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Abstract: We address the solvability of certain nonlinear nonhomogeneous sys-
tems of equations in one dimension containing the logarithmic Laplacian and the
drift terms. We establish that, under the reasonable technical conditions, the con-
vergence inL1(R) of the integral kernels yields the existence and the convergence
in L2(R,RN) of the solutions. We emphasize that the study of the systems is more
difficult than of the scalar case and requires to overcome more cumbersome techni-
calities.

AMS Subject Classification:35P30, 45K05, 47G20
Key words: solvability conditions, Fredholm operators, logarithmicLaplacian, in-
tegral kernels

1. Introduction

Consider the problem
(−∆+ V (x))u− au = f, (1.1)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant andV (x) is
a function tending to0 at infinity. If a ≥ 0, then the essential spectrum of the oper-
atorA : E → F corresponding to the left side of equation (1.1) contains the origin.
Consequently, such operator does not satisfy the Fredholm property. Its image is
not closed, ford > 1 the dimension of its kernel and the codimension of its image
are not finite. We recall that elliptic equations with non-Fredholm operators, both
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linear and nonlinear were studied extensively in recent years (see [16], [17], [18],
[19], [30], [31], [32], [33], [34], [35], [36], [37], also [5]) along with their
potential applications to the theory of reaction-diffusion problems (see [11], [12]).
Fredholm structures, topological invariants and their application were discussed in
[13]. The work [14] deals with the finite and infinite dimensional attractors for the
evolution equations of mathematical physics. The large time behavior of the solu-
tions of a class of fourth-order parabolic equations definedon unbounded domains
using the Kolmogorovε-entropy as a measure was studied in [15]. The attractor
for a nonlinear reaction-diffusion system in an unbounded domain in the space of
three dimensions was treated in [22]. The articles [23] and [29] are crucial for
the understanding of the Fredholm and properness properties of the quasilinear el-
liptic systems of the second order and of the operators of this kind onRN . The
exponential decay and Fredholm properties in the second-order quasilinear elliptic
systems of equations were discussed in [24]. The article [34] is devoted to the
Laplace operator with drift from the point of view of the non-Fredholm operators.
Standing lattice solitons in the discrete NLS equation withsaturation were studied
in [1]. In the particular case whena = 0, the operatorA mentioned above satisfies
the Fredholm property in certain properly chosen weighted spaces (see [2], [3], [5],
[7], [8]). But the situation whena 6= 0 is significantly different and the method
developed in these articles cannot be applied.
The present article is our attempt to generalize these results by considering the solv-
ability of the nonlinear system of equations containing in the left side the logarith-
mic Laplacian in one dimension, which can be defined via the spectral calculus
along with the drift terms.
The logarithmic Laplacian ln(−∆) is the operator with the Fourier symbol2ln|p|.
It appears as formal derivative∂s|s=0(−∆)s of fractional Laplacians ats = 0. The
operator(−∆)s is extensively used, for example in the studies of the anomalous
diffusion problems (see e.g. [37] and the references therein). Spectral properties
of the logarithmic Laplacian in an open set of finite measure with Dirichlet bound-
ary conditions were discussed in [28] (see also [10]). The studies of ln(−∆) are
crucial for the understanding of the asymptotic spectral properties of the family of
fractional Laplacians in the limits → 0+. In [26] it has been demonstrated that
this operator enables to characterize thes-dependence of solution to fractional Pois-
son equations for the full range of exponentss ∈ (0, 1). A direct method of moving
planes for the logarithmic Schrödinger operator was covered in [38]. The work [39]
deals with the symmetry of positive solutions for Lane-Emden systems containing
the Logarithmic Laplacian. The solvability of certain linear nonhomogeneous prob-
lems involving the logarithm of the sum of the two Schrödinger operators in higher
dimensions was addressed in [20].
For the technical purposed we introduce the non self-adjoint operators with1 ≤
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k ≤ N, N ≥ 2, namely

La,b,k :=
1

2
ln
(
− d2

dx2

)
− bk

d

dx
− ak, ak, bk ∈ R, bk 6= 0, x ∈ R. (1.2)

They are considered onL2(R). By means of the standard Fourier transform, it can
be easily obtained that the essential spectra of (1.2) are given by

λa,b,k(p) = ln
( |p|
eak

)
− ibkp, ak, bk ∈ R, bk 6= 0, (1.3)

where1 ≤ k ≤ N, N ≥ 2. Clearly, the estimate from below

|λa,b,k(p)| =
√

ln2
( |p|
eak

)
+ b2kp

2 ≥ Ca,b > 0, p ∈ R (1.4)

is valid for 1 ≤ k ≤ N, N ≥ 2. HereCa,b is a constant. Hence, these operators
(1.2) satisfy the Fredholm property. Let us recall the earlier article [19] dealing with
the solvability of the linear nonhomogeneous problem involving the logarithmic
Laplacian without the drift term. Thus, the operator contained in the left side of
such equation was non-Fredholm.
Throughout the article we use the hat symbol to designate thestandard Fourier
transform

f̂(p) :=
1√
2π

∫ ∞

−∞

f(x)e−ipxdx, p ∈ R. (1.5)

Evidently, the upper bound

‖f̂(p)‖L∞(R) ≤
1√
2π

‖f(x)‖L1(R) (1.6)

holds. Let us use the norm for a vector function

‖u‖2L2(R,RN ) :=
N∑

k=1

‖uk‖2L2(R), (1.7)

where
u(x) := (u1(x), u2(x), ..., uN(x))

T . (1.8)

Our work is devoted to the studies of the solvability of the system of nonlinear
equations for1 ≤ k ≤ N, N ≥ 2

[
− 1

2
ln
(
− d2

dx2

)]
uk + bk

duk

dx
+

+akuk +

∫ ∞

−∞

Gk(x− y)Fk(u1(y), u2(y), ..., uN(y), y)dy = 0, x ∈ R, (1.9)
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where the constantsak, bk ∈ R, bk 6= 0. The existence of solutions of the single
equation analogical to (1.9) was discussed in [21]. In the problems of the Pop-
ulation Dynamics the integro-differential equations are actively used to describe
the biological systems with the nonlocal consumption of resources and the intra-
specific competition (see e.g. [4], [6], [25]). Solvabilityof the system analogous
to (1.9) but with a standard Laplacian in the diffusion term was covered in [17].
Similarly to [17], we impose the following regularity conditions on the nonlinear
part of problem (1.9).

Assumption 1.1.Let 1 ≤ k ≤ N, N ≥ 2. FunctionsFk(u, x) : R
N × R → R are

satisfying the Caratheodory condition (see [27]), so that
√√√√

N∑

k=1

F 2
k (u, x) ≤ K|u|RN + h(x) for u ∈ RN , x ∈ R (1.10)

with a constantK > 0 andh(x) : R → R+, h(x) ∈ L2(R). Furthermore, they are
Lipschitz continuous functions, so that for anyu(1),(2) ∈ RN , x ∈ R :

√√√√
N∑

k=1

(Fk(u(1), x)− Fk(u(2), x))2 ≤ L|u(1) − u(2)|RN (1.11)

with a constantL > 0.

Here and below the norm of a vector function given by (1.8) is:

|u|RN :=

√√√√
N∑

k=1

u2
k.

The solvability of a local elliptic problem in a bounded domain in RN was discussed
in [9]. The nonlinear function there was allowed to have a sublinear growth. In or-
der to establish the existence of solutions of problem (1.9), we will use the auxiliary
system of equations with1 ≤ k ≤ N, N ≥ 2

[1
2

ln
(
− d2

dx2

)]
uk − bk

duk

dx
−

−akuk =

∫ ∞

−∞

Gk(x− y)Fk(v1(y), v2(y), ..., vN(y), y)dy, x ∈ R, (1.12)

whereak, bk ∈ R, bk 6= 0 are the constants. Let us demonstrate that under the
reasonable technical conditions system (1.12) defines a mapTa,b : L2(R,RN) →
L2(R,RN), which is a strict contraction.
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Theorem 1.2. Let 1 ≤ k ≤ N, N ≥ 2, Assumption 1.1. holds, the functions

Gk(x) : R → R, so thatGk(x) ∈ L1(R) and
GL

Ca,b

< 1.

Then the mapTa,bv = u onL2(R,RN) defined by system (1.12) has a unique fixed
pointv(a,b), which is the only solution of of problem (1.9) inL2(R,RN).
This fixed pointv(a,b) does not vanish identically inR provided that for a cer-
tain 1 ≤ k ≤ N the intersection of supports of the Fourier images of functions

suppF̂k(0, x)(p)∩supp̂Gk(p) is a set of nonzero Lebesgue measure on the real line.

Here and further down we will use the auxiliary, positive quantity

G := max1≤k≤N‖Gk(x)‖L1(R). (1.13)

Related to problem (1.9), we study the sequence of the approximate systems of
equations form ∈ N, 1 ≤ k ≤ N, N ≥ 2, namely

[
− 1

2
ln
(
− d2

dx2

)]
u
(m)
k + bk

du
(m)
k

dx
+ aku

(m)
k +

+

∫ ∞

−∞

Gk,m(x− y)Fk(u
(m)
1 (y), u

(m)
2 (y), ..., u

(m)
N (y), y)dy = 0, x ∈ R (1.14)

with the constantsak, bk ∈ R, bk 6= 0. Each sequence of kernels{Gk,m(x)}∞m=1

tends toGk(x) in L1(R) asm → ∞. We demonstrate that, under the certain techni-
cal assumptions, each system (1.14) admits a unique solutionu(m)(x) ∈ L2(R,RN),
limiting system of equations (1.9) has a unique solutionu(x) ∈ L2(R,RN), and
u(m)(x) → u(x) in L2(R,RN) asm → ∞. This is the so-calledexistence of so-
lutions in the sense of sequences. The significance of Theorem 1.3 below is the
continuous dependence of the solution with respect to the integral kernels. The
solvability in the sense of sequences for the equations containing the Schrödinger
type non-Fredholm operators was addressed in [16], [32], [36], [37]. Similarly to
(1.13), we introduce the positive technical quantities

G(m) := max1≤k≤N‖Gk,m(x)‖L1(R), m ∈ N. (1.15)

Theorem 1.3.Letm ∈ N, 1 ≤ k ≤ N, N ≥ 2, Assumption 1.1 holds, the functions
Gk,m(x) : R → R are such thatGk,m(x) ∈ L1(R) andGk,m(x) → Gk(x) in L1(R)
asm → ∞. Furthermore, we assume that

G(m)L

Ca,b

≤ 1− ε√
2

(1.16)

holds for eachm ∈ N with a certain fixed0 < ε < 1.
Then each system of equations (1.14) has a unique solutionu(m)(x) ∈ L2(R,RN),
limiting system (1.9) admits a unique solutionu(x) ∈ L2(R,RN), andu(m)(x) →
u(x) in L2(R,RN) asm → ∞.
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The unique solutionu(m)(x) of each system (1.14) is nontrivial provided that for
some1 ≤ k ≤ N the intersection of supports of the Fourier images of functions

suppF̂k(0, x)(p)∩ suppĜk,m(p) is a set of nonzero Lebesgue measure inR. Analo-
gously, the unique solutionu(x) of limiting system (1.9) does not vanish identically

in R if suppF̂k(0, x)(p) ∩ suppĜk(p) is a set of nonzero Lebesgue measure on the
real line for a certain1 ≤ k ≤ N .

2. Proofs of the main results

Proof of Theorem 1.2.Let us first suppose that for a certainv(x) ∈ L2(R,RN)
there exist two solutionsu(1),(2)(x) ∈ L2(R,RN) of system (1.12). Clearly, the
vector functionw(x) := u(1)(x)− u(2)(x) ∈ L2(R,RN) satisfies the homogeneous
system of equations

[1
2

ln
(
− d2

dx2

)]
wk − bk

dwk

dx
− akwk = 0, 1 ≤ k ≤ N, N ≥ 2.

The operatorsLa,b,k onL2(R) are defined in (1.2). Obviously, they do not have any
nontrivial zero modes, just the essential spectra (1.3). Therefore, the vector function
w(x) is trivial onR.
We choose arbitrarilyv(x) ∈ L2(R,RN) and apply the standard Fourier transform
(1.5) to both sides of system (1.12). This yields

ûk(p) =
√
2π

Ĝk(p)ϕ̂k(p)

ln
(

|p|
eak

)
− ibkp

, p ∈ R, 1 ≤ k ≤ N, N ≥ 2. (2.1)

Hereϕ̂k(p) denotes the Fourier image ofFk(v(x), x). Let us recall inequalities (1.4)
and (1.6). Hence,

|ûk(p)| ≤
‖Gk(x)‖L1(R)|ϕ̂k(p)|

Ca,b

, 1 ≤ k ≤ N, N ≥ 2,

so that

‖uk(x)‖L2(R) ≤
‖Gk(x)‖L1(R)

Ca,b

‖Fk(v(x), x)‖L2(R), 1 ≤ k ≤ N, N ≥ 2. (2.2)

We use bound (1.10) of Assumption 1.1. Thus, allFk(v(x), x) ∈ L2(R) for v(x) ∈
L2(R,RN). Therefore, for an arbitraryv(x) ∈ L2(R,RN) there exists a unique
solutionu(x) ∈ L2(R,RN) of the system of equations (1.12), so that its Fourier
image is given by (2.1). This means that the mapTa,b : L

2(R,RN) → L2(R,RN) is
well defined.
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This enables us to choose arbitrarily the vector functionsv(1),(2)(x) ∈ L2(R,RN),
so that their imagesu(1),(2) := Ta,bv

(1),(2) ∈ L2(R,RN). Evidently, (1.12) gives us

[1
2

ln
(
− d2

dx2

)]
u
(1)
k − bk

du
(1)
k

dx
−

−aku
(1)
k =

∫ ∞

−∞

Gk(x− y)Fk(v
(1)
1 (y), v

(1)
2 (y), ..., v

(1)
N (y), y)dy, x ∈ R, (2.3)

[1
2

ln
(
− d2

dx2

)]
u
(2)
k − bk

du
(2)
k

dx
−

−aku
(2)
k =

∫ ∞

−∞

Gk(x− y)Fk(v
(2)
1 (y), v

(2)
2 (y), ..., v

(2)
N (y), y)dy, x ∈ R, (2.4)

where1 ≤ k ≤ N, N ≥ 2 andak, bk ∈ R, bk 6= 0 are the constants. Let us apply
the standard Fourier transform (1.5) to both sides of the equations of systems (2.3),
(2.4). We obtain for1 ≤ k ≤ N, N ≥ 2

û
(1)
k (p) =

√
2π

Ĝk(p)ϕ̂
(1)
k (p)

ln
(

|p|
eak

)
− ibkp

, û
(2)
k (p) =

√
2π

Ĝk(p)ϕ̂
(2)
k (p)

ln
(

|p|
eak

)
− ibkp

, p ∈ R. (2.5)

Herê
ϕ
(1),(2)
k (p) are the Fourier images ofFk(v

(1),(2)(x), x). By virtue of (2.5) along
with (1.6) and (1.4), we arrive at the estimate from above

∣∣∣û(1)
k (p)− û

(2)
k (p)

∣∣∣ ≤
‖Gk(x)‖L1(R)

Ca,b

∣∣∣ϕ̂(1)
k (p)− ϕ̂

(2)
k (p)

∣∣∣, 1 ≤ k ≤ N, N ≥ 2.

Hence, for1 ≤ k ≤ N, N ≥ 2

‖u(1)
k (x)− u

(2)
k (x)‖L2(R) ≤

≤ ‖Gk(x)‖L1(R)

Ca,b

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖L2(R). (2.6)

By means of (1.7) along with (1.13) and (2.6),

‖u(1)(x)− u(2)(x)‖2L2(R,RN ) ≤
G2

C2
a,b

N∑

k=1

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖2L2(R).

Let us recall condition (1.11) of Assumption 1.1 above. Thus,

N∑

k=1

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖2L2(R) ≤ L2‖v(1)(x)− v(2)(x)‖2L2(R,RN ),
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so that

‖Ta,bv
(1)(x)− Ta,bv

(2)(x)‖L2(R,RN ) ≤
GL

Ca,b

‖v(1)(x)− v(2)(x)‖L2(R,RN ). (2.7)

The constant in the right side of (2.7) is less than one as assumed. By virtue of
the Fixed Point Theorem, there exists a unique vector functionv(a,b) ∈ L2(R,RN),
such thatTa,bv

(a,b) = v(a,b). This is the only solution of system (1.9) inL2(R,RN).
Let us suppose thatv(a,b) is trivial on the real line. This will contradict to the stated
assumption that for some1 ≤ k ≤ N the intersection of the supports of the Fourier

transforms supp̂Fk(0, x)(p) ∩ supp̂Gk(p) is a set of nonzero Lebesgue measure in
R.

We conclude the article by discussing the issue of the solvability in the sense of
sequences for our nonlinear system of equations.

Proof of Theorem 1.3.By means of the result of Theorem 1.2 above, under the
given conditions, each system of equations (1.14) has a unique solutionu(m)(x) ∈
L2(R,RN), m ∈ N.
Clearly,‖Gk,m(x)‖L1(R) → ‖Gk(x)‖L1(R) asm → ∞ due to the standard triangle
inequality with1 ≤ k ≤ N, N ≥ 2. Let us use (1.13), (1.15) and (1.16) to obtain
that

GL

Ca,b

≤ 1− ε

via the simple limiting argument. By virtue of Theorem 1.2, limiting system (1.9)
admits a unique solutionu(x) ∈ L2(R,RN) as well.
We apply the standard Fourier transform (1.5) to both sides of the systems of equa-
tions (1.9) and (1.14). Hence, for1 ≤ k ≤ N, N ≥ 2, m ∈ N

ûk(p) =
√
2π

Ĝk(p)f̂k(p)

ln
(

|p|
eak

)
− ibkp

, û
(m)
k (p) =

√
2π

Ĝk,m(p)f̂
(m)
k (p)

ln
(

|p|
eak

)
− ibkp

, p ∈ R. (2.8)

Here f̂k(p) and f̂ (m)
k (p) are the Fourier images ofFk(u(x), x) andFk(u

(m)(x), x)
respectively. Using (2.8), we easily derive

∣∣∣û(m)
k (p)− ûk(p)

∣∣∣ ≤

≤
√
2π

|Ĝk,m(p)|√
ln2

(
|p|
eak

)
+ b2kp

2

|f̂ (m)
k (p)− f̂k(p)|+

√
2π

|Ĝk,m(p)− Ĝk(p)|√
ln2

(
|p|
eak

)
+ b2kp

2

|f̂k(p)|.

By means of inequalities (1.4) and (1.6), we arrive at
∣∣∣û(m)

k (p)− ûk(p)
∣∣∣ ≤
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≤ ‖Gk,m(x)‖L1(R)

Ca,b

|f̂ (m)
k (p)− f̂k(p)|+

‖Gk,m(x)−Gk(x)‖L1(R)

Ca,b

|f̂k(p)|,

such that

‖u(m)
k (x)− uk(x)‖L2(R) ≤

‖Gk,m(x)‖L1(R)

Ca,b

‖Fk(u
(m)(x), x)− Fk(u(x), x)‖L2(R)+

+
‖Gk,m(x)−Gk(x)‖L1(R)

Ca,b

‖Fk(u(x), x)‖L2(R).

Obviously,
‖u(m)(x)− u(x)‖2L2(R,RN ) ≤

≤
N∑

k=1

2‖Gk,m(x)‖2L1(R)

C2
a,b

‖Fk(u
(m)(x), x)− Fk(u(x), x)‖2L2(R)+

+

N∑

k=1

2‖Gk,m(x)−Gk(x)‖2L1(R)

C2
a,b

‖Fk(u(x), x)‖2L2(R).

Let us recall bound (1.11) of Assumption 1.1. above. Thus,

N∑

k=1

‖Fk(u
(m)(x), x)− Fk(u(x), x)‖2L2(R) ≤ L2‖u(m)(x)− u(x)‖2L2(R,RN ). (2.9)

This allows us to obtain the estimate from above
[
1− 2[G(m)]2L2

C2
a,b

]
‖u(m)(x)− u(x)‖2L2(R,RN ) ≤

≤ 2

C2
a,b

N∑

k=1

‖Gk,m(x)−Gk(x)‖2L1(R)‖Fk(u(x), x)‖2L2(R).

By virtue of (1.16), we have

‖u(m)(x)− u(x)‖2L2(R,RN ) ≤

≤ 2

ε(2− ε)C2
a,b

N∑

k=1

‖Gk,m(x)−Gk(x)‖2L1(R)‖Fk(u(x), x)‖2L2(R).

We use inequality (1.10) of Assumption 1.1. Hence, allFk(u(x), x) belong toL2(R)
for u(x) ∈ L2(R,RN). Therefore, under the stated assumptions

u(m)(x) → u(x), m → ∞ (2.10)

in L2(R,RN). Let us suppose thatu(m)(x) is trivial in R for a certainm ∈ N. This
will contradict to the given condition that for some1 ≤ k ≤ N the intersection
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of the supports of the Fourier images supp̂Fk(0, x)(p) ∩ supp̂Gk,m(p) is a set of
nonzero Lebesgue measure on the real line. The analogous argument holds for the
solutionu(x) of the limiting system of equations (1.9).
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