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Abstract: We address the solvability of certain nonlinear nonhomeges sys-
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drift terms. We establish that, under the reasonable teahononditions, the con-
vergence inL!(R) of the integral kernels yields the existence and the coreverg
in L2(R, RY) of the solutions. We emphasize that the study of the system®ie
difficult than of the scalar case and requires to overcomesroowmbersome techni-
calities.
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1. Introduction

Consider the problem
(—A+V(2)u—au = f, (1.1)

whereu € F = H*(R?) andf € F = L*(R%), d € N, a is a constant antf () is

a function tending t® at infinity. If « > 0, then the essential spectrum of the oper-
atorA : E — F corresponding to the left side of equation (1.1) contaiesatigin.
Consequently, such operator does not satisfy the Fredhmpepty. Its image is
not closed, for > 1 the dimension of its kernel and the codimension of its image
are not finite. We recall that elliptic equations with nore#inolm operators, both
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linear and nonlinear were studied extensively in recentsyésee [16], [17], [18],
[19], [30], [31], [32], [33], [34], [35], [36], [37], also [P along with their
potential applications to the theory of reaction-diffusmroblems (see [11], [12]).
Fredholm structures, topological invariants and theiligppon were discussed in
[13]. The work [14] deals with the finite and infinite dimens# attractors for the
evolution equations of mathematical physics. The large to@havior of the solu-
tions of a class of fourth-order parabolic equations defmrednbounded domains
using the Kolmogorow-entropy as a measure was studied in [15]. The attractor
for a nonlinear reaction-diffusion system in an unboundeuhain in the space of
three dimensions was treated in [22]. The articles [23] aB€] are crucial for
the understanding of the Fredholm and properness propeftide quasilinear el-
liptic systems of the second order and of the operators sfkind onRY. The
exponential decay and Fredholm properties in the secoderguasilinear elliptic
systems of equations were discussed in [24]. The articlg if3devoted to the
Laplace operator with drift from the point of view of the nénedholm operators.
Standing lattice solitons in the discrete NLS equation wdturation were studied
in [1]. In the particular case when= 0, the operatod mentioned above satisfies
the Fredholm property in certain properly chosen weighpaatss (see [2], [3], [5],
[7], [8]). But the situation whem # 0 is significantly different and the method
developed in these articles cannot be applied.

The present article is our attempt to generalize thesetsdsyiconsidering the solv-
ability of the nonlinear system of equations containinghe keft side the logarith-
mic Laplacian in one dimension, which can be defined via trextsal calculus
along with the drift terms.

The logarithmic Laplacian [r-A) is the operator with the Fourier symtih|p|.

It appears as formal derivativk|,_o(—A)° of fractional Laplacians at = 0. The
operator(—A)* is extensively used, for example in the studies of the anousal
diffusion problems (see e.g. [37] and the references ther&8pectral properties
of the logarithmic Laplacian in an open set of finite measuté Wirichlet bound-
ary conditions were discussed in [28] (see also [10]). Thdiss of If—A) are
crucial for the understanding of the asymptotic spectrapprties of the family of
fractional Laplacians in the limi¢ — 0. In [26] it has been demonstrated that
this operator enables to characterize s#hdependence of solution to fractional Pois-
son equations for the full range of exponesits (0, 1). A direct method of moving
planes for the logarithmic Schrodinger operator was aaer [38]. The work [39]
deals with the symmetry of positive solutions for Lane-Emdgstems containing
the Logarithmic Laplacian. The solvability of certain lax@xonhomogeneous prob-
lems involving the logarithm of the sum of the two Schrodingperators in higher
dimensions was addressed in [20].

For the technical purposed we introduce the non self-adperators withl <



k< N, N > 2, namely

1 d? d
La,b,k = §|n( — @) — bk% — ay, ak,bk € R, by # 0, ze€ R. (12)

They are considered ab?(R). By means of the standard Fourier transform, it can
be easily obtained that the essential spectra of (1.2) aen diy

Aa,bm—ln(ipi)—z'bkp, arbr €R, by #0, (1.3)

wherel < k£ < N, N > 2. Clearly, the estimate from below

Do) = (2 s > 0 per @

isvalidforl < k < N, N > 2. HereC,, is a constant. Hence, these operators
(1.2) satisfy the Fredholm property. Let us recall the eadrticle [19] dealing with
the solvability of the linear nonhomogeneous problem v the logarithmic
Laplacian without the drift term. Thus, the operator camédi in the left side of
such equation was non-Fredholm.

Throughout the article we use the hat symbol to designatestdr@dard Fourier
transform

~ 1 oo 4
= — x)e Prdx, € R. 15
fiv) == / RE p (1.5)
Evidently, the upper bound
1F ()| oy < \/—Ilf( M) (1.6)
holds. Let us use the norm for a vector function
N
”U”%%R,RN) = Z ”uk”%%ﬂg)a (1.7)
k=1
where
(@) == (ur (), us(x), ., un ()" (1.8)

Our work is devoted to the studies of the solvability of thsteyn of nonlinear
equationsfol <k < N, N > 2



where the constants,, b, € R, b, # 0. The existence of solutions of the single
equation analogical to (1.9) was discussed in [21]. In trebl@ms of the Pop-
ulation Dynamics the integro-differential equations acévely used to describe
the biological systems with the nonlocal consumption obueses and the intra-
specific competition (see e.g. [4], [6], [25]). Solvabiliythe system analogous
to (1.9) but with a standard Laplacian in the diffusion termsveovered in [17].
Similarly to [17], we impose the following regularity conidins on the nonlinear
part of problem (1.9).

Assumption 1.1.Let1 < k < N, N > 2. FunctionsFy(u,z) : RY x R — R are
satisfying the Caratheodory condition (see [27]), so that

N
ZFf(u,x) < Klulgy +h(z) for uweRY, 2eR (1.10)
k=1

with a constant<’ > 0 andh(x) : R — R™, h(x) € L*(R). Furthermore, they are
Lipschitz continuous functions, so that for affy® ¢ RY, 2z € R :

N
> (Fi(u®, ) = Fi(u®,2))? < Lju® — ul® |y (1.11)
k=1

with a constant.. > 0.

Here and below the norm of a vector function given by (1.8) is:

The solvability of a local elliptic problem in a bounded damia R was discussed
in [9]. The nonlinear function there was allowed to have diselar growth. In or-

der to establish the existence of solutions of problem (W@)will use the auxiliary
system of equations with< k£ < N, N > 2

()]~ -

—apuy = /_OO Gr(x — y)Fe(v1(y), v2(y), ..., on(y), y)dy, = €R, (1.12)

[e.9]

wherea,, b, € R, b, # 0 are the constants. Let us demonstrate that under the
reasonable technical conditions system (1.12) defines almap L*(R,RY) —
L?(R,RY), which is a strict contraction.



Theorem 1.2. Let1 < k£ < N, N > 2, Assumption 1.1. holds, the functions
L
Gi(z) : R — R, so thatGy(z) € L'(R) andg

a,b

Then the maff, ;v = v on L*(R, RY) defined7by system (1.12) has a unique fixed
pointv(»®) which is the only solution of of problem (1.9)id(R, RY).

This fixed pointv(>? does not vanish identically iR provided that for a cer-
tain 1 < k < N the intersection of supports of the Fourier images of fuordi

supwm)(p) N sup@(p) is a set of nonzero Lebesgue measure on the real line.

< 1.

Here and further down we will use the auxiliary, positive ijtiisy
G = maXlSkSNHGk(ZL‘)HLl(R). (113)

Related to problem (1.9), we study the sequence of the appabe systems of
equations form € N, 1 <k < N, N > 2, namely

2 (m)

1 d m du m

+ / Grm(z — ) Fe(u{™ (), uS™ (), . ul (), y)dy =0, z€R (1.14)

[e.e]

with the constants,, b, € R, b, # 0. Each sequence of kern€l&:y, ,,,(z)} oo,
tends toGy(x) in L*(R) asm — oo. We demonstrate that, under the certain techni-
cal assumptions, each system (1.14) admits a unique soltio(r) € L(R, RY),
limiting system of equations (1.9) has a unique solutign) € L*(R,RY), and
u™ () — wu(x) in L>(R,RY) asm — oo. This is the so-calle@éxistence of so-
lutions in the sense of sequencekhe significance of Theorem 1.3 below is the
continuous dependence of the solution with respect to ttegial kernels. The
solvability in the sense of sequences for the equationsagung the Schrodinger
type non-Fredholm operators was addressed in [16], [34], [B7]. Similarly to

(1.13), we introduce the positive technical quantities

G(m) = ma&SkSNHka(:c)HLl(R), m € N. (115)

Theorem 1.3.Letm € N, 1 < k < N, N > 2, Assumption 1.1 holds, the functions
Grm(z) : R = R are such thaGy, ,,,(z) € L'(R) andGy. . (z) — Gy (z) in L' (R)
asm — oo. Furthermore, we assume that

GM[ 1—¢
<
Ca,b \/i
holds for eachn € N with a certain fixed) < ¢ < 1.
Then each system of equations (1.14) has a unique solutiofr) € L*(R,RY),
limiting system (1.9) admits a unique solutio(w) € L*(R,RY), andu™ () —
u(x) in L2(R,RY) asm — oo.

(1.16)



The unique solution™ (z) of each system (1.14) is nontrivial provided that for
somel < k < N the intersection of supports of the Fourier images of floni

Supme)(p) N Supp@;(p) Is a set of nonzero Lebesgue measur@.inalo-
gously, the unique solution(z) of limiting system (1.9) does not vanish identically

in R if suppF(0,z)(p) N Suppé;(p) Is a set of nonzero Lebesgue measure on the
real line for a certainl <k < N.

2. Proofs of the main results

Proof of Theorem 1.2Let us first suppose that for a certaitw) € L*(R,RY)
there exist two solutions™-?) (z) ¢ L?(R,RY) of system (1.12). Clearly, the
vector functionw(z) := vV (z) — u?(2) € L*(R, RY) satisfies the homogeneous
system of equations

2
Eln(— %)}wk —bk% gy =0, 1<k<N, N>2
The operatord., ;. on L*(R) are defined in (1.2). Obviously, they do not have any
nontrivial zero modes, just the essential spectra (1.3¢rdfore, the vector function
w(z) is trivial onR.

We choose arbitrarily(z) € L*(R, RY) and apply the standard Fourier transform
(1.5) to both sides of system (1.12). This yields

Gp) = var-CHPO ) cp k<N, N2 (21
In(d2L) — b

Herepy(p) denotes the Fourierimage Bf(v(x), z). Let us recall inequalities (1.4)
and (1.6). Hence,

G 1R |08
()] < I k(£)|’é(R)‘¢k(p>|’ L<k<N N>2.
a,b

so that

1Gr(@)|| L1 ®)
()] L2 ) < ., |

(v(@), 2)l2®y, 1<k<N, N=>2 (22)
We use bound (1.10) of Assumption 1.1. Thus,/llv(z), z) € L*(R) for v(z) €
L*(R,RY). Therefore, for an arbitrary(x) € L*(R,R") there exists a unique
solutionu(x) € L*(R,RY) of the system of equations (1.12), so that its Fourier
image is given by (2.1). This means that the riigp : L?(R,RY) — L*(R,RY)is
well defined.



This enables us to choose arbitrarily the vector functighs? (z) € L?(R,RY),
so that their images"):® := T, ,o1:® ¢ L2(R,RY). Evidently, (1.12) gives us

1 a2 ) dult
() -
[ n U k dx

—apul) = / Gz — ) F (0 (), o (), .. vV (), y)dy, z€R, (2.3)

—apuy) = / Gi(z — y) PP (y), v§2><y>,...,v§5><y>,y>dy, reR, (2.4)

wherel < k£ < N, N > 2andayg, b, € R, b, # 0 are the constants. Let us apply
the standard Fourier transform (1.5) to both sides of thaggps of systems (2.3),
(2.4). We obtainfol < k< N, N >2

ZaRe) — Sy @)
uz(gl)(p):\/2_ Gip)oy (p) , ug)(p):\/ﬂ Gip)e (p) , peR. (2.5)
In(‘p‘> — ibyp In('p|> — ibyp
~0.0)

Herep,"” (p) are the Fourier images &, (v("-?) (z), z). By virtue of (2.5) along
with (1.6) and (1.4), we arrive at the estimate from above

—— G —
S)(p)—Uf)(p)ISH’“(CM’ () —<p,(f>(p)), 1<k<N, N>2

Hence, forl <k < N, N > 2

1 2
lut (2) — ul? (@) 2y <

g%”ﬂg(u(”() 7) = F(v® (@), 2) 2oy (2.6)

By means of (1.7) along with (1.13) and (2.6),

[t (@) = u® ()| 72 mv) < 02 ZHFk O — Fi(v?(2), ) 72@)

ab 1

Let us recall condition (1.11) of Assumption 1.1 above. Thus

Zan O(a),2) = F(v®(2),2) 32y < Pv®(@) = 0 (@) pvy.



so that

GL
HTa,bv(l)(a:) _ Ta,bU(Q)(x>HL2(R=RN) < .

Hv(l)(a:) —p® (.T)”L2(R7RN). (2.7)

The constant in the right side of (2.7) is less than one asnas3u By virtue of
the Fixed Point Theorem, there exists a unique vector fanet®? ¢ L*(R,RY),
such thaff,, ,v®? = v(@Y_ This is the only solution of system (1.9) I (R, RY).
Let us suppose that®? is trivial on the real line. This will contradict to the stete
assumption that for somie< k& < N the intersection of the supports of the Fourier

transforms supﬁm)(p) N sup@(p) is a set of nonzero Lebesgue measure in
R. [ |

We conclude the article by discussing the issue of the sdityalm the sense of
sequences for our nonlinear system of equations.

Proof of Theorem 1.3By means of the result of Theorem 1.2 above, under the
given conditions, each system of equations (1.14) has aarsglutionu™ (z) €
L*(R,RN), m € N,

Clearly, |Gy m(2)| 1 m) — [|Gr(2)| 1 m) @Sm — oo due to the standard triangle
inequality withl < k£ < N, N > 2. Letus use (1.13), (1.15) and (1.16) to obtain
that

GL

Cap
via the simple limiting argument. By virtue of Theorem 1i&iting system (1.9)
admits a unique solution(z) € L*(R, RY) as well.

We apply the standard Fourier transform (1.5) to both sidéssosystems of equa-
tions (1.9) and (1.14). Hence, for< k < N, N > 2, m € N

<1l-—¢

) = VIR Gi(p) Jr(p) @(p):m@(p)fém)(p) pER. (28)
In(L£L) — b ' In(L2h) = ibyp

—

Here f,.(p) and f"™ (p) are the Fourier images ¥, (u(z), ) and Fy,(u(™ (z), z)
respectively. Using (2.8), we easily derive

< Vo |Grm(p)| \E”T)(p) B ﬁc(p)\ 4 \/%|Gk,m(p) — Gi(p)| |J?k(p)|
\/an(e%c> + bp? \/ln2<e|%|€) e

By means of inequalities (1.4) and (1.6), we arrive at



Gm.’f 1 /E N G,mx_G'x ! N
< [Cun @l ) _ 7)) Cnl) Z Gl 7 )

such that

|Grm ()|
Ca,b

|Grm () — Gr(@)| 2wy
+
Ca,b

U Fe(u™ (), ) — Fr(u(z), 2)|| 2@+

luy™ (x) — ug(@) | 2y <

||Fk(u(ff)>$)||L2(R)-
Obviously,
[u™ (2) = u(@) || 2@z <
N 2| G () 121 gy
- 2
k=1 Ca7b
N 2)|Ghm(2) = Gr(@) |71
,m )
2 & ) | (), )22 ey
a,b

k=1

1E(ut™ (2), 2) — Fi(u(@), ©) | 7o)+

Let us recall bound (1.11) of Assumption 1.1. above. Thus,

N
Y (@), 2) = Fe(u(e), o) | < L2u™ (2) = u(@)|f2@py) (2.9)
k=1

This allows us to obtain the estimate from above

Q[G(m)]QLQ .
[1 B 1w (2) = u(@)|| 72 @y <

2
< Z 1Gkm () = Gr(@) | Loy | Fi (@), 2) [ L2 ey

N
‘1 k=

By virtue of (1.16), we have

[u"™(2) — u(2) |72 2y <

Cz§:Wﬁm Gil@) 712 | Fr(u(), 2) 72y

ab 1

We use inequality (1.10) of Assumption 1.1. Hence[allu(z), =) belong toL?(R)
for u(z) € L*(R,RY). Therefore, under the stated assumptions

u™ (x) = u(z), m— oo (2.10)

in L?(R,RY). Let us suppose that™ (x) is trivial in R for a certainm € N. This
will contradict to the given condition that for some< k£ < N the intersection
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of the supports of the Fourier images Slﬁp/f&\x)(p) N suprG/k;(p) is a set of
nonzero Lebesgue measure on the real line. The analogawusang holds for the
solutionu(z) of the limiting system of equations (1.9). [ |
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