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Abstract: We study the solvability of certain linear and nonlinearin@mogeneous
equations in one dimension involving the logarithmic Lapda and the transport
term. In the linear case we show that the convergendg (i) of their right sides
yields the existence and the convergenc&4(R) of the solutions. We generalize
the results obtained in the earlier article [18] in the noadholm case without the
drift. In the nonlinear part of the work we demonstrate thiaer the reasonable
technical assumptions, the convergencéfifiR) of the integral kernels implies the
existence and the convergencdit{R) of the solutions.
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1. Introduction
Let us consider the equation

(—A+V(x))u—au = f, (1.1)

withu € F = H})RY) andf € F = L*(R%), d € N, a is a constant andl' ()
Is a function converging t0 at infinity. If « > 0, then the essential spectrum of
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the operatord : £ — F corresponding to the left side of problem (1.1) contains
the origin. As a consequence, such operator fails to satigfyrredholm property.
Its image is not closed, fat > 1 the dimension of its kernel and the codimension
of its image are not finite. Let us recall that elliptic eqoas with non-Fredholm
operators, both linear and nonlinear were studied thorgugtrecent years (see
[16], [17], [18], [28], [29], [30], [31], [32], [33], [34], #s0 [5]) along with their
potential applications to the theory of reaction-diffusfmroblems (see [11], [12]).
Fredholm structures, topological invariants and theirliappon were covered in
[13]. The article [14] is devoted to the finite and infinite éinsional attractors
for the evolution equations of mathematical physics. Thgdaime behavior of
the solutions of a class of fourth-order parabolic equatidefined on unbounded
domains using the Kolmogoraentropy as a measure was investigated in [15].
The attractor for a nonlinear reaction-diffusion systemamunbounded domain in
the space of three dimensions was discussed in [20]. ThesM&X] and [27] are
important for the understanding of the Fredholm and progesproperties of the
quasilinear elliptic systems of the second order and of gezaiors of this kind on
RY. The exponential decay and Fredholm properties in the seooiter quasilinear
elliptic systems of equations were treated in [22]. In theckr [32] the authors
study the Laplace operator with drift from the point of vieitioe non-Fredholm
operators. Standing lattice solitons in the discrete NL&a&qn with saturation
were investigated in [1]. In the particular casezof 0, our operatord mentioned
above satisfies the Fredholm property in certain properbseh weighted spaces
(see [2], [3], [7], [8], [B]). But the situation whem ## 0 is considerably different
and the approach developed in these works cannot be used.

One of the significant issues concerning the problems withFr@dholm operators
is their solvability. Let us address it in the following setf. Let f,, be a sequence
of functions in the image of the operatdr such thatf,, — fin L?(R¢) asn — cc.
We designate by, a sequence of functions froid?(R?), such that

Au, = fn, n € N.

Since the operataod fails to satisfy the Fredholm property, the sequengenay be
divergent. Let us call a sequengg such thatdu,, — f a solution in the sense of
sequences of equatiotu = f (see [28]). If such sequence tends to a functipm
the norm of the spacg, thenu is a solution of this problem. The solution in the
sense of sequences is equivalent in this sense to the usutsoHowever, in the
case of the non-Fredholm operators, this convergence ntayofbor it can occur
in certain weaker sense. In this case, the solution in theesehsequences may
not imply the existence of the usual solution. In the worksclvmay include the
non-Fredholm operators, we determine the sufficient canditof equivalence of
the solutions in the sense of sequences and the usual sslutiothe other words,
we determine the conditions on the sequenggesnder which the corresponding
sequences,, are strongly convergent. The solvability in the sense ofisages for
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the problems involving the Schrodinger type non-Fredhopmarators was covered
in [17], [30], [34]. The current article is our attempt to gealize such results by
considering the solvability of the linear and nonlinearlgems involving in their
left sides the logarithmic Laplacian in one dimension, hgan be defined via the
spectral calculus along with the transport term.

First we consider the problem

2
[%In(—%)]u—bj—i—au:f@), reR (1.2)
with a square integrable right side. Hereh € R, b # 0 are the constants. The
logarithmic Laplacian If—A) is the operator with Fourier symb®in|p|. It appears
as formal derivative);|,—o(—A)*® of fractional Laplacians at = 0. The operator
(—A)* is actively used, for instance in the studies of the anonsatiiffusion prob-
lems (see e.g. [34] and the references therein). Spectipepies of the logarith-
mic Laplacian in an open set of finite measure with Dirichletifbdary conditions
were covered in [26] (see also [10]). The studies ¢fHn) are important for
the understanding of the asymptotic spectral propertigheofamily of fractional
Laplacians in the limit — 0*. In [24] it has been established that this operator
allows to characterize thedependence of solution to fractional Poisson equations
for the full range of exponents € (0, 1). A direct method of moving planes for
logarithmic Schrodinger operator was discussed in [36E article [36] is devoted
to the symmetry of positive solutions for Lane-Emden systé@miolving the Log-
arithmic Laplacian. The equation analogous to (1.2) buheuit the transport term
was treated in [18] in the context of the solvability in th@se of sequences. The
solvability of certain linear nonhomogeneous equationstaiaing the logarithm
of the sum of the two Schrodinger operators in higher dinoersswas discussed
in [19]. The non self-adjoint operator involved in the lefies of problem (1.2) is
given by ,

Loy = %m(-%) —b%—a, a,beR, b0 (1.3)
It is considered orl?(R). By virtue of the standard Fourier transform, it can be
trivially obtained that the essential spectrum of (1.3)i&eg by

)\mb(p)zln(m)—ibp, a,beR, b£0. (1.4)

ea

Evidently, the lower bound

a(9)] = \/In2(|p‘) LB >0y >0, pER (L.5)

e
holds. Here(, , is a constant. Therefore, as distinct from the case withwudtift
term discussed in [18], our operator (1.3) satisfies thettotal property.



We write down the corresponding sequence of the approxietatations withn €
N, namely

1 d? Ay,

[aln(—@ﬂum—b— — AUy, = fi(x), = €R, (1.6)
wherea, b € R, b # 0 are the constants. Let us assume that the right sides of (1.6)
are square integrable on the real line and converge to thesiige of (1.2) inL?(R)

asm — oo. Our first statment deals with the solvability of problen®{1.

Proposition 1.1. Let the constanta,b € R, b # 0 and f(z) € L*(R). Then
equation (1.2) admits a unique solutiofiz) € L*(R).

Note that as distinct from the analogous situation withbatttansport term consid-
ered in [18], the argument of the proposition above doeselgtan the orthogo-
nality conditions. Our second statement is devoted to geeisf the solvability in
the sense of sequences for our equation.

Proposition 1.2.Letm € N, the constants, b € R, b # 0, the functionsf,,(z) €
L*(R), such thatf,,(z) — f(z) in L*(R) asm — oo. Then problems (1.2) and
(1.6) possess unique solutions) € L*(R) andu,,(x) € L*(R) respectively, such
thatu,,(z) — u(x) in L*(R) asm — oo.

Throughout the article we use the hat symbol to denote timelatd Fourier trans-

form
~ 1

f(p) == Wr /OO f(x)e "*dz, peR. (1.7)

Clearly, the upper bound

~

1f )o@y < (1.8)

1
E’\f@)HLl(R)
is valid. The second part of our article is devoted to the istidf the nonlinear
equation

2 o)
[— %In(— %)]uj%g—z +au+/_oo Glz—y)F(u(y),y)dy=0, xR (1.9)
with the constants, b € R, b # 0. In the Population Dynamics the integro-
differential problems are used to describe the biologigateans with the nonlocal
consumption of resources and the intra-specific competisee e.g. [4], [6],
[23]). The solvability of the equation analogical to (1.9i lvith a standard Lapla-
cian in the diffusion term was discussed in [16]. Similady|[tL6], we impose the
following regularity conditions on the nonlinear part obptem (1.9).



Assumption 1.3. Function F'(u,z) : R x R — R is satisfying the Caratheodory
condition (see [25]), so that

|F(u,x)| < klu| + h(z) for ueR, xR (1.10)

with a constantt > 0 andi(x) : R — R", h(z) € L*(R). Moreover, it is a
Lipschitz continuous function, so that

|F(uy,x) — Fug, z)| <lluy —us| for any w2 €R, ze€R (1.11)
with a constant > 0.

The solvability of a local elliptic equation in a bounded daimin RV was consid-
ered in [9]. The nonlinear function there was allowed to hageiblinear growth.
In order to demonstrate the existence of solutions of prolfle9), we will use the
auxiliary equation

[e.e]

[1|n(_d—2)] b= [ G- P p)dy, zeR, (112)
5 72 U I au = . z—y)r(vy),y)dy, =x , .
wherea,b € R, b # 0 are the constants. We manage to establish that under the
reasonable technical assumptions problem (1.12) defineapelln, : L*(R) —
L?*(R), which is a strict contraction.

Theorem 1.4. Let Assumption 1.3. hold, the functiof{(z) : R — R, so that
G 1
G(z) € L'(R) andn(?wl < 1.
a,b
Then the mag, ;v = « on L?(R) defined by equation (1.12) has a unique fixed
pointu, ,, which is the only solution of of problem (1.9) id(R).
This fixed point does not vanish identically on the real limevmled the intersection

of supports of the Fourier transforms of functiongp (0, z)(p) N supp@(p) isa
set of nonzero Lebesgue measur&in

Related to problem (1.9), we study the sequence of the appabta equations for
m € N, namely
1 d?
_ = _ - (m)
()]

du (™ o

+b T aul™ + / Gz —y)F(u™ (y),y)dy = 0, (1.13)
wherex € R anda,b € R, b # 0 are the constants. The sequence of kernels
{G,.(x)}5o_, tends toG(x) in L'(R) asm — oo. Let us show that, under the
appropriate technical conditions, each problem (1.13y@8ses a unique solution
u™ (r) € L*(R), limiting equation (1.9) admits a unique solutiofw) € L3(R),
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andu™ (z) — u(z) in L?*(R) asm — oo. The importance of Theorem 1.5 below
is the continuous dependence of the solution with respdbietmtegral kernel.

Theorem 1.5.Let Assumption 1.3 holdy € N, the functions,,(z) : R — R are
suchthaiz,,(z) € L'(R) andG,,(z) — G(x) in L'(R) asm — oo. Moreover, we

suppose that

G |

|G ()| Iy <1-- (1.14)

a,b

is valid for eachm € N with some fixed < ¢ < 1.
Then each equation (1.13) admits a unique solutid® (z) € L?(R), limiting
problem (1.9) has a unique solutiariz) € L?(R), andu™ (z) — u(z) in L*(R)
asm — oo.
The unique solution:™ (x) of each equation (1.13) is nontrivial provided the

intersection of supports of the Fourier transforms of fiwores Suppm)(p) N
suppG.,(p) is a set of nonzero Lebesgue measurRirSimilarly, the unique solu-

—

tion u(x) of limiting problem (1.9) does not vanish identicallyifpp £ (0, )(p) N

~

suppG (p) is a set of nonzero Lebesgue measure on the real line.

2. Proofs of the main results

Proof of Proposition 1.1To establish the uniqueness of solutions for our problem,
we suppose that (1.2) admits two solutionéz), us(z) € L*(R). Evidently, their
differencew(x) := u;(r) —us(x) € L?(R) as well and it satisfies the homogeneous

equation
1 d? dw
Because the operatdr, , on L*(R) given by (1.3) has only the essential spectrum
and no nontrivial zero modes (see (1.4) and (1.5)), the fonet(z) vanishes a.e.

in R.

Let us apply the standard Fourier transform (1.7) to botkessiof equation (1.2).
This yields

=% per 2.2)
In (g — ibp
By means of (1.5), we have
) < L2 ¢ 2m)
Ca,b
due to our assumption, such thdtr) € L*(R). |



We proceed to addressing the issue of the solvability in émse of sequences for
our linear problem.

Proof of Proposition 1.2 By virtue of Proposition 1.1 above, each equation (1.6)
has a unique solutiom,,(z) € L*(R), m € N and limiting problem (1.2) possesses
a unique solution(z) € L*(R).

We apply the standard Fourier transform (1.7) to both sidlegoations (1.6). This
gives us form € N that

N ()
N

By means of (2.3) along with (2.2), we arrive at

, peR. (2.3)

—

i) — a(p) = 1= = 10) (2.4)
In(%) — ibp
Using (1.5), we derive
o) () < LT
such that
[t () — u(@)| 2@y < /() ;f(x)HB(R) —0, m— o0
a,b

as assumed. Thereforg,, () — u(z) in L?(R) asm — oo. |

Let us turn our attention to the solvability of the nonlinpaoblem.

Proof of Theorem 1.4.First we suppose that for a certaifiz) € L*(R) there
exist two solutions:; »(z) € L*(R) of equation (1.12). Obviously, the difference
functionw(z) = u;(z) — ua(z) € L*(R) solves (2.1). Since the operatby,

on L?(R) defined in (1.3) does not possess any nontrivial zero modéisasssed
above, the functiom () is trivial on the real line.

Let us choose an arbitranfz) € L*(R) and apply the standard Fourier transform
(1.7) to both sides of problem (1.12). We obtain

o G(p)3(p)
u(p) = m—ln<g> - ibp’ p € R. (2.5)

Herep(p) stands for the Fourier image 6f(v(x), z). By means of estimates (1.5)
and (1.8), we derive

< I6@lw|2e)
<
)| < TR,



such that 1G]
T 1
—Yi%%w@mwmmm (2.6)

Let us recall inequality (1.10) of Assumption 1.3. Hené&u(z), x) is square
integrable on the real line far(z) € L*(R). Thus, for an arbitrarily chosen(z)
L*(R) there exists a unique solutiariz) € L*(R) of equation (1.12), such that its
Fourier image is given by (2.5). Therefore, the map : L*(R) — L*(R) is well
defined.

This allows us to choose the arbitrary functians(x) € L?(R), such that their
imagesu, » := T, ,v1 2 € L*(R). Clearly, (1.12) yields

[u(@)] 2@y <

1 d2 du1 °

bm( - @)}Ul - b@ —au; = /oo Gz —y)F(u(y),y)dy, =R, (2.7)
1 d2 dUQ °

bm( - @)}UQ - b@ —auy = /oo Gz —y)F(v2(y),y)dy, = €R, (2.8)

wherea, b € R, b # 0 are the constants. We apply the standard Fourier transform
(1.7) to both sides of the equations of system (2.7), (2.8)arive at

i (p) = @M, i (p) = @M, peR.  (2.9)
In(%) — ibp In(%) — ibp

Herep; »(p) designate the Fourier images Bfv; »(x), z). Let us use (2.9) along
with (1.8) and (1.5) to derive the upper bound

Y Y G X 1 - -
@) - 50 < IO 5) - 50,
so that
|G(@)]1
ln(2) = a2y < = =N (0a(2), 2) = F(0(a), 2)l| 205

We recall condition (1.11) of Assumption 1.3 above. Hence,
|F(un(2), 2) = Fva(), 2|2y < Uon(@) = va(2) | 2wy,

such that

Gz LY(R
NN ) — oo oy (@220)

| Topv1(2) — Ty pva(x) || L2(r) C
a,b

The constant in the right side of (2.10) is less than one assa@ae. Therefore, by
means of the Fixed Point Theorem, there exists a uniqueiemet;, € L?(R), so
that 7, ,v., = vap. This is the only solution of equation (1.9) itf(R). Suppose
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v, Vanishes identically ifR. This will contradict to the given condition that the

intersection of the supports of the Fourier imageﬁpm) (p) N supp@(p) isa
set of nonzero Lebesgue measure on the real line. [ |

We conclude the article by discussing the issue of the sdityalm the sense of
sequences for our nonlinear equation.

Proof of Theorem 1.8y virtue of the result of Theorem 1.4 above, under the stated
assumptions each equation (1.13) admits a unique solutioiir) € L*(R), m €
N.

We have|| G, (2)||L1r) = [|G(2)]|L1m) @Sm — oo via the standard triangle in-
equality. From (1.14) we easily deduce that

|G (@)l ®)
a,b

[<1-—¢

via the trivial limiting argument. Hence, by means of Thenrk4, limiting problem
(1.9) possesses a unique solutidn) € L*(R) as well.

Let us apply the standard Fourier transform (1.7) to botkessiof equations (1.9)
and (1.13). Thus,

—

() = var @I @(p):\/%w, peR  (2.11)
(p)—sz |n<‘p‘) ibp

Here f(p) andf/(;)(p) denote the Fourier images 6f(u(x), z) and F (u'™ (x), z)
respectively. From (2.11), we easily deduce that

u

—

[um) (p) — u(p)| <

BV (< )| Ry vl U Rl W )
\/|n (\p\)+b2 \/|n <|p|)+b2

Let us use inequalities (1.5) and (1.8) to derive that

— N G|l pim)y —— ~ Go(z) — G(@) 1wy ~

) —ip)] < oM, o) iy 100 2D, 7y,
Ca,b Ca,b
so that
" [Gon )1 "
1 () = o) oy < = EEEHIP () @), 2) = F(u(e), o) e+
|Gon() = Gl
+ o I @), )l



We recall bound (1.11) of Assumption 1.3. above. Hence,
1F (™ (@), 2) = F(u(z), )| 2@y < Uu™ (2) = u(@)| 2 (2.12)
This enables us to derive the estimate

F_M%@Www

., 4wwww—u@wm@s

_ IGn(@) = G@)lluy
o Ca,b
Using (1.14), we arrive at

R
UIF(u(x), )] 12 gw)-

Gm r) — Gz 1
[u™ (2) — u(2)| 2@ < 1Gm( )6Ca,b( Moz

Let us recall upper bound (1.10) of Assumption 1.3. Thid&y(z), z) is square
integrable on the real line far(x) € L?(R). Therefore, under the given conditions

u™ (z) = u(z), m — oo (2.13)

P (u(z), )| 12 ge)-

in L2(R). If we suppose that!™(z) vanishes identically irR, we will obtain
the contradiction to the stated assumption that the intéseof the supports of

the Fourier transformsuppF'(0, x)(p) N suppé;(p) Is a set of nonzero Lebesgue
measure on the real line. The similar argument is valid fergblutionu(x) of
limiting equation (1.9). [ |
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