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Universidade Federal de São Carlos, Departamento de Matemática,
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Abstract

It is shown that it is possible to adapt the quantum graph model
of graphene to some types of nonequilateral graphynes considered in
the literature; we also discuss the corresponding nanotubes. The pro-
posed models are, in fact, effective models and are obtained through
selected boundary conditions and an ad hoc prescription. We analyti-
cally recover some results from the literature, in particular the presence
of Dirac cones for α-, β- and (6, 6, 12)-graphynes; for γ-graphyne our
model presents a band gap (in accord to the literature), but only for a
range of parameters, with a transition at certain point with quadratic
touch and then the presence of Dirac cones.

PACS numbers: 81.05.Uw, 73.63.Bd, 73.43.Cd
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1 Introduction

There are many proposals of two-dimensional carbon allotropes in the lit-
erature, with graphene being the most prominent due to its peculiar elec-
tronic properties and it has been synthesized since 2004 (see the review [6]).
Theoretical techniques to study graphene, both single and multilayer cases,
include ab initio calculations (comprising density functional theory) and
tight-binding models. On the rigorous mathematical side, there are three
approaches for single layer graphene in the literature, one continuous model
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by Fefferman and Weinstein [14] proving the “generic” presence of Dirac
cones in the dispersion relations, interesting symmetry arguments by Berko-
laiko and Comech [3], and this method applies to different settings, including
some multilayers models, and a quantum graph model (QGM) mainly due
to Amovilli, Leys and March [1] and Kuchment and Post [18]. The latter ap-
proach has two advantages: it is simpler then the previous one and permits
an accurate spectral analysis including details of Dirac cones; however, this
technique requires that all edges in the graph have the same length, that
is, an equilateral graph. Recently, the present authors have proposed adap-
tations in the boundary conditions so that AA- and AB-stacked graphene
multilayer could (at least qualitatively) be modeled by QGMs [7, 8]; there is
a work that also cover some few layers of graphene combined with hexagonal
boron nitride [9] (again with a QGM).

In this work we discuss how to (approximately) describe some distinct
structures of graphynes via QGMs, including cases with edges of different
lengths, again by playing with boundary conditions, and our main interest is
in the possible presence of Dirac cones; ad hoc assumptions will be employed,
and our results are compatible with some known results in the literature.
We also discuss graphyne nanotubes in this context. Although our approach
may seem rather exploratory, the results are mathematically correct, and it
was not without some surprise that such proposal has worked!

The structure of graphynes are obtained from the one of graphene. Re-
call that all carbon atoms in graphene equilateral hexagonal lattice (we
reserve the term honeycomb to such regular hexagonal lattice) have sp2 hy-
bridization with single and double bonds. Carbon atoms in graphynes have
both sp2 and sp hybridizations, and they are usually obtained by replacing
selected single C(sp2)− C(sp2) bonds in graphene with

C(sp2)− C(sp) ≡ C(sp)− C(sp2)

ones [19], which then also include triple bonds. Graphynes were predicted
by Baughman, Eckhardt and Kertesz [2] in 1987 and only small samples
have been synthesized; however, recently [15, 10] a scalable synthesis was ob-
tained, and some authors advocate that graphyne might replace graphene [21].

Some graphynes are expected to present Dirac cones, which were theoret-
ically found in first-principle calculations [20], tight-binding models [19] and,
in a particular case for which all edges have the same length [11], through a
QGM (and Dirac cones were found). Perhaps this work could be seen as a
step forward some parts of [11].

Here we extend the QGM to four types of graphynes considered in [19, 20]
(see also [12]); they are shown in Figure 1 and named α-, β-, γ- and (6,6,12)-
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(a) α-graphyne.

a1

a2

a3

(b) β-graphyne.

a1a2

a3

(c) γ-graphyne.

a1
a2

a3

(d) (6,6,12)-graphyne.

Figure 1: Structures of a layer of different types of graphynes (as shown).
Empty and filled balls represent sp and sp2 carbon atoms, respectively. The
dashed lines delimit the fundamental domain in each case. A possible choice
of edges a1, a2, a3 associated with parameters t1, t2, t3, respectively, is indi-
cated in each case.
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graphynes. In short, we always think of the graphene honeycomb lattice, and
for each edge we introduce a positive parameter in the boundary condi-
tions (see (3)) at vertices, in order to take into account the intensity of the
chemical bond in each edge; the stronger the bond the larger the parameter
value. This will permit us to model some graphynes whose edges have differ-
ent lengths, i.e., nonequilateral ones, in terms of the honeycomb structure;
it should be clear that we have just effective models, which include some
heuristic arguments, since the honeycomb structure of such models may
differ from the graphyne structures (and this is a strength of our approach).

After modeling with QGMs, in many instances the calculations are rig-
orous and analytical, so without approximations (sometimes we appeal to
plots of the graphs of functions to guide us about possible existence of zeros).
We summarize our findings as follows:

• α-graphyne has the peculiarity of edges with 3 double bonds, and oth-
ers with 2 single and a triple bonds. We argue (see ahead) that, from
the point of view of QGMs, they have comparable bond strengths, so
our model reproduces the one of graphene [18] in this case. Hence, we
do not explore α-graphene in this work (we just include some remarks
for completeness with respect to [19, 20]).

• In accordance with other works [19, 20], we have got that Dirac points
are present in β-graphyne. We have found that this holds for all com-
patible parameter values in our effective QGM.

• In the literature [19], a band gap was found (with no Dirac cone, of
course) for the γ-graphyne. Our QGM shows a richer structures in this
case: there is a transition at certain parameter value t = tc (see ahead
for details), with a gap band between valence and conduction bands
for 0 < t < tc, Dirac cones for tc < t < 1, and at the transition point
t = tc there is a parabolic touch. We have an explicitly description of
the gap size as function of parameters. Such properties should be of
interest to be confirmed by experimentalists, in particular because it
opens a potential for practical applications of γ-graphyne.

It is worth mentioning that this is one of the graphynes that a scalable
synthesis has been recently obtained [10].

• Our effective QGM of (6,6,12)-graphyne also presents Dirac cones for
all values of parameters, with two different Dirac points, in agreement
with [19, 20]. This case is technically more involved than the others,
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so that we have checked that there are no other touch points by look-
ing at the graph of the dispersion relations (instead of just analytical
expressions as in the other cases). We have not found that it is “self-
doped” as reported in [20] (note that this property was not reported
in a tight-binding calculation [19] either).

• For the graphynes we consider, we discuss conditions so that the Dirac
cones keep present after building graphyne tubes.

• In all cases with Dirac cones, they are explicitly located and the cone
slopes are given in terms of the parameters of the model.

In Section 2 the general idea of the QGM is presented in the specific
case of the honeycomb lattice (since we propose to (effectively) think of all
considered cases with the structure of this lattice), with some heuristics and
the proposed choices of boundary conditions. In Section 3, a general discus-
sion about dispersion relations of such QGMs is performed, which is then,
in Section 4, specialized to Dirac cones in each considered graphyne type.
Nanotubes are the subject of Section 5. Conclusions appear in Section 6.

2 Honeycomb quantum graph model

Graphyne sheet model

The honeycomb lattice G is generated by the union of two triangular sublat-
tices, gA (with vertices of type A) and gB (with vertices of type B), where

gA := ZE1 + ZE2 and gB := gA + (1, 0),

with E1 = (3/2,
√

3/2) and E2 = (0,
√

3) being the lattice vectors (see
Figure 2a). Consider the action of the group Z2 on G by shift by the vectors
p1E1 + p2E2, p = (p1, p2) ∈ Z2, with fundamental domain (or Wigner-Seitz
cell) W = {v1, v2, a1, a2, a3} (see Figure 2b).

We identify each edge e of G with the segment [0, 1], denote by E(G)
the set of edges of G and by Ev(G) the set of three edges that contains the
vertex v.

The proposed Hamiltonian operator H acts along each edge e ∈ E(G)
as the free operator (see Remark 2.3), in suitable units,

Hue(x) = −d2ue
dx2

(x), x ∈ e, (1)

satisfying the modified Neumann vertex conditions in each vertex v of G; let
Ev(G) = {e1, e2, e3}:
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Figure 2: The honeycomb lattice G. (a) The lattice with lattice vectors E1

and E2; some type-A and type-B vertices are labeled. (b) Its fundamental
domain W ; it contains three edges a1, a2 and a3 and two vertices v1 and v2.

(i) Modified continuity condition:

ue1(v)

t1
=
ue2(v)

t2
=
ue3(v)

t3
. (2)

(ii) Modified zero total flux condition:

t1u
′
e1(v) + t2u

′
e2(v) + t3u

′
e3(v) = 0 . (3)

The derivatives u′ej (v) are directed from v to the other vertex of ej and
t1, t2 and t3 are the positive interaction parameters between the edge
bonds. Our idea is that the larger the bond strength in an edge (so
the larger the parameter value) the larger its contribution to the flux
at each vertex and the larger the value of the function at the vertex
(due to the division by the parameter). The values of such parameters
depend on each considered graphyne.

We call the general operator H a graphyne operator. Under these con-
ditions, the graphyne operator is self-adjoint, as discussed in Appendix A.

Remark 2.1 From (3) one may suppose that the maximum value among
the parameters t1, t2, t3 takes the value 1. For instance, in case t1 takes the
maximum value, one may write (3) in the form

t1
(
u′e1(v) + t̃2u

′
e2(v) + t̃3u

′
e3(v)

)
= 0,

with 0 < t̃2 = t2/t1 ≤ 1 and 0 < t̃3 = t3/t1 ≤ 1.
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Remark 2.2 Note that graphene, as studied in [18], is recovered by selecting
t1 = t2 = t3. This simple remark has an important consequence for this
work; it tells us that in the QGM of graphene the single and double bonds
have effectively the same intensity, and we will assume this while modeling
graphynes. We have checked, in some cases, that our results are essentially
the same whether we slightly distinguish the intensities of single and double
bonds (not shown here), but we pay the price of much more complicated
expressions to deal with.

By taking into account the above remarks, let us describe some heuristics
and the proposed parameter ranges in each graphyne case shown in Figure 1.

(j) the lattice is always the honeycomb one, i.e., the equilateral hexagonal
lattice in Figure 2a; we technically need that all edges have the same
length (e.g., due to the representation (17));

(jj) for each graphyne, we look at its structure (Figure 1) and select edges
that will be associated with a1, a2, a3 in the fundamental domain W
of the honeycomb lattice (Figure 2b), so identifying the values of pa-
rameters t1, t2, t3 (recall that the larger the bond strength the larger
the corresponding parameter; note that a1 differs from the other edges
since it is the unique that connects the two vertices in W ).

(jjj) by looking at Figure 1, we identify four types of edge bonds b1, · · · , b4,
whose bond strengths will be probed (and compared) by their well-
known enthalpy values1:

• b1 representing C− C and known enthalpy h1 = 346 kJ/mol;

• b2 representing C = C and enthalpy h2 = 602 kJ/mol;

• b3 representing C = C = C = C and enthalpy h3 = 1806 kJ/mol
(this bond only occurs in α-graphyne);

• b4 representing C− C ≡ C− C and enthalpy h4 = 1527 kJ/mol
(this bond is part of all graphyne compositions).

In graphene there occur only b1 and b2 bonds, and they are considered
indistinguishable from the point of view of QGMs [18]; their enthalpy
difference is h2 − h1 = 256 kJ/mol. Hence, bonds with enthalpy dif-
ference of this order will not be distinguished in our modeling, and
this is the case of b3 and b4, whose enthalpy difference is 279 kJ/mol

1http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
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(and (h3 − h4)/(h2 − h1) ≈ 1.09). The other enthalpy values dif-
fer from at least 925 kJ/mol (the difference between b2 and b4 with
(h4 − h2)/(h2 − h1) ≈ 3.6), and so they will be considered distinct in
the modeling.

(jv) we need a criterion to associate two vertices and three graphyne edges
in its fundamental domain (Figure 1) with those in W that could
depict the main graphyne characteristics. It is natural to pick the
most common configuration that appear in the fundamental cell of
each graphyne; for β- and γ-graphynes this procedure works, but not
for the (6, 6, 12)-graphyne. So, for the latter case we have worked with
the options (that includes the bond b4) and selected the one that has
recovered results in [19, 20].

Let’s apply the above procedure to the graphynes in Figure 1; see selec-
tions that are labeled a1, a2, a3 in that figure:

• α-graphyne: as anticipated, all edge bonds are supposed to be indis-
tinguishable from the QGM viewpoint, so t1 = t2 = t3 = 1; it then
coincides with the graphene QGM (which is consistent to known re-
sults).

• β-graphyne: we have t2 = t3 = 1 (since a2, a3 have b4 bonds) and
0 < t1 < 1 (because a1 has a b2 bond).

• γ-graphyne: we have t1 = 1 and 0 < t2 = t3 < 1.

• (6, 6, 12)-graphyne: we take t1 = t2 = 1 and 0 < t3 < 1.

Note that the choice associated with the a1 edge, in all cases, point to a
corner of the fundamental domain (there are two possibilities for the (6, 6, 12)
case); but we do not have any justification to take this as a criterion to select
graphyne edges to be mapped to the honeycomb fundamental domain.

Remark 2.3 As done in previous works [18, 11, 7, 8], similar qualitative
results are obtained by adding an even potential to the operator (1). We
have opted to keep things simpler by selecting a free operator in each edge;
furthermore, this choice gives explicit expressions for some spectral quanti-
ties.

Remark 2.4 The benzene ring being a resonant structure, its bonds, rep-
resented by successive alternating single and double bonds, are rigorously
equivalent. Therefore, considering them equivalent has both experimental
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and theoretical foundations from a quantum mechanical point of view. This
way, graphynes can be reduced to two different parameters, one associated
with the benzene ring and the other with the acetylene group C−C ≡ C−C.
However, the use of enthalpy values give quantitative relations with a poten-
tial to be applied to other situations.

Graphyne nanotube model

We here briefly discuss the corresponding single-wall graphyne nanotube
models. A more detailed discussion and classification of nanotubes can be
find in [18] and references therein.

Let p ∈ R2 \ {0} be a vector of the lattice of translation symmetries of
the quantum graph G, that is, we can write p as

p = p1E1 + p2E2, p1, p2 ∈ Z. (4)

Let ∼p be the equivalence relation given by z1 ∼p z2 if, and only if, z2−z1 =
q.p, with z1, z2 ∈ G and q is an integer number. The graph Gp obtained as
the quotient of G with respect to the equivalence relation ∼p is proposed to
model a graphyne nanotube. This graph is naturally isometrically embedded
into the cylinder R2/ ∼p. If p = (p1, p2), we denote Gp = G(p1,p2). There are
several types of nanotubes. For instance, G(N,0) and G(0,N) are the so-called
zig-zag nanotubes, G(N,N) are the armchair nanotubes and the chiral are
nanotubes with the form G(p1,p2), with p1 6= p2, p1, p2 6= 0.

The corresponding Hamiltonian operator will be denoted by Hp, called
graphyne nanotube operator, which is defined exactly as the graphyne op-
erator H above, with modified Neumann vertex conditions (1), and taking
into account the above additional symmetry (see Section 5).

3 Dispersion relation

Now we derive the dispersion relation of the graphyne operator H; it is based
on the Floquet-Bloch theory [5, 13, 16, 22] combined with the idea [18]
of considering spectral points outside the spectrum of the edge Dirichlet
operator. We begin with the general model, then we specialize to each
graphyne case.

For each quasimomentum θ = (θ1, θ2) in the Brillouin zone B, let H(θ)
be the Bloch Hamiltonian acting on functions satisfying the conditions (2)
and 3 and also the Floquet condition

u(x+ p1E1 + p2E2) = ei(p1θ1+p2θ2)u(x), (5)
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for any p = (p1, p2) ∈ Z2 and x ∈ W . The spectra of H(θ) is constituted
only of eigenvalues and denoted by σ(H(θ)) = {λn(θ)}n, and the spectrum
of H is the union of these spectra (see [5])

σ(H) =
⋃
θ∈B

σ(H(θ)). (6)

Recall that the function θ 7→ {λn(θ)}n is the dispersion relation of H. Thus,
to determine σ(H) and the dispersion relation of H, we have to solve the
following eigenvalue problem, for each quasimomentum θ ∈ B,

H(θ)u = λu, λ ∈ R. (7)

In order to solve (7), consider the auxiliary operator HD, with action

HDu(x) = −d2u

dx2
(x) (8)

and Dirichlet boundary condition, that is, u(0) = u(1) = 0. It is well known
that HD has purely discrete spectrum σ(HD) = {k2π2}k≥1. If λ /∈ σ(HD),
then there exist two linearly independent solutions, ϕλ,0 and ϕλ,1, of the
eigenvalue problem

− ϕ′′ = λϕ, λ ∈ R, (9)

such that
ϕλ,0(0) = ϕλ,1(1) = 1, (10)

ϕλ,0(1) = ϕλ,1(0) = 0, (11)

ϕ′λ,1(x) = −ϕ′λ,0(1− x), x ∈ [0, 1]. (12)

Explicitly,

ϕλ,0(x) =
sin(
√
λ(1− x))

sin
√
λ

, ϕλ,1(x) =
sin(
√
λx)

sin
√
λ
.

The quotient

η(λ) :=
ϕ′λ,1(1)

ϕ′λ,1(0)
= cos

√
λ (13)

is well defined for λ /∈ σ(HD).

10



Let λ /∈ σ(HD) and 0 < tj ≤ 1, with j = 1, 2, 3. Then, we claim that
the real number λ belongs to the spectrum of H if and only if there exists
a quasimomentum θ ∈ B such that

η(λ) = ±
√
f(θ)

T
,

with T = t21 + t22 + t23 and

f(θ) = t41 + t42 + t43 + 2t21t
2
2 cos(θ1) + 2t21t

2
3 cos(θ2) + 2t22t

2
3 cos(θ1 − θ2). (14)

In order to conclude this, first, note that, by the Floquet condition (5),
we have (see Figure 2b)

ua1(v2) = eiθ2ua2(v3) = eiθ2ua3(v4). (15)

Thus, combining (15) with the modified Neumann vertex conditions, we get
ua1(0)/t1 = ua2(0)/t2 = ua3(0)/t3 := A

ua1(1)/t1 = eiθ1ua2(1)/t2 = eiθ2ua3(1)/t3 := B

t1u
′
a1(0) + t2u

′
a2(0) + t3u

′
a3(0) = 0

t1u
′
a1(1) + t2e

iθ1u′a2(1) + t3e
iθ2u′a3(1) = 0

. (16)

Thus, for u be an eigenfunction of H(θ) it must satisfy (16).
Let λ /∈ σ(HD) and consider ϕλ,0 and ϕλ,1 the linearly independent

solutions of (9) that satisfies (10), (11) and (12). We can represent uaj as
ua1 = t1(Aϕλ,0 +Bϕλ,1)

ua2 = t2(Aϕλ,0 + e−iθ1Bϕλ,1)

ua3 = t3(Aϕλ,0 + e−iθ2Bϕλ,1)

. (17)

It is easy to see that the function defined by (17) satisfies the modified con-
tinuity condition (2) of the modified Neumann vertex condition and solves
the eigenvalue problem (9). It remains to verify that (17) satisfies the zero
total flux condition (3). Substituting (17) into the last two equations of
(16), we get{

(t21 + t22 + t23)ϕ
′
λ,0(0)A+ (t21 + t22e

−iθ1 + t23e
−iθ2)ϕ′λ,1(0)B = 0

(t21 + t22e
iθ1 + t23e

iθ2)ϕ′λ,0(1)A+ (t21 + t22 + t23)ϕ
′
λ,1(1)B = 0

. (18)
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By (12), ϕ′λ,0(0) = −ϕ′λ,1(1) and ϕ′λ,0(1) = −ϕ′λ,1(0). Substituting this
into (18), then dividing by ϕ′1(0) 6= 0 and multiplying by −1 its second
equation, we obtain {

−Tη(λ)A+ F̄ (θ)B = 0

F (θ)A− Tη(λ)B = 0
, (19)

with F (θ) = t21 + t22e
iθ1 + t23e

iθ2 , F̄ the complex conjugate of F and T =
t21 + t22 + t23. The determinant δ of this system equals

δ = T 2η(λ)2 − f(θ), (20)

with f(θ) = F (θ)F̄ (θ), which is exactly (14). Hence, if there exists a quasi-
momentum θ ∈ B such that η(λ) is one solution of δ = 0, that is,

η(λ) = ±
√
f(θ)

T
, (21)

it follows that the representation (17) solves the eigenvalue problem (7) and
so λ ∈ σ(H), by (6). Therefore, the above claim is justified.

By (13), except possibly for λ ∈ σ(HD), a discrete sequence of numbers,
the dispersion relation of H is given by

cos(
√
λ) = ±

√
f(θ)

T
, θ ∈ B, (22)

with f(θ) given by (14). This description of the dispersion relation (22)
of the graphyne operator H will allow us to study the possible presence of
Dirac cones. In the next section, we present such analysis.

4 Dirac cones

We make use of (22) to study the possible presence of Dirac cones. We spe-
cialize in each case: β-graphyne, γ-graphyne and (6, 6, 12)-graphyne. Recall
that a Dirac cone is a point where, in lowest order approximation, the va-
lence and conduction bands linearly touch each other, and the quasimomen-
tum θD ∈ B for which a Dirac cone occurs is called a D-point. In symbols,
if θD ∈ B is a D-point, then there is a constant γ 6= 0 so that

λ(θ)− λ(θD) = ±γ|θ − θD|+O(|θ − θD|2) +O((λ(θ)− λ(θD))2), (23)

with the “-” and “+” signs for the valence and conduction bands, respec-
tively.
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Let λ /∈ σ(HD). By (22), if η±(λ, θ) are the two roots of (20), given by

η±(λ, θ) = ±
√
f(θ)

t21 + t22 + t23
; (24)

in order to obtain Dirac cones one must find D-point candidates θD ∈ B and
expand D(λ) = cos(

√
λ) and η±(λ, θ) around λ(θD) and θD, respectively.

Then, if θD is a D-point, expanding D(λ) around λ(θD),

D(λ(θ))) = D(λ(θD))+D′(λ(θD))(λ(θ)−λ(θD))+O((λ(θ)−λ(θD))2), (25)

which implies

D(λ(θ))−D(λ(θD)) = c(θD)(λ(θ)− λ(θD)) +O((λ(θ)− λ(θD))2), (26)

with c(θD) =
(
λ′(θD) sin

√
λ(θD)

)
/
√
λ(θD); finally,

λ(θ) = (arccos (η±(λ, θ)) + kπ)2 , k ∈ Z. (27)

Hence, if θD is a D-point candidate, we have the explicit parameter c(θD).
Therefore, it remains to analyze, in each type of graphyne, the possible
presence of D-points.

In what follows, we will use the notations Hβ, Hγ and H(6,6,12) to rep-
resent the β-, γ- and (6, 6, 12)-graphyne operators, respectively. The same
indication will be employed to the roots η?± and the linear coefficients γ?

of (23), with ? = β, γ, (6, 6, 12). Recall that the α-graphyne QGM coincides
with the graphene one.

• β-graphyne

Recall that by inspecting the β-graphyne structure in Figure 1b, along with
the associated bonds in the honeycomb fundamental domain in Figure 2b, we
have proposed the following relations between parameters t1 < t2 = t3 = 1.
Hence, the roots of (20) are given by

ηβ±(λ, θ) = ±
√
f(θ)

2 + t21
, (28)

with

f(θ) = fβ(θ) = 2 + t41 + 2t21(cos(θ1) + cos(θ2)) + 2 cos(θ1 − θ2). (29)
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Figure 3: Dispersion relations of β-graphyne, with t1 = 0.55, restricted to
the diagonal Bd; valence (solid line) and conduction (dashed line) bands, as
well as two Dirac cones, are shown.

We have found that the roots ηβ+(λ, θ) and ηβ−(λ, θ) touch each other in two
points of the Brillouin zone B. Indeed, let the diagonal

Bd := {θ ∈ B : θ1 = −θ2} (30)

in the Brillouin zone. Then, for θ ∈ Bd, we have that ηβ+(λ, θ) = ηβ−(λ, θ) = 0
if, and only if,

f(θ) = 2 + t41 + 2t21 (cos(θ1) + cos(θ2)) + 2 cos(θ1 − θ2)
= 2 + t41 + 2t21 (cos(θ1) + cos(−θ1)) + 2 cos(θ1 + θ1)

= 4 cos2(θ1) + 4t21 cos(θ1) + t41 (31)

= (t21 + 2 cos(θ1))
2 = 0 (32)

which occurs in ±θD1 , with θD1 = arccos(t21/2) − π. We will confirm now
that these points θD1 are, in fact, D-points of the dispersion relation of the

β-graphyne operator Hβ by expanding ηβ±(λ, θ) around θD1 (around −θD1 is
similar). Let θ ∈ Bd.

By expanding t21 + 2 cos(θ1) around θD1 , we obtain

t21 + 2 cos(θ1) = b(θD)
(
θ1 − θD1

)
+O(

(
θ1 − θD1

)2
), (33)

with b(θD) = −2 sin θD1 . It then follows that

ηβ±(λ, θ1)− ηβ±(λ, θD1 ) = ±|b(θD)|
2 + t21

|θ1 − θD1 |+O
(
|θ1 − θD1 |2

)
. (34)
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Thus, combining (26) and (34),

λ(θ)− λ(θD) = ±γβ|θ − θD|+O
(
|θ − θD|2

)
+O

(
(λ(θ)− λ(θD))2

)
,

that is, (23) holds with

γβ =
|b(θD)|

(2 + t21)c(θD)
, θD = (θD1 ,−θD1 ) (35)

For −θD, the process is similar.
Therefore, the dispersion relation of the β-graphyne operator Hβ has two

Dirac cones in the Brillouin zone (see Figure 3), for all 0 < t1 < 1, which
occur at the D-points ±θD, where θD = (θD1 ,−θD1 ) and θD1 = arccos(t21/2)−
π. Also, by analyzing the computational 3D plot of the dispersion relation,
it was observed that the Dirac cones of the β-graphyne operator Hβ are
situated at the vertices of a hexagon.

• γ-graphyne

As already mentioned, the structure of the γ-graphyne in Figure 1c indicates
the relations 1 = t1 > t2 = t3 > 0. In this case, the roots of (20) are

ηγ±(λ, θ) = ±
√
f(θ)

1 + 2t22
, (36)

with

f(θ) = fγ(θ) = 1 + 2t42 + 2t22(cos(θ1) + cos(θ2)) + 2t42 cos(θ1 − θ2). (37)

Here we will also consider θ ∈ Bd, that is, θ2 = −θ1. Thus, the roots (36)
are equivalent to

ηγ±(λ, θ) = ±|1 + 2t22 cos θ1|
1 + 2t22

. (38)

Now we analyze the possible presence of Dirac cones in the dispersion rela-
tion of the γ-graphyne operator Hγ . We study (38) in three situations:

(i) 0 < t2 <
√

2/2. In this case, the function 1 + 2t22 cos θ1 > 0, for all
values of θ1. Thus,

ηγ±(λ, θ) = ±1 + 2t22 cos θ1
1 + 2t22

. (39)

The minimum and maximum of ηγ+(λ, θ) and ηγ−(λ, θ), respectively, occur
at θ1 = ±π, with values ηγ±(λ,±π) = ± 1

1+2t22
. Note that the behaviour in
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(c) t2 = 0.84.

Figure 4: Dispersion relations of γ-graphyne restricted to the diagonal Bd;
solid and dashed lines illustrate valence and conduction bands, respectively.
(a) Parameter t2 = 0.55 and θ1 ∈ [0, 2π]; there is no touch. (b) t2 =

√
2/2

and θ1 ∈ [0, 2π]; there is a parabolic touch. (c) t2 = 0.84 and θ1 ∈ [0, π]; a
Dirac cone is shown.
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these points is parabolic. Then, the roots ηγ±(λ, θ) do not touch each other
and, therefore, the dispersion relation of Hγ does not have any Dirac cones
in this parameter range (see Figure 4a).

(ii) t2 =
√

2/2. In this case,

ηγ±(λ, θ) = ±1

2
± cos θ1

2
, (40)

with parabolic touches occurring at θ1 ± π, with value ηγ±(λ, θ1) = 0, which
proves that the dispersion relation of Hγ does not have any Dirac cones (see
Figure 4b).

(iii)
√

2/2 < t2 < 1. Differently from the cases (i) and (ii), the Dirac

cones are present in this situation. In fact, we have that ηγ+(λ, θ) = ηγ−(λ, θ) =
0 if, and only if, θ1 = ±θD1 , with θD1 = arccos(− 1

2t22
). Expanding ηγ±(λ, θ)

around ±θD1 , in analogous way we have done in the β-graphyne case, we
obtain

ηγ±(λ, θ)− ηγ±(λ, θD) = ±γ̃γ |θ − θD| − O
(
|θ − θD|2

)
, (41)

with θD = (θD1 ,−θD1 ) and

γ̃γ =

√
4t42 − 1

1 + 2t22
> 0. (42)

Analogous for −θD. Combining (26) and (41), we obtain

λ(θ)− λ(θD) = ±γ̄γ |θ − θD|+O
(
|θ − θD|2

)
+O

(
(λ(θ)− λ(θD))2

)
,

with γ̄γ = γ̃γ/c(θD). Note that the γ̄ is the linear coefficient, while the upper
index “γ” indicates that we are considering the γ-graphyne. Therefore, for
this parameter range, the dispersion relation of the γ-graphyne operator Hγ

have Dirac cones in its dispersion relation (see Figure 4c).
By analyzing the computational 3D plot of the dispersion relation, it

was observed that the Dirac cones of the Hγ is similar to the β-graphyne
case, i.e., the Dirac cones are also situated at the vertices of a hexagon.

• (6, 6, 12)-graphyne

In the case of (6, 6, 12)-graphyne (see Figure 1d), the proposed parameter
relations are t1 = t2 = 1 and 0 < t3 < 1. Hence,

η
(6,6,12)
± (λ, θ) = ±

√
f(θ)

2 + t23
, (43)
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with

f(θ) = f (6,6,12)(θ) = 2 + t43 + 2 cos θ1 + 2t23 (cos θ2 + cos(θ1 − θ2)) . (44)

This case is tricker than the previous ones; in β- and γ-graphynes, we
have taken the restriction to the segment Bd in the Brillouin zone, since it
was observed that the (possible) Dirac cones were present in the diagonal
θ2 = −θ1. However, this does not happen for the (6, 6, 12)-graphyne; we
have found that the two Dirac points occur at the line

θ2 = r(θ1) := (h(`)/`) θ1,

with ` = arccos
(
t43−2
2

)
and

h(z) := z − arcsin

(
1

t23
sin z

)
− π. (45)

Thus, let Br be the following restriction of the Brillouin zone B:

Br := {θ ∈ B : θ2 = r(θ1)}. (46)

We shall check now that the points

θ+D := (`, h(`)) and θ−D = (−`, h(−`)),

in Br are D-points. Let θ ∈ Br. Expanding f(θ) around `, we get

f(θ) = f(`) + f ′(`)(θ1 − `) +
f ′′(`)

2
(θ1 − `)2 +O

(
(θ1 − `)3

)
(47)

=
f ′′(`)

2
(θ1 − `)2 +O

(
(θ1 − `)3

)
, (48)

since f(`) = f ′(`) = 0, with f ′ meaning the derivative of f with respect
to θ1. It implies that

η
(6,6,12)
± (λ, θ)− η(6,6,12)± (λ, `) = ±γ̃(6,6,12)|θ − θ+D|+O

(
(θ1 − `)2

)
, (49)

with γ̃(6,6,12) =
√
f ′′(`)/(

√
2(2 + t23)). Combining (49) and (26), we obtain

λ(θ)− λ(θ+D) = γ(6,6,12)|θ − θ+D|+O
(
|θ − θ+D|

2
)

+O
(
(λ(θ)− λ(θ+D))2

)
,

with

γ(6,6,12) =
γ̃(6,6,12)

c(θ+D)
, θ+D = (`, h(`)).
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Figure 5: Dispersion relations of (6, 6, 12)-graphyne, with t3 = 0.55, re-
stricted to the line Br; valence (solid line) and conduction (dashed line)
bands, as well as two Dirac cones, are shown.

Analogous for θ−D. Therefore, the dispersion relation of the (6, 6, 12)-graphyne
operator H(6,6,12) has Dirac cones on the Brillouin zone (Figure 5), as found
in [19] via a tight-binding model and in [20] via first principles calculations,
and here for all allowed parameter values.

Differently from the β- and γ-graphyne, which the Dirac cones are situ-
ated at the vertices of a hexagon, the Dirac cones of the dispersion relation
of the (6, 6, 12)-graphyne occurs at the vertices of a rhombus. In a similar
way one checks that the other two Dirac cones occur at the D-points are
±θ̄D, with θ̄D = (¯̀, ¯̀/2) and ¯̀= arccos

(
−(2− t43)/2

)
.

5 Graphyne nanotubes

Spectra of graphyne nanotubes

Let p = (p1, p2) ∈ Z2\{0} be a vector of the lattice of translation symmetries
of the graph G, denote the corresponding nanotube by Gp = G(p1,p2) and
the graphyne nanotube operator Hp = H(p1,p2), as defined at the end of
Section 2.

As in Section 3, we apply the Floquet-Bloch theory that provides the
Bloch Hamiltonian operators Hp(θ), for each quasimomentum θ in the Bril-
louin zone B and the decomposition

σ(Hp) =
⋃
θ∈B

Hp(θ), (50)
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with σ(Hp(θ)) = {λp,n(θ)}n purely discrete. Since a function u on Gp lifts
to a p-periodic function on G, that is,

u(x+ p1E1 + p2E2) = u(x),

then, by the Floquet condition (5), it follows that

p · θ = p1θ1 + p2θ2 ∈ 2πZ. (51)

Hence, we consider the restriction Bp ⊂ B of the Brillouin zone given by

Bp = {θ ∈ B : p · θ ∈ 2πZ}. (52)

Therefore, (50) turns into

σ(Hp) =
⋃
θ∈Bp

Hp(θ), (53)

and the dispersion relation for Hp is just the dispersion relation of H (see
Section 3) restricted to Bp, that is, it is given by

D(λ) = ±
2
√
f(θ)

T
, λ /∈ σ(HD), θ ∈ Bp, (54)

where D(λ) = cos(
√
λ) (see (22)), f(θ) = F (θ)F̄ (θ), F (θ) = t21 + t22e

iθ1 +
t23e

iθ2 and T = t21 + t22 + t23.

Dirac cones

Now we analyze the possible presence of Dirac cones in the dispersion re-
lation (54) of the graphyne nanotube operator Hp. As before, we analyze
separately the β, γ and (6, 6, 12)-graphyne.

Let θD ∈ B be a D-point of the graphyne operator H (see (23)). Since
the dispersion relation of Hp is the dispersion relation of H restricted to Bp,
then θD is a D-point of the nanotube graphyne operator Hp if, and only if,
θD belongs to the restriction Bp. Thus, given the D-point θD in each case
of graphyne, we determine p in order to have θD ∈ Bp.

• β-graphyne nanotube

As discussed in Section 4, the dispersion relation of the β-graphyne operator
Hβ has D-points at ±θD, with

θD = (θD1 ,−θD1 ), θD1 = arccos(t21/2)− π. (55)
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Hence, the condition for θD ∈ Bp reduces to (similarly for −θD)

p · θD = p1 · θD1 − p2 · θD1
= arccos(t21/2)(p1 − p2) + π(p1 − p2) ∈ 2πZ.

The above condition implies that the difference p1 − p2 must be an even
integer, that is, p1 − p2 = 2q, with q ∈ Z. Then,

arccos(t21/2)(p1 − p2) = 2 arccos(t21/2)q = 2πr, r ∈ Z,

that is,

t21 = 2 cos

(
r

q
π

)
, r, q ∈ Z. (56)

Since the parameter t1 ∈ (0, 1), we have 0 < 2 cos(rπ/q) < 1. Let the
function

gβ(x) := 2 cos(πx). (57)

It is easy to see that 0 < gβ(x) < 1 if, and only if, x ∈ Cβ, with

Cβ :=
⋃

n∈N∪{0}

(J+
n ∪ J−n ),

J+
n =

{(
1
3 + n, 12 + n

)
, n even(

1
2 + n, 23 + n

)
, n odd

J−n =

{(
−1

2 − n,−
1
3 − n

)
, n even(

−2
3 − n,−

1
3 − n

)
, n odd

.

Hence, t1 ∈ (0, 1) if, and only if, rπ/q ∈ Cβ. For instance, if p = (p1, p2)
is such that p1 − p2 = 14, then if r = 1 and q = 7, it follows that rπ/q =
π/7 ∈ J+

0 , which implies that 0 < t21 = 2 cos(π/7) < 1 (and so t1 ∈ (0, 1))
and, thus, p · θD ∈ 2πZ.

Therefore, ±θD are D-points of the dispersion relation of the β-graphyne
nanotube operator Hβ

p , for p = (p1, p2), if, and only if, there exist r, q ∈ Z
such that p1 − p2 = 2q and rπ/q ∈ Cβ.

• γ-graphyne nanotube

From Section 4, we know that±θD, with θD = (θD1 ,−θD1 ), θD1 = arccos(−1/2t22),
are D-points of γ-graphyne operator Hγ if

√
2/2 < t2 < 1. Hence, given

p = (p1, p2) ∈ Z2, then ±θD are D-points of Hγ
p if, and only if, p·(±θD) ∈ Bp.

By following the steps in the discussion of the β-graphyne nanotube case,
we obtain that

t22 = − 1

2 cos
(
r
q π
) , (58)
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with r, q ∈ Z and p1 − p2 = 2q. Let

gγ(x) :=
√
−1/2 cos(πx).

Then, it follows that
√

2/2 < gγ(x) < 1 if, and only if, x ∈ Cγ , with
Cγ =

⋃
n∈Z Jn, n odd and Jn = (n− 1/3, n+ 1/3). For instance, if p is such

that p1 − p2 = 6, then for r = 1 and q = 3, it follows that rπ/q = π/3 ∈ J1
and, then t2 ∈ (

√
2/2, 1).

Therefore, for t2 ∈ (
√

2/2, 1), ±θD are D-points of the dispersion relation
of the γ-graphyne nanotube operator Hγ

p , for p = (p1, p2), if, and only if,
there exist r, q ∈ Z such that p1 − p2 = 2q and rπ/q ∈ Cγ .

If t2 =
√

2/2, we have found that the dispersion relation of Hγ have
parabolic touches at ±(π,−π). By imposing the restriction Bp to these
points, we get that p1 − p2 must be even. Thus, if p = (p1, p2) is such that
p1 − p2 = 2q, q ∈ Z, then it follows that the dispersion relation of Hγ

p have
parabolic touches at ±(π,−π).

• (6, 6, 12)-graphyne nanotube

We have found in Section 4 that, for t3 ∈ (0, 1),

θ±D = (±`, h(±`)),

with ` = arccos
(
t43−2
2

)
and h(z) = z−arcsin

(
1
t23

sin z
)
−π, are D-points for

H
(6,6,12)
p . Due to the complexity of the function h(x) and the value of `, we

were just able to (analytically) analyze the possible presence of Dirac cones

in the dispersion relation of the zig-zag nanotubes G
(6,6,12)
p , with p = (N, 0)

and N ∈ Z. By imposing that θ±D ∈ Bp and following the steps of β-graphyne
case, we obtain

t23 =

√
2 cos

( q
N

2π
)

+ 2, q ∈ Z. (59)

Hence, t3 ∈ (0, 1) if, and only if, 2qπ/N ∈ C(6,6,12), with

C(6,6,12) =
⋃
n∈Z

Jn, Jn =

(
n

2
− 1

6
,
n

2
+

1

6

)
, n odd.

Therefore, θ±D are D-points for the zig-zag nanotube C
(6,6,12)
(N,0) if, and only

if, there exists q ∈ Z such that 2qπ/N ∈ C(6,6,12).
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6 Summary and conclusions

In some situations, like graphene, QGMs are useful as models that usu-
ally permit an analytical approach with explicit calculations. For a single
graphene sheet, it was mainly developed in [1, 18] and has become standard,
but requires that all graph edges have the same length; it was also applied
to a particular equilateral graphyne in [11]. Motivated by previous works on
multilayer graphene [7, 8], the present authors have suggested some adapta-
tions, (1) in the boundary conditions, (2) selection of graphyne edges, and
(3) heuristic choices of parameters that take into account the intensity of
chemical bonds, that have permitted an effective graph modeling of some
graphynes.

We have proposed QGMs of the graphynes discussed in [19, 20], in order
to investigate Dirac cones; the main differences to graphene are that usually
their hexagonal structure have edges of different lengths which carry different
chemical bonds (in each graphyne, there are two or three types of bonds that
repeat periodically). In principle, it is not immediate how to model such
situations via quantum graphs; hence, we had to make some hypotheses
which were based on heuristic observations and ad hoc procedures. We have
also discussed the presence of Dirac cones for the corresponding graphyne
nanotubes.

Our general approach was to model through the honeycomb structure of
graphene in all cases, but introducing a positive parameter for each edge;
there are three parameters, corresponding to the three edge intensities in the
associated fundamental domain W of the honeycomb lattice (see Figure 2b);
the idea is that the stronger the bond in an edge the more influence it should
have on the boundary condition balance (see equations (2) and (3)). Next
we have tried to propose a way to associate edges of the graphyne to the
ones (a1, a2, a3) of W ; of course the choice must be a triple that appears in
the graphyne that is being considered, and the idea was to select the one
that is more abundant in each graphyne fundamental domain (which are
indicated in Figure 1); however this is not the case of (6, 6, 12)-graphyne,
as explained in previous sections. It was then recovered, via QGMs, results
from tight-binding and first-principle calculations in the literature, although
our results for the γ-graphyne present a transition from bands with a gap
to bands with Dirac cones, as a parameter changes.

Our effective models pick the most influential three-edges structure of
each graphyne and, also to simplify technical matters, some carbon bonds
are considered to have similar strengths (and so imply the same value of the
corresponding parameters in (2)-(3)). For example, the QGM of graphene
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in the literature does not distinguish single and double carbon bonds, whose
difference of enthalpies is 256 kJ/mol; thus, for each graphyne, we have
associated the same parameter value to edges whose difference of enthalpies
is “close” to such value. This is particularly important (and it was a guide)
for the α-graphyne, whose proposed QGM then coincides with the one of
graphene.

It would be interesting whether the found transition in γ-graphyne could
be replicated either experimentally or by varying parameters in other theo-
retical calculations (e.g., tight-binding ones). We finish by mentioning that
our proposal, to adapt QGMs to some graphynes, is a combination of heuris-
tics, effective models and, after modeling, our results are mathematically
rigorous.

A Self-adjointness

In this appendix we show how to conclude that the boundary conditions (2)
and (3) imply that the graphyne operator H is self-adjoint. By Theo-
rems 1.4.4 and 1.4.11 in [4], in order to check the self-adjointness of H, it
is necessary and sufficient that, for each vertex v with Ev(G) = {e1, e2, e3},
there exist two 3× 3 matrix Av and Bv such that:

(i) the 3× 6 matrix
[
Av Bv

]
has maximal rank;

(ii) the matrix AvB
∗
v is self-adjoint, where B∗v is the adjoint of Bv;

(iii) AvF (v) = BvF
′(v), where the vector F (v) and F ′(v) are given by

F (v) :=
[
ue1(v) ue2(v) ue3(v)

]ᵀ
and

F ′(v) :=
[
u′e1(v) u′e2(v) u′e3(v)

]ᵀ
.

Consider a vertex v. We choose the following constant 3× 3-matrices

A =

t2 −t1 0
0 t3 −t2
0 0 0

 and B =

0 0 0
0 0 0
t1 t2 t3

 .
These matrices satisfy the three conditions (i), (ii) and (iii) above for nonzero
parameters t1, t2, t3. E.g., AB∗ = 0, which is self-adjoint. Therefore, the
operator H is self-adjoint. Also note that the (iii) above implies the proposed
boundary conditions (2) and (3).
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