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ABSTRACT. Let H0 be the free Dirac operator and V ⩾ 0 be a positive potential. We
study the discrete spectrum of H(α) = H0 − αV in the interval (−1, 1) for large values
of the coupling constant α > 0. In particular, we obtain an asymptotic formula for the
number of eigenvalues of H(α) situated in a bounded interval [λ, µ) as α → ∞.

1. STATEMENT OF THE MAIN THEOREM

Let H0 be the free Dirac operator

H0 = −i

3∑
1

γj
∂

∂xj

+ γ0,

where γj are 4× 4 selfadjoint matrices obeying the conditions

γjγk + γkγj =

{
0, if j ̸= k;

2 I, if j = k.

The operator H0 is selfadjoint in the space L2(R3;C4), consisting of functions on R3 that
take values in C4. The spectrum of H0 is the set σ(H0) = (−∞,−1] ∪ [1,∞).

Let V ⩾ 0 be a bounded potential on R3. Define H(α) to be the operator

H(α) = H0 − αV, α > 0.

We will always assume that V ∈ L3(R3). In this case, besides having a continuous spec-
trum that coincides with σ(H0), the operator H(α) might have a discrete spectrum in the
interval (−1, 1). Choose λ and µ so that −1 < λ < µ < 1. We define N(α) to be the
number of eigenvalues of H(α) inside [λ, µ).

Our main result is the theorem below which establishes the rate of growth of N(α) at
infinity. The symbol f+ denotes the positive part f+ = (|f | + f)/2 of f , which can be
either a real number or a real-valued function.

Theorem 1.1. Let V ⩾ 0 be a bounded real-valued potential such that

V (x) =
Φ(θ)

|x|ν
(
1 + o(1)

)
, as |x| → ∞,

where Φ is a continuous function on the unit sphere and 1 < ν < 4/3. Let −1 < λ < µ <
1. Then for any q ∈ (9/4, 3/ν),

lim
α→∞

α−3/ν+q

∫ α

0

N(t)t−q−1dt =

ν

3π2(3− νq)

∫
R3

[(
(Φ(θ)|x|−ν + µ)2+ − 1

)3/2

+
−
(
(Φ(θ)|x|−ν + λ)2+ − 1

)3/2

+

]
dx.

(1.1)
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Remark. If N(α) ∼ Cα3/ν as α → ∞, then the right hand side of (1.1) becomes
ν

3− νq
· C. Thus, the formula (1.1) determines the value of the contant C.

The question about the number of eigenvalues of the Dirac operator in a bounded interval
is considered here for the first time. This theorem is new.

Perturbations V ∈ L3(R3) were studied in [16] by M. Klaus and, later, in [4] by M.
Birman and A. Laptev. However, the object of the study in [16] and [4] was completely
different from N(α), considered in this article. The main results of [16] and [4] imply that
if V ∈ L3(R3), then the number N (λ, α) of eigenvalues of H(t) passing a regular point
λ ∈ (−1, 1) as t increases from 0 to α satisfies

N (λ, α) ∼ 1

3π2
α3

∫
R3

V 3dx, as α → ∞. (1.2)

In addition, M. Klaus proved in [16] that if V ∈ L3 ∩ L3/2, then the asymptotic formula
(1.2) holds even for λ = 1. In this case, N (λ, α) is interpreted as the number of eigenvalues
of H(t) that appear at the right edge of the gap as t increases from 0 to α.

The crux of the problem. Observe that N(α) = N (µ, α)−N (λ, α). However, since the
expression on the right hand side of (1.2) does not depend on λ, this formula only implies
that

N(α) = o(α3), as α → ∞.

In order to obtain an asymptotic formula for N(α) one would need to know the second term
in the asymptotics of N (λ, α). The second term in (1.2) has never been obtained. This ex-
plains why the problem is challenging. Another reason why the problem is challanging
is that the Dirichlet-Neumann bracketing that is often used for Schrödinger operators can-
not be applied to Dirac operators. To prove Theorem 1.1, one needs to develop a new
machinery rich in tools that allow us to obtain the estimate of N(α) stated below.

Theorem 1.2. Let 9/4 < q ⩽ 3 and let N(α) be the number of eigenvalues of H(α) in the
interval [λ, µ). Then ∫ ∞

0

N(α)α−q−1dα ⩽ C

∫
R3

V q(x)dx

with a constant C > 0 independent of V .

Theorems 1.1 and 1.2 involve averaging of the function N(α). Averaging of eigenvalue
counting functions also appeared in the papers [27] and [28]. However, the operators that
were studied in these two papers are Schrödinger operators. These are the publications in
which one discusses a periodic Schrödinger operator perturbed by a decaying potential αV .
The same elliptic model is discussed in [25] , [26], and [29], but the asymptotics of N(α)
is established in [25] , [26], and [29] without any averaging. To obtain such strong results,
one has to impose very restrictive conditions on the derivatives of V . The remaining papers
[1]-[3] [5], [6] , [9], [11] -[15] , [20], [24], that are devoted to Schrödinger operators, do not
even deal with N(α). Instead of that, they deal with the number N (λ, α) of eigenvalues
passing the point λ.

Finally, we would like to mention the paper [10] which is related to the spectral theory
of Dirac operators. However, the problems discussed in [10] are very different from the
questions studied here.
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2. COMPACT OPERATORS

For a compact operator T , the symbols sk(T ) denote the singular values of T enumerated
in the non-increasing order (k ∈ N) and counted in accordance with their multiplicity.
Observe that s2k(T ) are eigenvalues of T ∗T . We set

n(s, T ) = #{k : sk(T ) > s}, s > 0.

For a self-adjoint compact operator T we also set

n±(s, T ) = #{k : ±λk(T ) > s}, s > 0.

where λk(T ) are eigenvalues of T . Observe that

n±(s1 + s2, T1 + T2) ⩽ n±(s1, T1) + n±(s2, T2), s1, s2 > 0.

A similar inequality holds for the function n. Also,

n(s1s2, T1T2) ⩽ n(s1, T1) + n(s2, T2), s1, s2 > 0.

Theorem 2.1. Let A and B be two compact operators on the same Hilbert space. Then for
any r ∈ N,

r∑
1

spk(A+B) ⩽
r∑
1

spk(A) +
r∑
1

spk(B), ∀p ∈ (0, 1], (2.1)

and
r∑
1

spk(AB) ⩽
r∑
1

spk(A)s
p
k(B), ∀p > 0. (2.2)

The first inequality was discovered by S. Rotfeld [22]. The second estimate is called
Horn’s inequality (see Section 11.6 of the book [7]).

Below we use the following notation for the positive and negative part of a self-adjoint
operator T :

T± =
1

2
(|T | ± T ).

Theorem 2.2. Let 0 < p ⩽ 1. Let q ⩾ p. Let A and B be two compact selfadjoint
operators. Then for any s > 0,

q

∫ ∞

s

(
n+(t, A)−n+(t, B)

)
tq−1dt ⩽ ∥B∥q+

n+(s,A)+1∑
k=1

spk

(
|A|q/psgn(A)−|B|q/psgn(B)

)
.

(2.3)
Moreover, if B ⩽ A, then

q

∫ ∞

s

(
n+(t, A)−n+(t, B)

)
tq−1dt ⩽

n+(s,A)+1∑
k=1

spk

(
|A|q/psgn(A)−|B|q/psgn(B)

)
, ∀s > 0.

A proof of Theorem 2.2 can be found in [28].

Let H0 and V ⩾ 0 be two selfadjoint operators acting on the same Hilbert space. Assume
that V is bounded. For λ ∈ R \ σ(H0), define the operator Xλ by

Xλ = W (H0 − λ)−1W, W =
√
V . (2.4)

Two points λ and µ are said to be in the same spectral gap of H0 provided [λ, µ] ⊂ R \
σ(H0).
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Proposition 2.3. Let 0 < p ⩽ 1. Let q ⩾ p. Suppose the operators Xλ, Xµ are compact
for the two points λ < µ that belong to the same spectral gap of H0. Then for any s > 0,

q

∫ ∞

s

(
n+(t,Xµ)−n+(t,Xλ)

)
tq−1dt ⩽

n+(s,Xµ)+1∑
k=1

spk

(
|Xµ|q/psgn(Xµ)−|Xλ|q/psgn(Xλ)

)
.

Proof. Here one needs to use the fact that Xλ ⩽ Xµ. 2

Let S∞ be the class of compact operators. Note that the condition

W |H0 − λ0|−1/2 ∈ S∞, for some λ0 /∈ σ(H0), (2.5)

implies that operators (2.4) are compact for all λ ∈ R\σ(H0). Moreover, (2.5) implies that,
for each α > 0, the spectrum of H(α) = H0−αV is discrete outside of σ(H0) because the
difference of resolvent operators (H(α)− z)−1 and (H0 − z)−1 is compact for Im z > 0.

The following proposition is called the Birman-Schwinger principle:

Proposition 2.4. Let H0 and V ⩾ 0 be self-adjoint operators in a Hilbert space. Assume
that (2.5) holds for some λ0. Let N (λ, α) be the number of eigenvalues of H(t) = H0− tV
passing through a regular point λ /∈ σ(H0) as t increases from 0 to α. Then

N (λ, α) = n+(s,Xλ), for sα = 1, and W =
√
V . (2.6)

The idea of the proof of (2.6) is the following. First, one shows that λ ∈ σ(H(α)), if
and only if α−1 ∈ σ(W (H − λ)−1W ). This relation holds with multiplicities taken into
account. After that, one simply uses the definition of the distribution function n+(s,Xλ).

Corollary 2.5. Let H0 and V ⩾ 0 be self-adjoint operators in a Hilbert space. Assume
that (2.5) holds for some λ0. Let N(α) be the number of eigenvalues of the operator H(α)
in [λ, µ) contained in a gap of the spectrum σ(H0). Then

N(α) = n+(s,Xµ)− n+(s,Xλ), sα = 1. (2.7)

Let p > 0. The class of compact operators T whose singular values satisfy

∥T∥pSp
:=

∑
k

spk(T ) < ∞

is called the Schatten class Sp.

The following statement provides a Hölder type inequality for products of compact op-
erators that belong to different Schatten classes.

Proposition 2.6. Let T1 ∈ Sp and T2 ∈ Sq where p > 0 and q > 0. Then T1T2 ∈ Sr,
where 1/r = 1/p+ 1/q, and

∥T1T2∥Sr ⩽ ∥T1∥Sp∥T2∥Sq .

A proof of this proposition can be found in [7].

Consider the following important example of an integral operator on L2(Rd):(
Y u

)
(x) = (2π)−d/2

∫
Rd

a(x)eiξxb(ξ)u(ξ)dξ. (2.8)

If F is the Fourier transform operator, [a] and [b] are operators of multiplication by the
functions a and b, then

Y = [a]F ∗[b].

The symbol Q below is used to denote the unit cube [0, 1)d.
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Theorem 2.7. If a and b belong to Lp(Rd) with 2 ⩽ p < ∞, then Y ∈ Sp and

∥Y ∥Sp ⩽ C∥a∥Lp∥b∥Lp .

If 0 < p < 2 and ∑
n∈Zd

(
∥a∥pL∞(Q+n) + ∥b∥pL∞(Q+n)

)
< ∞,

then Y ∈ Sp and

∥Y ∥Sp ⩽ C
(∑
n∈Zd

∥a∥pL∞(Q+n)

)1/p(∑
n∈Zd

∥b∥pL∞(Q+n)

)1/p

.

The constants in both inequalities depend only on d and p.

The proof of this theorem can be found in [6].

Let p > 0. Besides the classes Sp, we will be dealing with the so-called weak Schatten
classes Σp of compact operators T obeying the condition

∥T∥pΣp
:= sup

s>0
spn(s, T ) < ∞.

It turns out that Y defined by (2.8) belongs to Σp if a ∈ Lp and the other factor b satisfies
the condition

∥b∥p
Lp
w
:= sup

s>0

(
sp measure{ξ ∈ Rd : |b(ξ)| > s}

)
< ∞.

Such functions b are said to belong to the space Lp
w(Rd). The following result is the so-

called Cwikel inequality (see [8]).

Theorem 2.8. Let p > 2. Assume that a ∈ Lp(Rd) and b ∈ Lp
w(Rd). Then Y defined by

(2.8) belongs to the class Σp and

∥Y ∥Σp ⩽ C∥a∥Lp∥b∥Lp
w

with a constant C that depends only on d and p.

3. PRELIMINARY ESTIMATES

For the sake of brevity, the norms in the spaces Sp and Lp will be often denoted by the
symbol ∥ · ∥p.

Theorem 3.1. Let l ⩾ 1 be an integer number. Let p satisfy the condition p > 6l
l+1

. Let also

Xλ = W (H0 − λ)−1W

be the family of Birman-Schwinger operators with H0 being the Dirac operator. Assume
that W ∈ Lp(R3). Then the operator

Tλ,µ = X l
µ −X l

λ

beloings to the Schatten class S p
2l

and

∥Tλ,µ∥ p
2l
⩽ C∥W∥2lp , (3.1)

with a constant C > 0 that does not depend on W .
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Proof. It is easy to see that Tλ,µ = X l
µ −X l

λ is a finite linear combination of operators of
the form (

WRλW
)n(

WRλRµW
)(

WRµW
)m

where Rλ = (H0 − λ)−1 and n + m = l − 1. If the factors W were written before the
factors Rλ and Rµ, then this term would be the operator

W 2lRn+1
λ Rm+1

µ ,

and Theorem 2.7 would imply an estimate that is similar to (3.1). We have to show that the
position of the factors does not matter too much.

For that purpose, we observe that(
WRλW

)n

= W |Rλ|(1+1/l)/2Jλ|Rλ|(1−1/l)/2W
l−1
l+1W

2
l+1

(
WRλW

)n−1

where Jλ = sign(Rλ). Consequently,(
WRλW

)n

=
( n∏
j=1

(
W qj |Rλ|qj(1+1/l)/2Jλ|Rλ|1−qj(1+1/l)/2W

2l
l+1

−qj
))

W qn− (l−1)
l+1

with q1 = 1 and qj = qj−1 +
2

l+1
= l−1+2j

l+1
. Therefore,

∥
(
WRλW

)n

W−qn+
(l−1)
l+1 ∥r ⩽

n∏
j=1

∥W qj |Rλ|qj(1+1/l)/2∥p/qj∥|Rλ|1−qj(1+1/l)/2W
2l
l+1

−qj∥ p(l+1)
l+1−2j

with 1
r
= 1

p(l+1)

∑n
j=1(l − 1 + 2j + (l + 1− 2j)) = 2ln

p(l+1)
. This leads to the estimate

∥
(
WRλW

)n

W−qn+
(l−1)
l+1 ∥r ⩽ C

n∏
j=1

∥W∥2l/(l+1)
p = C∥W∥p/rp (3.2)

Similarly, since(
WRµW

)m

= W p1− (l−1)
l+1

( m∏
j=1

(
W

2l
l+1

−pj |Rµ|1−pj(1+1/l)/2Jµ|Rµ|pj(1+1/l)/2W pj
))

with pm = 1 and pj−1 = pj +
2

l+1
, we obtain that

∥W−p1+
(l−1)
l+1

(
WRµW

)m

∥τ ⩽ C∥W∥p/τp (3.3)

where 1
τ
= 2lm

p(l+1)
.

It remains to estimate the Schatten norm of the operator

B := W qn+
2

l+1RλRµW
p1+

2
l+1 = W 1+ 2n

l+1RλRµW
1+ 2m

l+1

For that purpose, we write it as

W 1+ 2n
l+1RλRµW

1+ 2m
l+1 = W 1+ 2n

l+1 |Rλ|(2n+l+1)/(2l)Jλ,µ|Rµ|(2m+l+1)/(2l)W 1+ 2m
l+1

where
Jλ,µ = |H0 − λ|(2n+l+1)/(2l)RλRµ|H0 − µ|(2m+l+1)/(2l)

is a bounded operator.
Obviously,

∥B∥κ ⩽ ∥Jλ,µ∥ ∥W 1+ 2n
l+1 |Rλ|(2n+l+1)/(2l)∥ p(l+1)

(l+1+2n)

∥|Rµ|(2m+l+1)/(2l)W 1+ 2m
l+1∥ p(l+1)

(l+1+2m)
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with 1
κ = 2(l+1+n+m)

p(l+1)
= 2l

p(l+1)
. Therefore,

∥B∥κ ⩽ C∥W∥
2+

2(n+m)
(l+1)

p = C∥W∥p/κp (3.4)

Observe now that
1

r
+

1

τ
+

1

κ
=

2l

p
. (3.5)

Combining the relations (3.2) -(3.5), we obtain that

∥Tλ,µ∥p/(2l) ⩽ C∥W∥2lp .

2

If l is an odd number, then

Tλ,µ = |Xµ|lsign(Xµ)− |Xλ|lsign(Xλ).

In this case, if p ⩽ 2l, then it follows from Proposition 2.3 that

p

∫ ∞

0

N(α)α−p/2−1dα ⩽ 2
∑
k

s
p/(2l)
k (Tλ,µ) = 2∥Tλ,µ∥p/(2l)p/(2l).

As a consequence, applying Theorem 3.1 with l = 3, we obtain Theorem 1.2, saying that

q

∫ ∞

0

N(α)α−q−1dα ⩽ C∥W∥2q2q, q ∈ (9/4, 3].

4. SPLITTING

For ε > 0, we introduce two parts V1 and V2 of the potential V by setting

V1(x) =

{
V (x) if |x| < ε · α1/ν ;

0 if |x| ⩾ ε · α1/ν ,

and
V2 = V − V1.

Let Nj(t) be the number of eigenvalues of the operator H0 − tVj in the interval [λ, µ),
j = 1, 2. We want to show that∫ α

0

N(t)t−q−1dt ∼
∫ α

0

N1(t)t
−q−1dt+

∫ α

0

N2(t)t
−q−1dt, as α → ∞.

We introduce X̃λ by

X̃λ = W1(H0 − λ)−1W1 +W2(H0 − λ)−1W2,

where Wj =
√
V j for j = 1, 2. Note that

n+(t, X̃µ)− n+(t, X̃λ) = N1(t) +N2(t), for 0 < t ⩽ α.

As we know from (2.3), for s = α−1,

q
∣∣∣∫ ∞

s

(
n+(t,Xλ)− n+(t, X̃λ)

)
tq−1dt

∣∣∣ ⩽ ∥Xλ∥q + ∥X̃λ∥q+

+
cα3+1∑
k=1

s
q/3
k

(
X3

λ − X̃3
λ

)
.

(4.1)
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Here, the value of the parameter q is the same as in Theorem 1.2. The next proposition and
its corollaries show that the right hand side is of order o(α3/ν−q) as α → ∞. That allows
us to replace Xλ and Xµ by the operators X̃λ and X̃µ and claim that∫ α

0

N(t)t−q−1dt =

∫ ∞

α−1

(
n+(t,Xµ)− n+(t,Xλ))

)
tq−1dt

∼
∫ ∞

α−1

(
n+(t, X̃µ)− n+(t, X̃λ))

)
tq−1dt, as α → ∞.

Proposition 4.1. Let p > 9/4 and γ ⩾ 2. Assume that the support of the function W2 is
contained in the set

{x ∈ R3 : |x| > εα1/ν + 1}.
Let also

q =
3γp

6γ + p
.

Then there is an α0 > 0 such that

∥X3
λ − X̃3

λ∥q/3 ⩽ C∥W∥6p(ε2α2/ν + 1)1/γ, for α > α0,

with a constant C > 0 independent of α and W .

Proof. Let θ be a smooth function on the real line R such that

θ(t) =

{
1 for t ⩽ 0;

0 for t ⩾ 1.

Define θα on R3 by
θα(x) = θ(|x| − εα1/ν).

Then, obviously, θαW1 = W1 and θαW2 = 0. Using the identity

[B,A−1] = A−1 [A,B]A−1,

we obtain that

W1RλW2 = W1Rλ[H0, θα]RλW2 = W1R
2
λ

[
H0, [H0, θα]

]
RλW2 =

= W1R
3
λ

[
H0,

[
H0,

[
H0,

[
H0, [H0, θα]

]]]]
R3

λW2.

The middle operator
[
H0,

[
H0,

[
H0,

[
H0, [H0, θα]

]]]]
is an operator of multiplication by a

bounded matrix-valued function supported in the layer

Ωα = {x ∈ R3 : εα1/ν ⩽ |x| ⩽ εα1/ν + 1}.
Therefore, the operator

Y := Rλ

[
H0,

[
H0,

[
H0,

[
H0, [H0, θα]

]]]]
Rλ

belongs to the Schatten class Sγ at least for γ ⩾ 2 and

∥Y ∥γSγ
⩽ C0volΩα ⩽ C(ε2α2/ν + 1), ∀α > 0.

The operator X3
λ − X̃3

λ is a finite linear combination of operators of the form

X̃n
λ

(
W1RλW2 +W2RλW1

)
Xm

λ

where Rλ = (H0 − λ)−1 and n+m = 2.
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Repeating the arguments that lead to the estimate (3.2), we obtain

∥X̃n
λW

−n
2 ∥r ⩽ C

n∏
j=1

∥W∥3/2p = C∥W∥p/rp (4.2)

with r = 2p
3n

. Similarly, we obtain that

∥W−m
2 Xm

λ ∥τ ⩽ C∥W∥p/τp (4.3)

with τ = 2p
3m

.
It remains to estimate Schatten norms of the operators

B1,2 := W
1+n

2
1 RλW

1+m
2

2 and B2,1 := W
1+n

2
2 RλW

1+m
2

1 .

Obviously, it is enough to estimate only the norm of B1,2. For that purpose, we write it as

B1,2 = W
1+n

2
1 R2

λY R2
λW

1+m
2

2 = W
1+n

2
1 |Rλ|(n+2)/3Qλ|Rµ|(m+2)/3W

1+m
2

2

where
Qλ = |H0 − λ|(n+2)/3R2

λY R2
λ|H0 − λ|(m+2)/3

belongs to Sγ and ∥Qλ∥Sγ ⩽ C∥Y ∥Sγ .
Obviously,

∥B1,2∥κ ⩽ ∥W 1+n
2 |Rλ|(n+2)/3∥ 2p

(2+n)
∥|Rλ|(m+2)/3W 1+m

2 ∥ 2p
(2+m)

∥Qλ∥γ

with 1
κ = 3

p
+ 1

γ
. Therefore,

∥B1,2∥κ ⩽ C∥W∥3p(ε2α2/ν + 1)1/γ (4.4)

Observe now that
1

r
+

1

τ
+

1

κ
=

6

p
+

1

γ
=

3

q
. (4.5)

Combining the relations (4.2) -(4.5), we obtain that

∥X3
λ − X̃3

λ∥q/3 ⩽ C∥W∥6p(ε2α2/ν + 1)1/γ.

2

In fact we proved more: exactly the same arguments can be used to justify the following
statement.

Corollary 4.2. Let p > 9/4, γ ⩾ 2 and

q =
3γp

6γ + p
.

Let the operator T (α) be a finite linear combination of products of three factors of the form

χ−
j Xλχ

+
j , j = 1, 2, 3, (4.6)

where χ±
j are characteristic functions of some subsets of R3 (that might depend on α).

Assume that, at least for one of the three factors (4.6) in each product, the supports of χ−
j

and χ+
j are separated from each other by a spherical layer of the form

{x ∈ R3 : εα1/ν + a ⩽ |x| ⩽ εα1/ν + b}, with a < b.

Then there is an α0 > 0 such that

∥T (α)∥q/3 ⩽ C∥W∥6p(ε2α2/ν + 1)1/γ, for α > α0,

with a constant C > 0 independent of α and W .
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As a consequence, we immediately obtain the next result, in which we use the notation
Rλ = (H0 − λ)−1.

Corollary 4.3. Let p > 9/4, γ ⩾ 2 and

q =
3γp

6γ + p
.

Let χj be the characteristic functions of the sets

{x ∈ R3 : εα1/ν − j ⩽ |x| ⩽ εα1/ν + j}, j = 1, 2, 3,

and Yλ,α be the operator defined by

Yλ,α = χ3X̃λχ2X̃λχ1

(
W1RλW2 +W2RλW1

)
χ1 + χ2X̃λχ1

(
W1RλW2+

W2RλW1

)
χ1Xλχ2 + χ1

(
W1RλW2 +W2RλW1

)
χ1Xλχ2Xλχ3.

(4.7)

Then there is an α0 > 0 such that

∥X3
λ − X̃3

λ − Yλ,α∥q/3 ⩽ C∥W∥6p(ε2α2/ν + 1)1/γ, for α > α0,

with a constant C > 0 independent of α and W .

Proof. One only needs to realize that the operator T (α) := X3
λ − X̃3

λ − Yλ,α satisfies
conditions of Corollary 4.2. 2

On the other hand, applying Cwikel’s inequality, one can easily show that

∥Yλ,α∥Σ1 ⩽ C

∫
R3

χ3(x)V
3(x)dx ⩽ Cεα

2/ν−3 for α > α0.

In other words,
sk
(
Yλ,α

)
⩽ Cεα

2/ν−3k−1 for α > α0.

Consequently,
cα3+1∑

1

s
q/3
k

(
Yλ,α

)
⩽ Cεα

2/ν−q. (4.8)

Corollary 4.4. Let 9
4
< q < 3

ν
where ν > 1. Then∫ ∞

α−1

(
n+(t,Xλ)− n+(t, X̃λ)

)
tq−1dt = o(α3/ν−q), as α → ∞.

Proof. Choose γ > q
3−νq

and define p by

6

p
=

3

q
− 1

γ
.

Then p > 6/ν. Therefore W ∈ Lp(R3). Using Rotfeld’s inequality, we obtain

cα3+1∑
1

s
q/3
k

(
X3

λ − X̃3
λ

)
⩽

cα3+1∑
1

s
q/3
k

(
Yλ,α

)
+ ∥X3

λ − X̃3
λ − Yλ,α∥q/3q/3. (4.9)

The inequality (4.9) estimates the last term on the right hand side of (4.1). It remains to
apply Corollary 4.3 and the relation (4.8). 2
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5. OTHER CONSEQUENCES

The preceding discussion of the splitting principle, involves a decomposition of the space
R3 into two domains. It is easy to see that the same arguments work for all piecewise
smooth domains obtained similarly by scaling by a factor of α1/ν . In particular, one of
the domains that we have alredy considered can be decomposed further into smaller sets.
Namely, let Qj be bounded disjoint cubes contained in the region {x ∈ R3 : |x| ⩾ ε},
1 ⩽ j ⩽ n − 1. Let {ϕj}n−1

j=1 be the characteristic functions of the cubes α1/νQj . Define
ϕn to be the characteristic function of the complement

{x ∈ R3 : |x| ⩾ εα1/ν} \ ∪n−1
j=1α

1/νQj.

Theorem 5.1. Let 9
4
< q < 3

ν
where ν > 1. Then∫ ∞

α−1

(
n+

(
t,W2(H0 − λ)−1W2

)
−

n∑
j=1

n+

(
t, ϕjW (H0 − λ)−1Wϕj

))
tq−1dt = o(α3/ν−q),

as α → ∞.

To prove Theorem 5.1, it is enough to repeat the steps that were needed to prove Corol-
lary 4.4.

Clearly, to obtain an asymptotic formula for
∫∞
α−1 n+

(
t,W2(H0−λ)−1W2

)
tq−1dt one has

to obtain an asymtotic formula for
∫∞
α−1 n+

(
t, ϕjW (H0−λ)−1Wϕj

)
tq−1dt for each j. The

latter integral can be written as∫ ∞

α−1

n+

(
t, ϕjW (H0−λ)−1Wϕj

)
tq−1dt = α−q

∫ ∞

1

n+

( τ
α
, ϕjW (H0−λ)−1Wϕj

)
τ q−1dτ

Observe now that, if

V (x) =
Φ(θ)

|x|ν
, for |x| > 1,

then the maximum and minimum values of αV on the cubes α1/νQj do not depend on α:

mj ⩽ αV (x) ⩽ Mj, for all α > ε−ν and all x ∈ α1/νQj.

The potential αV can be estimated by constant functions mjϕj and Mjϕj on cubes α1/νQj .
So, due to the monotonicity of the counting function n+,

n+

(
τ

mj

, ϕj(H0 − λ)−1ϕj

)
⩽ n+

( τ
α
, ϕjW (H0 − λ)−1Wϕj

)
⩽ n+

(
τ

Mj

, ϕj(H0 − λ)−1ϕj

)
,

for any τ > 0.
Consequently, it remains to obtain an asymptotic formula for the quantity

n+

(
t, ϕj(H0 − λ)−1ϕj

)
as α → ∞

for any fixed t > 0. We are going to prove the following result.

Proposition 5.2. For any fixed t > 0,

n+

(
t, ϕj(H0 − λ)−1ϕj

)
∼ 3−1π−2α3/ν

(
(t−1 + λ)2+ − 1

)3/2

+
volQj as α → ∞.
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Proof. Note that
4

3
π
(
(t−1 + λ)2+ − 1

)3/2

+
= vol {ξ ∈ R3 :

(√
|ξ|2 + 1− λ

)−1
> t}.

Taking into account the fact that ±
√
|ξ|2 + 1 are eigenvalues of the symbol

A(ξ) :=
3∑
1

γjξj + γ0

of the operator H0, we conclude that we need to prove that

trΨ
(
ϕj(H0 − λ)−1ϕj

)
∼ tr

[
ϕjΨ

(
(H0 − λ)−1

)
ϕj

]
as α → ∞, (5.1)

for Ψ being the characteristic function of the interval (t,∞). Since such a function Ψ can
be estimated from above and below by continuous functions of the form

Ψϵ(s) =


0, if s < τ

(s− τ)/ϵ, if τ ⩽ s ⩽ τ + ϵ

1, if s > τ + ϵ,

and the quantity (
(t−1 + λ)2+ − 1

)3/2

+

depends on t continuously, we only need to prove (5.1) for Ψ that are continuous and
vanishing near zero.

Any such function Ψ can be written as

Ψ(s) = s5ζ(s),

where ζ is a continuous function on the real line R. Notice that, in this case,∣∣∣trΨ(
ϕj(H0 − λ)−1ϕj

)∣∣∣ ⩽ ∥ϕj(H0 − λ)−1ϕj∥5S5
∥ζ∥∞ ⩽ Cα3/ν∥ζ∥∞.

Moreover,∣∣∣trϕjΨ
(
(H0 − λ)−1

)
ϕj

∣∣∣ ⩽ ∥ϕj(H0 − λ)−2∥S5/2
∥(H0 − λ)−3ϕj∥S5/3

∥ζ∥∞ ⩽ Cα3/ν∥ζ∥∞,

Thus both sides of (5.1) can be estimated by Cα3/ν∥ζ∥∞. The functional ∥ζ∥∞ is the
L∞-norm of the function on the interval [−L,L] where L = 1/(1 − |λ|). Since ζ can be
uniformly approximated by polynomials, it is enough to prove (5.1) under the assumption
that ζ is a polynomial. Put differently, it is enough to prove it for

Ψ(s) = sn, n ⩾ 5.

Denote B = (H0 − λ)−1, χ+ = ϕj and χ− = 1− ϕj. We are going to prove that

∥(χ+Bχ+)
n − χ+B

nχ+∥S1 = o(α3/ν), as α → ∞. (5.2)

For that purpose, we write χ+B
nχ+ as

χ+B
nχ+ = (χ+Bχ+)

n +
n−1∑
j=0

(χ+Bχ+)
jχ+Bχ−B

n−j−1χ+. (5.3)

While the norm of the operator χ+Bχ− does not tend to zero, it is still representable in the
form

χ+Bχ− = T1+T2, where ∥T1∥ → 0, and ∥T2∥Sn = o(α3/(nν)), as α → ∞.
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To see that, we define T2 to be the operator

T2 = θχ+Bχ−θ,

where θ is the operator of multiplication by the characteristic function of the set(
(α1/ν + α1/(2ν))Qj

)
\
(
(α1/ν − α1/(2ν))Qj

)
.

Then the volume of the support of the function θ does not exceed Cα5/(2ν). Therefore,

∥T2∥Sn ⩽ Cα5/(2nν) = o(α3/(nν)), as α → ∞.

On the other hand, we have the estimate for the integrtal kernel k(x, y) of the operator T1:

|k(x, y)| ⩽ C(1− θ(x))(1− θ(y))e−c|x−y|

which implies that ∥T1∥ → 0 as α → ∞ because x and y are getting far away from each
other while

∥T1∥ ⩽
(
sup
x

∫
|k(x, y)|dy × sup

y

∫
|k(x, y)|dx

)1/2

.

Thus, we have the following estimate

∥(χ+Bχ+)
jχ+Bχ−B

n−j−1χ+∥S1 ⩽ ∥(χ+Bχ+)
jT1B

n−j−1χ+∥S1+

∥(χ+Bχ+)
jT2B

n−j−1χ+∥S1 ⩽ ∥χ+Bχ+∥jSn−1
∥T1∥∥Bn−j−1χ+∥S(n−1)/(n−j−1)

+∥χ+Bχ+∥jSn
∥T2∥Sn∥Bn−j−1χ+∥Sn/(n−j−1)

= o(α3/ν), as α → ∞.

Combining this relation with (5.3) we obtain (5.2). 2

As a consequence, we obtain

Proposition 5.3. For any constant M ⩾ 0, we have

lim
α→∞

α−3/ν+q

∫ ∞

α−1

n+

(
αt,Mϕj(H0 − λ)−1ϕj

)
tq−1dt =

3−1π−2volQj

∫ ∞

1

(
(t−1M + λ)2+ − 1

)3/2

+
tq−1dt

(5.4)

Proof. Changing the variables αt → t, we obtain

lim
α→∞

α−3/ν+q

∫ ∞

α−1

n+

(
αt,Mϕj(H0 − λ)−1ϕj

)
tq−1dt =

lim
α→∞

α−3/ν

∫ ∞

1

n+

(
t,Mϕj(H0 − λ)−1ϕj

)
tq−1dt

(5.5)

The integrand on the right hand side can be estimated according to Cwikel’s inequality:

n+(t,Mϕj(H0 − λ)−1ϕj) ⩽ Ct−3

∫
R3

ϕ6
j(x)dx ⩽ Cα3/νt−3volQj.

Consequently, the limit on the right hand side of (5.5) can be computed by the Lebesgue
dominated convergence theorem. The relation (5.4) follows now from Proposition 5.2.
2

To state the next result, we need to introduce the notation

T(M,λ) = 3−1π−2

∫ ∞

1

(
(t−1M + λ)2+ − 1

)3/2

+
tq−1dt



14 JASON HOLT, AND OLEG SAFRONOV

Theorem 5.4. Assume that

V (x) =
Φ(θ)

|x|ν
, for |x| > 1, (5.6)

where Φ is a continuous function on the unit sphere. Then

lim
α→∞

α−3/ν+q

∫ ∞

α−1

n+

(
t,W2(H0 − λ)−1W2

)
tq−1dt =

∫
|x|>ε

T
(
Φ(θ)|x|−ν , λ

)
dx. (5.7)

Proof. Let mj and Mj be the maximum and the minimum values of V on the cube Qj .
Then, according to Proposition 5.3, we have

3−1π−2volQj

∫ ∞

1

(
(t−1mj + λ)2+ − 1

)3/2

+
tq−1dt ⩽

lim
α→∞

α−3/ν+q

∫ ∞

α−1

n+

(
t, ϕjW (H0 − λ)−1Wϕj

)
tq−1dt ⩽

3−1π−2volQj

∫ ∞

1

(
(t−1Mj + λ)2+ − 1

)3/2

+
tq−1dt,

(5.8)

by the monotonicity of the counting function n+. Taking the sum over j on the three sides
of (5.8) and using Theorem 5.1, we obtain that

n∑
j=1

T(mj, λ)volQj ⩽ lim
α→∞

α−3/ν+q

∫ ∞

α−1

n+

(
t,W2(H0 − λ)−1W2

)
tq−1dt ⩽

n∑
j=1

T(Mj, λ)volQj,

It remains to realize that the left and the right hand sides are the Riemann sums of the
integral on the right hand side of (5.7). 2

Obviously, the condition (5.6) of the last theorem can be replaced by the assumption that
the right hands side is only the asymptotics of V .

Theorem 5.5. Let V ⩾ 0 be a bounded real valued potential such that

V (x) =
Φ(θ)

|x|ν
(
1 + o(1)

)
, as |x| → ∞,

where Φ is a continuous function on the unit sphere. Let 9/4 < q < 3/ν and ν > 1. Then

lim
α→∞

α−3/ν+q

∫ ∞

α−1

n+(t,W2(H0 − λ)−1W2)t
q−1dt =

= 3−1π−2

∫ ∞

1

(∫
|x|>ε

(
(t−1Φ(θ)|x|−ν + λ)2+ − 1

)3/2

+
dx

)
tq−1dt.

(5.9)
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6. THE END OF THE PROOF

Proposition 6.1. Let V ⩾ 0 be a bounded real valued potential such that

V (x) =
Φ(θ)

|x|ν
(
1 + o(1)

)
, as |x| → ∞,

where Φ is a continuous function on the unit sphere. Let 9/4 < q < 3/ν and ν > 1. Let
also −1 < λ < µ < 1. Then

lim sup
α→∞

α−3/ν+q

∫ ∞

α−1

(
n+(t,W1(H0 − µ)−1W1)− n+(t,W1(H0 − λ)−1W1)

)
tq−1dt

⩽
4πε3−νq

3− νq
∥Φ∥∞.

(6.1)

Proof. It is enough to apply the estimate established in Theorem 1.2 with V replaced by
the potential V1. 2

Corollary 6.2. Let V ⩾ 0 be a bounded real valued potential such that

V (x) =
Φ(θ)

|x|ν
(
1 + o(1)

)
, as |x| → ∞,

where Φ is a continuous function on the unit sphere. Let 9/4 < q < 3/ν and ν > 1. Let
also −1 < λ < µ < 1. Then

3−1π−2

∫ ∞

1

(∫
|x|>ε

(
((t−1Φ(θ)|x|−ν + µ)2+ − 1)

3/2
+

−
(
(t−1Φ(θ)|x|−ν + λ)2+ − 1

)3/2
+

)
dx

)
tq−1dt ⩽

lim inf
α→∞

α−3/ν+q

∫ ∞

α−1

(
n+(t, X̃µ)− n+(t, X̃λ)

)
tq−1dt,

(6.2)

while

lim sup
α→∞

α−3/ν+q

∫ ∞

α−1

(
n+(t, X̃µ)− n+(t, X̃λ)

)
tq−1dt ⩽

4πε3−νq

3− νq
∥Φ∥∞+

3−1π−2

∫ ∞

1

(∫
|x|>ε

(
((t−1Φ(θ)|x|−ν + µ)2+ − 1)

3/2
+

−
(
(t−1Φ(θ)|x|−ν + λ)2+ − 1

)3/2
+

)
dx

)
tq−1dt.

(6.3)

Theorem 6.3. Let V ⩾ 0 be a bounded real valued potential such that

V (x) =
Φ(θ)

|x|ν
(
1 + o(1)

)
, as |x| → ∞,

where Φ is a continuous function on the unit sphere. Let 9/4 < q < 3/ν and ν > 1. Let
also −1 < λ < µ < 1. Then

lim
α→∞

α−3/ν+q

∫ ∞

α−1

(
n+(t,Xµ)− n+(t,Xλ)

)
tq−1dt

= 3−1π−2

∫ ∞

1

(∫
R3

[(
(t−1Φ(θ)|x|−ν + µ)2+ − 1

)3/2

+
−(

(t−1Φ(θ)|x|−ν + λ)2+ − 1
)3/2

+

]
dx

)
tq−1dt.

(6.4)



16 JASON HOLT, AND OLEG SAFRONOV

Proof. According to Corollary 4.4, X̃λ and X̃µ in (6.2) and (6.3) can be replaced by the
operatorsXλ and Xµ. After this replacement, we can pass to the limit as ε → 0. 2

Theorem 1.1 is now a consequence of Theorem 6.3.
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