SOME NONLOCAL FORMULAS
INSPIRED BY AN IDENTITY OF JAMES SIMONS
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ABSTRACT. Inspired by a classical identity proved by James Simons, we establish a new geometric
formula in a nonlocal, possibly fractional, setting.

Our formula also recovers the classical case in the limit, thus providing an approach to Simons’
work that does not heavily rely on differential geometry.
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1. INTRODUCTION

1.1. Taking inspiration from Simons’ work. A classical identity proved by James Simons
in [Sim68] states that at every point of a smooth hypersurface with vanishing mean curvature we
have that

n—1
AP +2¢t =2 ) [0kl (1.1)
ijk=1
Here above, ¢, denotes the tangential derivative in the k-th coordinate direction, h;; the entries
of the second fundamental form, ¢ the norm of the second fundamental form, and A the Laplace-
Beltrami operator on the hypersurface (see e.g. formula (2.16) in [CM11], or, equivalently, the
seventh formula in display on page 123 of [Giu84], for further details on this classical formula).
Simons’s Identity is pivotal, since it provides the essential ingredient to establish the regularity
of stable minimal surfaces up to dimension 7.
In this note we speculate about possible generalizations of Simons’ Identity to nonlocal settings.
In particular, we will consider the case of boundary of sets and of level sets of functions. These
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cases are motivated, respectively, by the study of nonlocal minimal surfaces and nonlocal phase
transition equations. The prototypical case of these problems comes from fractional minimal
surfaces, as introduced in [CRS10], and we recall that the full regularity theory of the minimizers
of the fractional perimeter is one of the main open problems in the field of nonlocal equations: up
to now, this regularity is only known when the ambient space has dimension 2, see [SV13], or up
to dimension 7 provided that the fractional parameter is sufficiently close to integer, see [CV13], or
when the surface possesses a graphical structure, see [CC19] (see also [CSV19, CCS20,CDSV] for
the case of stable nonlocal minimal surfaces, i.e. for surfaces of vanishing nonlocal mean curvature
with nonnegative definite second variation of the corresponding energy functional).

The problem of nonlocal minimal surfaces can also be considered for more general kernels than
the one of purely fractional type, see [MRT19, CSV19], and it can be recovered as the limit in
the T-convergence sense of long-range phase coexistence problems, see [SV12]. In this regard, the
regularity properties of nonlocal minimal surfaces are intimately related to the flatness of nonlocal
phase transitions, which is also a problem of utmost importance in the contemporary research: up
to now, these flatness properties have been established in dimension up to 3, or up to 8 for mildly
nonlocal operators under an additional limit assumption, or in dimension 4 for the square root of
the Laplace operator, see [CSM05,SV09, CC10,CC14, CS15, DFV18, Sav18, Sav19, FS20, DSV20],
the other cases being widely open.

In this paper, we will not specifically address these regularity and rigidity problems, but rather
focus on a geometric formula which is closely related to Simons’ Identity in the nonlocal scenarios.
The application of this formula for the regularity theory appears to be highly nontrivial, since
careful estimates for the reminder terms are needed (in dimension 3, a reminder estimate has been
recently put forth in [CDSV]).

An interesting by-product of the formula that we present here is that it recovers the classical
Simons’ Identity as a limit case. Therefore, our nonlocal formula also provides a new approach
towards the original Simons’ Identity, with a new proof which makes only very limited use of
Riemannian geometry and relies instead on some clever use of the integration by parts.

Let us now dive into the technical details of our results.

1.2. The geometric case. Let K be a kernel satisfying
K € C'(R"\ {0}),

K() = K(—z),
K(2)) < % (1.2)
Clw -z

and lw- VK (z)| < for all w € S 71

|I|n+s+2
for some C' > 0 and s € (0,1).
Given a set E with smooth boundary, we consider the K-mean curvature of £ at x € OF given
by
1

Hicele) =5 [ (eors(0) = xew) K (o =) dy. (13)

Notice that the above integral is taken in the principal value sense.
The classical mean curvature of E will be denoted by Hg. We define

crp(x) = \/% /8E (ve(z) — VE(y))2 K(x —y)dHrt, (1.4)



SOME NONLOCAL FORMULAS INSPIRED BY AN IDENTITY OF JAMES SIMONS 3

being vg = (Vga,...,VE,) the exterior unit normal of E. The quantity cx g plays in our setting
the role played by the norm of the second fundamental form in the classical case, and we can
consider it the K-total curvature of E.

We also define the (minus) K-Laplace-Beltrami operator along 0F of a function f by

L@ = [ (fa) = 1) Ko =) drty ™ (15)
E
As customary, we consider the tangential derivative
Opif(r) = 0if(x) —vpi(z) Vf(z) - ve(r) (1.6)
and we recall that
0EiVE; = OB VE,i (1.7)

see e.g. formula (10.11) in [Giu84].
In this setting, our nonlocal formula inspired by Simons’ Identity goes as follows:

Theorem 1.1. Let K be as in (1.2). Let E C R™ with smooth boundary and x € OF with vg(x) =
0,...,0,1).
Assume that there exist Ry > 0 and B € [0,n + s) such that for all R > Ry it holds that

/ (Hp(y)| + 1) dHI ™" < CR, (1.8)
dENBR(z)

for some C' > 0.
Then, for any i, j € {1,...,n — 1} it holds that

5E,i5E,jHK,E(x) = — LK7E5E,jVE,i<x) + C%(’E(ZL‘) 5E,jVE,i(fE)

1.9
- / ) (Hp)K(z —y) = vily) - VE (@ = ) )vely) vi(y) dHy . (9

The proof of Theorem 1.1 will be given in detail in Section 2.

It is interesting to remark that the result of Theorem 1.1 “passes to the limit efficiently and
localizes”: for instance, if one takes p € C§°([—1,1]), € > 0 and a kernel of the form K.(x) :=
e 2p(|z|/e), then, using Theorem 1.1 and sending ¢ N\, 0, one recovers the classical Simons’
Identity in [Sim68] (such passage to the limit can be performed e.g. with the analysis in [AV14]
and Appendix C in [DAPW18]).

The details' on how to reconstruct the classical Simons’ Identity in the appropriate limit are
given in Section 1.3.

1.3. Back to the original Simons’ Identity. As mentioned above, our nonlocal formula (1.9)
in Theorem 1.1 recovers, in the limit, the original Simons’ Identity proved in [Sim68]. The precise
result goes as follows:

Theorem 1.2. Let E C R™ and x € OF. Assume that there exist Ry > 0 and 5 € [0,n + 1) such
that for all R > Ry it holds that

/ (|Hg(y)| + 1) dHy " < CR’, (1.10)
8EQBR(I)

for some C > 0. Then, the identity in (1.1) holds true as a consequence of formula (1.9).

'We also remark that condition (1.8) is obviously satisfied with 8 := n — 1 when the set E is smooth and
bounded. For minimizers, and, more generally, stable critical points, of the nonlocal perimeter functional, one still
has perimeter estimates (see formula (1.16) in Corollary 1.8 of [CSV19]): however, in this general case, estimating the
mean curvature, or, in greater generality, the “second derivatives” of the set, may be a demanding task, see [CDSV]
for some results in this direction.
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The proof of Theorem 1.2 is contained in Section 4.

We point out that Theorems 1.1 and 1.2 also provide a new proof of the original Simons’ Identity.
Remarkably, our proof relies less on the differential geometry structure of the hypersurface and it
is, in a sense, “more extrinsic”: these facts allow us to exploit similar methods also for the case of
integrodifferential equations, as will be done in the forthcoming Section 1.4.

1.4. The case of integrodifferential equations. The framework that we provide here is a
suitable modification of that given in Section 1.2 for sets. The idea is to “substitute” the volume
measure xg(z) dr with u(x) dr and the area measure xop(z)dH? ! with |Vu(z)| dz. However, one
cannot really exploit the setting of Section 1.2 as it is also for integrodifferential equations, and
it is necessary to “redo the computation”, so to extrapolate the correct operators and stability
conditions for the solutions.

The technical details go as follows. Though more general cases can be considered, for the sake
of concreteness, we focus on a kernel K satisfying

K ¢ C*R™)n L'(RY),
VK| € L'(R™), (1.11)
and  K(z) = K(—x).

Given a function u € WH*(R") whose level sets {u = t} are smooth for a.e. ¢t € R, we define
the K-mean curvature of u at x € R" by

1
Hp () = Ck —/ u(y) K(x —y) dy, where Ck := 3 K(y)dy. (1.12)
n Rn
The setting in (1.12) has to be compared with (1.3) and especially with the forthcoming for-
mula (2.2). The classical mean curvature of the level sets of u will be denoted by H, (i.e.,
if ¢, := u(x), then H,(x) is the classical mean curvature of the set {u > t,} at z).
We also define the the K-total curvature of u as

cru(t) = \/% / (V@) = ()" K (2 — y) dptuy, (1.13)

being v, (z) the exterior unit normal of the level set of u passing through z (i.e., if t, = u(z),
then v, (z) is the exterior normal of the set {u > t,} at z). In (1.13), we also used the notation
Aty = [Vu(y)| dy. (1.14)

Of course, the definition in (1.13) has to be compared with that in (1.4). Moreover, by construction
we have that

Vu(z)
V() = =5 (1.15)
[Vu(z)]
the minus sign coming from the fact that the external derivative of {u > ¢, } points towards points
with “decreasing values” of u.

We also define the K-Laplace-Beltrami operator induced by u acting on a function f by

Licuf(2) = [ (f(0) = 1)) K(x =) dpay (1.16)

Once again, one can compare (1.5) and (1.16). Also, we denote by d,; the tangential derivatives
along the level sets of u (recall (1.6)). This setting turns out to be the appropriate one to translate
Theorem 1.1 into a result for solutions of integrodifferential equations, as will be presented in the
forthcoming result:
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Theorem 1.3. Let K be as in (1.11). Let u € WH®(R™) and assume that {u = t} is a smooth
hypersurface with bounded mean curvature for a.e. t € R. For any v € R"™ with v,(z) = (0,...,0,1)
and any i, j € {1,...,n — 1}, it holds that

5u7i5u,jHK7u(x) = — LK,uéu,jVu,i (I) + C%(,u(l‘) 5u,jVu,i(x)
[ (M@K = ) = o) VR =) ) 0) s 0)

The proof of Theorem 1.3 is a careful variation of that of Theorem 1.1, but, for the sake of clarity,
we provide full details in Section 3. We also observe that the choice u := yg would formally allow
one to recover Theorem 1.1 from Theorem 1.3.

(1.17)

1.5. Stable sets. In the study of variational problems, a special role is played by the “stable”
critical points, i.e. those critical points at which the second derivative of the energy functional is
nonnegative definite, see e.g. [CP18|.

In this spirit in the study of nonlocal minimal surfaces we say that E is a stable set in ()
if Hi gp(x) =0 for any x € QN JE and

/ / (1) K (x — ) dHP " dHn! — / Ep(@) @) dHr >0 (118)
oFE JOFE oF
for any f € C§°(Q).

In connection with this, we set

Bres(u,via) =5 [ (ula) = ) (0(w) = v(s)) Klo =) atty™

where the integral is taken in the principal value sense, and
Brep(u,0) = | Bl via) dis
OF

In this notation, the first term in (1.18) takes the form Bg(f, f).

Also we consider the integrodifferential operator Lk, g previously introduced in (1.5). When K (x) =
Ix\T“’ this operator reduces to the fractional Laplacian, up to normalizing constants.
With this notation, we have:

Theorem 1.4. Let E C R™ with smooth boundary. Then, for alln € C{°(OF),

1
-/ {§LK,EC%<,E<@~>+BK,E<CK,E,CK7E;x>—c;Eu)}n?(x) M < [ (o) B ) dH
OF OF

For the classical counterpart of the above in equality, see e.g. [CP18, equation (19)].

The rest of this paper contains the proofs of the results stated above. Before undertaking the
details of the proofs, we mention that the idea of recovering classical results in geometry as a
limit of fractional ones, thus providing a unified approach between different disciplines, can offer
interesting perspectives (for instance, we will investigate the Ricci curvature from this point of
view in the forthcoming article [DGTV]; see also [GH] for limit formulas related to trace problems
and [HK] for a recovery technique of the Divergence Theorem coming from a nonlocal perspective).

2. PROOF OF THEOREM 1.1

Up to a translation, we can suppose that 0 € 9F and prove Theorem 1.1 at the origin, hence we
can choose coordinates such that

vi(0) = (0,...,0,1). (2.1)
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We point out that assumption (1.8) guarantees that all the terms in (1.9) are finite, see e.g. the
forthcoming technical calculation in (4.19).

Moreover, we take K to be smooth, compactly supported and nonsingular, so to be able to take
derivatives inside the integral (the general case then follows by approximation, see e.g. [FFM*15]).
In this way, we rewrite (1.3) as

1

Hip(z) =Ck — / K(z —y)dy, where Ck = 3 K(y)dy. (2.2)
E Rn

Also, this is a good definition for all x € R™ (and not only for x € OF), so we can consider the full
gradient of such an expression. Moreover, for a fixed x € R", we use the notation

o(y) = K(z —y). (2.3)
In this way, we have that, for any ¢ € {1,...,n},
K (x —y) = —0up(y). (2.4)

Exploiting this, (2.2) and the Gauss-Green Theorem, we see that, for any ¢ € {1,...,n},
O Hg p(z) = — / QK (z —y)dy = / Do (y) dy = / div(p(y)ec) dy
E E E
= [ et e 1 = [ v Ko — gy ar
E

OFE

This gives that, for any = € OF,

VHgg(x) = /8E ve(y) K(z —vy) d’HZ_l. (2.5)
In addition, from (1.4),
@) =5 [ (ela) ~ ven)) Ko — ) ity
oF (2.6)
= K(z—y)dH) ' —vg(x) - / ve(y) K(x —y)dH, .
o O

Now, we fix the indices 7, j € {1,...,n — 1} and we make use of (1.6) and (2.5) to find that
5E,iHK,E<$> = 81HK7E(1:) — I/Eji(m) VHKyE(x) . VE($)

OF

We take another tangential derivative of (2.7) and evaluate it at the origin, recalling (2.1) (which, in
particular, gives that vg;(0) = 0 = vg;(0) for any 4, j € {1,...,n—1}). In this way, recalling (1.6),
we obtain that

5E7]5E7ZHK,E(O)
= 0;0p,:Hk £ (0)
= 0; U vpi(y) K(z —y) dHL ™ — vpi(z) ve(x) - / ve(y) K(z —y) dH) ™ (2.8)
oF oF =0

= / vEi(y) 0K (—y) dHZ_l—ajVE,i(O) VE<O)'/ ve(y) K(—y) d/HZ_l'
OE

oFE
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Also, using the notation in (2.3) and (2.4) with z := 0 and (1.6), we see that
| v oy
O
== | i) ot ar 2.9
E

- _ /aE vei(Yy) 0p;0(y) d”}—[zq _ / vei(y)ve(y) Vo(y) - ve(y) ngil'

oF

Now we recall an integration by parts formula for tangential derivatives (see e.g. the first formula?
in display on page 122 of [Giu84]), namely

/ 5,/ () dHD T = / Hily) ve,(y) fly) a2, (2.10)
oF oF

being Hp the classical mean curvature of OE. Applying this formula to the product of two functions,
we find that

| sest@owang s [ 1) dmigt) i = [ 5,0 iy
- o o (2.11)

= | Hu(y)ve;(y) fy) gly) dHy .

OF
Using this and (2.3) (with = := 0 here), we see that

—/ VEz(y) 5E,j¢(?/) dHZ_l
OE

- /aE O veily) o) dHy " — | Hi(y)veiy) ve,(y) oly) dHy

OF

= ; 0p,vei(y) K(—y) dﬂzfl— g Hg(y)ve:(y) ve,;(y) K(_ZJ)dHZfl-
E E

So, we insert this information into (2.9) and we conclude that

/ vei(y) 0;K(—y) dHZ_l = dp,vei(y) K(—y) dHZ_l
OE OE

— | Hp(y)vei(y) ve,;(y) K(—y)dH) ' + / vei(y) ve,;(y) VEK(=y) - ve(y) dH) .
OF OF

Plugging this into (2.8), we get that

05,05, H K £(0) :/ 0pvei(y) K(=y)dHy ™' = | Hp(y) veiy) ve,(y) K(—y) dH,
OF oF

+ | v veste) VE (=) vely) ity (2.12)
OF

~ we0)ve(0) - [ vely) K-yt

OF

2We stress that the normal on page 122 of [Giu84] is internal, according to the distance setting on page 120
therein. This causes in our notation a sign change with respect to the setting in [Giu84]. Also, in the statement of
Lemma 10.8 on page 121 in [Giu84] there is a typo (missing a mean curvature inside an integral). We also observe
that formula (2.10) can also be seen as a version of the Tangential Divergence Theorem, see e.g. Appendix A
in [Eck04].
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In addition, from (2.6),

Ojp,i(0) ¢k p(0) = | Ojvpi(0) K(—y) dHy™" — 0jv5,:(0) ve(0) - / vp(y) K(—y) dH, ™.

oFE oF

Comparing with (2.12), we conclude that

0p,j0pHr p(0) = /

oF

<5E,j1/E,i(y> — (SEJVEJ(O)> K(—y) d’}-[zfl

_ . Hig(y)vei(y) ve;(y) K(—y) dHZ_l

4 [ i) s ) VK (=0) - vel) 4+ 0ym0) e 0)
OF

From this identity and the definition in (1.5), the desired result plainly follows. O

3. PROOF OF THEOREM 1.3

The proof is similar to that of Theorem 1.1. Full details are provided for the reader’s facility.
Up to a translation, we can prove Theorem 1.3 at the origin and suppose that

v,(0) = (0,...,0,1). (3.1)

We observe that our assumptions on the kernel in (1.11) yield that all the terms in (1.17) are finite.
Using (1.12), (1.14) and (1.15), we see that, for any x € R",
e =) K dy) = [ Vuta =) Kt dy

VHK,H(.I) =V <CK _/
Rm (3.2)
=— | Vuly) Kz —y)dy= / vu(y) K(z = y) dpuy.-

n

RTL n
In addition, from (1.13),
1 2
Gnl@) =5 [ (@) = 1lw)* Kl = ) dpy
! (3.3)
= | K& —y)dpuy —vu(z)- / vu(y) K(z —y) dppuy.
R™ n
Also, in view of (1.6) and (3.2),
OuiHrku(r) = 0;Hp (v) — vyi(2) VHE () - vy (2)
3.4
= [ i) K = 0) iy~ vus@) @) [ ) K=y
Consequently, using (3.1) and (3.4), for all 4, j € {1,...,n — 1},
6u,j5u,iHK,u(O
= 8]5%1[{;(7”(0)
= aj |:/ Vu,i(y) K(ZL‘ - y) d:uu,y - Vu,i(x) Vu(-r) ' / Vu(y) K(ZL’ - y) d/vbu,y (35)
n n =0

= [ s 0K ) diay = 0 0) - [ ) K (=)
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Now, recalling the notation in (2.3) and (2.4) with z := 0 and (1.6), we obtain that
| v 0K (=) dp
. / Vaily) 0,6(0) dity (3.6)
— [ i) 800 by~ [ i) s (6) V) vl ity

Furthermore, exploiting the Coarea Formula twice and the tangential integration by parts identity
in (2.11), we obtain that

_/R Vu,i(y) 5u,j¢(y) dluu,y = - - |Vu(y)\ Vu,i(y) 5u7j¢(y) dy

=— / / vui(y) 0ugoy) iy~ dt
R J{u(y)=t}

_ / / OujVui(y) Ply) dH, ™" dt
R J{u(y)=t}

_ / / Ho(y) s () v (y) 6(y) A dt
R J{u(y)=t}

= [ IVu)| buivui(y) o) dy — | |Vu(y)| Hu(y) vai(y) vu;(y) ¢(y) dy

R™ R

[ ustns) 60 dity — [ o) ) s ) 600)

R
- / 5u,jVu,i(y) K(_y) d/JJu,y - Hu(y> Vu,i(y) Va,j (y) K(_y) dﬂu,y‘
n ]Rn
We can now insert this identity into (3.6) and we get that

/ Vu,i(y) ajK(_y> d,uu,y = / 6u,jVu,i<y) K(_y) d,uu,y

— [ Hu(y) vui(y) v (y) K(—y) dppuy + / Vui(Y) Vuj(y) VE(=y) - vu(y) dptuy-

R n
Plugging this into (3.5) we get that
6u,j5u,iHK,u(O) = / 5u,jyu,i(y> K(_y) d:uu,y - / Hu(y) Vu,i(y) V.5 (y) K(_y) dﬂ!u,y

n n

3.7
+ / Vai(y) v (9) VE(=y) - vuly) dhtuy = 0i0:(0) v (0) / va(y) K (=) dpuy. Y
Also, from (3.3), we have that
00i(0) Beal0) = [ 0sl0) K (=) diay = 00 1 0) - [ 3al) K=0)
Hence, from this and (3.7), we conclude that
8 j0uiHic(0) = /n (5u,j’/u,z‘(y) - (5u,j’/u,i(0>> K(=y) dppy — - Ho(y) vai(y) vu;(y) K(=y) dptuy

[ i) ) VE (=) 20 bty + 0y0) i (0)
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This and (1.16) give the desired result. O

4. PROOF OF THEOREM 1.2

For clarity, we denote by Ayg the Laplace-Beltrami operator on the hypersurface 0F, by dx g
the tangential derivative in the kth coordinate direction, by vz the external derivative and by cg
the norm of the second fundamental form.

To obtain (1.1) as a limit of (1.9), we focus on a special kernel. Namely, given ¢ > 0, we let

€

K.(y) = ———. 4.1
W)= e ()
We now recall a simple, explicit calculation:
BHn—l(Sn—l)
Tdr = 4.2
/lel v n(n+2)(n+4) (42)
37‘[”71(5’”71)
d DidHy = ————= 4.3
wd [ atog - (43)

Not to interrupt the flow of the arguments, we postpone the proof of formulas (4.2) and (4.3) to
Appendix A.

To complete the proof of Theorem 1.2, without loss of generality, we assume that 0 = = € OF
and that OF N B,, is the graph of a function f : R""! — R with vertical normal, hence f(0) = 0
and 0;f(0) =0 for alli € {1,...,n—1}. We can also diagonalize the Hessian matrix of f at 0, and
obtain that the mean curvature Hy at the origin coincides with the trace® of such matrix, namely

Hp(0) = —(87f(0) +--- + 02, £(0)). (4.4)

The sign convention here is inferred by the assumption that E is locally the subgraph of f and the
normal is taken to point outwards. Consequently, for every y = (v/, f(y')) € OE N B,,,

’ 1n_1 2 2 /3
f(y)—gizl(?if(())y@- +O(ly'), (4.5)

VW) = O, 00 f(W) = (0 (0) g1, Op 1 f(0) ya) + OT)

and

(—Vf(y’), 1) / /2
vi(y) = = (=V/), 1)+ O(y'T")
V1I+|VEY)|? (4.6)
= (=0 y1,- =051 £(0) yu-1,1) + O(ly']*))-
Here, the notation g = O(h(]y'|)) means that |g| < C|h(|]y'|)| for |y/| sufficient close to 0 with

C' independent of ¢, that is, g is uniformly in e big O of h as |y/| — 0. As a consequence, for
every y = (¢, f(¥/)) € OE N By,

> = 1y'* + 1O =117+ O00y'1") = ly'[P (1 + O(y'1), (4.7)
and, for any i,j € {1,...,n— 1},
v (y)vei(y) = 0; F(0)0; f(0)yy: + O(ly']*). (4.8)

Thus, using (4.7), we see that, for any fixed a € R,
« «@ a/2 «
[y = 1y'1* (1 + O(y'?) ™ = y/|*(1+ O(ly' 1) (4.9)

3We stress that we are not dividing the quantity in (4.4) by n — 1, to be consistent with the notation in for-
mula (10.12) in [Giu84].
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Then, from (4.6) and (4.9), we obtain that, for any ¢ € {1,...,n — 1} and y € OE N B,,,

(n+1—2¢e)ed?f(0)y?

vE(Y) 0K (—y) = — |y|n+3—i +20 (ly'™)

_ (n+1-¢)edif(0)y; 20 (Jy =)

[y'[ee
and also, recalling (4.5),
(n+1—e)eya(1+0(y'*))

VEm(y)anKs(_y) =

ol
n—1
1 n+1—€582f( )yé /e—n
- 5 |y |n+3 c 6O(lyl )
=1
Accordingly, we have that
~1
1 n+1—5582f()y cn
( ) VK :_52 |y |n+3 - ! (|y| )
=1

We thereby deduce from the latter identity and (4.8) (and exploiting an odd symmetry argument)
that, for any r € (0, r¢],

—2 —
T o, P TR0 v )
NB,

-1
X O2£(0) 92 £(0) 02 £(0) y2 y; s
DA

|yl | n+3—¢

+ 0<\y'\2+”>) i

(=1

n—1 97 £(0) 07 £(0) 97 £(0) w7 y; ys I|p+eny 2
= Z/kar} ( é /= : + Oy > \/Wdy 410

= JY

S 07 £(0) 97£(0) 9 £ (0) w7 w; v 4o ) :
Z/|y|<r} ( |y [ + O(ly'] ) ) dy

=1 7Y

B n—1 8?]‘"(0) (832f(0))2 yl? yJQ' 5ji /124e—n ) /
Z/w <r} ( [/ [ +O(ly'| ) ) dy.

=1 7Y
Furthermore, exploiting again (4.8) and (4.9), we see that

/8Em3 Hy(y) K (=) vei(y) ve;(y) d%Z_l

o HE(y)a?f(())a?f(O)yjyl 124+e—n ) n—1

|yl|n+1—6

4.11)
Hp(0)32 £ (0)021 (0)ys3: (
e [ (PRI Loy P ) ay
{ly’'|<r} ’y ’
Hp(0) (07£(0))*y7 04 cn
= [ (PR oy )
{ly'|<r} Y|
Now we use polar coordinates in R"~! to observe that
/2+e—n / n—2/qQn—2 ' 24e—m n—2 CT1+E
Ty =S | T dp = (4.12)
{ly'l<r} 0 +e
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for some C' > 0.
Moreover, for any fixed index j € {1,...,n — 1},

n—1

2 2
y] / £ / yk /
£ —dy = —kdy
/{|y'|<r} ly/[rrie n—1 ; (y<ry 1Y/ 7E

£ dy’ eHP2(Sm2) [T
— / /ny_l_e — ( ) / psfl dp — wr57
n =1 i< /| n—1 0

(4.13)

where

n—2 n—2
LM

— (4.14)

2,2
Now, we compute the term e f{ly’|<r} Iy’ﬁfl% dy’. For this, first of all we deal with the case ¢ = j:

in this situation, we have that

y4 y4
5/ —__dy = 8/ —2L_dy = C, 1", (4.15)
{ {

)<y 1Y E <y 1Y PT37E

where

4
C, = 5/ — gi3—€ dy =¢ // P~ I dpdHy?
{ly'1<1} /] (p,9)€(0,1)x Sn—2

3H2(S"?) 3w

(4.16)
= I dHI 2 = = :
/§65n2 1o (n—1(n+1) n+l

thanks to (4.3) (applied here in one dimension less).
Moreover, the number of different indices k, m € {1,...,n — 1} is equal to (n — 1)(n — 2) and
so, for each j # ¢ € {1,...,n — 1},

Y7y yiys € — Yr o
5 —]dy'zs/ —— 2=y = / —ZEEM
/{|yf<r} [y 3 (y'|<ry 1Y/ [PT37° (n—1)(n—2) 2 (ly'|<ry 1Y/ 73

k#m=1
3 = Yi Ya = Yi
— —mdy/ _ / —dy/
(n—1)(n—2) k7m21 /{y/|<r} |y [n+3=e ; {ly'|<r} |y [ +3==
B € / dy’ Cyre  wre Cyre wre
(=1 =2) Jyen I n—=2 n—2 n—-2 n+1

From this and (4.15), we obtain that

P A———

5/ iy ;o (14 204) wre
fyl<ry 1Y
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Substituting this identity and (4.12) into (4.10), and recalling also (4.4), we conclude that

2

S - : )k , n1
T B /ﬁ)EmBr ve(y) - VE(=y)vei(y) ve,(y) dH,

n—1
—¢ / 0;1(0) (97 £(0))* y¢' yj 9 dy’ + o(1)

=1 JAlyI<r} Jy|nree

(4.17)

= - B (92£(0))2 05 + inTl (07.£(0)) 81 + (1)

2w

= = S (GO b+ = (0 (0)) b+ 0(1),

as € \, 0. Similarly, substituting (4.12) and (4.13) into (4.11), we obtain that, as ¢ \ 0,

/6EmB Hg(y)K(—y) vei(y) ve,(y) dH) !

_ 8/ Hp(0) (97£(0))* y5 b
{lyl<r}

|y/|n+1—£ dy, + 0(1)

= wr® Hg(0) (92 £(0))? 65 4 o(1)
= w Hp(0) (97 (0))* 05 + o(1).

From this and (4.17) it follows that

ti [ (He) (o) = (o) - V() Yo ) v )

= = Hy(0) (21(0))* 6 + = (2£(0)) &1

(4.18)



14 SERENA DIPIERRO, JACK THOMPSON, AND ENRICO VALDINOCI

Now we exploit (1.10) and we see that

| (oK) = velo) - VE(=0) vealy) ve ) dit
OE\B,

Hg(y)] 1 -
< Cs/ (‘ + dH!?
OF\B, |y’n+176 |y|n+276 Y

1
< 05/ Tntl—e (|HE(y>| +7”_1) dHZ_l
OE\B; |y

H 1
coare [ ML g
OE\B,

Jy[» e
) +00 |Hp(y)| +1 1
:C(1+r‘)52/ e

—o Y OEN(Byk+1,.\Byk,.) ’y|"+ -

2 e\ B 4.19)
RGeS / (1Hs(y)| +1) dH;™ ('
X n+1— nl= )

yntl—e prd 2k(n+1-e) OEN(Byk+1,\Byk,.)
_Clare 3 @y
e 9k(n+1—¢)
k=0

< 26 C 1—|—r‘1 =

pntl—e— B Z k(n+1—e—p)

k=0
WC(1+r e X1
< pntl—e— B k(n+21—5)

k=0 2
- 0(1)7

for small e, up to renaming C' line after line, and consequently

Ry (Hp ) K- (~y) = vis(y) - VE(=9) ) vii(y) v () dH ™ =0,

OE\B,

This and (4.18) give that

tin | (Hipy) Ke(—y) = vply) - V(=) Jomaly) v (o) dity ™

i (4.20)
= 5 Hu(0) (97 £(0))° 85 + = (9 £(0))° &y
In addition, from Lemma A.2 of [DAPW18], we have that
w
lim L =——A 4.21
51{% K. ,E ik ( )
where the notation in (4.14) has been used. Similarly, from Lemma A.4 of [DAPW18§],
w
h\rl%ch E= 5 — 3, (4.22)

being cg the norm of the second fundamental form of OF.
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Therefore, using (4.20), (4.21) and (4.22), we obtain that

l{‘% [ — Lk, .50p,ve,:(0) + k. p(0) 0gvp,:(0)

= [ (He@E) = ve) - VK1) )oal) ves o) (123

— % Nopds vpi(0) + % 3(0) 0 jvE,:(0) — % Hp(0) (97 £(0))% 850 — @ (92 £(0))° 0.

J

Now, given two functions 1, ¢, we exploit (2.11) twice to obtain that

/ 5E,i5E,jw(:U> o(x) dHZ_l
oFE

_ / 5 0(2) a0 (@) M+ [ Hyp(a) vma(x) 6 y0(z) dlr) dH
OF OF (4.24>

= : V() 5E7j5E,i¢(a7) de_l - Hpg(x) VE,j(m) V() 5E,i¢<x) dH;L_l
E

OF

| Helw) vi(@) 6p0() o(c) dH .
OF

On the other hand, applying (2.11) once again, we see that

- Hp(z) vpi(z) 0p ¢ (x) ¢(z) dH) ™

= [ s (et vis(w) 00) () 2+ [ ) ) o) ) o)
E E
Plugging this information into (4.24), we find that
0p,i0p () o(x) dH; ™
OF
= | ¥(x)dp;0p0(x)dH) " — | Hp(x)vg;(x) Y(x) pp(x) dHy
OE oF (4.25)

_ /8E Op,; (HE(JI) vei(x) qﬁ(x)) () d’H;“l

+ - H}(7) vpi(z) vg (7)) ¥(z) ¢(z) dHE .

Applying (4.25) (twice, at the beginning with ¢ := Hg, g(x) and at the end with ¢ := Hg(z))
and considering ¢ as a test function, the convergence of Hg, g to wa (see Theorem 12 in [AV14])
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gives that

— lim (SE,Z'(SE,jHKg,E(x) ¢($) dH;L_l
E\(O OF

= lim |:— HK&E(?L‘) 5E,j5E,i¢(x) dHZ_l —+ HE(ZL') I/EJ‘(I') HKS,E(x) (SE’Z(ﬁ(ZE) dHZ_l
N0 OF OF

+/ 0p.j(He(x) vei(z) ¢(z)) Hy. p(x) dHL ™
o

B H%;(l’) VE,z‘<I> VE,j(x) HKE,E(JI) ¢(l’) d’i—[ﬁn}

oF

vo| g

[— Hp(2) 05 j0p¢(x) dHI ™" + Hg(z)vpj(z) Hp(z) 6p,¢(x) dHE
OF

oF

+/ 0p,j(He(z) vei(z) ¢(z)) Hy(z) dHE
oF

| HA(2) vpa(@) vey (2) He(x) 6(x) dﬂgl}

OF
w n—1
OF
This says that 0gi0p ;jHk. g converges to T0p0p jHp in the distributional sense as € \, 0: since,
by the Ascoli-Arzela Theorem, we know that dg ;0g j Hk. g converges strongly up to a subsequence,
the uniqueness of the limit gives that 0p;0g jHk,. g converges also pointwise to §0g 0p jHp.
Combining this with (4.23), we obtain that

lim (3110 Hic..p(0) + L. 0,v54(0) = . 5(0) 84 (0)

! / (Hel)Ka(=y) = vly) - VE(=9) Jvmaly) vis(y) A

(4.26)
= %6EJ5EJHE(O) - %A8E5E,jVE,z’(0) - %C%(O) op,;ve,i(0)
+ Z Hp(0) (21(0))* 651 + = (92£(0))* 6.

2

By formula (1.9), we know that the left hand side of (4.26) is equal to zero. Therefore, if Hg also
vanishes identically, we obtain that

Nophij(0) + 5 (0) hij(0) + 2 h3;(0) 05 = 0.

Recall that h;; are the entries of the second fundamental form. Multiplying by h;; and summing
up over i, j € {1,...,n — 1}, we infer that

n—1 n—1
> hij(0)Aophi;(0) + (0 Z h(0)+2 > hi;(0) =0. (4.27)
i,j=1 i,j=1 J=1
Also, by (4.6), we have that h;,(0) = dg,vg,(0) =0 for alli € {1,...,n—1}, and also h,,(0) =
dgnVEn(0) =0 by (1.6), and so (4.27) becomes
n—1
> hij(0)Aophi;(0) + c3y(0) + 2 Z i (4.28)

1,7=1
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On the other hand,
Aoph?;(0) = 2hi5(0)Aophi;(0) + 2 [05khi;(0)

Therefore, (4.28) becomes

n—1 n—1

1

B E ABEh?j(O) = E |5E khm(o) - ) —2 E :h
i,j=1 i,5,k=1

We observe now that, in light of (4.6),

n—1

vealy) = 1— 3 3 (@25(0))* 4} + Oy )

j=1

and so, by (1.6),

17

(4.29)

(4.30)

hon(y) = O5aEn(Y) = 0aVEn(y) = Ve (W) VVEAY) - vEW) = = (02£(0))° 52 + O(ly'[*).

This gives that 12, (y) = O(|y|*) and therefore
Furthermore, by (1.6) and (4.30), for any ¢ € {1,...,n — 1},

hin(y) = 0m.En(y) = Owen(y) — Vei(y)Vvea(y) - ve(y) = —(82£(0)) v + O(|yl?),

which gives that
h2,(y) = (92£(0))" 47 + O(lyP).
AS a consequence,
AorhZ,(0) = 2(92£(0))"
This and (4.31) give that

n—1
Aopcs(0 Z Noph?;(0) + 2 Z Aprh?,(0) + Aggph2,,(0 Z NophZ;(0) +4> (97 £(
2,7=1 2,7=1 =1
Plugging this information into (4.29) we conclude that
n—1 n—1
1 1
ij=1 i=1 irj k=1

which is (1.1).
5. PROOF OF THEOREM 1.4

Let n € C§°(OF) be arbitrary. Using f := cxn as a test function in (1.18), we have that

0 < Bgl(egn,cxn) — / cin? dH™.
OE
Next, for all x,y € OF, we have that
(cx(@)n(z) — cx(y)n(y))? = (cK(w)(n(x) —n(y))
)2

0))".
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so it follows that

Bg(ckn,cxn) = /aE i (2) B (n, m; ) dHY + /aE n*(2) Bk (ck, cxc; x) dHL + 1,
where

s / / cxc(@n(y) (ex (@) — exc () (n(x) — n(y)) K (x — y) dHD dH.
OF JOFE
Next, by symmetry of z and y, we have that
=5 [ ] textamntn) + extunta))en(e) = cxm)nte) = n(u)) Kz = y) db art.
Moreover, by a simple algebraic manipulation,
(cx(@)n(y) + cx(y)n(x))(cx () — cx(y))(n(z) —n(y))

= 07 (@) 7)) () — ) — glex(x) — exw)2nle) — nw))?

2
1
< 5 (@) = n* () (e (2) = cie(v))
and accordingly
F< g ] ot - )k - ) K- ) dg a
OF JOFE
_ / / () (z) — E(y) K (x — y) dH dH?
OFE JOFE
_ 2/ 2(0) L () dH.
OF
Hence, we have that
Br(ckn, ckn)
1
< [ d@stnma i+ [ {Beecom) v [ pated o o o
oOF OF OF
and the result follows. O

APPENDIX A. PROOF OF FORMULAS (4.2) AND (4.3)

Let
Q= r]dx and D = / rirddr.
B1 Bl
We consider the isometry x — X € R” given by
1 — To I + ) .
X, = , Xy = , X;:=x; forall i€{3,...,n}.
1 \/5 2 \/5 { }

We notice that
2
4X12X22 = (2X1X2)2 = ((.Tl — o) (x1 + :vg)) = (.CE% - x§)2 = 1,411 + x;" — 2;17%93%
and therefore, by symmetry,

AD = | 4X7X7dX = [ (af 4 x5 — 22723) do =2Q — 2D,

B1 By
which gives

p=%
3
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On the other hand

n 2 n n n
ol = (o = (Yo02) = o ata =Y wt e 3 ot
=1

ij=1 i=1 i£j=1

Therefore, by polar coordinates and symmetry,

Hn—l(Sn—l) _ n—1 n—1 ! n+3 _ 4
n—H—/H (S )/Op dp—/Bl‘l” dx

:Z/ xf do + Z/ wia’ dz =nQ +n(n —1)D.
i=1 Y B1 B

i#j=1

From this and (A.1) we deduce that

hence

HH (S n(n+2)Q
n+4 3

Y

3HMHSm)
n(n+2)(n+4)

1
1
=Q = / /S 1p"+319‘11 dHI tdp = —— I dHY !,
0 n—

n _'_ 4 Snfl

which gives (4.2) and (4.3), as desired.
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