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Abstract. The article is devoted to the existence of solutions of a
certain quadratic integral equation in H2(Rd), d = 2, 3. The theory
of quadratic integral equations has many important applications in the
mathematical physics, economics, biology. It is crucial for describing
the real world problems. The proof of the existence of solutions relies
on a fixed point technique in the Sobolev space in dimensions two and
three.

1. Introduction

The present work deals with the existence of solutions of the following inte-
gral equation

(1.1) u(x) = u0(x) + [Tu(x)]

∫

Rd

K(x− y)g(u(y))dy, x ∈ R
d, d = 2, 3.

We generalize the results of the preceding article [16], in which the solvability
of the problem analogous to (1.1) was established in H1(R). The precise
conditions on the functions u0(x), g(u), the linear operator T and the kernel
K(x) will be formulated below. The second term in the right side of (1.1) is
a product of Tu(x) and the integral operator acting on the function g(u), for
which the sublinear growth will be established in the proof of Theorem 1.3.
further down. Thus, the integral equation of this kind is called quadratic.
The theory of the integral equations has many important applications in
describing the numerous events and problems of the real world. It is caused
by the fact that this theory is frequently applicable in various branches
of mathematics and in mathematical physics, economics, biology as well
as for solving the real world problems. The quadratic integral equations
appear in the theories of the radiative transfer, neutron transport, in the
kinetic theory of gases, in the design of the bandlimited signals for the
binary communication using the simple memoryless correlation detection,
when the signals are disturbed by the additive white Gaussian noise (see
e.g. [1], [5], [11] and the references therein). The article [1] is devoted to the
solvability of a nonlinear quadratic integral equation in the Banach space
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of the real functions being defined and continuous on a bounded and closed
interval using the fixed point technique. The works [2] and [4] deal with
the studies of the existence of solutions for quadratic integral equations
on unbounded intervals. The existence of solutions for quadratic integral
inclusions was discussed in [3]. In the paper [10] the authors consider the
nondecreasing solutions of a quadratic integral equation of Urysohn-Stieltjes
type. The solvability of the quadratic integral equations in Orlicz spaces was
treated in [7], [8], [9]. The integro-differential equations containing either
Fredholm or non-Fredholm operators arise in the mathematical biology when
studying the systems with the nonlocal consumption of resources and the
intra-specific competition (see [12], [13], [17], [18] and the references therein).
The contraction argument was applied in [15] to estimate the perturbation
to the standing solitary wave of the Nonlinear Schrödinger (NLS) equation
when either the external potential or the nonlinear term were perturbed.
The analogous ideas were used to demonstrate the persistence of pulses for
certain reaction-diffusion type equations (see [6]). Let us suppose that the
conditions below are satisfied.

Assumption 1.1. Let the kernel K(x) : Rd → R, d = 2, 3 be nontrivial, so
that K(x),∆K(x) ∈ L1(Rd). The function u0(x) : R

d → R does not vanish
identically in R

d and u0(x) ∈ H2(Rd). We suppose also that the linear
operator T : H2(Rd) → H2(Rd) is bounded, so that its norm 0 < ‖T‖ < ∞.

It can be trivially checked that for the operator

(1.2) Tu(x) := (−∆+ 1)−1u(x), u(x) ∈ H2(Rd)

the conditions above are fulfilled. We introduce the technical quantity

(1.3) Q :=
√

‖K(x)‖2
L1(Rd)

+ ‖∆K(x)‖2
L1(Rd)

.

Clearly, under the assumption above we have 0 < Q < ∞. We will use the
Sobolev space

(1.4) H2(Rd) :=
{

u(x) : Rd → R | u(x) ∈ L2(Rd), ∆u(x) ∈ L2(Rd)
}

with d = 2, 3. It is equipped with the norm

(1.5) ‖u‖2H2(Rd) := ‖u‖2L2(Rd) + ‖∆u‖2L2(Rd).

By virtue of the Sobolev embedding, we have

(1.6) ‖u(x)‖L∞(Rd) ≤ ce‖u(x)‖H2(Rd), d = 2, 3.

Here ce > 0 is a constant. According to the algebra property for the Sobolev
space, for any u(x), v(x) ∈ H2(Rd), d = 2, 3

(1.7) ‖u(x)v(x)‖H2(Rd) ≤ ca‖u(x)‖H2(Rd)‖v(x)‖H2(Rd),

where ca > 0 is a constant, such that u(x)v(x) ∈ H2(Rd) as well.
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The Young’s inequality (see e.g. Section 4.2 of [14]) allows us to obtain the
upper bound on the norm of the convolution as

(1.8) ‖u ∗ v‖L2(Rd) ≤ ‖u‖L1(Rd)‖v‖L2(Rd).

Obviously, inequality (1.8) implies the estimate from above

(1.9)
∥

∥

∥
∆x

∫

Rd

u(x− y)v(y)dy
∥

∥

∥

L2(Rd)
≤ ‖∆u‖L1(Rd)‖v‖L2(Rd).

Here and below ∆x will denote the Laplace operator with respect to the
x-variable.
Let us look fo the resulting solution of nonlinear problem (1.1) as

(1.10) u(x) = u0(x) + up(x).

Clearly, we derive the perturbative equation

(1.11) up(x) = [T (u0(x) + up(x))]

∫

Rd

K(x− y)g(u0(y) + up(y))dy,

where d = 2, 3. We introduce a closed ball in the Sobolev space

(1.12) Bρ := {u(x) ∈ H2(Rd) | ‖u‖H2(Rd) ≤ ρ}, 0 < ρ ≤ 1.

Let us seek the solution of equation (1.11) as the fixed point of the auxiliary
nonlinear problem

(1.13) u(x) = [T (u0(x) + v(x))]

∫

Rd

K(x− y)g(u0(y) + v(y))dy

in ball (1.12). We introduce the interval on the real line

(1.14) I := [−ce − ce‖u0‖H2(Rd), ce + ce‖u0‖H2(Rd)]

along with the closed ball in the space of C1(I) functions, such that

(1.15) DM := {g(z) ∈ C1(I) | ‖g‖C1(I) ≤ M}, M > 0.

In this context the norm

(1.16) ‖g‖C1(I) := ‖g‖C(I) + ‖g′‖C(I),

where ‖g‖C(I) := maxz∈I |g(z)|.

Assumption 1.2. Let g(z) : R → R, so that g(0) = 0. We also assume
that g(z) ∈ DM and it does not vanish identically on the interval I.

Let us introduce the operator τg, so that u = τgv, where u is a solution of
problem (1.13). Our first main statement is as follows.

Theorem 1.3. Let Assumptions 1.1 and 1.2 hold and

(1.17) ca‖T‖(‖u0‖H2(Rd) + 1)2QM ≤
ρ

2
.

Then problem (1.13) defines the map τg : Bρ → Bρ, which is a strict con-
traction. The unique fixed point up(x) of this map τg is the only solution of
equation (1.11) in Bρ.
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Evidently, the cumulative solution of problem (1.1) given by (1.10) will be
nontrivial in R

d, d = 2, 3 since g(0) = 0, the operator T is linear and the
function u0(x) does not vanish identically in the whole space due to the
given conditions.

Let us define the auxiliary quantity

(1.18) σ := 2ca(‖u0‖H2(Rd) + 1)‖T‖MQ > 0.

Our second major proposition is about the continuity of the resulting solu-
tion of equation (1.1) given by (1.10) with respect to the function g.

Theorem 1.4. Let j = 1, 2, the assumptions of Theorem 1.3 hold, so that
up,j(x) is the unique fixed point of the map τgj : Bρ → Bρ, which is a
strict contraction because the upper bound (1.17) is valid and the cumulative
solution of equation (1.1) with g(z) = gj(z) is given by

(1.19) uj(x) = u0(x) + up,j(x).

Then the estimate from above

(1.20) ‖u1(x)− u2(x)‖H2(Rd) ≤

≤
σ

2M(1 − σ)
(‖u0‖H2(Rd) + 1)‖g1(z)− g2(z)‖C1(I)

holds.

We proceed to the proof of our first main result.

2. The existence of the perturbed solution

Proof of Theorem 1.3. We choose an arbitrary v(x) ∈ Bρ. Using (1.13)
along with (1.7), we derive the estimate from above

‖u‖H2(Rd) ≤

(2.1) ≤ ca‖T (u0(x)+ v(x))‖H2(Rd)

∥

∥

∥

∫

Rd

K(x− y)g(u0(y)+ v(y))dy
∥

∥

∥

H2(Rd)
.

We obtain the upper bound on the right side of (2.1). Evidently,

(2.2) ‖T (u0(x) + v(x))‖H2(Rd) ≤ ‖T‖(‖u0(x)‖H2(Rd) + 1).

By virtue of inequality (1.8), we have

(2.3)
∥

∥

∥

∫

Rd

K(x− y)g(u0(y) + v(y))dy
∥

∥

∥

L2(Rd)
≤

≤ ‖K‖L1(Rd)‖g(u0(x) + v(x))‖L2(Rd).

Analogously, (1.9) gives us
∥

∥

∥
∆x

∫

Rd

K(x− y)g(u0(y) + v(y))dy
∥

∥

∥

L2(Rd)
≤
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(2.4) ≤ ‖∆K‖L1(Rd)‖g(u0(x) + v(x))‖L2(Rd).

By means of bounds (2.3) and (2.4),
∥

∥

∥

∫

Rd

K(x− y)g(u0(y) + v(y))dy
∥

∥

∥

H2(Rd)
≤

(2.5) ≤ Q‖g(u0(x) + v(x))‖L2(Rd).

We can write

(2.6) g(u0(x) + v(x)) =

∫ u0(x)+v(x)

0
g′(z)dz.

For v(x) ∈ Bρ by virtue of inequality (1.6) we easily arrive at

(2.7) |u0 + v| ≤ ce(‖u0‖H2(Rd) + 1).

Thus,

(2.8) |g(u0(x) + v(x))| ≤ maxz∈I |g
′(z)||u0(x) + v(x)| ≤ M |u0(x) + v(x)|

with the interval I defined in (1.14). This yields

(2.9) ‖g(u0(x) + v(x))‖L2(Rd) ≤ M(‖u0‖H2(Rd) + 1).

Hence, we derive

(2.10) ‖u(x)‖H2(Rd) ≤ ca‖T‖(‖u0‖H2(Rd) + 1)2QM.

By means of (1.17), we have ‖u(x)‖H2(Rd) ≤ ρ. Therefore, the function

u(x), which is uniquely determined by (1.13) is contained in Bρ as well.
This means that equation (1.13) defines a map τg : Bρ → Bρ under the
stated assumptions.
Let us demonstrate that under the given conditions this map is a strict
contraction. We choose arbitrarily v1,2(x) ∈ Bρ. By virtue of the argument
above, u1,2 := τgv1,2 ∈ Bρ. By means of (1.13), we have

(2.11) u1(x) = [T (u0(x) + v1(x))]

∫

Rd

K(x− y)g(u0(y) + v1(y))dy,

(2.12) u2(x) = [T (u0(x) + v2(x))]

∫

Rd

K(x− y)g(u0(y) + v2(y))dy.

From system (2.11), (2.12) it easily follows that

(2.13) u1(x)−u2(x) = [Tv1(x)−Tv2(x)]

∫

Rd

K(x− y)g(u0(y)+ v1(y))dy+

+[T (u0(x) + v2(x))]

∫

Rd

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy.

From (2.13) using (1.7) we deduce that

‖u1(x)− u2(x)‖H2(Rd) ≤ ca‖Tv1(x)− Tv2(x)‖H2(Rd)×

×
∥

∥

∥

∫

Rd

K(x− y)g(u0(y) + v1(y))dy
∥

∥

∥

H2(Rd)
+ ca‖T (u0(x) + v2(x))‖H2(Rd)×
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(2.14) ×
∥

∥

∥

∫

Rd

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy
∥

∥

∥

H2(Rd)
.

We derive the estimate from above on the right side of (2.14). Clearly,

(2.15) ‖Tv1(x)− Tv2(x)‖H2(Rd) ≤ ‖T‖‖v1(x)− v2(x)‖H2(Rd).

By virtue of inequality (1.8), we have
∥

∥

∥

∫

Rd

K(x− y)g(u0(y) + v1(y))dy
∥

∥

∥

L2(Rd)
≤

(2.16) ≤ ‖K‖L1(Rd)‖g(u0(x) + v1(x))‖L2(Rd).

Let us apply (1.9) to obtain
∥

∥

∥
∆x

∫

Rd

K(x− y)g(u0(y) + v1(y))dy
∥

∥

∥

L2(Rd)
≤

(2.17) ≤ ‖∆K‖L1(Rd)‖g(u0(x) + v1(x))‖L2(Rd).

Upper bounds (2.16) and (2.17) imply that
∥

∥

∥

∫

Rd

K(x− y)g(u0(y) + v1(y))dy
∥

∥

∥

H2(Rd)
≤

(2.18) ≤ Q‖g(u0(x) + v1(x))‖L2(Rd).

Evidently,

(2.19) g(u0(x) + v1(x)) =

∫ u0(x)+v1(x)

0
g′(z)dz.

From (2.19) we derive that

(2.20) |g(u0(x)+v1(x))| ≤ maxz∈I |g
′(z)||u0(x)+v1(x)| ≤ M |u0(x)+v1(x)|,

so that

(2.21) ‖g(u0(x) + v1(x))‖L2(Rd) ≤ M(‖u0‖H2(Rd) + 1).

Hence, the first term in the right side of bound (2.14) can be estimated from
above by

(2.22) ca‖T‖‖v1(x)− v2(x)‖H2(Rd)QM(‖u0‖H2(Rd) + 1).

Thus, it remains to obtain the upper bound on the second term in the right
side of (2.14). Obviously,

(2.23) ‖T (u0(x) + v2(x))‖H2(Rd) ≤ ‖T‖(‖u0‖H2(Rd) + 1).

Using inequality (1.8), we arrive at
∥

∥

∥

∫

Rd

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy
∥

∥

∥

L2(Rd)
≤

(2.24) ≤ ‖K‖L1(Rd)‖g(u0(x) + v1(x))− g(u0(x) + v2(x))‖L2(Rd).
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Estimate (1.9) implies that
∥

∥

∥
∆x

∫

Rd

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy
∥

∥

∥

L2(Rd)
≤

(2.25) ≤ ‖∆K‖L1(Rd)‖g(u0(x) + v1(x))− g(u0(x) + v2(x))‖L2(Rd).

Upper bounds (2.24) and (2.25) give us
∥

∥

∥

∫

Rd

K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy
∥

∥

∥

H2(Rd)
≤

(2.26) ≤ Q‖g(u0(x) + v1(x))− g(u0(x) + v2(x))‖L2(Rd).

Let us express

(2.27) g(u0(x) + v1(x))− g(u0(x) + v2(x)) =

∫ u0(x)+v1(x)

u0(x)+v2(x)
g′(z)dz.

By virtue of formula (2.27), we obtain

|g(u0(x) + v1(x))− g(u0(x) + v2(x))| ≤ maxz∈I |g
′(z)||v1(x)− v1(x)| ≤

(2.28) ≤ M |v1(x)− v1(x)|,

so that

(2.29) ‖g(u0(x)+v1(x))−g(u0(x)+v2(x))‖L2(Rd) ≤ M‖v1(x)−v2(x)‖H2(Rd).

Hence, the second term in the right side of inequality (2.14) can be bounded
from above by expression (2.22) as well. Therefore,

‖u1(x)− u2(x)‖H2(Rd) ≤

(2.30) ≤ 2ca(‖u0‖H2(Rd) + 1)‖T‖MQ‖v1(x)− v2(x)‖H2(Rd).

By means of (2.30) along with definition (1.18), we arrive at

(2.31) ‖τgv1(x)− τgv2(x)‖H2(Rd) ≤ σ‖v1(x)− v2(x)‖H2(Rd).

It can be trivially checked using (1.17) that the constant in the right side of
inequality above

(2.32) σ < 1.

This yields that the map τg : Bρ → Bρ defined by equation (1.13) is a strict
contraction under the stated assumptions. Its unique fixed point up(x) is the
only solution of problem (1.11) in the ball Bρ. The cumulative u(x) given by
(1.10) solves equation (1.1). �

We conclude the work by establishing the validity of our second main propo-
sition.
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3. The continuity of the resulting solution with respect to

the function g

Proof of Theorem 1.4. Evidently, under the given conditions, we have

(3.1) up,1 = τg1up,1, up,2 = τg2up,2.

Hence,

(3.2) up,1 − up,2 = τg1up,1 − τg1up,2 + τg1up,2 − τg2up,2.

Therefore,

‖up,1 − up,2‖H2(Rd) ≤

(3.3) ≤ ‖τg1up,1 − τg1up,2‖H2(Rd) + ‖τg1up,2 − τg2up,2‖H2(Rd).

By virtue of (2.31), we have the estimate

(3.4) ‖τg1up,1 − τg1up,2‖H2(Rd) ≤ σ‖up,1 − up,2‖H2(Rd),

where σ is given by (1.18), so that (2.32) is valid. Thus, we arrive at

(3.5) (1− σ)‖up,1 − up,2‖H2(Rd) ≤ ‖τg1up,2 − τg2up,2‖H2(Rd).

Clearly, for our fixed point τg2up,2 = up,2. Let us introduce ξ(x) := τg1up,2
and arrive at

(3.6) ξ(x) = [T (u0(x) + up,2(x))]

∫

Rd

K(x− y)g1(u0(y) + up,2(y))dy,

(3.7) up,2(x) = [T (u0(x) + up,2(x))]

∫

Rd

K(x− y)g2(u0(y) + up,2(y))dy.

By means of system (3.6), (3.7),

ξ(x)− up,2(x) = [T (u0(x) + up,2(x))]×

(3.8) ×

∫

Rd

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy.

Using (1.7), we derive

‖ξ(x)− up,2(x)‖H2(Rd) ≤ ca‖T (u0(x) + up,2(x))‖H2(Rd)×

(3.9) ×
∥

∥

∥

∫

Rd

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy
∥

∥

∥

H2(Rd)
.

Obviously, the upper bound

(3.10) ‖T (u0(x) + up,2(x))‖H2(Rd) ≤ ‖T‖(‖u0‖H2(Rd) + 1)

holds. By virtue of inequality (1.8),
∥

∥

∥

∫

Rd

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy
∥

∥

∥

L2(Rd)
≤

(3.11) ≤ ‖K‖L1(Rd)‖g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))‖L2(Rd).
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Analogously, (1.9) yields
∥

∥

∥
∆x

∫

Rd

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy
∥

∥

∥

L2(Rd)
≤

(3.12) ≤ ‖∆K‖L1(Rd)‖g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))‖L2(Rd).

By means of estimates (3.11) and (3.12),
∥

∥

∥

∫

Rd

K(x− y)[g1(u0(y) + up,2(y))− g2(u0(y) + up,2(y))]dy
∥

∥

∥

H2(Rd)
≤

(3.13) ≤ Q‖g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))‖L2(Rd).

Obviously,

(3.14) g1(u0(x) + up,2(x)) − g2(u0(x) + up,2(x)) =

=

∫ u0(x)+up,2(x)

0
[g′1(z)− g′2(z)]dz.

From (3.14) we derive

|g1(u0(x) + up,2(x)) − g2(u0(x) + up,2(x))| ≤

≤ maxz∈I |g
′

1(z)− g′2(z)||u0(x) + up,2(x)| ≤

(3.15) ≤ ‖g1(z) − g2(z)‖C1(I)|u0(x) + up,2(x)|,

so that

‖g1(u0(x) + up,2(x))− g2(u0(x) + up,2(x))‖L2(Rd) ≤

(3.16) ≤ ‖g1(z)− g2(z)‖C1(I)(‖u0‖H2(Rd) + 1).

By virtue of inequalities (3.9), (3.10), (3.13), (3.16) obtained above, we
arrive at

‖ξ(x)− up,2(x)‖H2(Rd) ≤

(3.17) ≤ ca‖T‖(‖u0‖H2(Rd) + 1)2Q‖g1(z)− g2(z)‖C1(I).

Upper bounds (3.5) and (3.17) yield

‖up,1(x)− up,2(x)‖H2(Rd) ≤

(3.18) ≤
ca

1− σ
‖T‖(‖u0‖H2(Rd) + 1)2Q‖g1(z)− g2(z)‖C1(I).

By means of formula (1.19) along with inequality (3.18) and definition (1.18),
estimate (1.20) is valid. �

Remark 3.1. The results of the present article will be generalized to the
higher dimensions in the consecutive work.
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