a Borel measure $\mu$ on $\widehat{S(W)}$ supported on
$\widehat{S(W)}_{b}$ and a direct integral of representations
\[
\left( \int_{\widehat{S(W)}_{b}}^{\oplus}\rho_{\omega}\,d\mu(\omega
),\int_{\widehat{S(W)}_{b}}^{\oplus}\mathbf{H}(\omega)\,d\mu
(\omega)\right)
\]
such that:
\begin{enumerate}
\item \label{DirInt(1)}The representation $\rho$ is equivalent to
$\int_{\widehat{S(W)}_{b}}^{\oplus}\rho_{\omega}\,d\mu(\omega)$ .
\item \label{DirInt(2)}There exists a subset $N\subset\widehat{S(W)}_{b}$
such that $\mu(N)=0$ and if $\omega\in\widehat{S(W)}_{b}\setminus N$, then
$\rho_{\omega}$ is equivalent to $(\pi_{\omega}\otimes\iota,\mathbf{H}%
(\omega)\hat{\otimes}\mathbf{L}(\omega))$, where $\pi_{\omega}\in\omega$ and
$\mathbf{L}(\omega)$ is a Hilbert space.
\item \label{DirInt(3)}If $\omega\in\widehat{S(W)}_{b}$ then set
$n(\omega):=\dim\mathbf{L}(\omega)$. Then $n$ is a $\mu$-measurable function
from $\widehat{S(W)}_{b}$ to the extended positive axis $[0,\infty]$ which
is called the multiplicity function.
\end{enumerate}
\end{theorem}
\begin{proof}
See \cite{Ne99}, Theorem XI.6.13.
\end{proof}
\section{\label{LM}The L\"uscher-Mack Theorem}
\setcounter{equation}{0}
We use reference \cite{HiNe93} for the L\"uscher-Mack Theorem, but
\cite{FOS83}, \cite{GoJo83}, \cite{Jor86}, \cite{Jor87}, \cite{JoMo84},
\cite{KlLa83}, \cite{LM75}, and \cite{Sch86} should also be mentioned in this
connection. We have two ways of making the connection between the unitary
representations of $G$ and those of $G^{c}$: one is based on the
L\"uscher-Mack principle, and the other on the notion of local
representations from Jorgensen's papers \cite{Jor86} and \cite{Jor87}.
Let $\pi$, $C$, $\mathbf{H}(\pi)$, $J$ and $\mathbf{K}_{0}$ be as before. We
have proved that the operators
\[
\{\pi(h\exp(Y))\mid h\in H,Y\in C\}
\]
pass to the space $\mathbf{K}=\left( \mathbf{K}_{0}/\mathbf{N}\right)
\sptilde$ such that $\tilde{\pi}(h)$ is unitary on $\mathbf{K}$, and
$\tilde{\pi}(\exp Y)$ is contractive and selfadjoint on $\mathbf{K}$. As a
result we arrive at selfadjoint operators $d\tilde{\pi}(Y)$ with spectrum in
$(-\infty,0]$ such that for $Y\in C$, $\tilde{\pi}(\exp Y)=e^{d\tilde{\pi}%
(Y)}$ on $\mathbf{K}$. As a consequence of that we notice that
\[
t\longmapsto e^{t\,d\tilde{\pi}(Y)}%
\]
extends to a continuous map on $\{z\in{{\mathbb{C}}}\mid\operatorname{Re}%
(z)\geq0\}$ holomorphic on the open right half plane $\{z\in{{\mathbb{C}}}%
\mid\operatorname{Re}(z)>0\}$. Furthermore,
\[
e^{(z+w)\,d\tilde{\pi}(Y)}=e^{z\,d\tilde{\pi}(Y)}e^{w\,d\tilde{\pi}(Y)}\,.
\]
As $\mathbf{K}$ is a unitary $H$-module we know that the $H$-analytic vectors
$\mathbf{K}^{\omega}(H)$ are dense in $\mathbf{K}$. Thus $\mathbf{K}%
_{oo}:=S(C^{o})\mathbf{K}^{\omega}(H)$ is dense in $\mathbf{K}$. We notice
that for $u\in\mathbf{K}_{oo}$ and $X\in C^{o}$ the function $t\mapsto
\tilde{\pi}(\exp tX)u$ extends to a holomorphic function on an open
neighborhood of the right half-plane. This and the Campbell-Hausdorff formula
are among the main tools used in proving the following Theorem of L\"uscher
and Mack \cite{LM75}. We refer to \cite[p. 292]{HiNe93} for the proof. Our
present use of Lie theory, cones, and semigroups will follow standard
conventions (see, e.g., \cite{FHO93,Hel62,JL94,WaI72,Yos91}): the exponential
mapping from the Lie algebra $\frak{g}$ to $G$ is denoted $\exp$, the adjoint
representation of $\frak{g}$, $\operatorname{ad}$, and that of $G$ is denoted
$\operatorname{Ad}$.
\begin{theorem}
[L\"uscher-Mack \cite{LM75}]\label{LuscherMack} Let $\rho$ be a strongly
continuous contractive representation of $S(C)$ on the Hilbert space
$\mathbf{H}$ such that $\rho(s)^{\ast}=\rho(\tau(s)^{-1})$. Let $G^{c}$ be the
connected, simply connected Lie group with Lie algebra $\frak{g}^{c}%
=\frak{h}\oplus i\frak{q}$. Then there exists a continuous unitary
representation $\rho^{c}\colon G^{c}\rightarrow\mathrm{U}(\mathbf{H})$,
extending $\rho$, such that for the differentiated representations $d\rho$ and
$d\rho^{c}$ we have:
\begin{enumerate}
\item [\hss\llap{\rm1)}]\label{LuscherMack(1)}$d\rho^{c}(X)=d\rho
(X)\,\quad\forall X\in\frak{h}$.
\item[\hss\llap{\rm2)}] \label{LuscherMack(2)}$d\rho^{c}(iY)=i\,d\rho
(Y)\,\quad\forall Y\in C$.
\end{enumerate}
\end{theorem}
We apply this to our situation to get the following theorem:
\begin{theorem}
\label{PiCIrreducible}Assume that $(\pi,C,\mathbf{H},J)$ satisfies
\textup{(PR1)--(PR3).} Then the following hold:
\begin{enumerate}
\item [\hss\llap{\rm1)}]\label{PiCIrreducible(1)}$S(C)$ acts via
$s\mapsto\tilde{\pi}(s)$ by contractions on $\mathbf{K}$.
\item[\hss\llap{\rm2)}] \label{PiCIrreducible(2)}Let $G^{c}$ be the simply
connected Lie group with Lie algebra $\frak{g}^{c}$. Then there exists a
unitary representation $\tilde{\pi}^{c}$ of $G^{c}$ such that $d\tilde{\pi
}^{c}(X)=d\tilde{\pi}(X)$ for $X\in\frak{h}$ and $i\,d\tilde{\pi}%
^{c}(Y)=d\tilde{\pi}(iY)$ for $Y\in C$.
\item[\hss\llap{\rm3)}] \label{PiCIrreducible(3)}The representation
$\tilde{\pi}^{c}$ is irreducible if and only if $\tilde{\pi}$ is irreducible.
\end{enumerate}
\end{theorem}
\begin{proof}
(1) and (2) follow by the L\"uscher-Mack theorem and Proposition
\ref{Contractive}, as the
resulting representation of $S$ is obviously continuous.
(3) Let $\mathbf{L}$ be a $G^{c}$-invariant subspace in $\mathbf{K}$. Then
$\mathbf{L}$ is $\tilde{\pi}(H)$ invariant. Let $Y\in C^{o}$, $u\in
\mathbf{L}^{\omega}$ and $v\in\mathbf{L}^{\perp}$. Define $f\colon
\{z\in{{\mathbb{C}}}\mid\operatorname{Re}(z)\geq0\}\rightarrow{{\mathbb{C}}}$
by
\[
f(z):=%
%TCIMACRO{\TeXButton{ip}{\ip{v}{e^{zd\tilde{\pi}(Y)}u}}}%
%BeginExpansion
\ip{v}{e^{zd\tilde{\pi}(Y)}u}%
%EndExpansion
_{J}\,.
\]
Then $f$ is holomorphic in $\{z\in{{\mathbb{C}}}\mid\operatorname{Re}(z)>0\}$,
and $f(it)=0$ for every (real) $t$. Thus $f$ is identically zero. In
particular $f(t)=0$ for every $t>0$. Thus
\[
0=%
%TCIMACRO{\TeXButton{ip}{\ip{v}{e^{td\tilde{\pi}(Y)}u}}}%
%BeginExpansion
\ip{v}{e^{td\tilde{\pi}(Y)}u}%
%EndExpansion
_{J}=%
%TCIMACRO{\TeXButton{ip}{\ip{v}{\tilde{\pi}(\exp tY)u}}}%
%BeginExpansion
\ip{v}{\tilde{\pi}(\exp tY)u}%
%EndExpansion
_{J}\,.
\]
As $S^{o}=H\exp C^{o}$ it follows that $\tilde{\pi}(S^{o})(\mathbf{L}^{\omega
})\subset(\mathbf{L}^{\perp})^{\perp}=\mathbf{L}$. By continuity we get
$\tilde{\pi}(S)\mathbf{L}\subset\mathbf{L}$. Thus $\mathbf{K}$ is reducible as
an $S$-module.
The other direction follows in exactly the same way.
\end{proof}
We notice now that $-iC\subset W(\tilde{\pi}^{c})$. Thus $W(\tilde{\pi}^{c})$
is non-trivial and contain the $-\tau$-stable and $G$-invariant cone generated
by $-iC$, i.e. $-i\cdot\overline{\operatorname{conv}\{\operatorname{Ad}%
(G)C\}}\subset W(\tilde{\pi}^{c})$. But in general $W(\tilde{\pi}^{c})$ is
neither generating nor pointed. It even does not have to be $-\tau$-invariant.
In fact, the Lie algebra of the $(ax+b)$-group, and the Heisenberg group, do
not have \emph{any} pointed, generating, invariant cones.
\begin{lemma}
\label{KernelPiC}$W(\tilde{\pi}^{c})\cap-W(\tilde{\pi}^{c})=\ker(\tilde{\pi
}^{c})$.
\end{lemma}
\begin{proof}
This is obvious from the spectral theorem.
\end{proof}
\begin{lemma}
\label{IdealGC}$\frak{g}_{1}^{c}:=W(\tilde{\pi}^{c})-W(\tilde{\pi}^{c})$ is an
ideal in $\frak{g}^{c}$. Furthermore, $[\frak{q},\frak{q}]\oplus
i\frak{q}\subset\frak{g}_{1}^{c}$.
\end{lemma}
\begin{proof}
Let $X\in\frak{g}^{c}$. Then, as $W(\tilde{\pi}^{c})$ is invariant by
construction, we conclude that
\[
e^{t\operatorname{ad}(X)}\left( W(\tilde{\pi}^{c})-W(\tilde{\pi}^{c})\right)
\subset W(\tilde{\pi}^{c})-W(\tilde{\pi}^{c}),\,t\in\mathbb{R}\,.
\]
By differentiation at $t=0$, it follows that $[X,\frak{g}_{1}^{c}%
]\subset\frak{g}_{1}^{c}$. This shows that $\frak{g}_{1}^{c}$ is an ideal in
$\frak{g}^{c}$. The last part follows as $C$ is generating (in $\frak{q}$).
\end{proof}
It is not clear if $\frak{g}_{1}^{c}$ is $\tau$-stable. To get a $\tau$-stable
subalgebra one can replace $W(\tilde{\pi}^{c})$ by the cone generated by
$-\operatorname{Ad}(G)C\subset W(\tilde{\pi}^{c})$ or by the maximal $G$- and
$-\tau$-stable cone $W(\tilde{\pi}^{c})\cap(-\tau(W(\tilde{\pi}^{c})))$ in
$W(\pi^{c})$.
We have now the following important consequence of the Neeb-Ol'shanskii theorem:
\begin{theorem}
\label{HighestWeight}Let the analytic subgroup $G_{1}^{c}$ of $G^{c}$
corresponding to $\frak{g}_{1}^{c}$ be as described, and let $W(\tilde{\pi
}^{c})$ be the corresponding module. Then $\tilde{\pi}^{c}|_{G_{1}^{c}}$ is a
direct integral of irreducible representations in $\mathcal{A}(W)$.
\end{theorem}
\section{\label{SSS}Bounded Symmetric Domains}
\setcounter{equation}{0}
We have seen that the representations $\pi^{c}$ that we can produce using the
duality are direct integrals of holomorphic representations of suitable
subsemigroups of $G_{\mathbb{C}}^{c}$ (or a subgroup). Those on the
other hand only exist if there is a $G^{c}$ invariant cone in $\frak{g}$. We
will discuss the case of simple Lie group $G^{c}$ in some detail here. We
refer to \cite{JO97}, chapter 2, and the references therein for proofs. In the
duality $G\leftrightarrow G^{c}$ it will be the group $G^{c}$ that has
holomorphic representations. Therefore we will start using the notation
$G^{c}$ for Hermitian groups.
\begin{theorem}
[Kostant]\label{ThmKostant}Suppose that $\mathbf{V}$ is a finite-dimensional
real vector space. Let $L$ be a connected reductive subgroup of $GL(\mathbf{V}%
)$ acting irreducibly on $\mathbf{V}$. Let $G^{c}=L^{\prime}$ be the
commutator subgroup of $L$. Further let $K^{c}$ be a maximal compact
subgroup of $G^{c}$. Then the following properties are equivalent:
\begin{enumerate}
\item \label{ThmKostant(1)}There exists a regular $L$-invariant closed cone in
$\mathbf{V}$.
\item \label{ThmKostant(2)}The $G^{c}$-module $\mathbf{V}$ is spherical.
\end{enumerate}
\end{theorem}
Let $C\subset\mathbf{V}$ be a regular $L$-invariant cone. Then $\mathbf{V}$ is
spherical as a $G^{c}$-module. Let $K^{c}$ be a maximal compact subgroup of
$G^{c}$. A $K^{c}$-invariant vector $u_{K^{c}}$ can be constructed in the
following way: Let $u\in C^{o}$, the interior of $C$, be arbitrary. Define
\[
u_{K^{c}}=\int_{K^{c}}k\cdot u\,dk\,.
\]
Then $u_{K^{c}}\in C^{o}$ is $K^{c}$-invariant. Suppose that the group $L$
acts on $\mathbf{V}$. Let $\operatorname{Cone}_{L}(\mathbf{V})$ denote the set
of regular $L$-invariant cones in $\mathbf{V}$.
\begin{theorem}
[Vinberg]\label{ThmVinberg}Let $L$, $G^{c}$, and $\mathbf{V}$ be as in the
theorem of Kostant. Then the following properties are equivalent:
\begin{enumerate}
\item \label{ThmVinberg(1)}$\operatorname{Cone}_{L}(\mathbf{V})\not =%
\emptyset$;
\item \label{ThmVinberg(2)}The $G^{c}$-module $\mathbf{V}$ is spherical;
\item \label{ThmVinberg(3)}There exists a ray in $\mathbf{V}$ through $0$
which is invariant with respect to some minimal parabolic subgroup $P$ of
$G^{c}$.
\end{enumerate}
If those conditions hold, every invariant pointed cone in $\mathbf{V}$ is regular.
\end{theorem}
For the next theorem, see \cite{Paneitz81,Paneitz84}.
\begin{theorem}
[Paneitz, Vinberg]\label{ThmPV} Let $G^{c}$ be a
connected semisimple Lie group and $(\mathbf{V,\pi)}$ a real
finite-dimensional irreducible $G^{c}$-module such that $\operatorname{Cone}%
_{G^{c}}(\mathbf{V})\not =\emptyset$. Let $\theta$ be a Cartan involution on
$G^{c}$. Choose an inner product on $\mathbf{V}$ such that $\pi(x)^{\ast}%
=\pi(\theta(x)^{-1})$ for all $x\in G^{c}$. Then there exists a unique up to
multiplication by $(-1)$ invariant cone $C_{\min}\in\operatorname{Cone}%
_{G^{c}}(\mathbf{V})$ given by
\[
C_{\min}=\operatorname{conv}(\pi(G^{c})u)\cup\left\{ 0\right\}
=\overline{\operatorname{conv}\{\pi(G^{c})(\mathbb{R}^{+}v_{K^{c}})\}}\,,
\]
where $u$ is a highest weight vector, $v_{K^{c}}$ is a nonzero $K^{c}$-fixed
vector unique up to scalar multiple, and $(u,v_{K^{c}})>0$. The unique
\textup{(}up to
multiplication by $(-1)$\textup{)} maximal cone is given by
\[
C_{\max}=C_{\min}^{\ast}:=\left\{ w\in\mathbf{V}\mid\forall v\in C_{\min
}\,:\,(w,v)\geq0\right\} \,.
\]
\end{theorem}
Assume now that $G^{c}$ is a connected simple Lie group. Then $G^{c}$ acts on
$\frak{g}^{c}$ by the adjoint action. Let $K^{c}\subset G^{c}$ be a maximal
almost compact subgroup. Then by Kostant's Theorem we have
$\operatorname{Cone}_{G^{c}}(\frak{g}^{c})\not =\emptyset$ if and only if
there exists a $Z^{0}\in\frak{g}^{c}$ which is invariant under
$\operatorname{Ad}(K^{c})$. Let $\frak{k}^{c}$ be the Lie algebra of $K^{c}$.
Then $[\frak{k}^{c},Z^{0}]=0$. Hence $\mathbb{R}Z^{0}+\frak{k}^{c}%
\not =\frak{g}^{c}$ is a Lie algebra containing $\frak{k}^{c}$. But
$\frak{k}^{c}$ is maximal in $\frak{g}^{c}$. Hence $Z^{0}\in\frak{k}^{c}$.
Similarly it follows that $\frak{z}_{\frak{g}^{c}}(Z^{0})=\frak{k}^{c}$.
Finally the Theorem of Paneitz and Vinberg implies that $\operatorname{Cone}%
_{G^{c}}(\frak{g}^{c})\not =\emptyset$ if and only if the center of
$\frak{k}^{c}$ is one dimensional. In that case we can normalize the element
$Z^{0}$ such that $\operatorname{ad}(Z^{0})$ has eigenvalues $0,i,-i$. Let
$\frak{t}$ be a Cartan subalgebra of $\frak{g}^{c}$ containing $Z^{0}$. Then
$\frak{k}^{c}\frak{\subset z}_{\frak{g}^{c}}(Z^{0})\subset\frak{k}^{c}$. Hence
$\frak{t}$ is contained in $\frak{k}^{c}$. For $\alpha\in\frak{t}_{\mathbb{C}%
}^{\ast}$ let
\[
\frak{g}_{{\mathbb{C}\alpha}}^{c}:=\left\{ X\in\frak{g}_{\mathbb{C}}^{c}%
\mid\forall Z\in\frak{t}_{\mathbb{C}}\,:\,[Z,X]=\alpha(Z)X\right\} \,.
\]
It is well known that $\dim\frak{g}_{{\mathbb{C}\alpha}}^{c}\leq1$ for all
$\alpha\not =0$ and
\[
\frak{g}_{\mathbb{C}}^{c}=\frak{t}_{\mathbb{C}}\oplus\bigoplus_{\alpha
\in\Delta}\frak{g}_{{\mathbb{C}\alpha}}^{c}%
\]
where $\Delta=\left\{ \alpha\in\frak{t}_{\mathbb{C}}^{\ast}\setminus\left\{
0\right\} \mid\frak{g}_{{\mathbb{C}\alpha}}^{c}\not =\left\{ 0\right\}
\right\} $. We notice that $\alpha(\frak{t})\subset i\mathbb{R}$ for all
$\alpha\in\Delta$ as $\frak{t}\subset\frak{k}$ and $a\,d(X)$ is skew-symmetric
for all $X\in\frak{k}$. Let $\theta\colon\frak{g}^{c}\frak{\rightarrow
}\frak{g}^{c}$ be the Cartan involution corresponding to $\frak{k}^{c}$. We do
denote the corresponding involution $\theta\otimes1$ on $\frak{g}_{\mathbb{C}%
}^{c}$ and the integrated involution on $G^{c}$ by the same letter. Then
$\frak{g}^{c}=\frak{k}^{c}\oplus\frak{p}^{c}$ where $\frak{p}^{c}%
\frak{=}\left\{ X\in\frak{g}^{c}\mid\theta(X)=-X\right\} $. Thus
$\frak{g}_{\mathbb{C}}^{c}=\frak{k}_{\mathbb{C}}^{c}\oplus\frak{p}%
_{\mathbb{C}}^{c}$. Let $\Delta_{c}=\left\{ \alpha\in\Delta\mid\alpha
(Z^{0})=0\right\} $ and $\Delta_{p}=\left\{ \alpha\in\Delta\mid\alpha
(Z^{0})=\pm i\right\} $. As $\frak{z}_{\frak{g}_{\mathbb{C}}}(Z^{0}%
)=\frak{k}_{\mathbb{C}}$ we get%
\[
\Delta_{c}=\left\{ \alpha\mid\frak{g}_{{\mathbb{C}\alpha}}^{c}\subset
\frak{k}_{\mathbb{C}}^{c}\right\} \qquad\text{and}\qquad\Delta_{p}=\left\{
\alpha\mid\frak{g}_{{\mathbb{C}\alpha}}^{c}\subset\frak{p}_{\mathbb{C}}%
^{c}\right\} \,.
\]
Choose a positive system $\Delta^{+}$ in $\Delta$ such that $\Delta_{p}%
^{+}:=\left\{ \alpha\in\Delta_{p}\mid\alpha(Z^{0})=i\right\} \subset
\Delta^{+}$. Then $\Delta^{+}=\Delta_{c}^{+}\cup\Delta_{p}^{+}$ and
$\Delta_{c}^{+}$ is a positive system in $\Delta_{c}$. For $\Gamma
\subset\Delta$ let $\frak{g}_{\mathbb{C}}^{c}(\Gamma):=\bigoplus_{\alpha
\in\Gamma}\frak{g}_{\mathbb{C\alpha}}^{c}$. Then%
\begin{align*}
\frak{p}^{+}:= & \left\{ X\in\frak{g}_{\mathbb{C}}^{c}\mid\lbrack
Z^{0},X]=iX\right\} =\frak{g}_{\mathbb{C}}^{c}(\Delta_{p}^{+})\,;\\
\frak{p}^{-}:= & \left\{ X\in\frak{g}_{\mathbb{C}}^{c}\mid\lbrack
Z^{0},X]=-iX\right\} =\frak{g}_{\mathbb{C}}^{c}(-\Delta_{p}^{+})\,.
\end{align*}
Furthermore $\frak{p}^{+}$ and $\frak{p}^{-}$ are abelian subalgebras with
$\frak{p}_{\mathbb{C}}=\frak{p}^{+}\oplus\frak{p}^{-}$. Let $P^{\pm}%
:=\exp(\frak{p}^{\pm})$ and $K_{\mathbb{C}}^{c}=\exp(\frak{k}_{\mathbb{C}}%
^{c})$. Both $P^{+}$ and $P^{-}$ are simply connected closed abelian subgroups
of $G_{\mathbb{C}}^{c}$. Hence $\exp\colon\frak{p}^{\pm}\rightarrow P^{\pm}$
is a diffeomorphism. Let%
\begin{equation}
\zeta=(\exp|_{\frak{p}^{+}})^{-1}\colon P^{+}\longrightarrow\frak{p}%
^{+}\,\text{.} \label{E:zeta}%
\end{equation}
The set $P^{+}K_{\mathbb{C}}^{c}P^{-}$ is open and dense in $G_{\mathbb{C}%
}^{c}$, $G^{c}\subset P^{+}K_{\mathbb{C}}^{c}P^{-}$, $G^{c}K_{\mathbb{C}}%
^{c}P^{-}$ is open in $G_{\mathbb{C}}^{c}$, and $G^{c}\cap K_{\mathbb{C}}%
^{c}P^{-}=K^{c}$. Thus $G^{c}/K^{c}$ is holomorphically equivalent to an
open submanifold $D$ of the complex flag manifold $X_{\mathbb{C}%
}=G_{\mathbb{C}}^{c}/K_{\mathbb{C}}^{c}P^{-}$. Furthermore the map
$pK_{\mathbb{C}}^{c}P^{-}\mapsto\zeta(p)$ induces a biholomorphic map---also
denoted by $\zeta$---of $G^{c}/K^{c}$ onto a bounded symmetric domain
$\Omega_{\mathbb{C}}\subset\frak{p}^{-}\simeq\mathbb{C}^{\dim(G^{c}/K^{c})}$.
For $x\in P^{+}K_{\mathbb{C}}^{c}P^{-}$ we can write in a unique way%
\begin{equation}
x=p(x)k_{\mathbb{C}}(x)q(x) \label{E:P+KP-projections}%
\end{equation}
with $p(x)\in P^{+}$, $k_{\mathbb{C}}(x)\in K_{\mathbb{C}}^{c}$ and $q(x)\in
P^{-}$. For $g\in G_{\mathbb{C}}^{c}$ and $Z\in\frak{p}^{+}$ we introduce the
following notations when ever they make sense:%
\begin{align*}
g\cdot Z & =\zeta(p(g\exp(Z))\in\frak{p}^{+}\\
j(g,Z) & =k_{\mathbb{C}}(g\exp Z)\in K_{\mathbb{C}}^{c}\,.
\end{align*}
If $Z\in\Omega_{\mathbb{C}}$ and $g\in G^{c}$ then $g\cdot Z$ is defined and
$g\cdot Z\in\mathbb{\Omega}_{\mathbb{C}}$. Furthermore $(g,Z)\mapsto g\cdot Z$
defines an action of $G^{c}$ on $\mathbb{\Omega}_{\mathbb{C}}$ such that
$\zeta\colon G^{c}/K^{c}\rightarrow\Omega_{\mathbb{C}}$ is a $G^{c}$-map. The
map $j$ is \textit{the universal automorphic factor} and it satisfies the
following:%
\begin{align}
j(k,Z) & =k,\nonumber\\
j(p,Z) & =1,\nonumber\\
j(ab,Z) & =j(a,b\cdot Z)j(b,Z), \label{E:Multipl}%
\end{align}
if $k\in K_{\mathbb{C}}^{c}$, $Z\in\frak{p}^{+}$, $p\in P^{+}$, and $a,b\in
G_{\mathbb{C}}^{c}$ are such that the expressions above are defined.
Define%
\[
S(\Omega_{\mathbb{C}}):=\left\{ \gamma\in G_{\mathbb{C}}^{c}\mid\gamma
^{-1}\cdot\Omega_{\mathbb{C}}\subset\Omega_{\mathbb{C}}\right\}
\]
and%
\[
S(\Omega_{\mathbb{C}})^{o}:=\left\{ \gamma\in G_{\mathbb{C}}^{c}\mid
\gamma^{-1}\cdot\overline{\Omega_{\mathbb{C}}}\subset\Omega_{\mathbb{C}%
}\right\}
\]
where $\overline{\left\{ \Omega_{\mathbb{C}}\right\} }$ stands for the
topological closure of $\Omega_{\mathbb{C}}$ in $\frak{p}^{+}$. Then
$S(\Omega_{\mathbb{C}})$ is a closed semigroup in $\frak{g}_{\mathbb{C}}^{c}$
of the form%
\[
S(\Omega_{\mathbb{C}})=G^{c}\exp(iC_{\max})\,
\]
where $C_{\max}$ is the maximal $G^{c}$-invariant cone in $\frak{g}%
_{\mathbb{C}}^{c}$ containing $-Z^{0}$. Furthermore $S(\Omega_{\mathbb{C}%
})^{o}$ is the topological interior of $S(\Omega_{\mathbb{C}})$ and%
\[
S(\Omega_{\mathbb{C}})^{o}=S(C_{\max}^{o})=G^{c}\exp(iC_{\max}^{o})\,.
\]
We refer to \cite{HO95} or \cite{HiNe93} for all of this.
\section{\label{S-hwm}Highest Weight Modules}
\setcounter{equation}{0}
Our notion of reflection for unitary representations leads to the class of
representations in $\mathcal{A}(W)$ of Definition \ref{DefS-HrepMar.1}, and in
the present section we analyze these representations more closely. The
analysis is based in large part on \cite{HO95}, and involves results of (among
others) M.~Davidson and R.~Fabec \cite{MDRF96}, K.-H. Neeb
\cite{Nee94,Ne94,Ne99}, Harish-Chandra \cite{HC65,HC70}, Ol'shanskii
\cite{Ol82}, R.J. Stanton \cite{Stanton}, Wallach \cite{WaI72}, and H.~Rossi
and M.~Vergne \cite{VR76}.
We have seen that the interesting representations are those in $\mathcal{A}%
(W)$ where $W$ is an invariant cone in $\frak{g}^{c}$. It turns out that the
irreducible representations in $\mathcal{A}(W)$ are \textit{highest weight
representations. }A $(\frak{g}^{c},K^{c})$-module\label{gK-modul} is a complex
vector space $\mathbf{V}$ such that
\begin{enumerate}
\item [1)]$\mathbf{V}$ is a $\frak{g}^{c}$-module.
\item[2)] $\mathbf{V}$ carries a representation of $K^{c}$, and the span of
$K^{c}\cdot v$ is finite-dimensional for every $v\in\mathbf{V}$.
\item[3)] For $v\in\mathbf{V}$ and $X\in\frak{k}^{c}$ we have
\[
X\cdot v=\lim_{t\rightarrow0}\frac{\exp(tX)\cdot v-v}{t}.
\]
\item[4)] For $Y\in\frak{g}^{c}$ and $k\in K^{c}$ the following holds for
every $v\in\mathbf{V}$:
\[
k\cdot(X\cdot v)=(\operatorname{Ad}(k)X)\cdot\lbrack k\cdot v]\,.
\]
\end{enumerate}
Note that (3) makes sense, as $K^{c}\cdot v$ is contained in a finite
dimensional vector space and this space contains a unique Hausdorff topology
as a topological vector space. The $(\frak{g}^{c},K^{c})$-module is called
\textit{admissible}\label{st-ad2} if the multiplicity of every irreducible
representation of $K^{c}$ in $\mathbf{V}$ is finite. If $(\pi,\mathbf{V})$ is
an irreducible unitary representation of $G^{c}$, then the space of $K^{c}%
$-finite elements in $\mathbf{V}$, denoted by $\mathbf{V}_{K^{c}}$, is an
admissible $(\frak{g}^{c},K^{c})$-module.
Let $\frak{t}$ be a Cartan subalgebra of $\frak{k}^{c}$ and $\frak{g}^{c}$ as
in the last section.
\begin{definition}
\label{DefNewS-hwm.1}Let $\mathbf{V}$ be a $(\frak{g}^{c},K^{c})$-module. Then
$\mathbf{V}$ is a highest-weight module if there exists a nonzero element
$v\in\mathbf{V}$ and a $\lambda\in\frak{t}_{\mathbb{C}}^{\ast}$ such that
\begin{enumerate}
\item [1)]\label{DefNewS-hwm.1(1)}$X\cdot v=\lambda(X)v$ for all $X\in
\frak{t}$.
\item[2)] \label{DefNewS-hwm.1(2)}There exists a positive system $\Delta^{+}$
in $\Delta$ such that $\frak{g}_{\mathbb{C}}^{c}(\Delta^{+})\cdot v=0$.
\item[3)] \label{DefNewS-hwm.1(3)}$\mathbf{V}=U(\frak{g}^{c})\cdot v$.
\end{enumerate}
The element $v$ is called a primitive element of weight $\lambda$.
\end{definition}
Let $W\in\operatorname{Cone}_{G^{c}}(\frak{g}^{c})$ and $\pi\in\mathcal{A}(W)$
irreducible. We assume that $-Z^{o}\in W^{o}$. Then $\mathbf{V}_{K^{c}}$ is an
irreducible admissible $(\frak{g}^{c},K^{c})$-module, and
\[
\mathbf{V}_{K^{c}}=\bigoplus_{\lambda\in\frak{t}_{\mathbb{C}}^{\ast}%
}\mathbf{V}_{K^{c}}(\lambda)
\]
where $\mathbf{V}_{K^{c}}(\lambda)=\mathbf{V}_{K^{c}}(\lambda,\frak{t}%
_{\mathbb{C}})$. Let $v\in\mathbf{V}_{K^{c}}(\lambda)$ be nonzero. Let
$\alpha\in\Delta_{p}^{+}$ and let $X\in\frak{p}_{\alpha}^{+}\setminus\{0\}$.
Then
\[
X^{k}\cdot v\in\mathbf{V}_{K^{c}}(\lambda+k\alpha).
\]
In particular,
\[
-iZ^{0}\cdot(X^{k}\cdot v)=[-i\lambda(Z^{0})+k]v.
\]
This yields the following lemma.
\begin{lemma}
\label{LemNewS-hwm.2}Let the notation be as above. Then the following holds:
\begin{enumerate}
\item \label{LemNewS-hwm.2(1)}$-i\lambda(Z^{0})\leq0$.
\item \label{LemNewS-hwm.2(2)}There exists a $\lambda$ such that $\frak{p}%
^{+}\cdot\mathbf{V}_{K^{c}}(\lambda)=\{0\}$.
\end{enumerate}
\end{lemma}
\begin{lemma}
\label{LemNewS-hwm.3}Let $\mathbf{W}^{\lambda}$ be the $K^{c}$-module
generated by $\mathbf{V}_{K^{c}}(\lambda)$. Then $\mathbf{W}^{\lambda}$ is
irreducible, $\mathbf{V}_{K^{c}}=U(\frak{p}^{-})\mathbf{W}^{\lambda}$ and the
multiplicity of $\mathbf{W}^{\lambda}$ in $\mathbf{V}_{K^{c}}$ is one.
\end{lemma}
Let $\alpha\in\Delta_{p}^{+}$ then there exists a unique element $H_{\alpha
}\in i\frak{t}\cap\lbrack\frak{g}_{\mathbb{C\alpha}},\frak{g}_{\mathbb{C}%
\alpha}]$ such that $\alpha(H_{\alpha})=2$. Let $\mu$ be the highest weight of
$\mathbf{W}^{\lambda}$ with respect to $\Delta_{c}^{+}$ and let $v^{\lambda}$
be a nonzero highest weight vector. Then $v^{\lambda}$ is a primitive element
with respect to the positive system $\Delta_{c}^{+}\cup\Delta_{p}^{+}$.
\begin{theorem}
\label{AChw} Let $\rho\in\mathcal{A}(W)$ be irreducible. Then the
corresponding $(\frak{g}^{c},K^{c})$-module is a highest-weight module and
equals $U(\frak{p}^{-})\mathbf{W}^{\lambda}$. In particular, every weight of
$\mathbf{V}_{K^{c}}$ is of the form
\[
\nu-\sum_{\alpha\in\Delta(\frak{p}^{+},\frak{t}_{\mathbb{C}})}n_{\alpha}%
\alpha\,.
\]
Furthermore, $\left\langle \nu,H_{\alpha}\right\rangle \leq0$ for all $\alpha\in\Delta_{p}^{+}$.
\end{theorem}
The $K^{c}$-representation $\pi^{\lambda}$ on $\mathbf{W}^{\lambda}$ is called
the \emph{minimal}\textit{ }$K^{c}$-type of $\mathbf{V}$ and $\mathbf{V}%
_{K^{c}}$. The multiplicity of $\pi^{\lambda}$ in $\mathbf{V}$ is one. We
recall how to realize highest-weight modules in a space of holomorphic
functions on $G^{c}/K^{c}$. We follow here the geometric construction by M.
Davidson and R. Fabec \cite{MDRF96}. For a more general approach, see
\cite{Ne94,Ne99}. To explain the method we start with the example
$G^{c}=SU(1,1)=\left\{ \left(
\begin{array}
[c]{cc}%
\alpha & \beta\\
\bar{\beta} & \bar{\alpha}%
\end{array}
\right) \biggm|\left| \alpha\right| ^{2}-\left| \beta\right|
^{2}=1\right\} $. We set $X=\left(
\begin{array}
[c]{cc}%
0 & 1\\
0 & 0
\end{array}
\right) $, $Y=\left(
\begin{array}
[c]{cc}%
0 & 0\\
1 & 0
\end{array}
\right) $ and $H:=H_{1}=\left(
\begin{array}
[c]{cc}%
1 & 0\\
0 & -1
\end{array}
\right) $. Then $Z^{0}=\frac{i}{2}H$ and $\frak{p}^{+}=\mathbb{C}X$,
$\frak{k}_{\mathbb{C}}^{c}=\mathbb{C}H$ and $\frak{p}^{-}={\ \mathbb{C}}Y$. We
use this to identify those spaces with $\mathbb{C}$. Let $\gamma=\left(
\begin{array}
[c]{cc}%
a & b\\
c & d
\end{array}
\right) \in SL(2,\mathbb{C})\,$. Then%
\begin{align*}
\left(
\begin{array}
[c]{cc}%
a & b\\
c & d
\end{array}
\right) & =\left(
\begin{array}
[c]{cc}%
1 & z\\
0 & 1
\end{array}
\right) \left(
\begin{array}
[c]{cc}%
\gamma & 0\\
0 & \gamma^{-1}%
\end{array}
\right) \left(
\begin{array}
[c]{cc}%
1 & 0\\
y & 1
\end{array}
\right) \\
& =\left(
\begin{array}
[c]{cc}%
\gamma+\gamma^{-1}z & \gamma^{-1}z\\
\gamma^{-1}y & \gamma^{-1}%
\end{array}
\right) \,.
\end{align*}
Hence $P^{+}K_{\mathbb{C}}^{c}P^{-}=\left\{ \left(
\begin{array}
[c]{cc}%
a & b\\
c & d
\end{array}
\right) \biggm|d\not =0\right\} $ and if $x=\left(
\begin{array}
[c]{cc}%
a & b\\
c & d
\end{array}
\right) \in P^{+}K_{\mathbb{C}}^{c}P^{-}$, then%
\[
p(x)=b/d\,,\quad k_{\mathbb{C}}(x)=d^{-1}\quad\text{and}\quad
q(x)=c/d\,.
\]
Thus
\begin{align}
\zeta(xK_{\mathbb{C}}^{c}P^{-}) & =b/d\\
x\cdot z & =\frac{az+b}{cz+d}\\
j(x,z) & =(cz+d)^{-1}\,. \label{E:jsu}%
\end{align}
To identify $\Omega_{\mathbb{C}}$ we notice that on $SU(1,1)$ we have
$\zeta(x)=\beta/\bar{\alpha}$. Hence $G^{c}/K^{c}\simeq D=\{z\in\mathbb{C}%
\mid|z|<1\}$. The finite-dimensional holomorphic representations of
$K_{\mathbb{C}}^{c}$ are the characters
\[
\chi_{n}(\exp ziH)=e^{inz}\,.
\]
In particular, $d\chi_{n}(Z^{0})=in/2$ or
\[
-i\,d\chi_{n}(Z^{0})=\frac{n}{2}\,.
\]
Let $(\pi,\mathbf{V})$ be a unitary highest-weight representation of $SU(1,1)$
and assume that $(\pi,\mathbf{V})\in\mathcal{A}(W)$. Then $n\leq0$ by Lemma
\ref{LemNewS-hwm.2} and Theorem \ref{AChw}. Let $\mathbf{V}(n)$ be the
one-dimensional space of $\chi_{n}$-isotropic vectors. Then
\[
\mathbf{V}_{K^{c}}=\bigoplus_{k\in\,\mathbb{N}}\mathbf{V}(n-2k),
\]
and the spaces $\mathbf{V}(m)$ and $\mathbf{V}(k)$ are orthogonal if
$m\not =k$.
Let $\sigma$ be the conjugation of $\frak{s}\frak{l}(2,\mathbb{C})$ with
respect to $SU(1,1)$. Then $\sigma$ is given by%
\[
\sigma\left( \left(
\begin{array}
[c]{cc}%
a & b\\
c & d
\end{array}
\right) \right) =\left(
\begin{array}
[c]{cc}%
-\bar{a} & \bar{c}\\
\bar{b} & -\bar{a}%
\end{array}
\right)
\]
so that $\sigma(X)=Y$.
Since
$\pi(T)^{\ast}=-\pi(\sigma(T))$ for all
$T\in\frak{s}\frak{l}(2,\mathbb{C})$ we get%
\[
\pi(Y)^{\ast}=\pi(-X).
\]
Finally, it follows from $[Y,X]=-H$ that for $v\in V(n)$:
\begin{align*}
\Vert\pi(Y)^{k}v\Vert^{2} & =%
%TCIMACRO{\TeXButton{ip}{\ip{\pi(Y)^{k}v}{\pi(Y)^{k}v}}}%
%BeginExpansion
\ip{\pi(Y)^{k}v}{\pi(Y)^{k}v}%
%EndExpansion
\\
& =%
%TCIMACRO{\TeXButton{ip}{\ip{\pi((-X)^{k}Y^{k})v}{v}}}%
%BeginExpansion
\ip{\pi((-X)^{k}Y^{k})v}{v}%
%EndExpansion
\end{align*}
\begin{lemma}
\label{LemNewS-hwm.5}Let the notation be as above. Then
\begin{align*}
\pi(-X)^{k}\pi(Y)^{k}v & =(-1)^{k}k!\frac{\Gamma(n+1)}{\Gamma(n-k+1)}\,v\\
& =(-n)_{k}v
\end{align*}
where $(a)_{k}=a(a+1)\cdots(a+k-1)$.
\end{lemma}
As
\[
\sum_{k=0}^{\infty}(-n)_{k}\frac{|z^{2}|^{k}}{k!}=(1-|z|^{2})^{n},
\]
(see\ \cite{GR80}) converges if and only if $|z|<1$, it follows that
\[
q_{(zX)}v:=\sum_{k=0}^{\infty}\overline{z}^{k}\frac{Y^{k}v}{n!}%
\]
converges if and only if $zX\in{\Omega}_{\mathbb{C}}$.
Let now $G^{c}$ be arbitrary. Let $\sigma\colon\frak{g}_{\mathbb{C}}%
^{c}\rightarrow\frak{g}_{\mathbb{C}}^{c}$ be the conjugation with respect to
$\frak{g}^{c}$. We use the notation from earlier in this section. Using the
usual $\frak{sl}(2,\mathbb{C})$ reduction, we get the following theorem.
\begin{theorem}
[Davidson-Fabec]\label{ThDF1} Let $T\in\frak{p}^{+}$. Define $q_{T}%
\colon\mathbf{W}^{\lambda}\rightarrow\mathbf{V}$ by the formula
\[
q_{T}v:=\sum_{n=0}^{\infty}\frac{\sigma(T)^{n}v}{n!}\,.
\]
\begin{enumerate}
\item [1)]If $v\not =0$, then the series that defines $q_{T}$ converges in the
Hilbert space $\mathbf{V}$ if and only if $T\in{\Omega}_{\mathbb{C}}$.
\item[2)] Let $\pi_{\lambda}$ be the representation of $K^{c}$ on
$\mathbf{W}^{\lambda}$. Let%
\begin{equation}
J_{\lambda}(g,Z):=\pi_{\lambda}(j(g,Z))\,. \label{E:jlambda}%
\end{equation}
Then
\begin{equation}
\pi(g)v=q_{g\cdot0}J_{\lambda}(g,0)^{\ast-1}v \label{E:pilambda}%
\end{equation}
for $g\in G^{c}$ and $v\in\mathbf{W}^{\lambda}$.
\end{enumerate}
\end{theorem}
It follows that the span of the $q_{Z}\mathbf{W}^{\lambda}$ with $Z\in{\Omega
}_{{\mathbb{C}}}$ is dense in $\mathbf{V}$, since $\mathbf{V}$ is assumed to
be irreducible. Define $Q\colon{\Omega}_{\mathbb{C}}\times{\Omega}%
_{\mathbb{C}}\rightarrow GL(\mathbf{W}^{\lambda})$ by%
\[
Q(W,Z)=q_{W}^{\ast}q_{Z}\,.
\]
\label{QWZ}
Then the following theorem holds.
\begin{theorem}
[Davidson-Fabec]\label{S:DF1}Let the notation be as above. Then the following hold:
\begin{enumerate}
\item \label{S:DF1(1)}$Q(W,Z)=J_{\lambda}(\exp(-\sigma(W)),Z)^{\ast-1}$.
\item \label{S:DF1(2)}$Q(W,Z)$ is holomorphic in the first variable and
antiholomorphic in the second variable.
\item \label{S:DF1(3)}$%
%TCIMACRO{\TeXButton{ip}{\ip{v}{Q(W,Z)u}}}%
%BeginExpansion
\ip{v}{Q(W,Z)u}%
%EndExpansion
=%
%TCIMACRO{\TeXButton{ip}{\ip{q_{W}v}{q_{Z}u}}}%
%BeginExpansion
\ip{q_{W}v}{q_{Z}u}%
%EndExpansion
$ for all $u,v\in\mathbf{W}_{\lambda}$.
\item \label{S:DF1(4)}$Q$ is a positive-definite reproducing kernel.
\item \label{S:DF1(5)}$Q(g\cdot W,g\cdot Z)=J_{\lambda}(g,W)Q(W,Z)J_{\lambda
}(g,Z)^{\ast}$.
\end{enumerate}
\end{theorem}
For $Z\in{\Omega}_{\mathbb{C}}$ and $u\in\mathbf{W}^{\lambda}$, let
$F_{Z,u}\colon{\Omega}_{\mathbb{C}}\rightarrow\mathbf{W}^{\lambda}$ be the
holomorphic function
\begin{equation}
F_{Z,u}(W):=Q(W,Z)u \label{E:FQ}%
\end{equation}
and define
\begin{equation}%
%TCIMACRO{\TeXButton{ip}{\ip{F_{T,w}}{F_{Z,u}}}}%
%BeginExpansion
\ip{F_{T,w}}{F_{Z,u}}%
%EndExpansion
_{Q}:=%
%TCIMACRO{\TeXButton{ip}{\ip{w}{Q(W,Z)u}}}%
%BeginExpansion
\ip{w}{Q(W,Z)u}%
%EndExpansion
. \label{E:Innpr}%
\end{equation}
Let $\mathbf{H}({\Omega}_{\mathbb{C}},\mathbf{W}^{\lambda})$ be the completion
of the span of $\{F_{Z,u}\mid Z\in{\Omega}_{\mathbb{C}},u\in\mathbf{W}%
^{\lambda}\}$ with respect to this inner product. Then $\mathbf{H}({\Omega
}_{\mathbb{C}},\mathbf{W}^{\lambda})$ is a Hilbert space consisting of
$\mathbf{W}^{\lambda}$-valued holomorphic functions. Define a representation
of $G^{c}$ in $\mathbf{H}({\Omega}_{\mathbb{C}},\mathbf{W}^{\lambda})$ by
\begin{equation}
(\rho(g)F)(W):=J_{\lambda}(g^{-1},W)^{-1}F(g^{-1}\cdot W)\,. \label{E:intrep}%
\end{equation}
Then $\rho$ is a unitary representation of $G^{c}$ in $\mathbf{H}({\Omega
}_{\mathbb{C}},\mathbf{W}^{\lambda})$ called the \textit{geometric
realization}\label{geometric} of $(\pi,\mathbf{V})$.
\begin{theorem}
[Davidson-Fabec]\label{ThmS-hwmNew.8}The map $q_{Z}v\mapsto F_{Z,v}$ extends
to a unitary intertwining operator $U$ between $(\pi,\mathbf{V})$ and
$(\rho,\mathbf{H}({\Omega}_{\mathbb{C}},\mathbf{W}^{\lambda}))$. It can be
defined globally by%
\[
\lbrack Uw](Z)=q_{Z}^{\ast}w,\quad w\in\mathbf{V},\,Z\in{\Omega}_{\mathbb{C}%
}\,.
\]
\end{theorem}
As the theorem stands, it gives a geometric realization for every unitary
highest-weight module. What it does not do is give a natural analytic
construction of the inner product on $\mathbf{H}({\Omega}_{\mathbb{C}%
},\mathbf{W}^{\lambda})$. This is known only for some special representations,
e.g., the \textit{holomorphic discrete series} of the group $G^{c}$
\cite{HCVI,DS,TI}
or
symmetric spaces of Hermitian type \cite{'OO88a,'OO88b}. At this point we will
only discuss the holomorphic discrete series, which was constructed by
Harish-Chandra in \cite{HCVI}, in particular Theorem 4 and Lemma 29. For that,
let $\rho=\frac{1}{2}\sum_{\alpha\in\Delta^{+}}\alpha$ and let $\mu$ denote
the highest weight of the representation of $K^{c}$ on $\mathbf{W}^{\lambda}$.
For $f,g\in\mathbf{H}({\Omega}_{\mathbb{C}},\mathbf{W}^{\lambda})$, let $\mu$
be the $G^{c}$-invariant measure on $\mathbb{\Omega}_{\mathbb{C}}$ and
\[%
%TCIMACRO{\TeXButton{ip}{\ip{g}{f}}}%
%BeginExpansion
\ip{g}{f}%
%EndExpansion
_{\lambda}:=\int_{G^{c}/K^{c}}%
%TCIMACRO{\TeXButton{ip}{\ip{g(Z)}{Q(Z,Z)^{-1}f(Z)}}}%
%BeginExpansion
\ip{g(Z)}{Q(Z,Z)^{-1}f(Z)}%
%EndExpansion
_{\mathbf{W}^{\lambda}}\,d\mu\,.
\]
\begin{theorem}
[Harish-Chandra \cite{HC65,HC70}]\label{s-HC} Assume that
\[
\left\langle \mu + \rho ,H_{\alpha}\right\rangle
<0\text{\qquad for all }\alpha\in\Delta_{p}^{+}.
\]
Then $%
%TCIMACRO{\TeXButton{ip}{\ip{g}{f}}}%
%BeginExpansion
\ip{g}{f}%
%EndExpansion
_{\lambda}$ is finite for $f,g\in\mathbf{H}({\Omega}_{\mathbb{C}}%
,\mathbf{W}^{\lambda})$ and there exists a positive constant $c_{\lambda}$
such that
\[%
%TCIMACRO{\TeXButton{ip}{\ip{g}{f}}}%
%BeginExpansion
\ip{g}{f}%
%EndExpansion
_{Q}=c_{\lambda}%
%TCIMACRO{\TeXButton{ip}{\ip{g}{f}}}%
%BeginExpansion
\ip{g}{f}%
%EndExpansion
_{\lambda}\,.
\]
Moreover, $(\rho,\mathbf{H}({\Omega}_{\mathbb{C}},\mathbf{W}_{\lambda}))$ is
unitarily equivalent to a discrete summand in $\mathbf{L}^{2}(G^{c})$.
\end{theorem}
The Theorem of Harish-Chandra relates some of the unitary highest weight
modules to the discrete part of the Plancherel measure. It was shown by
Ol'shanskii \cite{Ol82} and Stanton \cite{Stanton} that this ``holomorphic''
part of the discrete spectrum can
be
realized as a Hardy space of holomorphic
functions on a local tube domain. Those results were generalized to symmetric
spaces of \emph{Hermitian type} (or \emph{compactly causal symmetric spaces})
in a series of papers \cite{'OO88a,'OO88b,HOO91,OO96b,BO98}
The last theorem shows in particular that the corresponding highest weight
modules are unitary. It was shown by Wallach \cite{WaI72} and Rossi and Vergne
\cite{VR76} that those are not all the unitary highest weight modules. The
problem is to decide for which representations of $K^{c}$ the reproducing
kernel $Q(Z,W)$ is positive definite. We refer to \cite{EHW83,Ja83} for the
classification of unitary highest weight modules. We will from now on assume
that the representation of $K^{c}$ is a character $\chi_{\lambda}$ where
$\lambda\in i\frak{t}^{\ast}$ is trivial on $\frak{t}$ $\cap\lbrack
\frak{k},\frak{k}]$. Choose a maximal set $\left\{ \gamma_{1},\dots
,\gamma_{r}\right\} $ of long strongly orthogonal roots in $\Delta_{p}^{+}$.
This can be done by putting $r=\operatorname*{rank}(G^{c}/K^{c})$ and then
choosing $\gamma_{r}$ to be a maximal root in $\Delta_{p}^{+}$, $\gamma_{r-1}$
maximal in $\{\gamma\in\Delta_{p}^{+}\mid\gamma\,\ $strongly orthogonal to
$\gamma_{r}\}$, etc. Let $H_{j}:=H_{\gamma_{j}}$ and
\begin{equation}
\frak{a}=i\bigoplus
_{j}\mathbb{R}H_{j}\subset\frak{t}. \label{eqfraktura}
\end{equation}
By the theorem of Moore (see\ \cite{He78}%
) we know that the roots in $\Delta_{p}$ restricted to $\frak{a}$, are given
by $\pm\frac{1}{2}(\gamma_{i}+\gamma_{j})$, $1\leq i\leq j\leq r$ and possibly
$\frac{1}{2}\gamma_{j}$. The root spaces for $\gamma_{j}$ are all
one-dimensional and the root spaces $\frak{g}_{\pm\frac{1}{2}(\gamma
_{i}+\gamma_{j})}$, $1\leq i0$ for $\left| t\right| <1$. The semigroup $S$
acts on $\mathbf{K}_{0}$ and by the L\"uscher-Mack Theorem \ref{LM} we get
an highest weight module for $\widetilde{SU(1,1)}$, which is irreducible as we
will see in a moment.
We also know (see\ \cite{HO95}) that $S=H\exp C$ is a closed semigroup and
that $\gamma I\subset I$, and actually $S$ is exactly the semigroup of
elements in $SL(2,\mathbb{R})$ that act by contractions on $I$. Hence $S$ acts
on $\mathbf{K}$. By a theorem of L\"uscher and Mack \cite{HiNe93,LM75}, the
representation of $S$ on $\mathbf{K}$ extends to a representation of $G^{c}$,
which in this case is the universal covering of $SU(1,1)$ that is locally
isomorphic to $SL(2,\mathbb{R})$. According to Theorem \ref{HighestWeight} the
resulting representation is a direct integral of highest weight
representations. We notice that this defines a representation of
$SL(2,\mathbb{R})$ if and only if certain integrality conditions hold; see
\cite{JoMo84}. The question then arises to identify this direct integral and
construct an explicit intertwining operator into the corresponding space of
holomorphic functions on $D$.
We notice first that the kernel $(y,x)\mapsto Q(y,x)=(1-yx)^{s-1}$ is the
reproducing kernel of the irreducible highest weight representation given by%
\begin{equation}
\lbrack\rho_{s}(g)f](z)=(-cz+a)^{s-1}f\left( \frac{dz-b}{-cz+a}\right)
\,,\quad g=\left(
\begin{array}
[c]{cc}%
a & b\\
c & d
\end{array}
\right) \,. \label{eqEx.30}%
\end{equation}
In particular $Q(y,x)$ extends to a holomorphic function on $D\times\sigma(D)$
according to Remark \ref{R:oppo}. For $f\in\mathcal{C}_{c}^{\infty}(-1,1)$
define%
\begin{equation}
Uf(z):=\frac{1}{\pi}\int_{-1}^{1}f(u)(1-zu)^{s-1}\,du=\frac{1}{\pi}\int
_{-1}^{1}f(u)Q(z,u)\,du\,. \label{eqEx.31}%
\end{equation}
By simple calculation, using (\ref{E:tautwist}), we get for $\gamma=\left(
\begin{array}
[c]{cc}%
a & b\\
c & d
\end{array}
\right) \in S_{-}(\Omega)$:%
\begin{align*}
U(\pi_{s}(\gamma)f)(z) & =\frac{1}{\pi}\int_{-1}^{1}(d-bt)^{-s-1}f\left(
\frac{-c+at}{at-c}\right) (1-zt)^{s-1}\,dt\\
& =\frac{1}{\pi}\int_{-1}^{1}f(u)(cu+d)^{s-1}\left( 1-z\frac{du+c}%
{bu+a}\right) ^{s-1}\,du\\
& =\frac{1}{\pi}\int_{-1}^{1}f(u)\left( bu+a-dzu-cz\right) ^{s-1}\,du\\
& =\frac{1}{\pi}\int_{-1}^{1}f(u)\left( -cz+a-(dz-b)u\right) ^{s-1}\,du\\
& =(-cz+a)^{s-1}\frac{1}{\pi}\int_{-1}^{1}f(u)\left( 1-\frac{dz-b}%
{-cz+a}\right) ^{s-1}\,du\\
& =\rho_{s}(\gamma)Uf(z)\,,
\end{align*}
where the respective representations are given by (\ref{eqEx.21}) and
(\ref{eqEx.30}). Here the last equality follows from (\ref{E:jsu}),
(\ref{E:jlambda}) and (\ref{E:intrep}). As $\rho_{s}$ is irreducible it
follows that either $U$ is surjective or identically zero. Using that $Q(z,u)$
is the reproducing kernel for the representation $\rho_{s}$ we get for $f$ and
$g$ with compact support:%
\begin{align*}%
%TCIMACRO{\TeXButton{ip}{\ip{Uf}{Ug}}}%
%BeginExpansion
\ip{Uf}{Ug}%
%EndExpansion
& =\frac{1}{\pi^{2}}\int_{-1}^{1}\int_{-1}^{1}\overline{f(u)}g(v)\,%
%TCIMACRO{\TeXButton{ip}{\ip{Q(\cdot,u)}{Q(\cdot,v)}}}%
%BeginExpansion
\ip{Q(\cdot,u)}{Q(\cdot,v)}%
%EndExpansion
\,dv\,du\\
& =\frac{1}{\pi^{2}}\int_{-1}^{1}\int_{-1}^{1}\overline{f(u)}%
g(v)Q(u,v)\,dv\,du\\
& =%
%TCIMACRO{\TeXButton{ip}{\ip{f}{g}}}%
%BeginExpansion
\ip{f}{g}%
%EndExpansion
\,.
\end{align*}
It follows that $U$ is a unitary isomorphism.
We can describe $U$ in a different way using the representation $\rho_{s}$
instead of the reproducing kernel. Let $\openone$ be the constant function
$z\mapsto1$. Then%
\begin{equation}
\lbrack\rho_{s}(g)\openone](z)=J_{s}(g^{-1},z)=(-cz+a)^{s-1}\,.
\label{eqEx.32}%
\end{equation}
We therefore get%
\begin{align}
\int_{H}f(h)\rho_{s}(h)\openone(z)\,dh & =\frac{1}{\pi}\int_{-\infty
}^{\infty}\left[ \cosh(t)^{-s-1}f(\tanh(t))\right] (-\sinh(t)z+\cosh
(t))^{s-1}\,dt\label{E:R*one}\\
& =\frac{1}{\pi}\int_{-1}^{1}f(u)(1-uz)^{s-1}\,du\nonumber\\
& =Uf(z)\,.\nonumber
\end{align}
We will meet the transform in (\ref{E:R*one}) again in the generalization of
the Bargmann transform in Section \ref{S:Bargmann}. That shows that the
Bargmann transform introduced in \cite{OO96} is closely related to the
reflection positivity and the Osterwalder-Schrader duality.
In summary, we have the representation $\pi_{s}$ from (\ref{eqEx.21}) acting
on the Hilbert space $\widehat{\mathbf{H}_{+}(s)}$ of distributions obtained
from completion with respect to%
\[
\int_{-1}^{1}\int_{-1}^{1}\overline{f(x)}\,f(y)\left( 1-xy\right)
^{s-1}\,dx\,dy\,,
\]
and the unitarily equivalent representation $\rho_{s}$ from (\ref{eqEx.30}).
The operator $U$ from (\ref{eqEx.31}) intertwines the two. Moreover $U$ passes
to the distributions on $\left( -1,1\right) $, in the completion
$\widehat{\mathbf{H}_{+}(s)}$, and we have%
\begin{equation}
U\left( \delta^{\left( n\right) }\right) =\frac{\left( s-1\right)
\left( s-2\right) \cdots\left( s-n\right) }{\pi}\,z^{n},\label{eqEx.34}%
\end{equation}
where, for $n=0,1,2,\dots$, $\delta^{\left( n\right) }=\left( d/dx\right)
^{n}\delta$ are the derivatives of the Dirac ``function'',
defined by
\begin{equation}
\left\langle f,\delta^{\left( n\right) }\right\rangle
=\left\langle \left( -1\right)^{n}f^{\left( n\right) },\delta\right\rangle
=\left( -1\right)^{n}f^{\left( n\right) }\left( 0\right) ,\label{eqExApr.35}
\end{equation}
where $f$ is a test function. Furthermore,
$z^{n}$ are the
monomials in the reproducing kernel Hilbert space $\mathbf{H}(s)$
corresponding to the complex kernel $\left( 1-\bar{z}w\right) ^{s-1}$. This
Hilbert space consists of analytic functions $f\left( z\right) =\sum
_{n=0}^{\infty}C_{n}z^{n}$, defined in $D=\left\{ z\in\mathbb{C}\mid\left|
z\right| <1\right\} $, and satisfying%
\[
\sum_{n=0}^{\infty}\left| C_{n}\right| ^{2}\frac{1}{\left| \binom{s-1}%
{n}\right| }<\infty,
\]
where the $\binom{s-1}{n}$ refers to the (fractional) binomial coefficients.
This sum also defines the norm in $\mathbf{H}(s)$. For every $w\in D$, the
function $u_{w}\left( z\right) :=\left( 1-\bar{w}z\right) ^{s-1}$ is in
$\mathbf{H}(s)$, and for the inner product, we have%
\[%
%TCIMACRO{\TeXButton{ip}{\ip{u_{w_{1}}}{u_{w_{2}}}}}%
%BeginExpansion
\ip{u_{w_{1}}}{u_{w_{2}}}%
%EndExpansion
_{\mathbf{H}(s)}=\left( 1-\bar{w}_{1}w_{2}\right) ^{s-1}\,.
\]
So $\mathbf{H}(s)$ is indeed a reproducing kernel Hilbert space, as it follows
that the values $f\left( z\right) $, for $f\in\mathbf{H}(s)$ and $w\in D$,
are given by the inner products%
\[
f\left( w\right) =%
%TCIMACRO{\TeXButton{ip}{\ip{u_{w}}{f}}}%
%BeginExpansion
\ip{u_{w}}{f}%
%EndExpansion
_{\mathbf{H}(s)}\,.
\]
Since $u_{w}\left( z\right) =\sum_{n=0}^{\infty}\binom{s-1}{n}\bar{w}%
^{n}z^{n}$, we conclude that the monomials $z^{n}$ form an orthogonal basis in
$\mathbf{H}(s)$, and it follows from (\ref{eqEx.34}) that the distributions
$\delta^{\left( n\right) }$, $n=0,1,2,\dots$, form an orthogonal basis in
the Hilbert space $\widehat{\mathbf{H}_{+}(s)}$, and that%
\[
\left\| \delta^{\left( n\right) }\right\| _{\widehat{\mathbf{H}_{+}(s)}%
}^{2}=
\frac{n!\left( 1-s\right) \left( 2-s\right) \cdots\left( n-s\right) }
{\pi^{2\mathstrut}}.
\]
\section{\label{S:Sssp}Reflection Symmetry for Semisimple Symmetric Spaces}
\setcounter{equation}{0}
The main results in this section are Theorems \ref{PR} and \ref{S:Posref}.
They are stated for non-compactly causal symmetric spaces, and the proofs are
based on our Basic Lemma and the L\"uscher-Mack theorem. At the end of the
section we show that results from Jorgensen's paper \cite{Jor86} lead to an
extension of the scope of the two theorems.
We now generalize the construction from the last section to a bigger class of
semisimple symmetric pairs. We restrict ourself to the case of characters
induced from a maximal parabolic subgroup, which leads to highest weight
modules with one-dimensional lowest $K^{c}$-type. This is meant as a
simplification and not as a limitation of our method. An additional source of
inspiration for the present chapter is the following series of papers:
\cite{Nel59,'O90a,'OO89a,'OO88a,'OO88b,OO96,JO97,KlLa83,OsSc73,Pra89,Sch86}.
Assume that $G^{c}/K^{c}%
=D\simeq\Omega_{\mathbb{C}}\subset\frak{p}^{+}$ is a bounded symmetric domain
with $G^{c}$ simply connected and simple. Let $\theta^{c}$ be the Cartan
involution on $G^{c}$ corresponding to $K^{c}$.
Let $\sigma\colon D\rightarrow D$ be a conjugation, that is a non-trivial
order two antiholomorphic map. Those involutions were classified in
\cite{HJ75,HJ78}, see also \cite{HO95,'O90b,'O90a}. Then $\sigma$ defines an
involution on the group $I_{o}(D)$, the connected component of holomorphic
isometries of $D$, by%
\[
\tau(f)(Z)=\sigma\left( f(\sigma(Z))\right) \,.
\]
But $I_{o}(D)$ is locally isomorphic to $G^{c}$, see \cite{He78}, Chapter
VIII. Hence $\tau$ defines an involution on $G^{c}$ and $\frak{g}^{c}$. Let
$H^{c}=G^{c\tau}$, and $\frak{h=}\left\{ X\in\frak{g}^{c}\mid\tau
(X)=X\right\} $ and $\frak{q}^{c}=\left\{ X\in\frak{g}^{c}\mid
\tau(X)=-X\right\} $. Then $\frak{g}^{c}=\frak{h}\oplus\frak{q}^{c}$. We
define%
\[
\frak{g}:=\frak{h}\oplus i\frak{q}^{c}%
\]
and $\frak{q=}\left\{ X\in\frak{g}\mid\tau(X)=-X\right\} =i\frak{q}^{c}$.
Then $(\frak{g},\tau)$ is a symmetric pair. Let $G_{\mathbb{C}}$ be a simply
connected Lie group with Lie algebra $\frak{g}_{\mathbb{C}}$ and let $G\subset
G_{\mathbb{C}}$ be the connect Lie group with Lie algebra $\frak{g}$ . Then
$\tau$ integrates to an involution on $G$. Let $H=G^{\tau}=\left\{ a\in
G\mid\tau(a)=a\right\} $. Then $G/H$ is a symmetric space. The involution
$\theta^{c}$ integrates to an involution on $G$ and $\theta
:=\tau\theta^{c}$ is a Cartan involution on $G$ that commutes with $\tau$. Let
$K$ be the corresponding maximal almost compact subgroup. Denote the
corresponding Cartan decomposition as usually by $\frak{g}=\frak{k}%
\oplus\frak{p}$.
As $\tau$ is antiholomorphic it follows that $\tau(Z^{0})=-Z^{0}$, where
$Z^{0}$ is a central element in $\frak{k}^{c}$ with eigenvalues $0,i,-i$%
.\ Hence $G^{c}/H^{c}$ is a symmetric space of \emph{Hermitian type}, in the
sense of \cite{'OO88a}. Those spaces are now usually called \emph{compactly
causal symmetric spaces} because those are exactly the symmetric spaces such
that $\frak{q}$ contains a regular $H$-invariant cone $C$ with $C^{o}%
\cap\frak{k\not =\emptyset}$. The minimal cone is given by%
\[
C_{\min}^{c}=\mathbb{R}^{+}\cdot\overline{\operatorname{conv}\left\{
\operatorname{Ad}(H)Z^{0}\right\} }\,.
\]
The dual spaces $G/H$ are exactly the \emph{non-compactly causal symmetric
spaces}. Those are the symmetric spaces containing $H$-invariant regular cones
$C$ such that $C^{o}\cap\frak{p}\not =\emptyset$. We use \cite{HO95} as a
standard reference to the causal symmetric spaces.
\begin{example}
[Cayley type spaces]\label{ExaSsspNew.1}A special case of the above
construction is when $G^{c}/K^{c}$ is a tube type domain. Let $\mathbf{c}$ be
a Cayley transform from the bounded realization of $G^{c}/K^{c}$ to the
unbounded realization. This can be done by choosing $\mathbf{c}%
=\operatorname{Ad}(\exp(\frac{\pi i}{2}Y^{0}))$ where $\operatorname{ad}%
(Y^{0})$ has eigenvalues $0,1,-1$. Then $\operatorname{Ad}(\mathbf{c}%
)^{4}=\operatorname*{id}$ and $\tau=\operatorname{Ad}(\mathbf{c)}^{2}%
(G^{c})=G^{c}$. Hence $\tau$ is an involution on $G^{c}$. It is also well
known that $\tau(Z^{0})=-Z^{0}$. Hence $\tau$ defines a conjugation on $D$.
The symmetric spaces $G/H$ are the symmetric spaces of Cayley type. We have
$Y^{0}\in\frak{h}$ is central and $\frak{z}_{\frak{g}}(Y^{0})=\frak{h}$.
Furthermore $\operatorname{Ad}(\mathbf{c})$ is an isomorphism $\frak{g}%
^{c}\simeq\frak{g}$. The spaces that we get from this construction are locally
isomorphic to one of the following symmetric spaces, where we denote by the
subscript $+$ the group of elements having positive determinant:
$Sp(n,\mathbb{R})/GL(n,\mathbb{R})_{+}$, $SU(n,n)/GL(n,\mathbb{C})_{+}$,
$SO^{\ast}(4n)/SU^{\ast}(2n)\mathbb{R}_{+}$, $SO(2,k)/SO(1,k-1)\mathbb{R}_{+}$
and $E_{7(-25)}/E_{6(-26)}\mathbb{R}_{+}$.
\end{example}
\begin{example}
\label{ExaSsspNew.2}Assume that $H$ is a connected Lie group such that
$H/K_{H}$, $K_{H}$ a maximal compact subgroup of $H$, is a bounded symmetric
domain. Let $G^{c}=H\times H$ and $D=H/H_{K}\times\overline{H/H_{K}}$, where
the bar denotes opposite complex structure. Let $\tau(d,c)=(c,d)$. Then $\tau$
is a conjugation with fixed-point set the diagonal. The corresponding
involution on $G^{c}$ is $\tau(a,b)=(b,a)$. Thus $G^{c\tau}%
=\operatorname*{diagonal}\simeq H$. Identify $G^{c\tau}$ with $H$. Then
$G/H\ni(a,b)H\mapsto ab^{-1}\in H$ is an isomorphism. In this case $G$ is
locally isomorphic to $H_{\mathbb{C}}$ and the involution $\tau$ on $\frak{g}$
is the conjugation with respect to the real form $\frak{h}\subset\frak{g}$.
Let $H_{1}$ be the corresponding analytic subgroup. Then $H_{1}$ is locally
isomorphic to $H$ and the symmetric space we are looking at is $G_{\mathbb{C}%
}/H_{1}$.
\end{example}
We will need the following facts. Let $X^{0}=-iZ^{0}\in\frak{q}\cap\frak{p}$.
Then $X^{0}$ is $H\cap K$-invariant,%
\begin{equation}
\frak{z}_{\frak{g}}(X^{0})=\frak{k}_{\mathbb{C}}^{c}\cap\frak{g=k}\cap
\frak{h}\oplus\frak{p}\cap\frak{q}, \label{E:ZXo}%
\end{equation}
Let $\frak{n}:=\frak{p}^{+}\cap\frak{g}$, $\frak{\bar{n}}:=\frak{p}^{-}%
\cap\frak{g}$, and $\frak{p}_{\max}:=(\frak{k}_{\mathbb{C}}^{c}\oplus
\frak{p}^{+})\cap\frak{g}$. Then $\frak{p}_{\max}$ is a maximal parabolic
subgroup of $\frak{g}$ of the form $\frak{p}_{\max}=\frak{m}\oplus
\mathbb{R}X^{0}\oplus\frak{n}$, where $\frak{m}=\left\{ X\in\frak{k}%
\cap\frak{h}\oplus\frak{p}\cap\frak{q}\mid B(X,X^{0})=0\right\} $, $B$ the
Killing form on $\frak{g}$. We have $H\cap K=Z(X^{0})$. Let $A:=\exp
(\frak{a})$, $N:=\exp(\frak{n})$, $\bar{N}:=\exp(\frak{\bar{n}})$. $M_{0}$ the
analytic subgroup of $G$ corresponding to $\frak{m}$, and $M:=(H\cap K)M_{0}$.
Then $M$ is a closed and $\tau$-stable subgroup of $G$, $M\cap A=\left\{
1\right\} $, $MA=Z_{G}(A)$, and $P_{\max}=N_{G}(\frak{p}_{\max})=MAN$. We
have
\[
\frak{g}=\frak{h}\oplus\frak{p}_{\max}\,.
\]
Let $\Omega=\tau(\Omega_{\mathbb{C}})\cap\frak{g\subset\bar{n}}$. Then by
\cite{FHO93}:
\begin{lemma}
\label{HPminOpenG}$HP_{\mathrm{min}}$ is open in $G$ and $HP_{\max}%
=\exp(\Omega)P_{\max}\subset$ $\bar{N}P_{\mathrm{max}}$.
\end{lemma}
Let $\frak{a}=\mathbb{R}X^{0}$ and $A:=\exp(\frak{a})$. We need to fix the
normalization of measures before we discuss the generalized principal series
representations. Let the measure $da$ on $A$ be given by
\[
\int_{A}f(a)\,da=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\,f(a_{t}%
)\,dt,\quad a_{t}=\exp2tX^{0}\,.
\]
Then Fourier inversion holds without any additional constants. We fix the
Lebesgue measure $dX$ on $\bar{\frak{n}}$ such that, for $d\bar{n}=\exp(dX)$,
we then have
\[
\int_{\bar{\frak{n}}}a(\bar{n})^{-2\rho}\,d\bar{n}=1\,.
\]
Here $\rho(X)=\frac{1}{2}\operatorname*{tr}(${$\operatorname{ad}$%
}$(X))|_{\frak{n}}$ as usual, and $a(g)\in A$, $g\in G$, is determined by
$g\in KMa(g)N$. The Haar measure on compact groups will usually be normalized
to have total measure one. The measure on $N$ is $\theta(d\bar{n})$. We fix a
Haar measure $dm$ on $M$, and $dg$ on $G$ such that
\[
\int_{G}f(g)\,dg=\int_{K}\int_{M}\int_{A}\int_{N}f(kman)a^{2\rho
}\,dn\,da\,dm\,dk\,,\qquad f\in\mathcal{C}_{c}^{\infty}(G).
\]
Then we can normalize the Haar measure $dh$ on $H$ such that for
$f\in\mathcal{C}_{c}^{\infty}(G)$, $\operatorname*{supp}(f)\subset
HP_{\mathrm{max}}$, we have, see \cite{'O87}:
\[
\int_{G}f(g)\,dg=\int_{H}\int_{M}\int_{A}\int_{N}f(hman)a^{2\rho
}\,dn\,da\,dm\,dh\,.
\]
The invariant measure $d\dot{x}$ on $G/H$ is then given by
\[
\int_{G}f(x)\,dx=\int_{G/H}\int_{H}f(xh)\,dh\,d\dot{x},\quad f\in
\mathcal{C}_{c}(G)
\]
and similarly for $K/H\cap K$.
\begin{lemma}
\label{L:Int} Let the measures be normalized as above. Then the following hold:
\begin{enumerate}
\item [\hss\llap{\rm1)}]\label{L:Int(1)}Let $f\in\mathcal{C}_{c}(\bar{N}MAN)$.
Then
\[
\int_{G}f(g)\,dg=\int_{\bar{N}}\int_{M}\int_{A}\int_{N}f(\bar{n}man)a^{2\rho
}\,d\bar{n}\,dm\,da\,dn\,.
\]
\item[\hss\llap{\rm2)}] \label{L:Int(2)}Let $f\in\mathcal{C}_{c}(\bar{N})$.
For $y\in\bar{N}MAN$ write $y=\bar{n}(y)m_{\bar{N}}(y)a_{\bar{N}}(y)n_{\bar
{N}}(y)$. Let $x\in G$. Then
\[
\int_{\bar{N}}f(\bar{n}(x\bar{n}))a_{\bar{N}}(x\bar{n})^{-2\rho}\,d\bar
{n}=\int_{\bar{N}}f(\bar{n})\,d\bar{n}\,.
\]
\item[\hss\llap{\rm3)}] \label{L:Int(3)}Write, for $g\in G$,
$g=k(g)m(g)a(g)n(g)$ according to $G=KMAN$. Let $h\in\mathcal{C}(K/H\cap K)$.
Then
\[
\int_{K/H\cap K}h(\dot{k})\,d\dot{k}=\int_{\bar{N}}h(k(\bar{n})H\cap
K)a(\bar{n})^{-2\rho}\,d\bar{n}\,.
\]
\item[\hss\llap{\rm4)}] \label{L:Int(4)}Let $h\in\mathcal{C}(K/H\cap K)$ and
let $x\in G$. Then
\[
\int_{K/H\cap K}f(k(xk)H\cap K)a(xk)^{-2\rho}\,d\dot{k}=\int_{K/H\cap K}%
f(\dot{k})\,d\dot{k}%
\]
\item[\hss\llap{\rm5)}] \label{L:Int(5)}Assume that $\operatorname*{supp}%
(f)\subset H/H\cap K\subset K/H\cap K$. Then
\[
\int_{K/H\cap K}f(\dot{k})\,d\dot{k}=\int_{H/H\cap K}f(k(h)H\cap
K)a(h)^{-2\rho}\,d\dot{h}\,.
\]
\item[\hss\llap{\rm6)}] \label{L:Int(6)}Let $f\in\mathcal{C}_{c}(\bar{N})$.
Then
\[
\int_{\bar{N}}f(\bar{n})\,d\bar{n}=\int_{H/H\cap K}f(\bar{n}(h))a_{\bar{N}%
}(h)^{-2\rho}\,d\bar{n}\,.
\]
\item[\hss\llap{\rm7)}] \label{L:Int(7)}For $x\in HP_{\mathrm{max}}$ write
$x=h(x)m_{H}(x)a_{H}(x)n_{H}(x)$ with $h(x)\in H$, $m_{H}(x)\in M$,
$a_{H}(x)\in A$, and $n_{H}(x)\in N$. Let $f\in\mathcal{C}_{c}^{\infty
}(H/H\cap K)$ and let $x\in G$ be such that $xHP_{\mathrm{max}}\subset
HP_{\mathrm{max}}$. Then
\[
\int_{H/H\cap K}f(h(xh)H\cap K)a_{H}(xh)^{-2\rho}\,d\dot{h}=\int_{H/H\cap
K}f(\dot{h})\,d\dot{h}%
\]
\end{enumerate}
\end{lemma}
Identify $\frak{a}_{\mathbb{C}}^{\ast}$ with $\mathbb{C}$ by $\frak{a}%
_{\mathbb{C}}^{\ast}\ni\nu\mapsto2\nu(X^{0})\in\mathbb{C}\,$. Then $\rho$
corresponds to $\dim\frak{n}$. For $\nu\in\frak{a}_{\mathbb{C}}^{\ast}$, let
$\mathcal{C}^{\infty}(\nu)$ be the space of $\mathcal{C}^{\infty}$-functions
$f\colon G\rightarrow\mathbb{C}$ such that, for $a_{t}=\exp t(2X^{0})$, we
have
\[
f(gma_{t}n)=e^{-(\nu+\rho)t}f(g)=a_{t}^{-(\nu+\rho)}f(g)\,.
\]
Define an inner product on $\mathcal{C}^{\infty}(\nu)$ by
\[%
%TCIMACRO{\TeXButton{ip}{\ip{f}{g}}}%
%BeginExpansion
\ip{f}{g}%
%EndExpansion
_{\nu}:=\int_{K}\,\overline{f(k)}g(k)\,dk=\int_{K/H\cap K}\,\overline
{f(k)}g(k)\,d\dot{k}\,.
\]
Then $\mathcal{C}^{\infty}(\nu)$ becomes a pre-Hilbert space. We denote by
$\mathbf{H}(\nu)$ the completion of $\mathcal{C}^{\infty}(\nu)$. Define
$\pi(\nu)$ by
\[
\lbrack\pi(\nu)(x)f](g):=f(x^{-1}g),\quad x,g\in G,\quad f\in\mathcal{C}%
^{\infty}(\nu)\,.
\]
Then $\pi(\nu)(x)$ is bounded, so it extends to a bounded operator on
$\mathbf{H}(\nu)$, which we denote by the same symbol. Furthermore $\pi(\nu)$
is a continuous representation of $G$ which is unitary if and only if $\nu\in
i\mathbb{R}$. By \cite{Pou92} we have $\mathbf{H}(\nu)^{\infty}=\mathcal{C}%
^{\infty}(\nu)$. We can realize $\mathbf{H}(\nu)$ as $\mathbf{L}^{2}(K/H\cap
K)$ and as $\mathbf{L}^{2}(\bar{N},a(\bar{n})^{2\operatorname{Re}(\nu)}%
\,d\bar{n})$ by restriction (see Lemma \ref{L:5.14}). In the first realization
the representation $\pi(\nu)$ becomes
\[
\lbrack\pi(\nu)(x)f](k)=a(x^{-1}k)^{-\nu-\rho}f(k(x^{-1}k))
\]
and in the second
\[
\lbrack\pi(\nu)(x)f](\bar{n})=a_{\bar{N}}(x^{-1}\bar{n})^{-\nu-\rho}f(\bar
{n}(x^{-1}\bar{n}))\,.
\]
\begin{lemma}
\label{L:invpar} The pairing
\[
\mathbf{H}(\nu)\times\mathbf{H}(-\bar{\nu})\ni(f,g)\longmapsto%
%TCIMACRO{\TeXButton{ip}{\ip{f}{g}}}%
%BeginExpansion
\ip{f}{g}%
%EndExpansion
_{\nu}:=\int_{K}\overline{f(k)}g(k)\,dk=\int_{K/H\cap K}\overline
{f(k)}g(k)\,d\dot{k}%
\]
is $G$-invariant, i.e.
\[%
%TCIMACRO{\TeXButton{ip}{\ip{\pi(\nu)(x)f}{g}}}%
%BeginExpansion
\ip{\pi(\nu)(x)f}{g}%
%EndExpansion
_{\nu}=%
%TCIMACRO{\TeXButton{ip}{\ip{f}{\pi(-\bar{\nu})(x^{-1})g}}}%
%BeginExpansion
\ip{f}{\pi(-\bar{\nu})(x^{-1})g}%
%EndExpansion
_{\nu}\,.
\]
\end{lemma}
\begin{remark}
\label{ImaginaryNu}We notice that if $\nu$ is purely imaginary, that is
$-\bar{\nu}=\nu$, the above shows that $(\pi(\nu),\mathbf{H}(\nu))$ is then unitary.
\end{remark}
\begin{lemma}
\label{L:5.14}{\ Let the notation be as above.}
\begin{enumerate}
\item [\hss\llap{\rm1)}]\label{L:5.14(1)}On $\bar{N}$ the invariant pairing $%
%TCIMACRO{\TeXButton{ip}{\ip{\,\cdot\,}{\,\cdot\,}}}%
%BeginExpansion
\ip{\,\cdot\,}{\,\cdot\,}%
%EndExpansion
_{\nu}$ is given by
\[%
%TCIMACRO{\TeXButton{ip}{\ip{f}{g}}}%
%BeginExpansion
\ip{f}{g}%
%EndExpansion
_{\nu}=\int_{\bar{N}}\overline{f(\bar{n})}g(\bar{n})\,d\bar{n}\,,\quad
f\in\mathbf{H}(\nu),\,g\in\mathbf{H}(-\bar{\nu})\,.
\]
\item[\hss\llap{\rm2)}] \label{L:5.14(2)}Let $\mathbf{H}_{H}(\nu)$ be the
closure of $\{f\in\mathcal{C}^{\infty}(\nu)\mid\operatorname*{supp}(f)\subset
HP_{\mathrm{max}}\}$. Then $\mathbf{H}_{H}(\nu)\ni f\mapsto f|_{H}%
\in\mathbf{L}^{2}(H/H\cap K,a(h)^{2\operatorname{Re}(\nu)}\,d\dot{h})$ is an isometry.
\item[\hss\llap{\rm3)}] \label{L:5.14(3)}Let $f\in\mathbf{H}(\nu)$,
$g\in\mathbf{H}(-\bar{\nu})$ and assume that $\operatorname*{supp}(fg)\subset
HP_{\mathrm{max}}$. Then
\[%
%TCIMACRO{\TeXButton{ip}{\ip{f}{g}}}%
%BeginExpansion
\ip{f}{g}%
%EndExpansion
_{\nu}=\int_{H/H\cap K}\overline{f(h)}g(h)\,d\dot{h}\,.
\]
\end{enumerate}
\end{lemma}
Let us assume, from now on, that there exists an element $w\in K$ such that
{$\operatorname{Ad}$}$(w)(X^{0})=-X^{0}$. In particular such an element exists
if $-1$ is in the Weyl group $W(\frak{a}_{q}):=N_{K}(\frak{a}_{q}%
)/Z_{K}(\frak{a}_{q})$, where $\frak{a}_{q}\subset\frak{p}\cap\frak{q}$ is
maximal abelian (and then maximal abelian in $\frak{p}$ and $\frak{q})$. This
is always the case if $G/H$ is a Cayley type space because $G$ is then a
Hermitian groups which implies that $\theta$ is an inner automorphism. The
element $w$ does also exists if $G$ is a complexification of one of the groups
$\frak{s}\frak{p}(n,\mathbb{R})$, $\frak{s}\frak{u}(n,n)$, $\frak{s}%
\frak{o}^{\ast}(4n)$, $\frak{s}\frak{o}(2,k)$ and $\frak{e}_{7(-25)}$, see
\cite{JO97}, Lemma 5.20.
Let us work out more explicitly the details for the representations of the
Cayley-type spaces in order to compare the existence of $(\rho_{\nu
},\mathbf{K}_{\nu})$ to the existence of the complementary series, see\ Lemma
\ref{CayleyConstant} below:
For ``big'' $\nu$ define the intertwining operator $A(\nu)\colon\mathbf{H}%
(\nu)\rightarrow\mathbf{H}(-\nu)$ by the converging integral%
\[
\lbrack A(\nu)f](x):=\int_{N}f(gnw)\,dn\,,
\]
see \cite{KS80,Wal92}. The map $\nu\mapsto A(\nu)$ has an analytic
continuation to a meromorphic function on $\frak{a}_{\mathbb{C}}^{\ast}$
intertwining $\pi(\nu)$ and $\pi(-\nu)$. Using Lemma \ref{L:invpar} we define
a new invariant bilinear form on $\mathcal{C}_{c}^{\infty}(\nu)$ by
\[%
%TCIMACRO{\TeXButton{ip}{\ip{f}{g}}}%
%BeginExpansion
\ip{f}{g}%
%EndExpansion
_{\nu}:=%
%TCIMACRO{\TeXButton{ip}{\ip{f}{A(\nu)g}}}%
%BeginExpansion
\ip{f}{A(\nu)g}%
%EndExpansion
_{\nu}.
\]
If there exists a (maximal) constant $R>0$ such that the invariant bilinear
form $%
%TCIMACRO{\TeXButton{ip}{\ip{\,\cdot\,}{\,\cdot\,}}}%
%BeginExpansion
\ip{\,\cdot\,}{\,\cdot\,}%
%EndExpansion
_{\nu}$ is positive definite for $|\nu|0$. Let
\[
S(\Omega):=\{g\in G\mid gH\subset HP_{\mathrm{max}}\}=\left\{ g\in G\mid
g\cdot\Omega\subset\Omega\right\} \,.
\]
Then $S(\Omega)$ is a closed semigroup invariant under $s\mapsto s^{\sharp
}:=\tau(s)^{-1}$. It follows by construction that $S(\Omega)\subset HP_{\max}%
$. We remark the following results:
\begin{lemma}
Let $C=C_{\mathrm{max}}$ be the maximal pointed generating cone in $\frak{q}$
containing $X^{0}$. Then the following hold:
\begin{enumerate}
\item Let $t>0$ and $Y\in\Omega$. Then $\exp tX^{0}\in S$ and $\exp
tX^{0}\cdot Y=e^{-t}Y$.
\item $S(\Omega)=H\exp C_{\mathrm{max}}$.
\end{enumerate}
\end{lemma}
\begin{proof}
(1) is a simple calculation. For (2) see \cite{HiNe93} and \cite{HO95}.
\end{proof}
\begin{corollary}
\label{CorSsspNew.17}The semigroup $S(C_{\min})=H\exp(C_{\min})$ acts by
contractions on $\Omega$.
\end{corollary}
\begin{lemma}
\label{CSInvariant}Let $s\in S(\Omega)$ and $f\in\mathcal{C}_{c}^{\infty
}(\Omega,\nu)$. Then $\pi(\nu)(s)f\in\mathcal{C}_{c}^{\infty}(\Omega,\nu)$,
that is $\mathcal{C}_{c}^{\infty}(\Omega)$ is $S(\Omega)$-invariant.
\end{lemma}
\begin{proof}
Let $f\in\mathcal{C}_{c}^{\infty}(\Omega)$ and $s\in S$. Then $\pi
(\nu)(s)f(x)=f(s^{-1}x)\not =0$ only if $s^{-1}x\in\operatorname*{supp}%
(f)\subset HP_{\mathrm{max}}$. Thus $\operatorname*{supp}(\pi(\nu)(s)f)\subset
s\operatorname*{supp}(f)\subset sHP_{\mathrm{max}}\subset HP_{\mathrm{max}}$.
\end{proof}
We still assume that $G^{c}$ is simple. Let $(\rho_{\nu},\mathbf{K}_{\nu})$ be
as above. Let $%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
\in\mathbf{K}_{\nu}(\lambda-\rho)$ be the constant function $Z\mapsto1$. Then
$\left\|
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
\right\| =1$. Let $H^{c}:=\left( G^{c}\right) ^{\tau}$. Then $H^{c}$ is
connected. Let $\tilde{H}$ be the universal covering of $H^{c}$ and then also
$H_{o}$. We notice that
\[
H^{c}/H^{c}\cap K^{c}=H/H\cap K\,.
\]
Denote the restriction of $\rho_{\nu}$ to $H^{c}$ by $\rho_{\nu,H}$. We can
lift $\rho_{\nu,H}$ to a representation of $\tilde{H}$ also denoted by
$\rho_{\nu,H}$. We let $C=C_{\mathrm{min}}$ be the minimal $H$-invariant cone
in $\frak{{q}}$ generated by $X^{0}$. We denote by $\tilde{C}=\tilde
{C}_{\mathrm{min}}$ the minimal $G^{c}$-invariant cone in $i\frak{{g}^{c}}$
with
$\tilde{C}\cap\frak{q}=\operatorname*{pr}{}_{\frak{q}}(\tilde{C})=C$,
where $\operatorname*{pr}_{\frak{q}}\colon\frak{g}\rightarrow\frak{q}$ denotes
the orthogonal projection (see\ \cite{HO95,'O90b}). As $L_{\mathrm{pos}}\leq0$
it follows that $\rho_{\lambda}$ extends to a holomorphic representation of
the universal semigroup $\Gamma(G^{c},\tilde{C})$ corresponding to $G^{c}$ and
$\tilde{C}$
(see \cite{HiNe93,KNO98}).
Let $G_{1}^{c}$ be the analytic subgroup of
$G_{\mathbb{C}}$ corresponding to the Lie algebra $\frak{g}^{c}$. Let $H_{1}$
be the analytic subgroup of $G_{1}^{c}$ corresponding to $\frak{h}$. Then---as
we are assuming that $G\subset G_{\mathbb{C}}$---we have $H_{1}=H_{o}$. Let
$\kappa\colon G^{c}\rightarrow G_{1}^{c}$ be the canonical projection and let
$Z_{H}=\kappa^{-1}(Z_{G_{1}^{c}}\cap H_{o})$. Then $\rho_{\nu}$ is trivial on
$Z_{H}$ as $\nu-\rho$ is trivial on $\exp([\frak{k}^{c},\frak{k}^{c}])\supset
H^{c}\cap K^{c}$. Thus $\rho_{\nu}$ factors to $G^{c}/Z_{H}$, and to
$\Gamma(G^{c},\tilde{C})/Z_{H}$. Notice that $(G^{c}/Z_{H})_{o}^{\tau}$ is
isomorphic to $H_{o}$. Therefore we can view $H_{o}$ as subgroup of
$G^{c}/Z_{H}$, and $S_{o}(C)=H_{o}\exp C$ as a subsemigroup of $\Gamma
(G^{c},\tilde{C})/Z_{H}$. In particular $\tau_{\nu}(s)$ is defined for $s\in
S_{o}(C)$. This allows us to write $\rho_{\nu}(h)$ or $\rho_{\nu,H}(h)$ for
$h\in H_{o}$. Using (\ref{E:aNbarkC}) and Lemma \ref{LemNewS-hwm.2} we get
\[
a_{\bar{N}}(h)^{\nu-\rho}=\left\langle
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
,\rho_{\nu,H}(h)%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
\right\rangle \,.
\]
In particular we get that $(h,k)\mapsto a_{\bar{N}}(h^{-1}k)^{\nu-\rho}$ is
positive semidefinite if $\nu-\rho\le L_{\mathrm{pos}}$.
Let us now consider the case $G=H_{\mathbb{C}}$ and $G^{c}=\tilde{H}%
\times\tilde{H}$. Denote the constant $L_{\mathrm{pos}}$ for $\tilde{H}$ by
$S_{\mathrm{pos}}$ and denote, for $\mu\leq S_{\mathrm{pos}}$, the
representation with lowest $\tilde{H}\cap\tilde{K}$-type $\mu$ by $(\tau_{\mu
},L_{\mu})$. Let $\bar{\tau}_{\mu}$ be the conjugate representation. Recall
that we view $\tilde{H}$ as a subset of $G^{c}$ by the diagonal embedding
\[
\tilde{H}\ni h\longmapsto(h,h)\in\Delta(G^{c}):=\{(x,x)\in G^{c}\mid
x\in\tilde{H}\}\,.
\]
The center of $\frak{k}^{c}$ is two dimensional (over $\mathbb{R}$) and
generated by $i(X^{0},X^{0})$ and $i(X^{0},-X^{0})$. We choose $Z^{0}%
=i(X^{0},-X^{0})$. Then $\frak{p}^{+}=\frak{n}\times\bar{\frak{n}}$. Let
$\openone$
again be a lowest weight vector of norm one. Denote the corresponding vector
in the conjugate Hilbert space by
$\overline{\openone}$.
Then for $h\in\tilde{H}$:%
\begin{align*}%
%TCIMACRO{\TeXButton{ip}{\ip{\openone\otimes\overline{\openone}}{\tau_{\mu}\otimes\bar{\tau}_{\mu
%}(h,h)\openone\otimes\overline{\openone}}}}%
%BeginExpansion
\ip{\openone\otimes\overline{\openone}}{\tau_{\mu}\otimes\bar{\tau}_{\mu
}(h,h)\openone\otimes\overline{\openone}}%
%EndExpansion
& =%
%TCIMACRO{\TeXButton{ip}{\ip{\openone}{\tau_{\lambda}(h)\openone}}}%
%BeginExpansion
\ip{\openone}{\tau_{\lambda}(h)\openone}%
%EndExpansion
\overline{%
%TCIMACRO{\TeXButton{ip}{\ip{\openone}{\tau_{\lambda}(h)\openone}}}%
%BeginExpansion
\ip{\openone}{\tau_{\lambda}(h)\openone}%
%EndExpansion
}\\
& =\left|
%TCIMACRO{\TeXButton{ip}{\ip{\openone}{\tau_{\lambda}(h)\openone}}}%
%BeginExpansion
\ip{\openone}{\tau_{\lambda}(h)\openone}%
%EndExpansion
\right| ^{2}\\
& =a_{\bar{N}}(h)^{2\mu}%
\end{align*}
Thus we define in this case $L_{\mathrm{pos}}:=2S_{\mathrm{pos}}$. As before
we notice that
$\tau_{\nu}\otimes\bar{\tau}_{\nu}(h,h)\openone\otimes\overline{\openone}$ is well
defined on $H$. We now have a new proof that $%
%TCIMACRO{\TeXButton{ip}{\ip{\,\cdot\,}{\,\cdot\,}}}%
%BeginExpansion
\ip{\,\cdot\,}{\,\cdot\,}%
%EndExpansion
$ is positive definite on $\Omega$.
\begin{lemma}
\label{ahaloN} For $\nu-\rho\leq L_{\mathrm{pos}}$ there exists an unitary
irreducible highest weight representation $(\rho_{\nu},\mathbf{K}_{\nu})$ of
$G^{c}$ and a lowest $K^{c}$-type vector $%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
$ of norm one such that for every $h\in H$%
\[
a_{\bar{N}}(h)^{\nu-\rho}=%
%TCIMACRO{\TeXButton{ip}{\ip{\openone}{\tau_{\lambda}(h)\openone}}}%
%BeginExpansion
\ip{\openone}{\tau_{\lambda}(h)\openone}%
%EndExpansion
\,.
\]
Hence the kernel
\[
(H\times H)\ni(h,k)\longmapsto a_{\bar{N}}(k^{-1}h)^{\nu-\rho}\in\mathbb{R}%
\]
is positive semidefinite. In particular $%
%TCIMACRO{\TeXButton{ip}{\ip{\,\cdot\,}{\,\cdot\,}}}%
%BeginExpansion
\ip{\,\cdot\,}{\,\cdot\,}%
%EndExpansion
_{J}$ is positive semidefinite on $\mathbf{C}_{c}^{\infty}(\Omega,\nu)$ for
$\nu-\rho\leq L_{\mathrm{pos}}$.
\end{lemma}
The Basic Lemma and the L\"uscher-Mack Theorem, together with the above, now
imply the following Theorem:
\begin{theorem}
[Reflection Symmetry for Complementary Series]\label{PR} Let $G/H$%
\linebreak be a non-compactly causal symmetric space such that there exists a
$w\in K$ such that $\operatorname{Ad}(w)|_{\frak{a}}=-1$. Let $\pi(\nu)$ be a
complementary series such that $\nu\leq L_{\mathrm{pos}}$. Let $C$ be the
minimal $H$-invariant cone in $\frak{q}$ such that $S(C)$ is contained in the
contraction semigroup of $HP_{\mathrm{max}}$ in $G/P_{\mathrm{max}}$. Let
$\Omega$ be the bounded realization of $H/H\cap K$ in $\bar{\frak{n}}$. Let
$J(f)(x):=f(\tau(x)w^{-1})$. Let $\mathbf{K}_{0}$ be the closure of
$\mathcal{C}_{c}^{\infty}(\Omega,\nu)$ in $\mathbf{H}(\nu)$. Then the
following hold:
\begin{enumerate}
\item [\hss\llap{\rm1)}]\label{PR(1)}$(G,\tau,\pi(\nu),C,J,\mathbf{K}_{0})$
satisfies the positivity conditions \textup{(PR1)--(PR2).}
\item[\hss\llap{\rm2)}] \label{PR(2)}$\pi(\nu)$ defines a contractive
representation $\tilde{\pi}(\nu)$ of $S(C)$ on $\mathbf{K}$ such that
\[
\tilde{\pi}(\nu)(\gamma)^{\ast}=\tilde{\pi}(\nu)(\tau(\gamma)^{-1}).
\]
\item[\hss\llap{\rm3)}] \label{PR(3)}There exists a unitary representation
$\tilde{\pi}^{c}$ of $G^{c}$ such that
\begin{enumerate}
\item [\hss\llap{\rm i)}]\label{PR(3)(1)}$d\tilde{\pi}(\nu)^{c}(X)=d\tilde
{\pi}(\nu)(X)\,\quad\forall X\in\frak{h}$.
\item[\hss\llap{\rm ii)}] \label{PR(3)(2)}$d\tilde{\pi}(\nu)^{c}%
(iY)=i\,d\tilde{\pi}(\nu)(Y)\,\quad\forall Y\in C$.
\end{enumerate}
\end{enumerate}
\end{theorem}
We remark that this Theorem includes the results of R. Schrader for the
complementary series of $SL(2n,\mathbb{C})$ \cite{Sch86}. In a moment we will
show that actually $\tilde{\pi}(\nu)^{c}\simeq\rho_{\nu}$, where $\rho_{\nu}$
is the irreducible unitary highest weight representation of $G^{c}$ such that
\[
a(h)^{\nu-\rho}=%
%TCIMACRO{\TeXButton{ip}{\ip{\openone}{\rho_{\nu}(h)\openone}}}%
%BeginExpansion
\ip{\openone}{\rho_{\nu}(h)\openone}%
%EndExpansion
\]
as before. {}From now on we assume that $\nu-\rho\leq L_{\mathrm{pos}}$. We
notice that the inner product $%
%TCIMACRO{\TeXButton{ip}{\ip{\,\cdot\,}{A(\nu)J(\,\cdot\,)}}}%
%BeginExpansion
\ip{\,\cdot\,}{A(\nu)J(\,\cdot\,)}%
%EndExpansion
$ makes sense independent of the existence of $w$. Let $\mathbf{K}_{0}$ be the
completion of $\mathcal{C}_{c}^{\infty}(\Omega,\nu)$ in the norm $%
%TCIMACRO{\TeXButton{ip}{\ip{\,\cdot\,}{A(\nu)J(\,\cdot\,)}}}%
%BeginExpansion
\ip{\,\cdot\,}{A(\nu)J(\,\cdot\,)}%
%EndExpansion
$. Let $\mathbf{N}$ be the space of vectors of zero length and let
$\mathbf{K}$ be the completion of $\mathbf{K}_{0}/\mathbf{N}$ in the induced
norm. First of all we have to show that $\pi(\nu)(\gamma)$ passes to a
continuous operator $\tilde{\pi}(\nu)(\gamma)$ on $\mathbf{K}$ such that
$\tilde{\pi}(\nu)(\gamma)^{\ast}=\tilde{\pi}(\nu)(\tau(\gamma)^{-1})$. For
that we recall that
\begin{equation}
H/H\cap K=H_{o}/H_{o}\cap K=\Omega\label{eqSsspNew.14}%
\end{equation}
so we my replace the integration over $H$ in $%
%TCIMACRO{\TeXButton{ip}{\ip{f}{A(\nu)Jf}}}%
%BeginExpansion
\ip{f}{A(\nu)Jf}%
%EndExpansion
_{\nu}$ with integration over $H_{o}$. Motivated by (\ref{E:R*one})\ we define
for $f\in\mathcal{C}_{c}^{\infty}(\Omega,\nu)$
\begin{align}
U(f)=\rho_{\nu}(f)%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
& :=\int_{H_{o}}f(h)\rho_{\nu}(h)%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
\,dh\,\label{eqSsspNew.15}\\
& =\int_{H_{o}}a_{\bar{N}}(h)^{-\nu-\rho}f(h\cdot0)J_{\nu}(h,\cdot)^{-1}\,dh.
\label{E:U}%
\end{align}
\begin{lemma}
\label{L:posref} Assume that $\nu-\rho\leq L_{\mathrm{pos}}$. Let $\rho_{\nu
},\,\mathbf{K}_{\nu}$ and $%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
$ be as specified in Lemma \textup{\ref{ahaloN}} and let $f,g\in
\mathcal{C}_{c}^{\infty}(\Omega,\nu)$ and $s\in S(C)$. Then the following hold:
\begin{enumerate}
\item [\hss\llap{\rm1)}]\label{posref(1)}$%
%TCIMACRO{\TeXButton{ip}{\ip{f}{[A(\nu)J](g)}}}%
%BeginExpansion
\ip{f}{[A(\nu)J](g)}%
%EndExpansion
_{\nu}=%
%TCIMACRO{\TeXButton{ip}{\ip{Uf}{Ug}}}%
%BeginExpansion
\ip{Uf}{Ug}%
%EndExpansion
$.
\item[\hss\llap{\rm2)}] \label{posref(2)}$U(\pi(\nu)(s)f)=\rho_{\nu}(s)U(f)$.
\item[\hss\llap{\rm3)}] \label{posref(3)}$\pi_{\nu}(s)$ passes to a
contractive operator $\frak{\pi(\nu)}(s)$ on $\mathbf{K}$ such that
$\tilde{\pi}(\nu)(s)^{\ast}=\tilde{\pi}(\nu)(\tau(s)^{-1})$.
\end{enumerate}
\end{lemma}
\begin{proof}
(1) Let $f$ and $g$ be as above. Then
\begin{align*}%
%TCIMACRO{\TeXButton{ip}{\ip{f}{[A(\nu)J](g)}}}%
%BeginExpansion
\ip{f}{[A(\nu)J](g)}%
%EndExpansion
& =\int_{H_{o}/H_{o}\cap K}\int_{H_{o}/H_{o}\cap K}\overline{f(h)}%
g(k)a_{\bar{N}}(h^{-1}k)^{\nu-\rho}\,dh\,dk\\
& =\int_{H_{o}/H_{o}\cap K}\int_{H_{o}/H_{o}\cap K}\overline{f(h)}g(k)%
%TCIMACRO{\TeXButton{ip}{\ip{\openone}{\rho_{\nu}(h^{-1}k)\openone}}}%
%BeginExpansion
\ip{\openone}{\rho_{\nu}(h^{-1}k)\openone}%
%EndExpansion
\,dh\,dk\\
& =\int_{H_{o}/H_{o}\cap K}\int_{H_{o}/H_{o}\cap K}\overline{f(h)}g(k)%
%TCIMACRO{\TeXButton{ip}{\ip{\rho_{\nu}(h)\openone}{\rho_{\nu}(k)\openone}}}%
%BeginExpansion
\ip{\rho_{\nu}(h)\openone}{\rho_{\nu}(k)\openone}%
%EndExpansion
\,dh\,dk\\
& =%
%TCIMACRO{\TeXButton{ip}{\ip{Uf}{Ug}}}%
%BeginExpansion
\ip{Uf}{Ug}%
%EndExpansion
.
\end{align*}
This proves (1).
(2) This follows from Lemma \ref{L:Int},7) and the following calculation:
\begin{align*}
U(\pi_{\nu}(s)f)%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
& =\int f(s^{-1}h)\rho_{\nu}(h)%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
\,dh\\
& =\int f(h(s^{-1}h))a_{H}(s^{-1}h)^{-(\nu+\rho)}\rho_{\nu}(h)%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
\,dh\\
& =\int f(h(s^{-1}h))a_{H}(sh(s^{-1}))^{\nu-\rho}\rho_{\nu}(h)a_{H}%
(s^{-1}h)^{-2\rho}%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
\,dh\\
& =\int f(h)\rho_{\nu}(sh)%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
\,dh\\
& =\rho_{\nu}(s)U(f)\,,
\end{align*}
where we have used that
\[
\rho_{\nu}(sh)%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
=a_{H}(sh)^{\nu-\rho}\rho_{\nu}(h(sh))%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
\,.
\]
(3) By (1) and (2) we get:
\begin{align*}
\Vert\pi_{\nu}(s)f\Vert_{J}^{2} & =\Vert\rho_{\nu}(s)U(f)\Vert^{2}\\
& \leq\Vert U(f)\Vert^{2}\\
& =%
%TCIMACRO{\TeXButton{ip}{\ip{f}{[A(\nu)J]f}}}%
%BeginExpansion
\ip{f}{[A(\nu)J]f}%
%EndExpansion
_{\nu}\qquad\left( =\Vert f\Vert_{J}^{2}\right) \,.
\end{align*}
Thus $\pi_{\nu}(s)$ passes to a contractive operator on $\mathbf{K}$. That
$\tilde{\pi}_{\nu}(s)^{\ast}=\tilde{\pi}_{\nu}(\tau(s)^{-1})$ follows from
Lemma \ref{L:AnuJ}.
\end{proof}
\begin{theorem}
[Identification Theorem]\label{S:Posref} Assume that $G/H$ is non-compactly
causal and that $\nu-\rho\leq L_{\mathrm{pos}}$. Let $\rho_{\nu}$,
$\mathbf{K}_{\nu}$ and $%
%TCIMACRO{\TeXButton{openone}{\openone}}%
%BeginExpansion
\openone
%EndExpansion
\in\mathbf{K}_{\nu}$ be as in Lemma \textup{\ref{ahaloN}.} Then the following hold:
\begin{enumerate}
\item [\hss\llap{\rm1)}]\label{S:Posref(1)}There exists a continuous
contractive representation $\frak{\pi(\nu)}$ of $S_{o}(C)$ on $\mathbf{K}$
such that
\[
\frak{\pi(\nu)}(s)^{\ast}=\frak{\pi(\nu)}(\tau(s)^{-1})\,,\quad\forall s\in
S_{o}(C)\,.
\]
\item[\hss\llap{\rm2)}] \label{S:Posref(2)}There exists a unitary
representation $\tilde{\pi}(\nu)^{c}$ of $G^{c}$ such that
\begin{enumerate}
\item [\hss\llap{\rm i)}]\label{S:Posref(2)(1)}$d\tilde{\pi}(\nu
)^{c}(X)=d\tilde{\pi}(\nu)(X)\,\quad\forall X\in\frak{h}$.
\item[\hss\llap{\rm ii)}] \label{S:Posref(2)(2)}$d\tilde{\pi}(\nu
)^{c}(iY)=i\,d\tilde{\pi}(\nu)(Y)\,\quad\forall Y\in C$.
\end{enumerate}
\item[\hss\llap{\rm3)}] \label{S:Posref(3)}The map
\[
\mathcal{C}_{c}^{\infty}(\Omega,\nu)\ni f\longmapsto U(f)\in\mathbf{K}_{\nu}%
\]
extends to an isometry $\mathbf{K}\simeq\mathbf{K}_{\nu}$ intertwining
$\tilde{\pi}(\nu)^{c}$ and $\rho_{\nu}$. In particular $\tilde{\pi}(\nu)^{c}$
is irreducible and isomorphic to $\rho_{\nu}$.
\end{enumerate}
\end{theorem}
\begin{proof}
(1) follows from Lemma \ref{L:posref} as obviously $\tilde{\pi}(\nu
)(sr)=\tilde{\pi}(\nu)(s)\tilde{\pi}_{\nu}(r)$.
(2) This follows now from the Theorem of L\"uscher-Mack.
(3) By Lemma \ref{L:posref} we know that $f\mapsto U(f)$ defines an isometric
$S_{o}(C)$-intertwining operator. Let $f\in\mathcal{C}_{c}^{\infty}(\Omega
,\nu)$. Differentiation and the fact that $\rho_{\nu}$ is holomorphic gives
\begin{enumerate}
\item [\hss\llap{\rm i)}]$U(d\tilde{\pi}(\nu)^{c}(X)f)=d\rho_{\nu
}(X)U(f)\,,\quad\forall X\in\frak{h}$.
\item[\hss\llap{\rm ii)}] $U(i\,d\tilde{\pi}(\nu)^{c}(Y)f)=i\,d\rho_{\nu
}(Y)U(f)\,,\quad\forall Y\in C$.
\end{enumerate}
But those are exactly the relations that define $\tilde{\pi}(\nu)^{c}$. The
fact that $\frak{h}\oplus iC$ generates $\frak{g}^{c}$ implies that $f\mapsto
U(f)$ induces an $\frak{g}^{c}$-intertwining operator intertwining $\tilde
{\pi}(\nu)^{c}$ and $\rho_{\nu}$. As both are also representations of $G^{c}$,
it follows that this is an isometric $G^{c}$-map. In particular as it is an
isometry by Lemma \ref{L:posref}, part 1, it follows that the map $U$ is an
isomorphism. This proves the theorem.
%\hfill$\Box$
%
%
%
%
%
\end{proof}
We will now explain another view of the above results using local
representations instead of the L\"uscher-Mack Theorem. Let $\frak{a}_{p}$ be
a maximal abelian subspace of $\frak{p}$ containing $X^{0}$. Then
$\frak{a}_{p}$ is contained in $\frak{q}$. Let $\Delta(\frak{g},\frak{a})$ be
the set of roots of $\frak{a}$ in $\frak{g}$. We choose a positive system such
that $\Delta_{+}=\left\{ \alpha\mid\alpha(X^{0})=1\right\} \subset\Delta
^{+}(\frak{g},\frak{a})$. Choose a maximal set of long strongly orthogonal
roots $\gamma_{1},\dots,\gamma_{r}$, $r=rank(H/H\cap K)$. Choose $X_{j}%
\in\frak{g}_{\gamma_{j}}$ such that with $X_{-j}=\tau(X_{j})$ we have
$[X_{j},X_{-j}]=H_{j}:=H_{\gamma_{j}}$. Then by Theorem 5.1.8 in \cite{HO95}
we have%
\[
\Omega={\operatorname{Ad}}(H\cap K)\left\{ \sum_{j=1}^{r}t_{j}X_{-j}\biggm
|-10$, let
\[
B_{R}:={\operatorname{Ad}}(H\cap K)\left\{ \sum_{j=1}^{r}t_{j}X_{-j}\biggm
|-R0$ be such
that $B_{R}\subset U$. Then $\mathcal{C}_{c}^{\infty}(B_{R},\nu)\subset
\mathcal{C}_{c}^{\infty}(U,\nu)$. Hence we can assume that $U=B_{R}$. Let
$g\in\mathcal{C}_{c}^{\infty}(U,\nu)^{\perp}$ and let $f\in\mathcal{C}%
_{c}^{\infty}(\Omega,\nu)$. We want to show that $%
%TCIMACRO{\TeXButton{ip}{\ip{g}{f}}}%
%BeginExpansion
\ip{g}{f}%
%EndExpansion
_{J}=0$. Choose $0s_{0}$.
Then $\pi(\nu)(a_{t})(f)\in\mathcal{C}_{c}^{\infty}(U,\nu)$ for every
$t>s_{0}$. It follows that for $t>s_{0}$:
\begin{align*}
0 & =%
%TCIMACRO{\TeXButton{ip}{\ip{g}{\pi(\nu)(a_{t})f}}}%
%BeginExpansion
\ip{g}{\pi(\nu)(a_{t})f}%
%EndExpansion
_{J}\\
& =\int_{\Omega}\int_{\Omega}\overline{g(x)}\left[ \pi(\nu)(a_{t})f\right]
(y)
Q_{\sigma}(x,y)
\,dx\,dy\\
& =e^{(\lambda+1)t}\int_{\Omega}\int_{\Omega}\overline{g(x)}f(e^{2t}%
y)
Q_{\sigma}(x,y)
\,dx\,dy\\
& =e^{(\lambda-1)t}\int_{\Omega}\int_{\Omega}\overline{g(x)}f(y)
Q_{\sigma}(x,e^{-2t}y)
\,dx\,dy\,.
\end{align*}
By Lemma \ref{S:DF1} we know that $z\mapsto Q(zX,Y)$ is holomorphic on
$D=\left\{ z\mid\left| z\right| <1\right\} $. As $g$ and $f$ both have
compact support it follows
by (\ref{eqApr.38})
that
\[
F(z):=\int_{\Omega}\int_{\Omega}\overline{g(x)}f(y)Q(x,zy)\,dx\,dy
\]
is holomorphic on $D$. But $F(z)=0$ for $00$. By continuity $%
%TCIMACRO{\TeXButton{ip}{\ip{g}{f}}}%
%BeginExpansion
\ip{g}{f}%
%EndExpansion
_{J}=0$. Thus $g=0$.
\end{proof}
Let us recall some basic facts from \cite{Jor86}. Let $\rho$ be a local
homomorphism of a neighborhood $U$ of $e$ in $G$ into the space of linear
operators on the Hilbert space $\mathbf{H}$ such that $\rho(g)$ is densely
defined for $g\in U$. Furthermore $\rho|_{(U\cap H)}$ extends to a strongly
continuous representation of $H$ in $\mathbf{H}$. $\rho$ is called a
\emph{local representation} if there exists a dense subspace $\mathbf{D}%
\subset\mathbf{H}$ such that the following hold: \begin{list}{}{\setlength
{\leftmargin}{\customleftmargin}
\setlength{\itemsep}{0.5\customskipamount}
\setlength{\parsep}{0.5\customskipamount}
\setlength{\topsep}{\customskipamount}}
\item[\hss\llap{\rm LR1)}] $\forall g\in U$, ${\bf D} \subset{\bf D} (\rho
(g))$, where ${\bf D} (\rho(g))$ is the domain of definition for $\rho(g)$.
\item[\hss\llap{\rm LR2)}] If $g_1,g_2,g_1g_2\in U$ and $u\in{\bf D}$ then
$\rho(g_2)u \in{\bf D} (\rho(g_1))$ and
\[
\rho(g_1)[\rho(g_2)u] = \rho(g_1g_2)u\, .
\]
\item[\hss\llap{\rm LR3)}] Let $Y\in{\frak h}$ such that $\exp tY\in U$
for $0\le t\le1$. Then for every $u\in{\bf D}$
\[
\lim_{t\to0} \rho(\exp tY) u = u\, .
\]
\item[\hss\llap{\rm LR4)}] $\rho(Y){\bf D}\subset{\bf D}$ for every $Y\in
{\frak h}$.
\item[\hss\llap{\rm LR5)}] $\forall u\in{\bf D}\, \exists V_u$ an open
$1$-neighborhod
in $H$ such that $UV_u\subset U^2$ and $\rho(h)u \in{\bf D}$
for every $h\in V_u$.
\item[\hss\llap{\rm LR6)}] For every $Y\in{\frak q}$ and every $u\in{\bf D}$
the function
\[
h\longmapsto\rho(\exp(\operatorname{Ad}(h)Y))u
\]
is locally integrable on $\{h\in H\mid\exp(\operatorname{Ad}(h)Y)\in U\}$.
\end{list}
\cite{Jor86} now states that every local representation extends to a unitary
representation of $G^{c}$. We now want to use Theorem \ref{Dense} to construct
a local representation of $G$. For that let $00}$ is a
semigroup, that is
\begin{equation}
H_{t}\ast H_{s}=H_{t+s}. \label{E:Heatsemigr}%
\end{equation}
This gives us the following form for $RR^{\ast}$ and $\left| R^{\ast}\right|
=\sqrt{RR^{\ast}}$:%
\begin{align}
RR^{\ast}h(x) & =e^{-x^{2}/2}R^{\ast}h(x)\nonumber\\
& =H_{1}\ast h(x)\,. \label{E:RR*classical}%
\end{align}
Thus%
\begin{align}
\sqrt{RR^{\ast}}(h)(x) & =H_{1/2}\ast h(x)\label{E:SqrRR*classical}\\
& =2^{n/2}\int h(y)e^{-(x-y)^{2}}\,dy\,.\nonumber
\end{align}
{}From this we derive the following expression for the unitary part of the
polar decomposition of $R^{\ast}=B\sqrt{RR^{\ast}}$ of $R^{\ast}$:%
\begin{align*}
Bh(z) & =R^{\ast}\left| R^{\ast}\right| ^{-1}h(z)\\
& =e^{z^{2}/2}H_{1/2}\ast h(z)\\
& =2^{n/2}\int h(x)e^{-x^{2}+2zx-z^{2}/2}\,dy\\
& =2^{n/2}e^{-z^{2}/2}\int h(x)e^{-x^{2}+2xz}\,dx
\end{align*}
which is, up to a scaling factor, the usual Bargmann transform, see
\cite{GF89}, p.~40. In particular it follows directly from our construction
that the Bargmann transform is a unitary isomorphism.
This example shows that we can recover the Bargmann transform from the
\emph{restriction principle}, see \cite{OO96}, that is we have
\begin{itemize}
\item Manifolds $M\subset M_{\mathbb{C}}$ where $M_{\mathbb{C}}$ is a
``complexification'' of $M$;
\item Groups $H\subset G$ such that $H$ acts on $M$ and $G$ acts on
$M_{\mathbb{C}}$;
\item Measures $\mu$ and $\lambda$ on $M$ respectively $M_{\mathbb{C}}$ with
the measure $\mu$ being $H$-invariant;
\item A reproducing Hilbert space $\mathbf{F}(M_{\mathbb{C}})\subset
\mathbf{L}^{2}(M_{\mathbb{C}},\lambda)\cap\mathcal{O}(M_{\mathbb{C}})$ with a
representation $\pi_{G}$ of $G$ given by%
\[
\lbrack\pi_{G}(g)F](z)=m(g^{-1},z)^{-1}F(g^{-1}\cdot z)
\]
where $m$ is a ``multiplier''.
\item A function $\chi$ such that the ``restriction''\ map $R(F)(x):=\chi
(x)F(x)$, $x\in M$, from $\mathbf{F}(M_{\mathbb{C}})\rightarrow\mathbf{L}%
^{2}(M,\mu)$ is a closed (or continuous) $H$-intertwining operator with dense image.
\end{itemize}
Denote the reproducing kernel of $\mathbf{F}(M_{\mathbb{C}})$ by
$K(z,w)=K_{w}(z)$. Then $K_{w}\in\mathbf{F}(M_{\mathbb{C}})$ and
$K(z,w)=\overline{K(w,z)}$. The map $R^{\ast}\colon L^{2}(M,\mu)\rightarrow
\mathbf{F}(M_{\mathbb{C}})$ has the form%
\begin{align}
R^{\ast}h(w) & =%
%TCIMACRO{\TeXButton{ip}{\ip{K_w}{R^*h}}}%
%BeginExpansion
\ip{K_w}{R^*h}%
%EndExpansion
\nonumber\\
& =%
%TCIMACRO{\TeXButton{ip}{\ip{RK_w}{h}}}%
%BeginExpansion
\ip{RK_w}{h}%
%EndExpansion
\nonumber\\
& =\int_{M}h(m)\overline{\chi(m)}K(w,m)\,d\mu(m)\,. \label{E:R*}%
\end{align}
Hence%
\begin{equation}
RR^{\ast}h(x)=\int_{M}h(m)\chi(x)\overline{\chi(m)}\,K(x,m)\,d\mu(m)\,.
\label{E:RestrPrinc}%
\end{equation}
Write $R^{\ast}=B\left| R^{\ast}\right| $ for the polar decomposition of
$R^{\ast}$.
\begin{definition}
The unitary isomorphism $B\colon\mathbf{L}^{2}(M,\mu)\rightarrow
\mathbf{F}(M_{\mathbb{C}})$ is called the (generalized) Bargmann transform.
\end{definition}
The natural setting that we are looking at now is $H/H\cap K\simeq
\Omega\subset G^{c}/K^{c}=\Omega_{\mathbb{C}}$ and one of the highest weight
modules as a generalization of the Fock spaces with the representation
$[\rho_{\nu}(g)F](Z)=J_{\lambda}(g^{-1},Z)^{-1}F(g^{-1}\cdot Z)$, see
(\ref{E:intrep}). Here $\lambda$ corresponds to $\nu-\rho$ in our previous
sections. Define%
\begin{equation}
RF(x)=J_{\lambda}(x,0)^{-1}F(x\cdot0),\quad x\in H\mathbb{\,}.
\label{E:DefRbd}%
\end{equation}
Using the multiplier relation $J_{\lambda}(h^{-1}x,0)=J_{\lambda}%
(h^{-1},x\cdot0)J_{\lambda}(x,0)$ which follows from (\ref{E:Multipl}) \ we
get:%
\begin{align*}
R\left[ \rho_{\lambda}(h)F\right] (x) & =J_{\lambda}(x,0)^{-1}\left[
\rho_{\lambda}(h)F\right] (x\cdot0)\\
& =J_{\lambda}(x,0)^{-1}J_{\lambda}(h^{-1},x\cdot0)^{-1}F(h^{-1}\cdot
(x\cdot0))\\
& =J_{\lambda}(h^{-1}x,0)^{-1}F((h^{-1}x)\cdot0)\\
& =[L(h)RF](x)
\end{align*}
where $L$ stands for the left regular representation of $H$ on $H/H\cap K$.
Hence $R$ is an intertwining operator. Let $\frak{a}_{p}$, $\Delta$ and
$\Delta^{+}$ be as in the end of Section \ref{S:Sssp}. By \cite{'OO88a,'OO88b}
the following is known:
\begin{theorem}
Suppose that $%
\left\langle \lambda+\rho,H_{\alpha}\right\rangle
<0$ for all $\alpha\in\Delta_{+}$. Then $\rho_{\lambda}$ is equivalent to a
discrete summand in $\mathbf{L}^{2}(G^{c}/H)$, that is there exists an
injective $G^{c}$-map $T\colon\mathbf{H}(\rho_{\lambda})\rightarrow
\mathbf{L}^{2}(G^{c}/H)$.
\end{theorem}
We call the resulting discrete part of $\mathbf{L}^{2}(G^{c}/H)$ the
\emph{holomorphic discrete series} of $G^{c}/H$. We have (see \cite{OO96}):
\begin{theorem}
Assume that $\rho_{\lambda}$ is a holomorphic discrete series representation
of $G^{c}/H$ then the following holds:
\begin{enumerate}
\item The restriction map is injective, closed and with dense image.
\item The generalized Bargmann transform $B\colon\mathbf{L}^{2}(H/H\cap
K)\rightarrow\mathbf{H}(\rho_{\lambda})$ is a $H$-isomorphism.
\end{enumerate}
\end{theorem}
Denote as before the reproducing kernel of $\mathbf{H}(\rho_{\lambda})$ by
$Q(W,Z)$. Then by (\ref{E:R*}) and Theorem \ref{S:DF1}:\
\begin{align}
R^{\ast}f(Z) & =\int_{H/H\cap K}f(h\cdot0)\cdot\overline{J_{\lambda
}(h,0)^{-1}Q(h\cdot0,Z)}\,dh\nonumber\\
& =\int_{H/H\cap K}f(h\cdot0)J_{\lambda}(h^{-1},Z)\,dh\,. \label{E:R*general}%
\end{align}
If $Z=x\cdot0$, $x\in H$, then $J_{\lambda}(h^{-1},Z)=J_{\lambda}%
(h^{-1}x,0)J(x,0)^{-1}$. Let $\Psi_{\lambda}(h):=J_{\lambda}(h,0)$ and view
$f(h\cdot0)$ as a right $H\cap K$-invariant function on $H$. Then $RR^{\ast}$
is the convolution operator%
\[
RR^{\ast}f(x)=\int_{H}f(h)\Psi_{\lambda}(h^{-1}x)\,dh\,.
\]
The problem that we face here is, that $\lambda\mapsto\Psi_{\lambda}\ast$ is
\emph{not} a semigroup of operators. Hence it becomes harder to find the
square root of $RR^{\ast}$, but it can still be shown, that it is a
convolution operator. The final remark in this section is the following
connection between our map $U$ that comes from the reflection positivity and
$R^{\ast}$.
\begin{theorem}
Let $f\in\mathcal{C}_{c}^{\infty}(\Omega,\nu)$. Define a function $F$ on
$H/H\cap K$ by $F(h)=a_{\bar{N}}(h)^{-\nu-\rho}f(h\cdot_{\operatorname*{opp}%
}0)$. Then%
\[
Uf(Z)=R^{\ast}(F)(Z)\,.
\]
\end{theorem}
\begin{proof}
This follows from (\ref{E:R*general}) and (\ref{E:U})
\end{proof}
\section{\label{Diagonal}The Heisenberg Group}
\setcounter{equation}{0}
A special case of the setup in Definition \ref{ReflectionSymmetric} above
arises as follows: Let the group $G$, and $\tau\in\operatorname{Aut}_{2}(G)$
be as described there. Let $\mathbf{H}_{\pm}$ be two given complex Hilbert
spaces, and $\pi_{\pm}\in\operatorname{Rep}(G,\mathbf{H}_{\pm})$ a pair of
unitary representations. Suppose $T\colon\mathbf{H}_{-}\rightarrow
\mathbf{H}_{+}$ is a unitary operator such that $T\pi_{-}=\left( \pi_{+}%
\circ\tau\right) T$, or equivalently,
\begin{equation}
T\pi_{-}(g)f_{-}=\pi_{+}\left( \tau(g)\right) Tf_{-} \label{TPiMinus}%
\end{equation}
for all $g\in G$, and all $f_{-}\in\mathbf{H}_{-}$. Form the direct sum
$\mathbf{H}:=\mathbf{H}_{+}\oplus\mathbf{H}_{-}$ with inner product
\begin{equation}%
%TCIMACRO{\TeXButton{ip}{\ip{f_{+}\oplus f_{-}}{f^{\prime}_{+}\oplus f^{\prime
%}_{-}}}}%
%BeginExpansion
\ip{f_{+}\oplus f_{-}}{f^{\prime}_{+}\oplus f^{\prime
}_{-}}%
%EndExpansion
:=%
%TCIMACRO{\TeXButton{ip}{\ip{f_{+}}{f^{\prime}_{+}}}}%
%BeginExpansion
\ip{f_{+}}{f^{\prime}_{+}}%
%EndExpansion
_{+}+%
%TCIMACRO{\TeXButton{ip}{\ip{f_{-}}{f^{\prime}_{-}}}}%
%BeginExpansion
\ip{f_{-}}{f^{\prime}_{-}}%
%EndExpansion
_{-} \label{IPPlusMinus}%
\end{equation}
where the $\pm$ subscripts are put in to refer to the respective Hilbert
spaces $\mathbf{H}_{\pm}$, and we may form $\pi:=\pi_{+}\oplus\pi_{-}$ as a
unitary representation on $\mathbf{H}=\mathbf{H}_{+}\oplus\mathbf{H}_{-}$ by
\[
\pi(g)\left( f_{+}\oplus f_{-}\right) =\pi_{+}(g)f_{+}\oplus\pi_{-}%
(g)f_{-}\,,\quad g\in G,\;f_{\pm}\in\mathbf{H}_{\pm}\,.
\]
Setting
\begin{equation}
J:=\left(
\begin{matrix}
0 & T\\
T^{\ast} & 0
\end{matrix}
\right) \,, \label{JMatrix}%
\end{equation}
that is $J\left( f_{+}\oplus f_{-}\right) =\left( Tf_{-}\right)
\oplus\left( T^{\ast}f_{+}\right) $, it is then clear that properties
(1)--(2) from Definition \ref{ReflectionSymmetric} will be satisfied for the
pair $(J,\pi)$. Formula (\ref{TPiMinus}) may be recovered by writing out the
relation
\begin{equation}
J\pi=\left( \pi\circ\tau\right) J \label{JPiRelation}%
\end{equation}
in matrix form, specifically
\[
\left(
\begin{matrix}
0 & T\\
T^{\ast} & 0
\end{matrix}
\right) \left(
\begin{matrix}
\pi_{+}(g) & 0\\
0 & \pi_{-}(g)
\end{matrix}
\right) =\left(
\begin{matrix}
\pi_{+}(\tau(g)) & 0\\
0 & \pi_{-}(\tau(g))
\end{matrix}
\right) \left(
\begin{matrix}
0 & T\\
T^{\ast} & 0
\end{matrix}
\right) \,.
\]
If, conversely, (\ref{JPiRelation}) is assumed for some unitary period-$2$
operator $J$ on $\mathbf{H}=\mathbf{H}_{+}\oplus\mathbf{H}_{-}$, and, if the
two representations $\pi_{+}$ and $\pi_{-}$ are \textit{disjoint,} in the
sense that no irreducible in one occurs in the other (or, equivalently, there
is no nonzero intertwiner between them), then, in fact, (\ref{TPiMinus}) will
follow from (\ref{JPiRelation}). The diagonal terms in (\ref{JMatrix}) will be
zero if (\ref{JPiRelation}) holds. This last implication is an application of
Schur's lemma.
\begin{lemma}
\label{Operator}Let $0\neq\mathbf{K}_{0}$ be a closed linear subspace of
$\mathbf{H}=\mathbf{H}_{+}\oplus\mathbf{H}_{-}$ satisfying the positivity
condition \textup{(PR3)} in Definition \textup{\ref{Hyperbolic},} that is
\begin{equation}%
%TCIMACRO{\TeXButton{ip}{\ip{v}{Jv}}}%
%BeginExpansion
\ip{v}{Jv}%
%EndExpansion
\geq0\,,\quad\forall v\in\mathbf{K}_{0} \label{vJvPositivity}%
\end{equation}
where
\begin{equation}
J=\left(
\begin{matrix}
0 & T\\
T^{\ast} & 0
\end{matrix}
\right) \label{JMatrixBis}%
\end{equation}
is given from a fixed unitary isomorphism $T\colon\mathbf{H}_{-}%
\rightarrow\mathbf{H}_{+}$ as in \textup{(\ref{TPiMinus}).} For $v=f_{+}\oplus
f_{-}\in\mathbf{H}=\mathbf{H}_{+}\oplus\mathbf{H}_{-}$, set $P_{+}v:=f_{+}$.
The closure of the subspace $P_{+}\mathbf{K}_{0}$ in $\mathbf{H}_{+}$ will be
denoted $\overline{P_{+}\mathbf{K}_{0}}$. Then the subspace
\[
\mathbf{G}=\left\{ \left. \left(
\begin{matrix}
f_{+}\\
f_{-}%
\end{matrix}
\right) \in\mathbf{K}_{0}\,\right| \,f_{-}\in T^{\ast}\left( \overline
{P_{+}\mathbf{K}_{0}}\right) \right\}
\]
is the graph of a closed linear operator $M$ with domain
\begin{equation}
\mathbf{D}=\left\{ f_{+}\in\mathbf{H}_{+}\,\left| \,\exists f_{-}\in
T^{\ast}\left( \overline{P_{+}\mathbf{K}_{0}}\right) \mathop{{\rm s.t.}%
}\left(
\begin{matrix}
f_{+}\\
f_{-}%
\end{matrix}
\right) \in\mathbf{K}_{0}\right. \right\} \,; \label{MDomain}%
\end{equation}
and, moreover, the product operator $L:=TM$ is dissipative on this domain,
that is
\begin{equation}%
%TCIMACRO{\TeXButton{ip}{\ip{Lf_{+}}{f_{+}}}}%
%BeginExpansion
\ip{Lf_{+}}{f_{+}}%
%EndExpansion
_{+}+%
%TCIMACRO{\TeXButton{ip}{\ip{f_{+}}{Lf_{+}}}}%
%BeginExpansion
\ip{f_{+}}{Lf_{+}}%
%EndExpansion
_{+}\geq0 \label{LDissipative}%
\end{equation}
holds for all $f_{+}\in\mathbf{D}$.
\end{lemma}
\begin{proof}
The details will only be sketched here, but the reader is referred to
\cite{Sto51} and \cite{Jor80} for definitions and background literature. An
important argument in the proof is the verification that, if a column vector
of the form $\left(
\begin{matrix}
0\\
f_{-}%
\end{matrix}
\right) $ is in $\mathbf{G}$, then $f_{-}$ must necessarily be zero in
$\mathbf{H}_{-}$. But using positivity, we have
\begin{equation}
\left|
%TCIMACRO{\TeXButton{ip}{\ip{u}{Jv}}}%
%BeginExpansion
\ip{u}{Jv}%
%EndExpansion
\right| ^{2}\leq%
%TCIMACRO{\TeXButton{ip}{\ip{u}{Ju}}}%
%BeginExpansion
\ip{u}{Ju}%
%EndExpansion%
%TCIMACRO{\TeXButton{ip}{\ip{v}{Jv}}}%
%BeginExpansion
\ip{v}{Jv}%
%EndExpansion
\,,\quad\forall u,v\in\mathbf{K}_{0}\,. \label{uJvBound}%
\end{equation}
Using this on the vectors $u=\left(
\begin{matrix}
0\\
f_{-}%
\end{matrix}
\right) $ and $v=\left(
\begin{matrix}
k_{+}\\
k_{-}%
\end{matrix}
\right) \in\mathbf{K}_{0}$, we get
\[%
%TCIMACRO{\TeXButton{ip}{\ip{\left(
%\begin{matrix}
%0 \\ f_{-}
%\end{matrix}
%\right) }{\left(
%\begin{matrix}
%Tk_{-} \\ T^{*}k_{+}
%\end{matrix}
%\right) }}}%
%BeginExpansion
\ip{\left(
\begin{matrix}
0 \\ f_{-}
\end{matrix}
\right) }{\left(
\begin{matrix}
Tk_{-} \\ T^{*}k_{+}
\end{matrix}
\right) }%
%EndExpansion
=%
%TCIMACRO{\TeXButton{ip}{\ip{f_{-}}{T^{*}k_{+}}}}%
%BeginExpansion
\ip{f_{-}}{T^{*}k_{+}}%
%EndExpansion
=0\,,\quad\forall k_{+}=P_{+}v\,.
\]
But, since $f_{-}$ is also in $T^{\ast}\left( \overline{P_{+}\mathbf{K}_{0}%
}\right) $, we conclude that $f_{-}=0$, proving that $\mathbf{G}$ is the
graph of an operator $M$ as specified. The dissipativity of the operator
$L=TM$ is just a restatement of \textup{(PR3)}.
\end{proof}
The above result involves only the operator-theoretic information implied by
the data in Definition \ref{Hyperbolic}, and, in the next lemma, we introduce
the representations:
\begin{lemma}
\label{Normal}Let the representations $\pi_{\pm}$ and the intertwiner $T$ be
given as specified before. Let $H=G^{\tau}$; and suppose we have a cone
$C\subset\frak{q}$ as specified in \textup{(PR1), (PR2}$^{\prime}$\textup{)}
and \textup{(PR3}$^{\prime}$\textup{).} Assume further that\begin{list}%
{}{\setlength{\leftmargin}{\customleftmargin}
\setlength{\itemsep}{0.5\customskipamount}
\setlength{\parsep}{0.5\customskipamount}
\setlength{\topsep}{\customskipamount}}
\item[\hss\llap{\rm PR4)}] $\mathbf{D}$ is dense in $\mathbf{H}_{+}$;
\item[\hss\llap{\rm PR5)}] The commutant of $\pi(H)$ is abelian.
\end{list}
Then $L=TM$ is normal.
\end{lemma}
\begin{proof}
Since $T$ is a unitary isomorphism $\mathbf{H}_{-}\rightarrow\mathbf{H}_{+}$
we may make an identification and reduce the proof to the case where
$\mathbf{H}_{+}=\mathbf{H}_{-}$ and $T$ is the identity operator. We then
have
\[
\pi_{-}=T^{-1}\left( \pi_{+}\circ\tau\right) T=\pi_{+}\circ\tau\,;
\]
and if $h\in H$, then
\[
\pi_{-}(h)=\pi_{+}\left( \tau(h)\right) =\pi_{+}(h)\,;
\]
while, if $\tau(g)=g^{-1}$, then
\[
\pi_{-}(g)=\pi_{+}\left( \tau(g)\right) =\pi_{+}\left( g^{-1}\right) \,.
\]
Using only the $H$ part from (PR2${}^{\prime}$), we conclude that
$\mathbf{K}_{0}$ is invariant under $\pi_{+}\oplus\pi_{+}(H)$. If the
projection $P_{\mathbf{K}_{0}}$ of $\mathbf{H}_{+}\oplus\mathbf{H}_{+}$ onto
$\mathbf{K}_{0}$ is written as an operator matrix $\left(
\begin{matrix}
P_{11} & P_{12}\\
P_{21} & P_{22}%
\end{matrix}
\right) $ with entries representing operators in $\mathbf{H}_{+}$, and
satisfying
\begin{align*}
P_{11}^{\ast} & =P_{11}\,,\\
P_{22}^{\ast} & =P_{22}\,,\\
P_{12}^{\ast} & =P_{21}\,,\\
P_{ij} & =P_{i1}P_{1j}+P_{i2}P_{2j}\,,
\end{align*}
then it follows that
\begin{equation}
P_{ij}\pi_{+}(h)=\pi_{+}(h)P_{ij}\quad\forall i,j=1,2,\;\forall h\in H\,,
\label{PijPiPlus}%
\end{equation}
which puts each of the four operators $P_{ij}$ in the commutant $\pi
_{+}(H)^{\prime}$ from (PR5). Using (PR4), we then conclude that $L$ is a
dissipative operator with $\mathbf{D}$ as dense domain, and that
$\mathbf{K}_{0}$ is the graph of this operator. Using (PR5), and a theorem of
Stone \cite{Sto51}, we finally conclude that $L$ is a normal operator, that is
it can be represented as a multiplication operator with dense domain
$\mathbf{D}$ in $\mathbf{H}_{+}$.
\end{proof}
We shall consider two cases below (the Heisenberg group, and the
$(ax+b)$-group) when conditions (PR4)--(PR5) can be verified from the context
of the representations. Suppose $G$ has two abelian subgroups $H$, $N$, and
the second $N$ also a normal subgroup, such that $G=HN$ is a product
representation in the sense of Mackey \cite{Mac}. Define $\tau\in
\operatorname{Aut}_{2}(G)$ by setting
\begin{equation}
\tau(h)=h\,,\quad\forall h\in H\,,\text{ and }\tau(n)=n^{-1}\,,\quad\forall
n\in N\,. \label{TauDef}%
\end{equation}
The Heisenberg group is a copy of $\mathbb{R}^{3}$ represented as matrices
$\vphantom{\left( \begin{matrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 &
1\end{matrix}\right) _X}\left(
\begin{matrix}
1 & a & c\\
0 & 1 & b\\
0 & 0 & 1
\end{matrix}
\right) $, or equivalently vectors $(a,b,c)\in\mathbb{R}^{3}$. Setting
$H=\left\{ (a,0,0)\mid a\in\mathbb{R}\right\} $ and
\begin{equation}
N=\left\{ (0,b,c)\mid b,c\in\mathbb{R}\right\} \,, \label{NHeisenberg}%
\end{equation}
we arrive at one example.
The $(ax+b)$-group is a copy of $\mathbb{R}^{2}$ represented as matrices
$\left(
\begin{matrix}
a & b\\
0 & 1
\end{matrix}
\right) $, $a=e^{s}$, $b\in\mathbb{R}$, $s\in\mathbb{R}$. Here we may take
$H=\left\{ \left. \left(
\begin{matrix}
a & 0\\
0 & 1
\end{matrix}
\right) \,\right| \,a\in\mathbb{R}_{+}\right\} $ and
\begin{equation}
N=\left\{ \left. \left(
\begin{matrix}
1 & b\\
0 & 1
\end{matrix}
\right) \,\right| \,b\in\mathbb{R}\right\} \,, \label{Naxb}%
\end{equation}
and we have a second example of the Mackey factorization. Generally, if $G=HN$
is specified as described, we use the representations of $G$ which are induced
from one-dimensional representations of $N$. If $G$ is the Heisenberg group,
or the $(ax+b)$-group, we get all the infinite-dimensional irreducible
representations of $G$ by this induction (up to unitary equivalence, of
course). For the Heisenberg group, the representations are indexed by
$\hslash\in\mathbb{R}\setminus\{0\}$, $\hslash$ denoting Planck's constant.
The representation $\pi_{\hslash}$ may be given in $\mathbf{H}=\mathbf{L}%
^{2}(\mathbb{R})$ by
\begin{equation}
\pi_{\hslash}(a,b,c)f(x)=e^{i\hslash(c+bx)}f(x+a)\,,\quad\forall
f\in\mathbf{L}^{2}(\mathbb{R}),\;(a,b,c)\in G\,. \label{PiHBar}%
\end{equation}
The Stone-von Neumann uniqueness theorem asserts that every unitary
representation $\pi$ of $G$ satisfying
\[
\pi(0,0,c)=e^{i\hslash c}I_{\mathbf{H}(\pi)}\quad(\hslash\neq0)
\]
is unitarily equivalent to a direct sum of copies of the representation
$\pi_{\hslash}$ in (\ref{PiHBar}).
The $(ax+b)$-group (in the form $\left\{ \left. \left(
\begin{matrix}
e^{s} & b\\
0 & 1
\end{matrix}
\right) \,\right| \,s,b\in\mathbb{R}\right\} $) has only two inequivalent
unitary irreducible representations, and they may also be given in the same
Hilbert space $\mathbf{L}^{2}(\mathbb{R})$ by
\begin{equation}
\pi_{\pm}\left(
\begin{matrix}
e^{s} & b\\
0 & 1
\end{matrix}
\right) f(x)=e^{\pm ie^{x}b}f(x+s)\,,\quad\forall f\in\mathbf{L}%
^{2}(\mathbb{R})\,. \label{PiPlusMinusaxb}%
\end{equation}
There are many references for these standard facts from representation theory;
see, e.g., \cite{Jor88}.
\begin{lemma}
\label{Abel}Let the group $G$ have the form $G=HN$ for locally compact abelian
subgroups $H,N$, with $N$ normal, and $H\cap N=\{e\}$. Let $\chi$ be a
one-dimensional unitary representation of $N$, and let $\pi
=\operatorname*{ind}{}_{N}^{G}(\chi)$ be the corresponding induced
representation. Then the commutant of $\left\{ \pi(H)\mid h\in H\right\} $
is an abelian von Neumann algebra: in other words, condition \textup{(PR5)} in
Lemma \textup{\ref{Normal}} is satisfied.
\end{lemma}
\begin{proof}
See, e.g., \cite{Jor88}.
\end{proof}
In the rest of the present section, we will treat the case of the
\emph{Heisenberg group,} and the $(ax+b)$\emph{-group} will be the subject of
the next section.
For both groups we get pairs of unitary representations $\pi_{\pm}$ arising
from some $\tau\in\operatorname{Aut}_{2}(G)$ and described as in
(\ref{JPiRelation}) above. But when the two representations $\pi_{+}$ and
$\pi_{-}=\pi_{+}\circ\tau$ are irreducible and disjoint, we will show that
there are no spaces $\mathbf{K}_{0}$ satisfying (PR1), (PR2$^{\prime}$), and
(PR3) such that $\mathbf{K}=\left( \mathbf{K}_{0}/\mathbf{N}\right)
\sptilde$ is nontrivial. Here (PR2) is replaced by \begin{list}{}%
{\setlength{\leftmargin}{\customleftmargin}
\setlength{\itemsep}{0.5\customskipamount}
\setlength{\parsep}{0.5\customskipamount}
\setlength{\topsep}{\customskipamount}}
\item[\hss\llap{\rm PR2$^{\prime}$)}] $C$ is a nontrivial cone in $\frak
{q} $.
\end{list}
Since for both groups, and common to all the representations, we noted that
the Hilbert space $\mathbf{H}_{+}$ may be taken as $\mathbf{L}^{2}%
(\mathbb{R})$, we can have $J$ from (\ref{JMatrixBis}) represented in the form
$J=\left(
\begin{matrix}
0 & I\\
I & 0
\end{matrix}
\right) $. Then the $J$-inner product on $\mathbf{H}_{+}\oplus\mathbf{H}%
_{-}=\mathbf{L}^{2}(\mathbb{R})\oplus\mathbf{L}^{2}(\mathbb{R})\simeq
\mathbf{L}^{2}(\mathbb{R},\mathbb{C}^{2})$ may be brought into the form
\begin{equation}%
%TCIMACRO{\TeXButton{ip}{\ip{\left( \begin{matrix} f_{+} \\ f_{-}%
%\end{matrix}\right) }{\left( \begin{matrix} f_{+} \\ f_{-} \end{matrix}%
%\right) }}}%
%BeginExpansion
\ip{\left( \begin{matrix} f_{+} \\ f_{-}\end{matrix}\right) }{\left
( \begin{matrix} f_{+} \\ f_{-} \end{matrix}\right) }%
%EndExpansion
_{J}=2\operatorname{Re}%
%TCIMACRO{\TeXButton{ip}{\ip{f_{+}}{f_{-}}}}%
%BeginExpansion
\ip{f_{+}}{f_{-}}%
%EndExpansion
=2\int_{-\infty}^{\infty}\operatorname{Re}\left( \overline{f_{+}(x)}%
f_{-}(x)\right) \,dx\,. \label{JInnerProduct}%
\end{equation}
For the two examples, we introduce
\[
N_{+}=\left\{ (0,b,c)\mid b,c\in\mathbb{R}_{+}\right\}
\]
where $N$ is defined in (\ref{NHeisenberg}), but $N_{+}$ is not $H$-invariant.
Alternatively, set
\[
N_{+}=\left\{ \left. \left(
\begin{matrix}
1 & b\\
0 & 1
\end{matrix}
\right) \,\right| \,b\in\mathbb{R}_{+}\right\}
\]
for the alternative case where $N$ is defined from (\ref{Naxb}), and note that
this $N_{+}$ is $H$-invariant. In fact there are the following $4$ invariant
cones in $\frak{q}$:
\begin{align*}
C_{1}^{+} & =\left\{ (0,0,t)\mid t\geq0\right\} \\
C_{1}^{-} & =\left\{ (0,0,t)\mid t\leq0\right\} \\
C_{2}^{+} & =\left\{ (0,x,y)\mid x\in\mathbb{R},\;y\geq0\right\} \\
C_{2}^{-} & =\left\{ (0,x,y)\mid x\in\mathbb{R},\;y\leq0\right\}
\end{align*}
Let $\pi$ denote one of the representations of $G=HN$ from the discussion
above (see formulas (\ref{PiHBar}) and (\ref{PiPlusMinusaxb})) and let
$\mathcal{D}$ be a closed subspace of $\mathbf{H}=\mathbf{L}^{2}(\mathbb{R})$
which is assumed invariant under $\pi(HN_{+})$. Then it follows that the two
spaces
\begin{align}
\mathcal{D}_{\infty} & :=\bigvee\left\{ \pi(n)\mathcal{D}\mid n\in
N\right\} \label{DInfinity}\\
\mathcal{D}_{-\infty} & :=\bigwedge\left\{ \pi(n)\mathcal{D}\mid n\in
N\right\} \label{DMinusInfinity}%
\end{align}
are invariant under $\pi(G)$, where the symbols $\bigvee$ and $\bigwedge$ are
used for the usual lattice operations on closed subspaces in $\mathbf{H}$. We
leave the easy verification to the reader, but the issue is resumed in the
next section. If $P_{\infty}$, resp., $P_{-\infty}$, denotes the projection of
$\mathbf{H}$ onto $\mathcal{D}_{\infty}$, resp., $\mathcal{D}_{-\infty}$, then
we assert that both projections $P_{\pm\infty}$ are in the commutant of
$\pi(G)$. So, if $\pi$ is irreducible, then each $P_{\infty}$, or $P_{-\infty
}$, must be $0$ or $I$. Since $\mathcal{D}_{-\infty}\subset\mathcal{D}%
\subset\mathcal{D}_{\infty}$ from the assumption, it follows that $P_{\infty
}=I$ if $\mathcal{D}\neq\{0\}$.
\begin{lemma}
\label{Heisenberg}Let $G$ be the Heisenberg group, and let the notation be as
described above. Let $\pi_{+}$ be one of the representations $\pi_{\hslash}$
and let $\pi_{-}$ be the corresponding $\pi_{-\hslash}$ representation. Let
$0\neq\mathbf{K}_{0}\subset\mathbf{L}^{2}(\mathbb{R})\oplus\mathbf{L}%
^{2}(\mathbb{R})$ be a closed subspace which is invariant under $\left(
\pi_{+}\oplus\pi_{-}\right) \left( HN_{+}\right) $. Then it follows that
there are only the following possibilities for $\overline{P_{+}\mathbf{K}_{0}%
}$: $\{0\}$, $\mathbf{L}^{2}(\mathbb{R})$, or $A\mathcal{H}_{+}$ where
$\mathcal{H}_{+}$ denotes the Hardy space in $\mathbf{L}^{2}(\mathbb{R})$
consisting of functions $f$ with Fourier transform $\hat{f}$ supported in the
half-line $\left[ 0,\infty\right) $, and where $A\in\mathbf{L}^{\infty
}(\mathbb{R})$ is such that $\left| A(x)\right| =1\mathop{{\rm a.e.}}%
x\in\mathbb{R}$. For the space $\overline{P_{-}\mathbf{K}_{0}}$, there are the
possibilities: $\{0\}$, $\mathbf{L}^{2}(\mathbb{R})$, and $A\mathcal{H}_{-}$,
where $A$ is a \textup{(}possibly different\/\textup{)} unitary $\mathbf{L}%
^{\infty}$-function, and $\mathcal{H}_{-}$ denotes the negative Hardy space.
\end{lemma}
\begin{proof}
Immediate from the discussion, and the Beurling-Lax theorem classifying the
closed subspaces in $\mathbf{L}^{2}(\mathbb{R})$ which are invariant under the
multiplication operators, $f(x)\mapsto e^{iax}f(x)$, $a\in\mathbb{R}_{+}$. We
refer to \cite{LaPh}, or \cite{Hel64}, for a review of the Beurling-Lax theorem.
\end{proof}
\begin{corollary}
\label{Positive}Let $\pi_{\pm}$ be the representations of the Heisenberg
group, and suppose that the subspace $\mathbf{K}_{0}$ from Lemma
\textup{\ref{Heisenberg}} is chosen such that \textup{(PR1)--(PR3)} in
Definition \textup{\ref{Hyperbolic}} hold. Then $\left( \mathbf{K}%
_{0}/\mathbf{N}\right) \sptilde=\{0\}$.
\end{corollary}
\begin{proof}
Suppose there are unitary functions $A_{\pm}\in\mathbf{L}^{\infty}%
(\mathbb{R})$ such that $\overline{P_{\pm}\mathbf{K}_{0}}=A_{\pm}%
\mathcal{H}_{\pm}$. Then this would violate the Schwarz-estimate
(\ref{uJvBound}), and therefore condition (PR3). Using irreducibility of
$\pi_{+}=\pi_{\hslash}$ and of $\pi_{-}=\pi_{+}\circ\tau=\pi_{-\hslash}$, we
may reduce to considering the cases when one of the spaces $\overline{P_{\pm
}\mathbf{K}_{0}}$ is $\mathbf{L}^{2}(\mathbb{R})$. By Lemma \ref{Normal}, we
are then back to the case when $\mathbf{K}_{0}$ or $\mathbf{K}_{0}^{-1}$ is
the graph of a densely defined normal and dissipative operator $L$, or
$L^{-1}$, respectively. We will consider $L$ only. The other case goes the
same way. Since
\begin{equation}
\left( \pi_{+}\oplus\pi_{-}\right) \left( 0,b,0\right) \left( f_{+}\oplus
f_{-}\right) (x)=e^{i\hslash bx}f_{+}(x)\oplus e^{-i\hslash bx}f_{-}(x)
\label{Pibf}%
\end{equation}
it follows that $L$ must anti-commute with the multiplication operator $ix$ on
$\mathbf{L}^{2}(\mathbb{R})$. For deriving this, we used assumption (PR3) at
this point. We also showed in Lemma \ref{Normal} that $L$ must act as a
multiplication operator on the Fourier-transform side. But the
anti-commutativity is inconsistent with a known structure theorem in
\cite{Ped90}, specifically Corollary 3.3 in that paper. Hence there are
unitary functions $A_{\pm}$ in $\mathbf{L}^{\infty}(\mathbb{R})$ such that
$\overline{P_{\pm}\mathbf{K}_{0}}=A_{\pm}\mathcal{H}_{\pm}$. But this
possibility is inconsistent with positivity in the form $\operatorname{Re}%
%TCIMACRO{\TeXButton{ip}{\ip{f_{+}}{f_{-}}}}%
%BeginExpansion
\ip{f_{+}}{f_{-}}%
%EndExpansion
\geq0\,,\quad\forall(f_{+},f_{-})\in\mathbf{K}_{0}$ (see (\ref{JInnerProduct}%
)) if $\left( \mathbf{K}_{0}/\mathbf{N}\right) \sptilde\neq\{0\}$. To see
this, note that $\mathbf{K}_{0}$ is invariant under the unitary operators
(\ref{Pibf}) for $b\in\mathbb{R}_{+}$. The argument from Lemma
\ref{Heisenberg}, now applied to $\pi_{+}\oplus\pi_{-}$, shows that the two
subspaces
\[
\mathbf{K}_{0}^{\infty}:=\bigvee_{b\in\mathbb{R}}\left( \pi_{+}\oplus\pi
_{-}\right) \left( 0,b,0\right) \mathbf{K}_{0}%
\]
and
\[
\mathbf{K}_{0}^{-\infty}:=\bigwedge_{b\in\mathbb{R}}\left( \pi_{+}\oplus
\pi_{-}\right) \left( 0,b,0\right) \mathbf{K}_{0}%
\]
are both invariant under the whole group $\left( \pi_{+}\oplus\pi_{-}\right)
(G)$. But the commutant of this is $2$-dimensional: the only projections in
the commutant are represented as one of the following,
\[
\left(
\begin{matrix}
0 & 0\\
0 & 0
\end{matrix}
\right) ,\;\left(
\begin{matrix}
I & 0\\
0 & 0
\end{matrix}
\right) ,\;\left(
\begin{matrix}
0 & 0\\
0 & I
\end{matrix}
\right) ,\text{\quad or\quad}\left(
\begin{matrix}
I & 0\\
0 & I
\end{matrix}
\right) \,,
\]
relative to the decomposition $\mathbf{L}^{2}(\mathbb{R})\oplus\mathbf{L}%
^{2}(\mathbb{R})$ of $\pi_{+}\oplus\pi_{-}$. The above analysis of the
anti-commutator rules out the cases $\left(
\begin{matrix}
I & 0\\
0 & 0
\end{matrix}
\right) $ and $\left(
\begin{matrix}
0 & 0\\
0 & I
\end{matrix}
\right) $, and if $\left( \mathbf{K}_{0}/\mathbf{N}\right) \sptilde
\neq\{0\}$, we are left with the cases $\mathbf{K}_{0}^{\infty}=\{0\}$ and
$\mathbf{K}_{0}^{\infty}=\mathbf{L}^{2}(\mathbb{R})\oplus\mathbf{L}%
^{2}(\mathbb{R})$. Recall, generally $\mathbf{K}_{0}^{-\infty}\subset
\mathbf{K}_{0}\subset\mathbf{K}_{0}^{\infty}$, as a starting point for the
analysis. A final application of the Beurling-Lax theorem (as in \cite{LaPh};
see also \cite{DyMc70}) to (\ref{Pibf}) then shows that there must be a pair
of unitary functions $A_{\pm}$ in $\mathbf{L}^{\infty}(\mathbb{R})$ such that
\begin{equation}
\mathbf{K}_{0}=A_{+}\mathcal{H}_{+}\oplus A_{-}\mathcal{H}_{-} \label{KAAHH}%
\end{equation}
where $\mathcal{H}_{\pm}$ are the two Hardy spaces given by having $\hat{f}$
supported in $\left[ 0,\infty\right) $, respectively, $\left(
-\infty,0\right] $. The argument is now completed by noting that
(\ref{KAAHH}) is inconsistent with the positivity of $\mathbf{K}_{0}$ in
(\ref{vJvPositivity}); that is, we clearly do not have $%
%TCIMACRO{\TeXButton{ip}{\ip{\left(
%\begin{matrix}
%A_{+}h_{+} \\ A_{-}h_{-}
%\end{matrix}
%\right) }{J\left(
%\begin{matrix}
%A_{+}h_{+} \\ A_{-}h_{-}
%\end{matrix}
%\right) }}}%
%BeginExpansion
\ip{\left(
\begin{matrix}
A_{+}h_{+} \\ A_{-}h_{-}
\end{matrix}
\right) }{J\left(
\begin{matrix}
A_{+}h_{+} \\ A_{-}h_{-}
\end{matrix}
\right) }%
%EndExpansion
=2\operatorname{Re}%
%TCIMACRO{\TeXButton{ip}{\ip{A_{+}h_{+}}{A_{-}h_{-}}}}%
%BeginExpansion
\ip{A_{+}h_{+}}{A_{-}h_{-}}%
%EndExpansion
$ semidefinite, for all $h_{+}\in\mathcal{H}_{+}$ and all $h_{-}\in
\mathcal{H}_{-}$. This concludes the proof of the Corollary.
\end{proof}
\begin{remark}
\label{UncorrelatedClosedSubspace}At the end of the above proof of Corollary
\ref{Positive}, we arrived at the conclusion (\ref{KAAHH}) for the subspace
$\mathbf{K}_{0}$ under consideration. Motivated by this, we define a closed
subspace $\mathbf{K}_{0}$ in a direct sum Hilbert space $\mathbf{H}_{+}%
\oplus\mathbf{H}_{-}$ to be \emph{uncorrelated} if there are closed subspaces
$\mathbf{D}_{\pm}\subset\mathbf{H}_{\pm}$ in the respective summands such
that
\begin{equation}
\mathbf{K}_{0}=\mathbf{D}_{+}\oplus\mathbf{D}_{-} \label{KDD}%
\end{equation}
Contained in the corollary is then the assertion that every
semigroup-invariant $\mathbf{K}_{0}$ in $\mathbf{L}^{2}(\mathbb{R}%
)\oplus\mathbf{L}^{2}(\mathbb{R})$ is uncorrelated, where the semigroup here
is the subsemigroup $S$ in the Heisenberg group $G$ given by
\begin{equation}
S=\left\{ (a,b,c)\mid b\in\mathbb{R}_{+},\;a,c\in\mathbb{R}\right\} \,,
\label{SinG}%
\end{equation}
and the parameterization is the one from (\ref{NHeisenberg}). We also had the
representation $\pi$ in the form $\pi_{+}\oplus\pi_{-}$ where the respective
summand representations $\pi_{\pm}$ of $G$ are given by (\ref{PiHBar})
relative to a pair $(\hslash,-\hslash)$, $\hslash\in\mathbb{R}\setminus\{0\}$
some fixed value of Planck's constant. In particular, it is assumed in
Corollary \ref{Positive} that each representation $\pi_{\pm}$ is
\emph{irreducible.} But for proving that some given semigroup-invariant
$\mathbf{K}_{0}$ must be uncorrelated, this last condition can be relaxed
considerably; and this turns out to be relevant for applications to
Lax-Phillips scattering theory for the wave equation with obstacle scattering
\cite{LaPh}. In that context, the spaces $\mathbf{D}_{\pm}$ will be outgoing,
respectively, incoming subspaces; and the wave equation translates backwards,
respectively forwards, according to the unitary one-parameter groups $\pi
_{-}(0,b,0)$, respectively, $\pi_{+}(0,b,0)$, with $b\in\mathbb{R}$
representing the time-variable $t$ for the unitary time-evolution
one-parameter group which solves the wave equation under consideration. The
unitary-equivalence identity (\ref{JPiRelation}) stated before Lemma
\ref{Operator} then implies equivalence of the wave-dynamics before, and
after, the obstacle scattering.
\end{remark}
Before stating our next result, we call attention to the $(2n+1)$-dimensional
Heisenberg group $G_{n}$ in the form $\mathbb{R}^{2n+1}=\mathbb{R}^{n}%
\times\mathbb{R}^{n}\times\mathbb{R}$, in parameter form: $a,b\in
\mathbb{R}^{n}$, $c\in\mathbb{R}$, and product rule
\[
(a,b,c)\cdot(a^{\prime},b^{\prime},c^{\prime})=(a+a^{\prime},b+b^{\prime
},c+c^{\prime}+a\cdot b^{\prime})
\]
where $a+a^{\prime}=(a_{1}+a_{1}^{\prime},\dots,a_{n}+a_{n}^{\prime})$ and
$a\cdot b^{\prime}=\sum_{j=1}^{n}a_{j}b_{j}^{\prime}$. For every (fixed)
$b\in\mathbb{R}^{n}\setminus\{0\}$, we then have a subsemigroup
\begin{equation}
S(b)=\left\{ (a,\beta b,c)\mid\beta\in\mathbb{R}_{+},\;a\in\mathbb{R}%
^{n},\;c\in\mathbb{R}\right\} \,; \label{SubsemigroupS}%
\end{equation}
and we show in the next result that it is enough to have invariance under such
a semigroup in $G_{n}$, just for a single direction, defined from some fixed
$b\in\mathbb{R}^{n}\setminus\{0\}$.
\begin{theorem}
\label{KNoughtUncorrelated}Let $\pi_{\pm}$ be unitary representations of the
Heisenberg group $G$ on respective Hilbert spaces $\mathbf{H}_{\pm}$, and let
$T\colon\mathbf{H}_{-}\rightarrow\mathbf{H}_{+}$ be a unitary isomorphism
which intertwines $\pi_{-}$ and $\pi_{+}\circ\tau$ as in
\textup{(\ref{TPiMinus})} where
\begin{equation}
\tau(a,b,c)=(a,-b,-c)\,,\quad\forall(a,b,c)\in G\simeq\mathbb{R}^{2n+1}\,.
\label{TauInHeisenberg}%
\end{equation}
Suppose there is $\hslash\in\mathbb{R}\setminus\{0\}$ such that
\begin{equation}
\pi_{+}(0,0,c)=e^{i\hslash c}I_{\mathbf{H}_{+}}\,. \label{PiPlusInHeisenberg}%
\end{equation}
If $\mathbf{K}_{0}\subset\mathbf{H}_{+}\oplus\mathbf{H}_{-}$ is a closed
subspace which is invariant under
\[
\left\{ (\pi_{+}\oplus\pi_{-})(a,\beta b,c)\mid a\in\mathbb{R}^{n},\;\beta
\in\mathbb{R}_{+},\;c\in\mathbb{R}\right\}
\]
from \textup{(\ref{SubsemigroupS}),} $b\in\mathbb{R}^{n}\setminus\{0\}$, then
we conclude that $\mathbf{K}_{0}$ must automatically be uncorrelated.
\end{theorem}
\begin{proof}
The group-law in the Heisenberg group yields the following commutator rule:
\[
(a,0,0)(0,b,0)(-a,0,0)=(0,b,a\cdot b)
\]
for all $a,b\in\mathbb{R}^{n}$. We now apply $\pi=\pi_{+}\oplus\pi_{-}$ to
this, and evaluate on a general vector $f_{+}\oplus f_{-}\in\mathbf{K}%
_{0}\subset\mathbf{H}_{+}\oplus\mathbf{H}_{-}$: abbreviating $\pi(a)$ for
$\pi(a,0,0)$, and $\pi(b)$ for $\pi(0,b,0)$, we get
\[
\pi(a)\pi(\beta b)\pi(-a)(f_{+}\oplus f_{-})=e^{i\hslash\beta a\cdot b}\pi
_{+}(\beta b)f_{+}\oplus e^{-i\hslash\beta a\cdot b}\pi_{-}(\beta b)f_{-}%
\in\mathbf{K}_{0}%
\]
valid for all $a\in\mathbb{R}^{n}$, $\beta\in\mathbb{R}_{+}$. Note, in
(\ref{PiPlusInHeisenberg}), we are assuming that $\pi_{+}$ takes on some
specific value $e^{i\hslash c}$ on the one-dimensional center. Since $\pi_{-}$
is unitarily equivalent to $\pi_{+}\circ\tau$ by assumption (see
(\ref{PiPlusInHeisenberg})), we conclude that
\[
\pi_{-}(0,0,c)=e^{-i\hslash c}I_{\mathbf{H}_{-}}\,,\quad\forall c\in
\mathbb{R}\,.
\]
The argument really only needs that the two representations $\pi_{\pm}$ define
\emph{different} characters on the center. (Clearly $\hslash\neq-\hslash$
since $\hslash\neq0$.) Multiplying through first with $e^{-i\hslash\beta
a\cdot b}$, and integrating the resulting term
\[
\pi_{+}(\beta b)f_{+}\oplus e^{-i2\hslash\beta a\cdot b}\pi_{-}(\beta
b)f_{-}\in\mathbf{K}_{0}%
\]
in the $a$-variable, we get $\pi_{+}(\beta b)f_{+}\oplus0\in\mathbf{K}_{0}$.
The last conclusion is just using that $\mathbf{K}_{0}$ is a closed subspace.
But we can do the same with the term
\[
e^{i2\hslash\beta a\cdot b}\pi_{+}(\beta b)f_{+}\oplus\pi_{-}(\beta b)f_{-}%
\in\mathbf{K}_{0}\,,
\]
and we arrive at $0\oplus\pi_{-}(\beta b)f_{-}\in\mathbf{K}_{0}$. Finally
letting $\beta\rightarrow0_{+}$, and using strong continuity, we get
$f_{+}\oplus0$ and $0\oplus f_{-}$ both in $\mathbf{K}_{0}$. Recalling that
$f_{\pm}$ are general vectors in $P_{\pm}\mathbf{K}_{0}$, we conclude that
$P_{+}\mathbf{K}_{0}\oplus P_{-}\mathbf{K}_{0}\subset\mathbf{K}_{0}$, and
therefore $\overline{P_{+}\mathbf{K}_{0}}\oplus\overline{P_{-}\mathbf{K}_{0}%
}\subset\mathbf{K}_{0}$. Since the converse inclusion is obvious, we arrive at
(\ref{KDD}) with $\mathbf{D}_{\pm}=\overline{P_{\pm}\mathbf{K}_{0}}$.
\end{proof}
The next result shows among other things that there are representations $\pi$
of the Heisenberg group $G_{n}$ (for each $n$) such that the reflected
representation $\pi^{c}$ of $G_{n}^{c}\simeq G_{n}$ (see Theorem
\ref{PiCIrreducible}) acts on a nonzero Hilbert space $\mathbf{H}^{c}=\left(
\mathbf{K}_{0}/\mathbf{N}\right) \sptilde$. However, because of Lemma
\ref{KernelPiC}, $\pi^{c}\left( G_{n}^{c}\right) $ will automatically be an
\emph{abelian} group of operators on $\mathbf{H}^{c}$. To see this, note that
the proof of Theorem \ref{MDomain} shows that $\pi^{c}$ must act as the
identity operator on $\mathbf{H}^{c}$ when restricted to the one-dimensional
center in $G_{n}^{c}\simeq G_{n}$.
It will be convenient for us to read off this result from a more general
context: we shall consider a general Lie group $G$, and we fix a
right-invariant Haar measure on $G$.
A distribution $F$ on the Lie group $G$ will be said to be positive definite
(PD) if
\begin{equation}
\int_{G}\int_{G}F(uv^{-1})\overline{f(u)}f(v)\,du\,dv\geq0 \tag*{(PD)}%
\end{equation}
for all $f\in C_{c}^{\infty}(G)$; and we say that $F$ is PD on some open
subset $\Omega\subset G$ if this holds for all $f\in C_{c}^{\infty}(\Omega)$.
The interpretation of the expression in (PD) is in the sense of distributions.
But presently measurable functions $F$ will serve as the prime examples.
We say that the distribution is reflection-positive (RP) on $\Omega$
((RP$_{\Omega}$) for emphasis) if, for some period-$2$ automorphism $\tau$ of
$G$, we have
\begin{equation}
F\circ\tau=F \label{FTau}%
\end{equation}
and
\begin{equation}
\int_{G}\int_{G}F(\tau(u)v^{-1})\overline{f(u)}f(v)\,du\,dv\geq0 \tag*{(RP$
_\Omega$)}%
\end{equation}
for all $f\in C_{c}^{\infty}(\Omega)$.
We say that $x\in G$ is (RP$_{\Omega}$)-contractive if (RP$_{\Omega}$) holds,
and for all $f\in C_{c}^{\infty}(\Omega)$%
\begin{align*}
0 & \leq\int_{G}\int_{G}F(\tau(u)v^{-1})\overline{f(ux)}f(vx)\,du\,dv\\
& \leq\int_{G}\int_{G}F(\tau(u)v^{-1})\overline{f(u)}f(v)\,du\,dv\,.
\end{align*}
Note that, since
\[
\int_{G}\int_{G}F(\tau(u)v^{-1})\overline{f(ux)}f(vx)\,du\,dv=\int_{G}\int
_{G}F(\tau(u)\tau(x)^{-1}xv^{-1})\overline{f(u)}f(v)\,du\,dv\,
\]
it follows that every $x\in H$ is contractive; in fact, isometric. If instead
we have $\tau(x)=x^{-1}$, then contractivity amounts to the estimate
\[
\int_{G}\int_{G}F(\tau(u)x^{2}v^{-1})\overline{f(u)}f(v)\,du\,dv\leq\int
_{G}\int_{G}F(\tau(u)v^{-1})\overline{f(u)}f(v)\,du\,dv\,\,
\]
for all $f\in C_{c}^{\infty}(\Omega)$. Using the Basic Lemma one can also show
that $x$ acts by contractions.
The following result is useful, but an easy consequence of the definitions and
standard techniques for positive definite distributions; see for example
\cite{Jor88,Pra89}.
\begin{theorem}
\label{PiExtends}Let $F$ be a distribution on a Lie group $G$ with a
period-$2$ automorphism $\tau$, and suppose $F$ is $\tau$-invariant,
\textup{(PD)} holds on $G$, and \textup{(RP}$_{\Omega}$\textup{)} holds on
some open, and semigroup-invariant, subset $\Omega$ in $G$. Then define
\[
(\pi(u)f)(v):=f(vu)\,,\quad\forall u,v\in G,\;\forall f\in C_{c}^{\infty
}(G)\,;
\]
and
\[
Jf:=f\circ\tau\,.
\]
Let $\mathbf{H}(F)$ be the Hilbert space obtained from the GNS construction,
applied to \textup{(PD),} with inner product on $C_{c}^{\infty}(G)$ given by
\[%
%TCIMACRO{\TeXButton{ip}{\ip{f}{g}}}%
%BeginExpansion
\ip{f}{g}%
%EndExpansion
:=\int_{G}\int_{G}F(uv^{-1})\overline{f(u)}g(v)\,du\,dv\,.
\]
Then $\pi$ extends to a unitary representation of $G$ on $\mathbf{H}(F)$, and
$J$ to a unitary operator, such that
\[
J\pi=(\pi\circ\tau)J\,.
\]
If \textup{(RP}$_{\Omega}$\textup{)} further holds, as described, then $\pi$
induces \textup{(}via Theorem \textup{\ref{PiCIrreducible})} a unitary
representation $\pi^{c}$ of $G^{c}$ acting on the new Hilbert space
$\mathbf{H}^{c}$ obtained from completing in the new inner product from
\textup{(RP}$_{\Omega}$\textup{),} and dividing out with the corresponding kernel.
\end{theorem}
The simplest example of a function $F$ on the Heisenberg group $G_{n}$
satisfying (PD), but not (RP$_{\Omega}$), for nontrivial $\Omega$'s, may be
obtained from the Green's function for the sub-Laplacian on $G_{n}$; see
\cite[p. 599]{Ste93} for details.
If complex coordinates are introduced in $G_{n}$, the formula for $F$ takes
the following simple form: let $z\in\mathbb{C}^{n}$, $c\in\mathbb{R}$, and
define
\[
F(z,c)=\frac{1}{\left( \left| z\right| ^{4}+c^{2}\right) ^{n}}\,.
\]
Then we adapt the product in $G_{n}$ to the modified definition as follows:
\[
(z,c)\cdot(z^{\prime},c^{\prime})=(z+z^{\prime},c+c^{\prime}+\left\langle
z,z^{\prime}\right\rangle )\quad\forall z,z^{\prime}\in\mathbb{C}%
^{n},\;\forall c,c^{\prime}\in\mathbb{R}\,,
\]
where $\left\langle z,z^{\prime}\right\rangle $ is the symplectic form
\[
\left\langle z,z^{\prime}\right\rangle :=2\operatorname{Im}(z\cdot\bar
{z}^{\prime})\,.
\]
The period-$2$ automorphism $\tau$ on $G_{n}$ we take as
\[
\tau(z,c)=(\bar{z},-c)
\]
with $\bar{z}$ denoting complex conjugation $(z_{1},\dots,z_{n})\mapsto
(\bar{z}_{1},\dots,\bar{z}_{n})$.
The simplest example where both (PD) and (RP$_{\Omega}$) hold on the
Heisenberg group $G_{n}$ is the following:
\begin{example}
\label{SubLaplacian}Let $\zeta=(\zeta_{1},\dots\zeta_{n})\in\mathbb{C}^{n}$,
$\xi_{j}=\operatorname{Re}\zeta_{j}$, $\eta_{j}=\operatorname{Im}\zeta_{j}$,
$j=1,\dots,n$. Define
\[
F(z,c)=\int_{\mathbb{R}^{2n}}\frac{e^{i\operatorname{Re}(z\cdot\bar{\zeta})}%
}{\prod_{j=1}^{n}(\left| \zeta_{j}\right| ^{2}+1)}\,d\xi_{1}\cdots\,d\xi
_{n}\,d\eta_{1}\cdots\,d\eta_{n}\,.
\]
Let $\Omega:=\{(z,c)\in G_{n}\mid z=(z_{j})_{j=1}^{n},\;\operatorname{Im}%
z_{j}>0\}$. Then (PD) holds on $G_{n}$, and (RP$_{\Omega}$) holds, referring
to this $\Omega$. Since the expression for $F(z,c)$ factors, the problem
reduces to the $(n=1)$ special case. There we have
\[
F(z,c)=\int_{\mathbb{R}^{2}}\frac{e^{i(x\xi+y\eta)}}{\xi^{2}+\eta^{2}+1}%
\,d\xi\,d\eta\,;
\]
and if $f\in C_{c}^{\infty}(\Omega)$ with $\Omega=\left\{ (z,c)\mid
y>0\right\} $, then
\begin{multline*}
\int_{G_{1}}\int_{G_{1}}F(\tau(u)v^{-1})\overline{f(u)}f(v)\,du\,dv\\
=\int_{\mathbb{R}^{8}}\frac{e^{i(x-x^{\prime})\xi}\,e^{-i(y+y^{\prime})\eta}%
}{\xi^{2}+\eta^{2}+1}\overline{f(x+iy,c)}f(x^{\prime}+iy^{\prime},c^{\prime
})\,d\xi\,d\eta\,dx\,dy\,dc\,dx^{\prime}\,dy^{\prime}\,dc^{\prime}\,.
\end{multline*}
Let $\tilde{f}$ denote the Fourier transform in the $x$-variable, keeping the
last two variables $(y,c)$ separate. Then the integral transforms as follows:
\[
\int_{\mathbb{R}^{5}}\frac{e^{-(y+y^{\prime})\sqrt{1+\xi^{2}}}}{\sqrt
{1+\xi^{2}}}\overline{\tilde{f}(\xi,y,c)}\tilde{f}(\xi,y^{\prime},c^{\prime
})\,d\xi\,dy\,dy^{\prime}\,dc\,dc^{\prime}\,.
\]
Introducing the Laplace transform in the middle variable $y$, we then get
(since $f$ is supported in $y>0$)
\[
\int_{0}^{\infty}e^{-y\sqrt{1+\xi^{2}}}\tilde{f}(\xi,y,c)\,dy=\tilde
{f}_{\lambda}(\xi,\sqrt{1+\xi^{2}},c)\,;
\]
the combined integral reduces further:
\[
\int_{\mathbb{R}}\,\left| \vphantom{\int\tilde{f}_\lambda(\xi,\sqrt{1+\xi
^2},c)\,dc}\smash{\int_{\mathbb{R}} \tilde{f}_\lambda(\xi,\sqrt{1+\xi
^2},c)\,dc}\right| ^{2}\frac{d\xi}{1+\xi^{2}}%
\]
which is clearly positive; and we have demonstrated that (RP$_{\Omega}$)
holds. It is immediate that $F$ is $\tau$-invariant (see (\ref{FTau})), and
also that it satisfies (PD) on $G_{n}$.
\end{example}
\section{\label{axb}The $(ax+b)$-Group Revisited}
\setcounter{equation}{0}
We showed that in general we get a unitary representation $\pi^{c}$ of the
group $G^{c}$ from an old one $\pi$ of $G$, provided $\pi$ satisfies the
assumptions of reflection positivity. The construction as we saw uses a
certain cone $C$ and a semigroup $H\exp C$, which are part of the axiom
system. What results is a new class of unitary representations $\pi^{c}$
satisfying a certain spectrum condition (semi-bounded spectrum).
But, for the simplest non-trivial group $G$, this semi-boundedness turns out
\textit{not} to be satisfied in the general case. Nonetheless, we still have a
reflection construction getting us from unitary representations $\pi$ of the
$(ax+b)$-group, such that $\pi\circ\tau\simeq\pi$ (unitary equivalence), to
associated unitary representations $\pi^{c}$ of the same group. The (up to
conjugation) unique non-trivial period-$2$ automorphism $\tau$ of $G$, where
$G$ is the $(ax+b)$-group, is given by
\[
\tau(a,b)=(a,-b)\,.
\]
Recall that the $G$ may be identified with the matrix-group
\[
\left\{ \left. \left(
\begin{matrix}
a & b\\
0 & 1
\end{matrix}
\right) \,\right| \,a>0,b\in\mathbb{R}\right\}
\]
and $(a,b)$ corresponds to the matrix $\left(
\begin{matrix}
a & b\\
0 & 1
\end{matrix}
\right) $. In this realization the Lie algebra of $G$ has the basis
\[
X=\left(
\begin{matrix}
1 & 0\\
0 & 0
\end{matrix}
\right) \quad\mbox{and}\quad Y=\left(
\begin{matrix}
0 & 1\\
0 & 0
\end{matrix}
\right) \,.
\]
We have $\exp(tX)=(e^{t},0)$ and $\exp(sY)=(1,s)$. Hence $\tau(X)=X$ and
$\tau(Y)=-Y$. Thus $\frak{h}=\mathbb{R}X$ and $\frak{q}=\mathbb{R}Y$. We
notice the commutator relation $[X,Y]=Y$. The possible $H$-invariant cones in
$\frak{q}$ are $\pm\{tY\mid t\geq0\}$. It is known from Mackey's theory that
$G$ has two inequivalent, unitary, irreducible, infinite-dimensional
representations $\pi_{\pm}$, and it is immediate that we have the unitary
equivalence (see details below):%
\begin{equation}
\pi_{+}\circ\tau\simeq\pi_{-}\,. \label{E:5.1}%
\end{equation}
Hence, if we set $\pi:=\pi_{+}\oplus\pi_{-}$, then $\pi\circ\tau\simeq\pi$, so
we have the setup for the general theory. We show that $\pi$ may be realized
on $\mathbf{L}^{2}(\mathbb{R})\oplus\mathbf{L}^{2}(\mathbb{R})\simeq
\mathbf{L}^{2}(\mathbb{R},\mathbb{C}^{2})$, and we find and classify the
invariant positive subspaces $\mathbf{K}_{0}\subset\mathbf{L}^{2}%
(\mathbb{R},\mathbb{C}^{2})$. To understand the interesting cases for the
$(ax+b)$-group $G$, we need to relax the invariance condition: We shall
\textit{not} assume invariance of $\mathbf{K}_{0}$ under the semigroup
$\{\pi(1,b)\mid b\geq0\}$, but only under the infinitesimal unbounded
generator $\pi(Y)$. With this, we still get the correspondence $\pi\mapsto
\pi_{\mathbf{K}_{0}}^{c}$ as described above.
We use the above notation. We know from Mackey's theory \cite{Mac} that there
are two inequivalent irreducible infinite-dimensional representations of $G$,
and we shall need them in the following alternative formulations: Let
$\mathcal{L}_{\pm}$ denote the respective Hilbert space $\mathbf{L}%
^{2}(\mathbb{R}_{\pm})$ with the multiplicative invariant measure $d\mu_{\pm
}=dp/|p|$, $p\in\mathbb{R}_{\pm}$. Then the formula%
\begin{equation}
f\longmapsto e^{ipb}f(pa) \label{E:5.4}%
\end{equation}
for functions $f$ on $\mathbb{R}$ restricts to two unitary irreducible
representations, denoted by $\pi_{\pm}$ of $G$ on the respective spaces
$\mathcal{L}_{\pm}$. Let $Q(f)(p):=f(-p)$ denote the canonical mapping from
$\mathcal{L}_{+}$ to $\mathcal{L}_{-}$, or equivalently from $\mathcal{L}_{-}$
to $\mathcal{L}_{+}$. Then we have for $g\in G$ (cf.\ (\ref{E:5.1})):%
\begin{equation}
Q\pi_{+}(g)=\pi_{-}(\tau(g))Q \label{E:5.5}%
\end{equation}
For the representation $\pi:=\pi_{+}\oplus\pi_{-}$ on $\mathbf{H}%
:=\mathcal{L}_{+}\oplus\mathcal{L}_{-}$ we therefore have%
\begin{equation}
J\pi(g)=\pi(\tau(g))J,\quad g\in G\,, \label{E:5.6}%
\end{equation}
where $J$ is the unitary involutive operator on $\mathbf{H}$ given by%
\begin{equation}
J=\left(
\begin{matrix}
0 & Q\\
Q & 0
\end{matrix}
\right) \,. \label{E:5.7}%
\end{equation}
Instead of the above $p$-realization of $\pi$ we will mainly use the following
$x$-formalism. The map $t\mapsto\pm e^{t}$ defines an isomorphism $L_{\pm
}\colon\mathcal{L}_{\pm}\rightarrow\mathbf{L}^{2}(\mathbb{R})$, where we use
the additive Haar measure $dx$ on $\mathbb{R}$. For $g=(e^{s},b)\in G$ and
$f\in\mathbf{L}^{2}(\mathbb{R})$, set%
\begin{equation}
(\pi_{\pm}(g)f)(x):=e^{\pm ie^{x}b}f(x+s),\quad x\in\mathbb{R}\,.
\label{E:5.8}%
\end{equation}
A simple calculation shows that $L_{\pm}$ intertwines the old and new
construction of $\pi_{\pm}$, excusing our abuse of notation. In this
realization $Q$ becomes simply the identity operator $Q(f)(x)=f(x)$. The
involution $J\colon\mathbf{L}^{2}(\mathbb{R},\mathbb{C}^{2})$ is now simply
given by
\begin{equation}
J(f_{0},f_{1})=(f_{1},f_{0}) \label{eqaxbNew.7}%
\end{equation}
or $J=\left(
\begin{matrix}
0 & 1\\
1 & 0
\end{matrix}
\right) $.
In this formulation the operator
\begin{equation}
L:=\pi_{\pm}(\Delta_{H}-\Delta_{Q})=\pi_{\pm}(X^{2}-Y^{2}) \label{E:5.9}%
\end{equation}
takes the form
\begin{equation}
L=\left( \frac{d\,}{dx}\right) ^{2}\,+\,e^{2x}\,, \label{E:5.10}%
\end{equation}
but it is on $\mathbf{L}^{2}(\mathbb{R})$ and $-\infty0\right\} $ will have $\mathbf{K}=\left(
\mathbf{K}_{0}/\mathbf{N}\right) \sptilde$ equal to $0$.
\end{proposition}
\begin{lemma}
\label{QField}Let $Q$ be the projection in $\mathbf{L}^{2}(\mathbb{R}%
)\oplus\mathbf{L}^{2}(\mathbb{R})$ onto a translation-invariant $J$-positive
subspace. Then $Q$ is represented by a measurable field of $2\times2$ complex
matrices $\mathbb{R}\ni\xi\mapsto\left( Q_{ij}(\xi)\right) _{ij=1}^{2}$ such
that $\left| Q_{12}(\xi)\right| ^{2}=Q_{11}(\xi)Q_{22}(\xi)$ a.e. on
$\mathbb{R}$, and $Q_{12}(\xi)+Q_{21}(\xi)\geq0$ a.e.; and conversely.
\end{lemma}
\begin{corollary}
\label{QMatrix} These relations imply the following for the matrix $Q$:
\begin{enumerate}
\item [\hss\llap{\rm1)}]If $Q_{12}(\xi)=0$ then we have the three
possibilities:
\begin{align*}
Q(\xi) & =0\,,\\
Q(\xi) & =\left(
\begin{matrix}
1 & 0\\
0 & 0
\end{matrix}
\right) \,,\mbox{ and }\\
Q(\xi) & =\left(
\begin{matrix}
0 & 0\\
0 & 1
\end{matrix}
\right) \,.
\end{align*}
In all those cases, we have $Q(\xi)JQ(\xi)=0$.
\item[\hss\llap{\rm2)}] If $Q_{12}(\xi)\neq0$, then $00$, then:
\begin{align*}
\pi_{+}(b)h & =Q_{11}\pi_{+}(b)h+Q_{12}\pi_{+}(-b)k\,,\\
\pi_{+}(-b)k & =Q_{21}\pi_{+}(b)h+Q_{22}\pi_{+}(-b)k\,,
\end{align*}
valid for any $\left(
\begin{matrix}
h\\
k
\end{matrix}
\right) \in\mathbf{K}_{0}$, and $b\in\mathbb{R}_{+}$. So it follows from
Lemma \ref{BasicLemma} again that $\mathcal{D}$ is invariant under $\left\{
\pi_{+}(b)\mid b>0\right\} $, and also under the whole semigroup $\left\{
\pi_{+}(g)\mid g\in S\right\} $ where $\pi_{+}$ is now denoting the
corresponding irreducible representation of $G$ on $\mathbf{L}^{2}%
(\mathbb{R})$. Let
\begin{align}
\mathcal{D}_{\infty} & :=\bigvee_{b\in\mathbb{R}}\pi_{+}(b)\mathcal{D}%
\,,\label{DInfinitybis}\\
\mathcal{D}_{-\infty} & :=\bigwedge_{b\in\mathbb{R}}\pi_{+}(b)\mathcal{D}\,,
\label{DMinusInfinitybis}%
\end{align}
where $\bigvee$ and $\bigwedge$ denote the lattice operations on closed
subspaces in $\mathbf{L}^{2}(\mathbb{R})$, and
\[
\left( \pi_{+}(b)f\right) (x)=e^{ibe^{x}}f(x)\,,\quad f\in\mathbf{L}%
^{2}(\mathbb{R}),\;b,x\in\mathbb{R}.
\]
We may now apply the Lax-Phillips argument to the spaces $\mathcal{D}%
_{\pm\infty}$. If $\left( \mathbf{K}_{0}/\mathbf{N}\right) \sptilde$ should
be $\neq\{0\}$, then $\mathcal{D}=\{0\}$ by the argument. Since we are
assuming $\left( \mathbf{K}_{0}/\mathbf{N}\right) \sptilde
\neq\{0\}$, we get $\mathcal{D}=\{0\}$, and as a consequence the following
operator graph representation for $\mathbf{K}_{0}$: $\left( \mathbf{K}%
_{0}/\mathbf{N}\right) \sptilde=\beta\left( G(L)\right) $ where $G(L)$ is
the graph of a closed operator $L$ in $\mathbf{L}^{2}(\mathbb{R})$.
Specifically, this means that the linear mapping $\mathbf{K}_{0}/\mathbf{N}%
\ni\left(
\begin{matrix}
h\\
k
\end{matrix}
\right) +\mathbf{N}\mapsto h$ is well-defined as a linear closed operator.
This in turn means that $\mathbf{K}_{0}$ may be represented as the graph of a
closable operator in $\mathbf{L}^{2}(\mathbb{R})$ as discussed in the first
part of the proof. Hence such a representation could have been assumed at the outset.
\begin{remark}
\label{BorchersCMP92}In a recent paper on local quantum field theory
\cite{Bor92}, Borchers considers in his Theorem II.9 a representation $\pi$ of
the $(ax+b)$-group $G$ on a Hilbert space $\mathbf{H}$ such that there is a
\emph{conjugate linear} $J$ (that is a period-$2$ antiunitary) such that $J\pi
J=\pi\circ\tau$ where $\tau$ is the period-$2$ automorphism of $G$ given by
$\tau(a,b):=(a,-b)$. In Borchers's example, the one-parameter subgroup
$b\mapsto\pi(1,b)$ has semibounded spectrum, and there is a unit-vector
$v_{0}\in\mathbf{H}$ such that $\pi(1,b)v_{0}=v_{0}$, $\forall b\in\mathbb{R}%
$. The vector $v_{0}$ is cyclic and separating for a von Neumann algebra $M$
such that $\pi(1,b)M\pi(1,-b)\subset M$, $\forall b\in\mathbb{R}_{+}$. Let
$a=e^{t}$, $t\in\mathbb{R}$. Then, in Borchers's construction, the other
one-parameter subgroup $t\mapsto\pi(e^{t},0)$ is the modular group
$\Delta^{it}$ associated with the cyclic and separating vector $v_{0}$ (from
Tomita-Takesaki theory \cite[vol. I]{BrRo}). Finally, $J$ is the corresponding
modular conjugation satisfying $JMJ=M^{\prime}$ when $M^{\prime}$ is the
commutant of $M$.
\end{remark}
\begin{acknowledgements}
The authors would like to thank Tom Branson, Paul Muhly, Bent \O rsted and
Steen Pedersen for helpful discussions, and the referee for constructive
suggestions. We would like to thank Brian Treadway for his excellent
typesetting of the final version of the paper in \LaTeX. Both authors were
also supported in part by the National Science Foundation.
\end{acknowledgements}
\begin{thebibliography}{999}
\label{refpage}
\bibitem{Arv84}W.B.~Arveson, \emph{Ten Lectures on Operator Algebras}, CBMS
Regional Conf. Ser. in Math., vol.~55, American Mathematical Society,
Providence, Rhode Island, 1984 (reprinted 1988), see ch.~4: ``Non-selfadjoint
operator algebras and the Feynman-Kac formula''.
\bibitem{BO98}F.~Betten, and G.~{\'{O}}lafsson, \emph{Causal compactification
and Hardy spaces for spaces of Hermitian type}, preprint, 1998,
http://math.lsu.edu/\raisebox{-4pt}{$\widetilde{\hbox to0.5cm{}}$}olafsson.
\bibitem{ALMMT96}A.~Ashtekar, J.~Lewandowki, D.~Marolf, J.~Mourao, and
T.~Thiemann, \emph{Coherent state transforms for spaces of connections},
J.~Funct. Anal. \textbf{135} (1996), 519--551.
\bibitem{Bor92}H.-J. Borchers, \emph{The {CPT}-theorem in two-dimensional
theories of local observables}, Comm. Math. Phys. \textbf{143} (1992), 315--332.
\bibitem{BrRo}O.~Bratteli and D.W. Robinson, \emph{{O}perator {A}lgebras and
{Q}uantum {S}tatistical {M}echanics}, vol.~I, 2nd ed., Springer-Verlag, New
York--Berlin, 1987 (1st ed. 1979).
\bibitem{MDRF96}M.G. Davidson and R.C. Fabec, \emph{Geometric realizations for
highest weight representations}, Representation Theory and Harmonic Analysis
(Cincinnati, OH, 1994) (T.~Ton-That, K.I. Gross, D.~St. P. Richards and P.J.
Sally, Jr., eds.), Contemporary Mathematics, vol.~191, American Mathematical
Society, Providence, Rhode Island, 1995, pp.~13--31.
\bibitem{DS}M.G. Davidson and R.J. Stanke, \emph{Ladder representation
norms for hermitian symmetric groups}, to appear in Journal of Lie Theory.
\bibitem{DyMc70}H.~Dym and H.P. McKean, \emph{Fourier Series and Integrals},
Probability and Mathematical Statistics, vol.~14, Academic Press, New York, 1972.
\bibitem{E83}T.J. Enright, \emph{Unitary representations for two real forms of
a semisimple Lie algebra: A theory of comparison}, Lie Group Representations,
I (College Park, Maryland, 1982/1983), Lecture Notes in Mathematics,
vol.~1024, Springer, Berlin--New York, 1983, pp.~1--29.
\bibitem{EHW83}T.J. Enright, R.~Howe, and N.~Wallach, \emph{A classification
of unitary highest weight modules}, Representation Theory of Reductive Groups
(Park City, Utah, 1982) (P. C. Trombi, ed.), Progress in Mathematics, vol.~40,
Birkh\"{a}user, Boston, 1983, pp.~97--143.
\bibitem{FHO93}J.~Faraut, J.~Hilgert, and G.~\'{O}lafsson, \emph{Spherical
functions on ordered symmetric spaces}, Ann. Inst. Fourier (Grenoble)
\textbf{44} (1994), 927--965.
\bibitem{FK94}J.~Faraut and A.~Kor\'{a}nyi, \emph{Analysis on Symmetric
Cones}, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1994.
\bibitem{GF89}G.B. Folland, \emph{Harmonic Analysis in Phase Space}, Annals of
Mathematics Studies, vol.~122, Princeton University Press, Princeton, New
Jersey, 1989.
\bibitem{Fr80}J.~Fr\"{o}hlich, \emph{Unbounded, symmetric semigroups on a
separable Hilbert space are essentially selfadjoint}, Adv. in Appl. Math.
\textbf{1} (1980), 237--256.
\bibitem{FOS83}J.~Fr\"{o}hlich, K.~Osterwalder, and E.~Seiler, \emph{On
virtual representations of symmetric spaces and their analytic continuation},
Ann. of Math. (2) \textbf{118} (1983), 461--489.
\bibitem{GG}I.M. Gel'fand and S.G. Gindikin, \emph{Complex manifolds whose
skeletons are semisimple real Lie groups, and analytic discrete series of
representations}, Functional Anal. Appl. \textbf{11} (1977), 258--265,
translated from {\eightcyr\cyracc Funktsional. Anal. i Prilozhen.} \textbf{11}
(1977), 19--27 (Russian).
\bibitem{GlJa87}Glimm, J., and Jaffe, A., \emph{{Q}uantum {P}hysics: {A}
{F}unctional {I}ntegral {P}oint of {V}iew}, 2nd ed., Springer-Verlag, New
York--Berlin, 1987.
\bibitem{GoJo83}F.M. Goodman and P.E.T. Jorgensen, \emph{Lie algebras of
unbounded derivations}, J.~Funct. Anal. \textbf{52} (1983), 369--384.
\bibitem{GR80}I.S. Gradshteyn and I.M. Ryzhik, \emph{Table of Integrals,
Series, and Products}, Academic Press, New York--London--Toronto, 1980.
\bibitem{BH94}B.C. Hall, \emph{The Segal-Bargmann ``coherent-state'' transform
for compact Lie groups}, J.~Funct. Anal. \textbf{122} (1994), 103--151.
\bibitem{HCIV}Harish-Chandra, \emph{Representations of semisimple Lie groups},
IV, Amer. J. Math. \textbf{77} (1955), 743--777.
\bibitem{HCV}Harish-Chandra, \emph{Representations of semisimple Lie groups},
V, Amer. J. Math. \textbf{78} (1956), 1--41.
\bibitem{HCVI}Harish-Chandra, \emph{Representations of semisimple Lie groups},
VI, Amer. J. Math. \textbf{78} (1956), 564--628.
\bibitem{HC65}Harish-Chandra, \emph{Discrete series for semisimple Lie
groups}, I, Acta Math. \textbf{113} (1965), 241--318; II, Acta Math.
\textbf{116} (1966), 1--111.
\bibitem{HC70}Harish-Chandra, \emph{Harmonic analysis on semisimple Lie
groups}, Bull. Amer. Math. Soc. \textbf{76} (1970), 529--551.
\bibitem{Hel62}S.~Helgason, \emph{Differential Geometry and Symmetric Spaces},
Pure and Applied Mathematics, vol.~XII, Academic Press, New York--London, 1962.
\bibitem{He78}S.~Helgason, \emph{Differential Geometry, Lie Groups and
Symmetric Spaces}, Pure and Applied Mathematics, vol.~80, Academic Press, New
York--London, 1978.
\bibitem{He84}S.~Helgason, \emph{Groups and Geometric Analysis: Integral
Geometry, Invariant Differential Operators and Spherical Functions}, Pure and
Applied Mathematics, vol.~113, Academic Press, New York--London, 1984.
\bibitem{Hel64}H.~Helson, \emph{Lectures on Invariant Subspaces}, Academic
Press, New York--London, 1964.
\bibitem{OH94}O.~Hijab, \emph{Hermite functions on compact Lie groups}, I,
J.~Funct. Anal. \textbf{125} (1994) 480--492.
\bibitem{HiNe93}J.~Hilgert and K.-H. Neeb, \emph{Lie Semigroups and Their
Applications}, Lecture Notes in Math., vol.~1552, Springer-Verlag, Berlin, 1993.
\bibitem{HO}J.~Hilgert and G.~\'{O}lafsson, \emph{Analytic extensions of
representations, the solvable case}, Japan. J. Math. (N.S.) \textbf{18} (1992) 213--289.
\bibitem{HO95}J.~Hilgert and G.~\'{O}lafsson, \emph{Causal Symmetric Spaces:
Geometry and Harmonic Analysis}, Perspectives in Mathematics, vol.~18,
Academic Press, Inc., San Diego, California, 1997.
\bibitem{HOO91}J.~Hilgert, G.~\'{O}lafsson, and B.~\O rsted, \emph{Hardy
spaces on affine symmetric spaces}, J.~Reine Angew. Math. \textbf{415} (1991), 189--218.
\bibitem{TI}
T.~Inoue,
\emph{Unitary representations and kernel functions associated with
boundaries of a bounded symmetric domain},
Hiroshima Math. J.
\textbf{10} (1980), 75--140.
\bibitem{HJ75}H.A. Jaffee, \emph{Real forms of Hermitian symmetric spaces},
Bull. Amer. Math. Soc. \textbf{81} (1975), 456--458.
\bibitem{HJ78}H.A. Jaffee, \emph{Anti-holomorphic automorphisms of the
exceptional symmetric domains}, J.~Differential Geom. \textbf{13} (1978), 79--86.
\bibitem{Ja83}H.P. Jakobsen, \emph{Hermitian symmetric spaces and their
unitary highest weight modules}, J.~Funct. Anal. \textbf{52} (1983) 385--412.
\bibitem{Jor75}P.E.T. Jorgensen, \emph{Representations of differential
operators on a Lie group}, J.~Funct. Anal. \textbf{20} (1975), 105--135.
\bibitem{Jor80}P.E.T. Jorgensen, \emph{Unbounded operators: Perturbations and
commutativity problems}, J.~Funct. Anal. \textbf{39} (1980), 281--307.
\bibitem{Jor86}P.E.T. Jorgensen, \emph{Analytic continuation of local
representations of Lie groups}, Pacific J. Math. \textbf{125} (1986), 397--408.
\bibitem{Jor87}P.E.T. Jorgensen, \emph{Analytic continuation of local
representations of symmetric spaces}, J.~Funct. Anal. \textbf{70} (1987), 304--322.
\bibitem{Jor88}P.E.T. Jorgensen, \emph{{O}perators and {R}epresentation
{T}heory: {C}anonical {M}odels for {A}lgebras of {O}perators {A}rising in
{Q}uantum {M}echanics}, North-Holland Mathematics Studies, vol.~147, Notas de
Matem\'atica, vol.~120, North-Holland, Amsterdam--New York, 1988.
\bibitem{JoMo84}P.E.T. Jorgensen and R.T. Moore, \emph{Operator Commutation
Relations}, Mathematics and Its Applications, D.~Reidel Publishing Co.,
Dordrecht--Boston, 1984.
\bibitem{JoMu80}P.E.T. Jorgensen and P.S. Muhly, \emph{Selfadjoint extensions
satisfying the {W}eyl operator commutation relations}, J.~Analyse Math.
\textbf{37} (1980), 46--99.
\bibitem{JO97}P.E.T. Jorgensen and G.~\'{O}lafsson, \emph{Unitary
representations of Lie groups with reflection symmetry}, J.~Funct. Anal.
\textbf{158} (1998), 26--88.
\bibitem{Kle78}A.~Klein, \emph{The semigroup characterization of
{O}sterwalder-{S}chrader path spaces and the construction of {E}uclidean
fields}, J.~Funct. Anal. \textbf{27} (1978), 277--291.
\bibitem{KlLa75}A.~Klein and L.J. Landau, \emph{Singular perturbations of
positivity preserving semigroups via path space techniques}, J.~Funct. Anal.
\textbf{20} (1975), 44--82.
\bibitem{KlLa81}A.~Klein and L.J. Landau, \emph{Construction of a unique
selfadjoint generator for a symmetric local semigroup}, J.~Funct. Anal.
\textbf{44} (1981), 121--137.
\bibitem{KlLa83}A.~Klein and L.J. Landau, \emph{From the Euclidean group to
the Poincar\'{e} group via Osterwalder-Schrader positivity}, Comm. Math. Phys.
\textbf{87} (1982/83), 469--484.
\bibitem{KS80}A.W. Knapp and E.M. Stein, \emph{Intertwining operators for
semisimple groups}, II, Invent. Math. \textbf{60} (1980), 9--84.
\bibitem{KW65}A.~Kor\'{a}nyi and J.A. Wolf, \emph{Realization of Hermitian
symmetric spaces as generalized half-planes}, Ann. of Math. (2) \textbf{81}
(1965), 265--288.
\bibitem{BK95}B.~Kr\"{o}tz, \emph{Plancherel--Formel f\"{u}r Hardy--R\"{a}%
ume}, Diplomarbeit, Darm\-stadt, 1995.
\bibitem{BK98}B.~Kr\"{o}tz, \emph{Formal dimension for semisimple symmetric
spaces}, preprint 1998, submitted.
\bibitem{KrNe96}B.~Kr\"{o}tz and K.-H. Neeb, \emph{On hyperbolic cones and
mixed symmetric spaces}, J. Lie Theory \textbf{6} (1996), 69--146.
\bibitem{KNO98}B.~Kr\"{o}tz, K.-H. Neeb, and G.~\'{O}lafsson, \emph{Spherical
representations and mixed symmetric spaces}, Represent. Theory \textbf{1}
(1997), 424--461.
\bibitem{KNO99}B.~Kr\"{o}tz, K.-H. Neeb, and G.~\'{O}lafsson, \emph{Spherical
Functions on Mixed Symmetric Spaces}, preprint 1998, submitted.
\bibitem{JL94}J.D. Lawson, \emph{Polar and Ol'shanskii decompositions},
J.~Reine Angew. Math. \textbf{448} (1994), 191--219.
\bibitem{LaPh}P.D. Lax and R.S. Phillips, \emph{Scattering theory}, 2nd ed.,
Academic Press, New York, 1989 (1st ed. 1967).
\bibitem{LM75}M.~L\"uscher and G.~Mack, \emph{Global conformal invariance in
quantum field theory}, Comm. Math. Phys. \textbf{41} (1975), 203--234.
\bibitem{Mac}G.W. Mackey, \emph{Induced Representations of Groups and Quantum
Mechanics}, W.A. Benjamin, New York, 1968.
\bibitem{Ma82}T.~Matsuki, \emph{Orbits on affine symmetric spaces under the
action of parabolic subgroups}, Hiroshima Math.~J. \textbf{12} (1982), 307--320.
\bibitem{Nee94}K.-H. Neeb, \emph{Holomorphic representation theory,
\textup{{II}}}, Acta Math. \textbf{173} (1994), 103--133.
\bibitem{Ne94}K.-H. Neeb, \emph{Realization of general unitary highest weight
representations}, to appear in Forum Math.
\bibitem{Ne99}K.-H. Neeb, \emph{Holomorphy and Convexity in Lie Theory},
Expositions in Mathematics, de Gruyter, Berlin, 1999.
\bibitem{Nel59}E.~Nelson, \emph{Analytic vectors}, Ann. of Math. (2)
\textbf{70} (1959), 572--615.
\bibitem{Nel64}E.~Nelson, \emph{Feynman integrals and the {S}chr{\"{o}}dinger
equation}, J.~Math. Phys. \textbf{5} (1964), 332--343.
\bibitem{Nel73}E.~Nelson, \emph{Construction of quantum fields from {M}arkoff
fields}, J.~Funct. Anal. \textbf{12} (1973), 97--112.
\bibitem{NeSt59}E.~Nelson and W.F. Stinespring, \emph{Representation of
elliptic operators in an enveloping algebra}, Amer. J. Math. \textbf{81}
(1959), 547--560.
\bibitem{'O87}G.~\'{O}lafsson, \emph{Fourier and Poisson transformation
associated to a semisimple symmetric space}, Invent. Math. \textbf{90} (1987), 605--629.
\bibitem{'O90b}G.~\'{O}lafsson, \emph{Causal symmetric spaces}, Mathematica
Gottingensis \textbf{15} (1990).
\bibitem{'O90a}G.~\'{O}lafsson, \emph{Symmetric spaces of Hermitian type},
Differential Geom. Appl. \textbf{1} (1991), 195--233.
\bibitem{O93}G.~\'{O}lafsson, \emph{Spherical functions on ordered symmetric
space; A Harish-Chandra type formula}, in preparation.
\bibitem{O98}G.~\'{O}lafsson, \emph{Open problems in harmonic analysis on
causal symmetric spaces}, Positivity in Lie Theory: Open Problems (J. Hilgert,
J. D. Lawson, K-H. Neeb, and E. B. Vinberg, eds.), Walter de Gruyter,
Berlin--New York, 1998.
\bibitem{'OO88a}G.~\'{O}lafsson and B.~\O rsted, \emph{The holomorphic
discrete series for affine symmetric spaces}, I, J.~Funct. Anal. \textbf{81}
(1988), 126--159.
\bibitem{'OO88b}G.~\'{O}lafsson and B.~\O rsted, \emph{The holomorphic
discrete series of an affine symmetric space and representations with
reproducing kernels}, Trans. Amer. Math. Soc. \textbf{326} (1991), 385--405.
\bibitem{'OO89a}G.~\'{O}lafsson and B.~\O rsted, \emph{Is there an orbit
method for affine symmetric spaces?} The Orbit Method in Representation Theory
(M. Duflo, N.V. Pedersen, and M. Vergne, eds.), Birkh\"{a}user, Boston, 1990.
\bibitem{OO96}G.~\'{O}lafsson and B.~\O rsted, \emph{Generalizations of the
Bargmann transform}, Lie theory and its applications in physics (Clausthal,
1995) (H.-D. Doebner, V. K. Dobrev and J. Hilgert, eds.), World Scientific,
River Edge, New Jersey, 1996.
\bibitem{OO96b}G.~\'{O}lafsson and B.~\O rsted, \emph{Causal compactification
and Hardy spaces}, Report No.~19, 1995/96, Institut Mittag-Leffler, to appear
in Trans. Amer. Math. Soc.
\bibitem{Ol82}G.I. Ol'shanskii, \emph{Invariant cones in Lie algebras, Lie
semigroups, and the holomorphic discrete series}, Functional Anal. Appl.
\textbf{15} (1982), 275--285, translated from {\eightcyr\cyracc Funktsional.
Anal. i Prilozhen.} \textbf{15} (1981), 53--66 (Russian).
\bibitem{OZ95}B.~\O rsted and G.K. Zhang, \emph{Generalized principal series
representations and tube domains}, Duke Math.~J. \textbf{78} (1995), 335--357.
\bibitem{OsS1}T.~Oshima and J.~Sekiguchi, \emph{Eigenspaces of invariant
differential operators on an affine symmetric space}, Invent. Math.
\textbf{57} (1980), 1--81.
\bibitem{OsS2}T.~Oshima and J.~Sekiguchi, \emph{The restricted root system of
a semisimple symmetric pair}, Group representations and systems of
differential equations (Tokyo, 1982) (K. Okamoto, ed.), Advanced Studies in
Pure Mathematics, vol.~4, North-Holland, Amsterdam--New York, 1984, pp.~433--497.
\bibitem{OsSc73}K.~Osterwalder and R.~Schrader, \emph{Axioms for Euclidean
Green's functions}, Comm. Math. Phys. \textbf{31} (1973), 83--112.
\bibitem{OsSc75}K.~Osterwalder and R.~Schrader, \emph{Axioms for Euclidean
Green's functions}, II, Comm. Math. Phys. \textbf{42} (1975), 281--305.
\bibitem{Paneitz81}S.~Paneitz, \emph{Invariant convex cones and causality in
semisimple Lie algebras and groups}, J.~Funct. Anal. \textbf{43} (1981), 313--359.
\bibitem{Paneitz84}S.~Paneitz, \emph{Determination of invariant convex cones
in simple Lie algebras}, Ark. Mat. \textbf{21} (1983), 217--228.
\bibitem{Ped90}S.~Pedersen, \emph{Anticommuting selfadjoint operators},
J.~Funct. Anal. \textbf{89} (1990), 428--443.
\bibitem{Phil}R.S. Phillips, \emph{The extension of dual subspaces invariant
under an algebra}, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960),
Jerusalem Academic Press, Jerusalem, and Pergamon, Oxford, 1961, pp.~366--398.
\bibitem{Pou92}N.S. Poulsen, \emph{On $C^{\infty}$-vectors and intertwining
bilinear forms for representations of Lie groups}, J.~Funct. Anal. \textbf{9}
(1992), 87--120.
\bibitem{Pra89}H.~Prado, University of Iowa thesis, 1989.
\bibitem{ReSi75}M.~Reed and B.~Simon, \emph{Methods of Modern Mathematical
Physics} II: \emph{Fourier Analysis, Self-Adjointness}, Academic Press, New
York--London, 1975.
\bibitem{S92}S.~Sahi, \emph{Explicit Hilbert spaces for certain unipotent
representations}, Invent. Math. \textbf{110} (1992), 409--418.
\bibitem{S93}S.~Sahi, \emph{Unitary representations on the Shilov boundary of
a symmetric tube domain}, Representation theory of groups and algebras
(J.~Adams, R.~Herb, S.~Kudla, J.-S. Li, R.~Lipsman and J.~Rosenberg, eds.),
Contemporary Mathematics, vol.~145, American Mathematical Society, Providence,
Rhode Island, 1993, pp.~275--286
\bibitem{Sch86}R.~Schrader, \emph{Reflection positivity for the complementary
series of $SL(2n,\boldsymbol{C})$}, Publ. Res. Inst. Math. Sci. \textbf{22}
(1986), 119--141.
\bibitem{Segal}I.E. Segal, \emph{Mathematical Cosmology and Extragalactic
Astronomy}, Pure and Applied Mathematics, vol.~68, Academic Press, New
York--London, 1976.
\bibitem{Seg98}I.E. Segal, \emph{Real spinor fields and the electroweak
interaction}, J.~Funct. Anal. \textbf{154} (1998), 542--558.
\bibitem{Stanton}R.J. Stanton, \emph{Analytic extension of the holomorphic
discrete series}, Amer. J. Math. \textbf{108} (1986), 1411--1424.
\bibitem{Ste93}E.M. Stein, \emph{Harmonic Analysis: Real-variable Methods,
Orthogonality, and Oscillatory Integrals}, Princeton Mathematical Series,
vol.~43, Princeton University Press, Princeton, New Jersey, 1993.
\bibitem{Sto51}M.H. Stone, \emph{On unbounded operators in Hilbert space},
J.~Indian Math. Soc. (N.S.) \textbf{15} (1951), 155--192.
\bibitem{SzN74}B.~Sz\H{o}kefalvi-Nagy, \emph{{U}nitary {D}ilations of
{H}ilbert {S}pace {O}perators and {R}elated {T}opics}, CBMS Regional Conf.
Ser. in Math., vol.~19, American Mathematical Society, Providence, Rhode
Island, 1974.
\bibitem{VR76}M.~Vergne and H.~Rossi, \emph{Analytic continuation of the
holomorphic discrete series of a semi-simple Lie group}, Acta Math.
\textbf{136} (1976), 1--59.
\bibitem{WaI72}G.~Warner, \emph{Harmonic Analysis on Semisimple Lie Groups},
I, Die Grundlehren der mathematischen Wissenschaften, Band 188,
Springer-Verlag, New York--Heidelberg, 1972.
\bibitem{NW79}N.R. Wallach, \emph{The analytic continuation of the discrete
series}, I, Trans. Amer. Math. Soc. \textbf{251} (1979), 1--17; II, 19--37.
\bibitem{Wal92}N.R. Wallach, \emph{Real Reductive Groups}, II, Pure and
Applied Mathematics, 132-II, Academic Press, Inc., Boston, 1992.
\bibitem{Yos91}K.~Yosida, \emph{Lectures on Differential and Integral
Equations}, Dover Publications, Inc., New York, translated from the Japanese,
reprint of the 1960 translation, Pure and Applied Mathematics, vol.~X,
Interscience Publishers, New York--London, 1960.
\end{thebibliography}
\end{document}
---------------0011091627298--