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Neuherberg, 85764, Germany

e-mail: messoud.efendiyev@helmholtz-muenchen.de
2 Department of Mathematics, Marmara University, Istanbul,Türkiye

e-mail: m.efendiyev@marmara.edu.tr

3 ∗ Department of Mathematics, University of Toronto
Toronto, Ontario, M5S 2E4, Canada

e-mail: vitali@math.toronto.edu

The article is dedicated to the memory of Vladimir E. Zakharov.

Abstract: We study the solvability of certain linear and nonlinear nonhomogeneous
equations in one dimension involving the logarithmic Laplacian and the transport
term. In the linear case we show that the convergence inL2(R) of their right sides
yields the existence and the convergence inL2(R) of the solutions. We generalize
the results obtained in the earlier article [18] in the non-Fredholm case without the
drift. In the nonlinear part of the work we demonstrate that,under the reasonable
technical assumptions, the convergence inL1(R) of the integral kernels implies the
existence and the convergence inL2(R) of the solutions.
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1. Introduction

Let us consider the equation

(−∆+ V (x))u− au = f, (1.1)

with u ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant andV (x)
is a function converging to0 at infinity. If a ≥ 0, then the essential spectrum of
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the operatorA : E → F corresponding to the left side of problem (1.1) contains
the origin. As a consequence, such operator fails to satisfythe Fredholm property.
Its image is not closed, ford > 1 the dimension of its kernel and the codimension
of its image are not finite. Let us recall that elliptic equations with non-Fredholm
operators, both linear and nonlinear were studied thoroughly in recent years (see
[16], [17], [18], [28], [29], [30], [31], [32], [33], [34], also [5]) along with their
potential applications to the theory of reaction-diffusion problems (see [11], [12]).
Fredholm structures, topological invariants and their application were covered in
[13]. The article [14] is devoted to the finite and infinite dimensional attractors
for the evolution equations of mathematical physics. The large time behavior of
the solutions of a class of fourth-order parabolic equations defined on unbounded
domains using the Kolmogorovε-entropy as a measure was investigated in [15].
The attractor for a nonlinear reaction-diffusion system inan unbounded domain in
the space of three dimensions was discussed in [20]. The works [21] and [27] are
important for the understanding of the Fredholm and properness properties of the
quasilinear elliptic systems of the second order and of the operators of this kind on
RN . The exponential decay and Fredholm properties in the second-order quasilinear
elliptic systems of equations were treated in [22]. In the article [32] the authors
study the Laplace operator with drift from the point of view of the non-Fredholm
operators. Standing lattice solitons in the discrete NLS equation with saturation
were investigated in [1]. In the particular case ofa = 0, our operatorA mentioned
above satisfies the Fredholm property in certain properly chosen weighted spaces
(see [2], [3], [7], [8], [5]). But the situation whena 6= 0 is considerably different
and the approach developed in these works cannot be used.
One of the significant issues concerning the problems with non-Fredholm operators
is their solvability. Let us address it in the following setting. Letfn be a sequence
of functions in the image of the operatorA, such thatfn → f in L2(Rd) asn → ∞.
We designate byun a sequence of functions fromH2(Rd), such that

Aun = fn, n ∈ N.

Since the operatorA fails to satisfy the Fredholm property, the sequenceun may be
divergent. Let us call a sequenceun such thatAun → f a solution in the sense of
sequences of equationAu = f (see [28]). If such sequence tends to a functionu0 in
the norm of the spaceE, thenu0 is a solution of this problem. The solution in the
sense of sequences is equivalent in this sense to the usual solution. However, in the
case of the non-Fredholm operators, this convergence may not hold or it can occur
in certain weaker sense. In this case, the solution in the sense of sequences may
not imply the existence of the usual solution. In the works which may include the
non-Fredholm operators, we determine the sufficient conditions of equivalence of
the solutions in the sense of sequences and the usual solutions. In the other words,
we determine the conditions on the sequencesfn under which the corresponding
sequencesun are strongly convergent. The solvability in the sense of sequences for
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the problems involving the Schrödinger type non-Fredholmoperators was covered
in [17], [30], [34]. The current article is our attempt to generalize such results by
considering the solvability of the linear and nonlinear problems involving in their
left sides the logarithmic Laplacian in one dimension, which can be defined via the
spectral calculus along with the transport term.
First we consider the problem

[1
2

ln
(
− d2

dx2

)]
u− b

du

dx
− au = f(x), x ∈ R (1.2)

with a square integrable right side. Herea, b ∈ R, b 6= 0 are the constants. The
logarithmic Laplacian ln(−∆) is the operator with Fourier symbol2ln|p|. It appears
as formal derivative∂s|s=0(−∆)s of fractional Laplacians ats = 0. The operator
(−∆)s is actively used, for instance in the studies of the anomalous diffusion prob-
lems (see e.g. [34] and the references therein). Spectral properties of the logarith-
mic Laplacian in an open set of finite measure with Dirichlet boundary conditions
were covered in [26] (see also [10]). The studies of ln(−∆) are important for
the understanding of the asymptotic spectral properties ofthe family of fractional
Laplacians in the limits → 0+. In [24] it has been established that this operator
allows to characterize thes-dependence of solution to fractional Poisson equations
for the full range of exponentss ∈ (0, 1). A direct method of moving planes for
logarithmic Schrödinger operator was discussed in [35]. The article [36] is devoted
to the symmetry of positive solutions for Lane-Emden systems involving the Log-
arithmic Laplacian. The equation analogous to (1.2) but without the transport term
was treated in [18] in the context of the solvability in the sense of sequences. The
solvability of certain linear nonhomogeneous equations containing the logarithm
of the sum of the two Schrödinger operators in higher dimensions was discussed
in [19]. The non self-adjoint operator involved in the left side of problem (1.2) is
given by

La,b :=
1

2
ln
(
− d2

dx2

)
− b

d

dx
− a, a, b ∈ R, b 6= 0. (1.3)

It is considered onL2(R). By virtue of the standard Fourier transform, it can be
trivially obtained that the essential spectrum of (1.3) is given by

λa,b(p) = ln
( |p|
ea

)
− ibp, a, b ∈ R, b 6= 0. (1.4)

Evidently, the lower bound

|λa,b(p)| =
√

ln2
( |p|
ea

)
+ b2p2 ≥ Ca,b > 0, p ∈ R (1.5)

holds. HereCa,b is a constant. Therefore, as distinct from the case without the drift
term discussed in [18], our operator (1.3) satisfies the Fredholm property.
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We write down the corresponding sequence of the approximateequations withm ∈
N, namely

[1
2

ln
(
− d2

dx2

)]
um − b

dum

dx
− aum = fm(x), x ∈ R, (1.6)

wherea, b ∈ R, b 6= 0 are the constants. Let us assume that the right sides of (1.6)
are square integrable on the real line and converge to the right side of (1.2) inL2(R)
asm → ∞. Our first statment deals with the solvability of problem (1.2).

Proposition 1.1. Let the constantsa, b ∈ R, b 6= 0 and f(x) ∈ L2(R). Then
equation (1.2) admits a unique solutionu(x) ∈ L2(R).

Note that as distinct from the analogous situation without the transport term consid-
ered in [18], the argument of the proposition above does not rely on the orthogo-
nality conditions. Our second statement is devoted to the issue of the solvability in
the sense of sequences for our equation.

Proposition 1.2.Letm ∈ N, the constantsa, b ∈ R, b 6= 0, the functionsfm(x) ∈
L2(R), such thatfm(x) → f(x) in L2(R) asm → ∞. Then problems (1.2) and
(1.6) possess unique solutionsu(x) ∈ L2(R) andum(x) ∈ L2(R) respectively, such
thatum(x) → u(x) in L2(R) asm → ∞.

Throughout the article we use the hat symbol to denote the standard Fourier trans-
form

f̂(p) :=
1√
2π

∫ ∞

−∞

f(x)e−ipxdx, p ∈ R. (1.7)

Clearly, the upper bound

‖f̂(p)‖L∞(R) ≤
1√
2π

‖f(x)‖L1(R) (1.8)

is valid. The second part of our article is devoted to the studies of the nonlinear
equation

[
− 1

2
ln
(
− d2

dx2

)]
u+b

du

dx
+au+

∫ ∞

−∞

G(x−y)F (u(y), y)dy = 0, x ∈ R (1.9)

with the constantsa, b ∈ R, b 6= 0. In the Population Dynamics the integro-
differential problems are used to describe the biological systems with the nonlocal
consumption of resources and the intra-specific competition (see e.g. [4], [6],
[23]). The solvability of the equation analogical to (1.9) but with a standard Lapla-
cian in the diffusion term was discussed in [16]. Similarly to [16], we impose the
following regularity conditions on the nonlinear part of problem (1.9).
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Assumption 1.3. FunctionF (u, x) : R × R → R is satisfying the Caratheodory
condition (see [25]), so that

|F (u, x)| ≤ k|u|+ h(x) for u ∈ R, x ∈ R (1.10)

with a constantk > 0 and h(x) : R → R+, h(x) ∈ L2(R). Moreover, it is a
Lipschitz continuous function, so that

|F (u1, x)− F (u2, x)| ≤ l|u1 − u2| for any u1,2 ∈ R, x ∈ R (1.11)

with a constantl > 0.

The solvability of a local elliptic equation in a bounded domain inRN was consid-
ered in [9]. The nonlinear function there was allowed to havea sublinear growth.
In order to demonstrate the existence of solutions of problem (1.9), we will use the
auxiliary equation

[1
2

ln
(
− d2

dx2

)]
u− b

du

dx
− au =

∫ ∞

−∞

G(x− y)F (v(y), y)dy, x ∈ R, (1.12)

wherea, b ∈ R, b 6= 0 are the constants. We manage to establish that under the
reasonable technical assumptions problem (1.12) defines a map Ta,b : L2(R) →
L2(R), which is a strict contraction.

Theorem 1.4. Let Assumption 1.3. hold, the functionG(x) : R → R, so that

G(x) ∈ L1(R) and
‖G(x)‖L1(R)

Ca,b

l < 1.

Then the mapTa,bv = u on L2(R) defined by equation (1.12) has a unique fixed
pointva,b, which is the only solution of of problem (1.9) inL2(R).
This fixed point does not vanish identically on the real line provided the intersection

of supports of the Fourier transforms of functionssuppF̂ (0, x)(p) ∩ suppĜ(p) is a
set of nonzero Lebesgue measure inR.

Related to problem (1.9), we study the sequence of the approximate equations for
m ∈ N, namely [

− 1

2
ln
(
− d2

dx2

)]
u(m)+

+b
du(m)

dx
+ au(m) +

∫ ∞

−∞

Gm(x− y)F (u(m)(y), y)dy = 0, (1.13)

wherex ∈ R anda, b ∈ R, b 6= 0 are the constants. The sequence of kernels
{Gm(x)}∞m=1 tends toG(x) in L1(R) asm → ∞. Let us show that, under the
appropriate technical conditions, each problem (1.13) possesses a unique solution
u(m)(x) ∈ L2(R), limiting equation (1.9) admits a unique solutionu(x) ∈ L2(R),
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andu(m)(x) → u(x) in L2(R) asm → ∞. The importance of Theorem 1.5 below
is the continuous dependence of the solution with respect tothe integral kernel.

Theorem 1.5.Let Assumption 1.3 hold,m ∈ N, the functionsGm(x) : R → R are
such thatGm(x) ∈ L1(R) andGm(x) → G(x) in L1(R) asm → ∞. Moreover, we
suppose that

‖Gm(x)‖L1(R)

Ca,b

l ≤ 1− ε (1.14)

is valid for eachm ∈ N with some fixed0 < ε < 1.
Then each equation (1.13) admits a unique solutionu(m)(x) ∈ L2(R), limiting
problem (1.9) has a unique solutionu(x) ∈ L2(R), andu(m)(x) → u(x) in L2(R)
asm → ∞.
The unique solutionu(m)(x) of each equation (1.13) is nontrivial provided the

intersection of supports of the Fourier transforms of functions suppF̂ (0, x)(p) ∩
suppĜm(p) is a set of nonzero Lebesgue measure inR. Similarly, the unique solu-

tion u(x) of limiting problem (1.9) does not vanish identically ifsuppF̂ (0, x)(p) ∩
suppĜ(p) is a set of nonzero Lebesgue measure on the real line.

2. Proofs of the main results

Proof of Proposition 1.1.To establish the uniqueness of solutions for our problem,
we suppose that (1.2) admits two solutionsu1(x), u2(x) ∈ L2(R). Evidently, their
differencew(x) := u1(x)−u2(x) ∈ L2(R) as well and it satisfies the homogeneous
equation [1

2
ln
(
− d2

dx2

)]
w − b

dw

dx
− aw = 0. (2.1)

Because the operatorLa,b onL2(R) given by (1.3) has only the essential spectrum
and no nontrivial zero modes (see (1.4) and (1.5)), the function w(x) vanishes a.e.
in R.
Let us apply the standard Fourier transform (1.7) to both sides of equation (1.2).
This yields

û(p) =
f̂(p)

ln
(

|p|
ea

)
− ibp

, p ∈ R. (2.2)

By means of (1.5), we have

|û(p)| ≤ |f̂(p)|
Ca,b

∈ L2(R)

due to our assumption, such thatu(x) ∈ L2(R).
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We proceed to addressing the issue of the solvability in the sense of sequences for
our linear problem.

Proof of Proposition 1.2.By virtue of Proposition 1.1 above, each equation (1.6)
has a unique solutionum(x) ∈ L2(R), m ∈ N and limiting problem (1.2) possesses
a unique solutionu(x) ∈ L2(R).
We apply the standard Fourier transform (1.7) to both sides of equations (1.6). This
gives us form ∈ N that

ûm(p) =
f̂m(p)

ln
(

|p|
ea

)
− ibp

, p ∈ R. (2.3)

By means of (2.3) along with (2.2), we arrive at

ûm(p)− û(p) =
f̂m(p)− f̂(p)

ln
(

|p|
ea

)
− ibp

. (2.4)

Using (1.5), we derive

|ûm(p)− û(p)| ≤ |f̂m(p)− f̂(p)|
Ca,b

,

such that

‖um(x)− u(x)‖L2(R) ≤
‖fm(x)− f(x)‖L2(R)

Ca,b

→ 0, m → ∞

as assumed. Therefore,um(x) → u(x) in L2(R) asm → ∞.

Let us turn our attention to the solvability of the nonlinearproblem.

Proof of Theorem 1.4.First we suppose that for a certainv(x) ∈ L2(R) there
exist two solutionsu1,2(x) ∈ L2(R) of equation (1.12). Obviously, the difference
functionw(x) = u1(x) − u2(x) ∈ L2(R) solves (2.1). Since the operatorLa,b

onL2(R) defined in (1.3) does not possess any nontrivial zero modes asdiscussed
above, the functionw(x) is trivial on the real line.
Let us choose an arbitraryv(x) ∈ L2(R) and apply the standard Fourier transform
(1.7) to both sides of problem (1.12). We obtain

û(p) =
√
2π

Ĝ(p)ϕ̂(p)

ln
(

|p|
ea

)
− ibp

, p ∈ R. (2.5)

Hereϕ̂(p) stands for the Fourier image ofF (v(x), x). By means of estimates (1.5)
and (1.8), we derive

|û(p)| ≤ ‖G(x)‖L1(R)|ϕ̂(p)|
Ca,b

,
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such that

‖u(x)‖L2(R) ≤
‖G(x)‖L1(R)

Ca,b

‖F (v(x), x)‖L2(R). (2.6)

Let us recall inequality (1.10) of Assumption 1.3. Hence,F (v(x), x) is square
integrable on the real line forv(x) ∈ L2(R). Thus, for an arbitrarily chosenv(x) ∈
L2(R) there exists a unique solutionu(x) ∈ L2(R) of equation (1.12), such that its
Fourier image is given by (2.5). Therefore, the mapTa,b : L

2(R) → L2(R) is well
defined.
This allows us to choose the arbitrary functionsv1,2(x) ∈ L2(R), such that their
imagesu1,2 := Ta,bv1,2 ∈ L2(R). Clearly, (1.12) yields

[1
2

ln
(
− d2

dx2

)]
u1 − b

du1

dx
− au1 =

∫ ∞

−∞

G(x− y)F (v1(y), y)dy, x ∈ R, (2.7)

[1
2

ln
(
− d2

dx2

)]
u2 − b

du2

dx
− au2 =

∫ ∞

−∞

G(x− y)F (v2(y), y)dy, x ∈ R, (2.8)

wherea, b ∈ R, b 6= 0 are the constants. We apply the standard Fourier transform
(1.7) to both sides of the equations of system (2.7), (2.8) and arrive at

û1(p) =
√
2π

Ĝ(p)ϕ̂1(p)

ln
(

|p|
ea

)
− ibp

, û2(p) =
√
2π

Ĝ(p)ϕ̂2(p)

ln
(

|p|
ea

)
− ibp

, p ∈ R. (2.9)

Hereϕ̂1,2(p) designate the Fourier images ofF (v1,2(x), x). Let us use (2.9) along
with (1.8) and (1.5) to derive the upper bound

|û1(p)− û2(p)| ≤
‖G(x)‖L1(R)

Ca,b

|ϕ̂1(p)− ϕ̂2(p)|,

so that

‖u1(x)− u2(x)‖L2(R) ≤
‖G(x)‖L1(R)

Ca,b

‖F (v1(x), x)− F (v2(x), x)‖L2(R).

We recall condition (1.11) of Assumption 1.3 above. Hence,

‖F (v1(x), x)− F (v2(x), x)‖L2(R) ≤ l‖v1(x)− v2(x)‖L2(R),

such that

‖Ta,bv1(x)− Ta,bv2(x)‖L2(R) ≤
‖G(x)‖L1(R)

Ca,b

l‖v1(x)− v2(x)‖L2(R). (2.10)

The constant in the right side of (2.10) is less than one as we assume. Therefore, by
means of the Fixed Point Theorem, there exists a unique function va,b ∈ L2(R), so
thatTa,bva,b = va,b. This is the only solution of equation (1.9) inL2(R). Suppose
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va,b vanishes identically inR. This will contradict to the given condition that the

intersection of the supports of the Fourier imagessuppF̂ (0, x)(p) ∩ suppĜ(p) is a
set of nonzero Lebesgue measure on the real line.

We conclude the article by discussing the issue of the solvability in the sense of
sequences for our nonlinear equation.

Proof of Theorem 1.5.By virtue of the result of Theorem 1.4 above, under the stated
assumptions each equation (1.13) admits a unique solutionu(m)(x) ∈ L2(R), m ∈
N.
We have‖Gm(x)‖L1(R) → ‖G(x)‖L1(R) asm → ∞ via the standard triangle in-
equality. From (1.14) we easily deduce that

‖G(x)‖L1(R)

Ca,b

l ≤ 1− ε

via the trivial limiting argument. Hence, by means of Theorem 1.4, limiting problem
(1.9) possesses a unique solutionu(x) ∈ L2(R) as well.
Let us apply the standard Fourier transform (1.7) to both sides of equations (1.9)
and (1.13). Thus,

û(p) =
√
2π

Ĝ(p)f̂(p)

ln
(

|p|
ea

)
− ibp

, û(m)(p) =
√
2π

Ĝm(p)f̂ (m)(p)

ln
(

|p|
ea

)
− ibp

, p ∈ R. (2.11)

Heref̂(p) andf̂ (m)(p) denote the Fourier images ofF (u(x), x) andF (u(m)(x), x)
respectively. From (2.11), we easily deduce that

|û(m)(p)− û(p)| ≤

≤
√
2π

|Ĝm(p)|√
ln2

(
|p|
ea

)
+ b2p2

|f̂ (m)(p)− f̂(p)|+
√
2π

|Ĝm(p)− Ĝ(p)|√
ln2

(
|p|
ea

)
+ b2p2

|f̂(p)|.

Let us use inequalities (1.5) and (1.8) to derive that

|û(m)(p)− û(p)| ≤ ‖Gm(x)‖L1(R)

Ca,b

|f̂ (m)(p)− f̂ (p)|+ ‖Gm(x)−G(x)‖L1(R)

Ca,b

|f̂(p)|,

so that

‖u(m)(x)− u(x)‖L2(R) ≤
‖Gm(x)‖L1(R)

Ca,b

‖F (u(m)(x), x)− F (u(x), x)‖L2(R)+

+
‖Gm(x)−G(x)‖L1(R)

Ca,b

‖F (u(x), x)‖L2(R).
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We recall bound (1.11) of Assumption 1.3. above. Hence,

‖F (u(m)(x), x)− F (u(x), x)‖L2(R) ≤ l‖u(m)(x)− u(x)‖L2(R). (2.12)

This enables us to derive the estimate
[
1− ‖Gm(x)‖L1(R)

Ca,b

l

]
‖u(m)(x)− u(x)‖L2(R) ≤

≤ ‖Gm(x)−G(x)‖L1(R)

Ca,b

‖F (u(x), x)‖L2(R).

Using (1.14), we arrive at

‖u(m)(x)− u(x)‖L2(R) ≤
‖Gm(x)−G(x)‖L1(R)

εCa,b

‖F (u(x), x)‖L2(R).

Let us recall upper bound (1.10) of Assumption 1.3. Thus,F (u(x), x) is square
integrable on the real line foru(x) ∈ L2(R). Therefore, under the given conditions

u(m)(x) → u(x), m → ∞ (2.13)

in L2(R). If we suppose thatu(m)(x) vanishes identically inR, we will obtain
the contradiction to the stated assumption that the intersection of the supports of

the Fourier transformssuppF̂ (0, x)(p) ∩ suppĜm(p) is a set of nonzero Lebesgue
measure on the real line. The similar argument is valid for the solutionu(x) of
limiting equation (1.9).
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