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Abstract. We establish the existence in the sense of sequences of solutions for a certain
system of integro-differential equations in a square in two dimensions with periodic boundary
conditions involving the normal diffusion in one direction and the superdiffusion in the other
direction in a constrained subspace of H2 for the vector functions via the fixed point tech-
nique. The system of elliptic equations contains a second order differential operator, which
satisfies the Fredholm property. It is demonstrated that, under the reasonable technical con-
ditions, the convergence in the appropriate function spaces of the integral kernels implies the
existence and convergence in H2

c (Ω,R
N ) of the solutions. We generalize the results derived

in our previous article [18] for the analogical system studied in the whole R2 which involved
non-Fredholm operators. Let us emphasize that the study of the systems is more complicated
than of the scalar case and requires to overcome more cumbersome technicalities.
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1 Introduction

We recall that a linear operator L acting from a Banach space E into another Banach space
F satisfies the Fredholm property if its image is closed, the dimension of its kernel and the
codimension of its image are finite. As a consequence, the problem Lu = f is solvable if
and only if φi(f) = 0 for a finite number of functionals φi from the dual space F ∗. Such
properties of the Fredholm operators are widely used in many methods of the linear and
nonlinear analysis.
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The elliptic problems considered in bounded domains with a sufficiently smooth bound-
ary satisfy the Fredholm property if the ellipticity condition, the proper ellipticity and the
Shapiro-Lopatinskii conditions are fulfilled (see e.g. [2], [9], [27], [31]). This is the main
result of the theory of the linear elliptic equations. In the case of the unbounded domains,
these conditions may not be sufficient and the Fredholm property may not be satisfied.
For example, the Laplace operator, Lu = ∆u, in R

d does not satisfy the Fredholm prop-
erty when considered in Hölder spaces, L : C2+α(Rd) → Cα(Rd), or in Sobolev spaces,
L : H2(Rd) → L2(Rd).
For the linear elliptic problems in the unbounded domains the Fredholm property is satisfied
if and only if, in addition to the conditions given above, the limiting operators are invertible
(see [32]). In certain simple cases, the limiting operators can be constructed explicitly. For
instance, if

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,

where the coefficients of the operator have the limits at the infinities,

a± = lim
x→±∞

a(x), b± = lim
x→±∞

b(x), c± = lim
x→±∞

c(x),

the limiting operators are:

L±u = a±u
′′ + b±u

′ + c±u.

Since the coefficients here are constants, the essential spectrum of the operator, that is the
set of complex numbers λ for which the operator L−λ does not have the Fredholm property,
can be found explicitly via the standard Fourier transform, such that:

λ±(ξ) = −a±ξ
2 + b±iξ + c±, ξ ∈ R.

The limiting operators are invertible if and only if the essential spectrum does not contain
the origin.
For the general elliptic equations, the analogous assertions are valid. The Fredholm property
is satisfied if the origin does not belong to the essential spectrum or if the limiting operators
are invertible. However, such conditions may not be written explicitly.
For the non-Fredholm operators the usual solvability relations may not be applicable and
in a general situation the solvability conditions are not known. But there are some classes
of operators for which the solvability relations were derived recently. Let us illustrate them
with the following example. Consider the problem

Lu ≡ ∆u+ au = f (1.1)

in R
d, d ∈ N, where a is a positive constant. The operator L here coincides with its limiting

operators. The corresponding homogeneous equation has a nonzero bounded solution, such
that the Fredholm property is not satisfied. However, since the operator contained in (1.1)
has the constant coefficients, we can apply the standard Fourier transform to obtain the
solution explicitly. The solvability conditions can be formulated as follows. If f(x) ∈ L2(Rd)
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and xf(x) ∈ L1(Rd), then there exists a unique solution of this problem in H2(Rd) if and
only if

(

f(x),
eipx

(2π)
d

2

)

L2(Rd)

= 0, p ∈ Sd√
a a.e.

(see Lemmas 5 and 6 of [40]). Here Sd√
a
stands for the sphere in R

d of radius
√
a centered

at the origin. Thus, despite the fact that the Fredholm property is not satisfied for the
operator, the solvability conditions are formulated analogously. Clearly, such similarity is
only formal since the range of the operator is not closed.
In the case of the operator involving a potential function,

Lu ≡ ∆u+ a(x)u = f,

the standard Fourier transform is not applicable directly. Nevertheless, the solvability re-
lations in R

3 can be derived by a rather sophisticated application of the theory of the self-
adjoint Schrödinger type operators (see [36]). Similarly to the constant coefficient case, the
solvability conditions are written in terms of the orthogonality to the solutions of the adjoint
homogeneous problem. There are several other examples of the linear elliptic non-Fredholm
operators for which the solvability relations can be obtained (see [13], [15], [32], [33], [34],
[35], [38], [39], [40]).
The solvability relations play a crucial role in the analysis of the nonlinear elliptic problems.
When the operators without the Fredholm property are involved, in spite of the certain
progress in the understanding of the linear equations, there exist only few examples where
the nonlinear non- Fredholm operators were analyzed (see [7], [8], [12], [14], [15], [16],
[17], [18], [37], [40], [41], [42], [43]). Fredholm structures, topological invariants and their
applications were considered in [9]. The article [10] is devoted to the finite and infinite
dimensional attractors for evolution equations of mathematical physics. The large time
behavior of solutions of a class of fourth-order parabolic equations defined on unbounded
domains using the Kolmogorov ε-entropy as a measure was studied in [11]. The attractor for
a nonlinear reaction-diffusion system in an unbounded domain in R

3 was investigated in [20].
The works [23] and [29] are crucial for the understanding of the Fredholm and properness
properties of quasilinear elliptic systems of second order and of operators of this kind on R

N .
The exponential decay and Fredholm properties in second-order quasilinear elliptic systems
were discussed in [24]. A local bifurcation theorem for C1-Fredholm maps was established
in [21]. In [22] the authors develop a degree theory for C2-Fredholm mappings of zero
index between Banach spaces. Standing lattice solitons in the discrete NLS equation with
saturation were covered in [1]. The present work deals with another class of the stationary
nonlinear systems of equations, for which the Fredholm property is satisfied:

∂2uk

∂x2
1

−
√

− ∂2

∂x2
2

uk +

∫

Ω

Gk(x− y)Fk(u1(y), u2(y), ..., uN(y), y)dy = 0 (1.2)

with 1 ≤ k ≤ N, N ≥ 2, x = (x1, x2) ∈ Ω, y = (y1, y2) ∈ Ω and the square Ω :=
[0, 2π] × [0, 2π] with the periodic boundary conditions specified further down. Here and
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below the vector function
u := (u1, u2, ..., uN)

T ∈ R
N . (1.3)

We generalize the results obtained for the analogous system in the whole R2 studied in [18].
Thus, it involved the non-Fredholm operators. For the solvability of the single equations of
this kind see [14] and [19]. The novelty of such works is that in the diffusion terms we
add the free Laplacian in the x1 variable to the negative Laplace operator in x2 raised to
a fractional power 0 < sk < 1, 1 ≤ k ≤ N, N ≥ 2 and defined via the spectral calculus.
As distinct from the analogical system of equations discussed in [18], in the present article

we restrict our attention to sk =
1

2
for all k. The models of this type are new. They are

not well understood, especially in the context of the nonlocal reaction-diffusion equations.
The difficulty we have to overcome is that such problems become anisotropic and it is more
complicated to derive the desired estimates when working with them. In the population
dynamics in the Mathematical Biology the integro-differential equations describe the models
with the intra-specific competition and nonlocal consumption of resources (see e.g. [3], [4]).
It is crucial to consider the problems of this type from the point of view of the understanding
of the spread of the viral infections, since many countries have to deal with the pandemics.
We use the explicit form of the solvability conditions and establish the existence of solutions
of our nonlinear system. In the case of the standard Laplacian in the diffusion terms, the
system of equations analogous to (1.2) was covered in [43] (see also [37]) in the whole space
and on a finite interval with the periodic boundary conditions. The solvability of the integro-
differential problems involving in the diffusion terms only the negative Laplacian raised to a
fractional power was actively studied in recent years in the context of the anomalous diffusion
(see e.g. [17], [41], [42]). The anomalous diffusion can be described as a random process of
the particle motion characterized by the probability density distribution of the jump length.
The moments of this density distribution are finite in the case of the normal diffusion, but
this is not the case for the anomalous diffusion. The asymptotic behavior at the infinity of
the probability density function determines the value of the power of the Laplacian (see [28]).
In [30] the authors discuss the mixed local-nonlocal semi-linear elliptic problems driven by
the superposition of Brownian and Levy processes and establish the L∞ boundedness of any
weak solution. The work [6] deals with a new type of mixed local and nonlocal equations
under the Neumann conditions. The spectral properties associated to a weighted eigenvalue
problem are considered and a global estimate for subsolutions is presented.

2 Formulation of the results

The technical assumptions of the present work will be analogical to the ones of [19], adapted
to the work with vector functions. Performing the analysis in the Sobolev spaces for the
vector functions is more difficult. For the nonlinear part of the system of equations (1.2) the
following regularity conditions will be valid. Here x = (x1, x2) ∈ Ω.

Assumption 2.1. Let 1 ≤ k ≤ N . Functions Fk(u, x) : RN × Ω → R are satisfying the
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Caratheodory condition (see [26]), such that

√

√

√

√

N
∑

k=1

F 2
k (u, x) ≤ K|u|RN + h(x) for u ∈ R

N , x ∈ Ω (2.1)

with a constant K > 0 and h(x) : Ω → R
+, h(x) ∈ L2(Ω). Moreover, they are Lipschitz

continuous functions, so that for any u(1),(2) ∈ R
N , x ∈ Ω :

√

√

√

√

N
∑

k=1

(Fk(u(1), x)− Fk(u(2), x))2 ≤ L|u(1) − u(2)|RN (2.2)

with a constant L > 0. Furthermore, for 1 ≤ k ≤ N

Fk(u, 0, x2) = Fk(u, 2π, x2) for u ∈ R
N , 0 ≤ x2 ≤ 2π

and
Fk(u, x1, 0) = Fk(u, x1, 2π) for u ∈ R

N , 0 ≤ x1 ≤ 2π.

Here and further down the norm of a vector function given by (1.3) is:

|u|RN :=

√

√

√

√

N
∑

k=1

u2
k.

The solvability of a local elliptic equation in a bounded domain in R
N was covered in [5].

The nonlinear function there was allowed to have a sublinear growth. To demonstrate the
existence of solutions of (1.2), we will use the auxiliary system with 1 ≤ k ≤ N, N ≥ 2, x =
(x1, x2) ∈ Ω, y = (y1, y2) ∈ Ω, namely

−∂2uk

∂x2
1

+

√

− ∂2

∂x2
2

uk =

∫

Ω

Gk(x− y)Fk(v1(y), v2(y), ..., vN(y), y)dy. (2.3)

We denote

(f1(x1, x2), f2(x1, x2))L2(Ω) :=

∫ 2π

0

∫ 2π

0

f1(x1, x2)f̄2(x1, x2)dx1dx2. (2.4)

Let us use the Sobolev space

H2(Ω) := {φ(x1, x2) : Ω → R | φ(x1, x2), ∆φ(x1, x2) ∈ L2(Ω), φ(0, x2) = φ(2π, x2),

∂φ

∂x1
(0, x2) =

∂φ

∂x1
(2π, x2) for 0 ≤ x2 ≤ 2π,
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φ(x1, 0) = φ(x1, 2π),
∂φ

∂x2
(x1, 0) =

∂φ

∂x2
(x1, 2π) for 0 ≤ x1 ≤ 2π}.

Here and further down the cumulative Laplace operator ∆ :=
∂2

∂x2
1

+
∂2

∂x2
2

. We introduce the

following auxiliary constrained subspace

H2
0 (Ω) := {φ(x1, x2) ∈ H2(Ω) | (φ(x1, x2), 1)L2(Ω) = 0}. (2.5)

Evidently, (2.5) is a Hilbert space as well (see e.g. Chapter 2.1 of [25]). It is equipped with
the norm

‖φ‖2H2

0
(Ω) := ‖φ‖2L2(Ω) + ‖∆φ‖2L2(Ω). (2.6)

The resulting space used to establish the existence of solutions u(x) : Ω → R
N of system

(2.3) will be the direct sum of the spaces

H2
c (Ω,R

N ) := ⊕N
k=1H

2
0 (Ω). (2.7)

The corresponding Sobolev norm of a vector function is given by

‖u‖2H2
c (Ω,RN ) :=

N
∑

k=1

{‖uk‖2L2(Ω) + ‖∆uk‖2L2(Ω)}, (2.8)

where u(x) : Ω → R
N . Let us also use the norm

‖u‖2L2(Ω,RN ) :=

N
∑

k=1

‖uk‖2L2(Ω).

By means of Assumption 2.1 above, we do not consider the higher powers of the nonlinearities
than the first one. This is restrictive from the point of view of the applications. But
this guarantees that our nonlinear vector function is a bounded and continuous map from
L2(Ω,RN) to L2(Ω,RN). The system of equations (2.3) involves the operator

Lr := − ∂2

∂x2
1

+

√

− ∂2

∂x2
2

: H2
0 (Ω) → L2(Ω). (2.9)

Its eigenvalues are given by

λr,n1,n2
:= n2

1 + |n2|, (n1, n2) ∈ Z× Z. (2.10)

The corresponding eigenfunctions are:

ein1x1

√
2π

ein2x2

√
2π

, (n1, n2) ∈ Z× Z. (2.11)
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Clearly, (2.9) is a Fredholm operator and its kernel is trivial. In the present work we will
establish that under the reasonable technical assumptions system (2.3) defines a map Tr :
H2

c (Ω,R
N) → H2

c (Ω,R
N), which is a strict contraction.

Theorem 2.2. Let N ≥ 2, 1 ≤ k ≤ N , Assumption 2.1 holds, the functions Gk(x1, x2) :
Ω → R, such that Gk(0, x2) = Gk(2π, x2) with 0 ≤ x2 ≤ 2π and Gk(x1, 0) = Gk(x1, 2π) with

0 ≤ x1 ≤ 2π. Furthermore, Gk(x1, x2) ∈ C(Ω) and
∂Gk(x1, x2)

∂x2

∈ L1(Ω). We also assume

that orthogonality conditions (4.7) hold for 1 ≤ k ≤ N and that 2
√
2πNrL < 1.

Then the map Trv = u on H2
c (Ω,R

N) defined by system (2.3) has a unique fixed point vr,
which is the only solution of problem (1.2) in H2

c (Ω,R
N).

This fixed point vr is nontrivial provided the Fourier coefficients Gk,n1,n2
Fk(0, x)n1,n2

6= 0 for
a certain 1 ≤ k ≤ N and some (n1, n2) ∈ Z× Z.

Related to the system of equations (1.2) in the square Ω, we study the sequence of the
approximate systems

∂2u
(m)
k

∂x2
1

−
√

− ∂2

∂x2
2

u
(m)
k +

∫

Ω

Gk,m(x− y)Fk(u
(m)
1 (y), u

(m)
2 (y), ..., u

(m)
N (y), y)dy = 0, (2.12)

with 1 ≤ k ≤ N, N ≥ 2, m ∈ N, x = (x1, x2) ∈ Ω, y = (y1, y2) ∈ Ω. Each sequence of
kernels {Gk,m(x)}∞m=1 tends to Gk(x) as m → ∞ in the function spaces listed below. We
demonstrate that, under the appropriate technical conditions, each of systems (2.12) has a
unique solution u(m)(x) ∈ H2

c (Ω,R
N), limiting system of equations (1.2) admits a unique

solution u(x) ∈ H2
c (Ω,R

N), and u(m)(x) → u(x) in H2
c (Ω,R

N ) as m → ∞. This is the so-
called existence of solutions in the sense of sequences. In this case, the solvability relations
can be formulated for the iterated kernels Gk,m. They yield the convergence of the kernels in
terms of the Fourier transforms (see the Appendix) and, as a consequence, the convergence
of the solutions (Theorem 2.3 below). The similar ideas in the context of the standard
Schrödinger type operators were exploited in [13], [15], [35]. Our second main proposition
is as follows.

Theorem 2.3. Let m ∈ N, N ≥ 2, 1 ≤ k ≤ N , Assumption 2.1 holds, the functions
Gk,m(x1, x2) : Ω → R are such that Gk,m(0, x2) = Gk,m(2π, x2) with 0 ≤ x2 ≤ 2π and
Gk,m(x1, 0) = Gk,m(x1, 2π) with 0 ≤ x1 ≤ 2π. Moreover,

Gk,m(x1, x2) ∈ C(Ω), Gk,m(x1, x2) → Gk(x1, x2) in C(Ω) as m → ∞.

In addition to that,

∂Gk,m(x1, x2)

∂x2
∈ L1(Ω),

∂Gk,m(x1, x2)

∂x2
→ ∂Gk(x1, x2)

∂x2
in L1(Ω) as m → ∞.

We also assume that for each 1 ≤ k ≤ N, m ∈ N orthogonality condition (4.11) is valid.
Finally, we suppose that (4.12) holds for each m ∈ N with a certain fixed 0 < ε < 1.
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Then each system of equations (2.12) admits a unique solution u(m)(x) ∈ H2
c (Ω,R

N), lim-
iting system (1.2) has a unique solution u(x) ∈ H2

c (Ω,R
N ), such that u(m)(x) → u(x) in

H2
c (Ω,R

N) as m → ∞.

The unique solution u(m)(x) of each system of equations (2.12) does not vanish identically
in Ω provided the Fourier coefficients Gk,m,n1,n2

Fk(0, x)n1,n2
6= 0 for a certain 1 ≤ k ≤ N

and some pair (n1, n2) ∈ Z × Z. Analogously, the unique solution u(x) of limiting system
(1.2) is nontrivial in Ω if Gk,n1,n2

Fk(0, x)n1,n2
6= 0 for some 1 ≤ k ≤ N and a certain pair

(n1, n2) ∈ Z× Z.

Remark 2.4. In the present article we deal with the real valued vector functions by virtue of
the conditions imposed on Fk(u, x1, x2), Gk,m(x1, x2) and Gk(x1, x2) involved in the integral
terms of the approximate and limiting systems of equations discussed in the work.

Remark 2.5. The significance of Theorem 2.3 stated above is the continuous dependence of
the solutions with respect to the integral kernels.

3 Proofs Of The Main Results

Proof of Theorem 2.2. Let us first suppose that for a certain v(x) ∈ H2
c (Ω,R

N ) there exist
two solutions u(1)(2)(x) ∈ H2

c (Ω,R
N) of the system of equations (2.3). Then their difference

w(x) := u(1)(x)− u(2)(x) ∈ H2
c (Ω,R

N) will satisfy the homogeneous system

−∂2wk

∂x2
1

+

√

− ∂2

∂x2
2

wk = 0, 1 ≤ k ≤ N.

Clearly, the operator Lr : H
2
0 (Ω) → L2(Ω) defined in (2.9) does not have any nontrivial zero

modes. Thus, the vector function w(x) vanishes identically in the square Ω.
We choose an arbitrarily v(x) ∈ H2

c (Ω,R
N). Let us apply the Fourier transform (4.1) to

both sides of system (2.3). This gives us for 1 ≤ k ≤ N, N ≥ 2, (n1, n2) ∈ Z× Z that

uk,n1,n2
= 2π

Gk,n1,n2
fk,n1,n2

n2
1 + |n2|

, (n2
1 + n2

2)uk,n1,n2
= 2π

(n2
1 + n2

2)Gk,n1,n2
fk,n1,n2

n2
1 + |n2|

(3.1)

Here fk,n1,n2
:= Fk(v(x), x)n1,n2

. Evidently, we have the estimates from above

|uk,n1,n2
| ≤ 2πNr,k|fk,n1,n2

|, |(n2
1 + n2

2)uk,n1,n2
| ≤ 2πNr,k|fk,n1,n2

|

with 1 ≤ k ≤ N, (n1, n2) ∈ Z× Z. Obviously, all Nr,k < ∞ due to the result of Lemma 4.1
of the Appendix under the given conditions. This enables us to obtain the upper bound on
the norm as

‖u‖2H2
c (Ω,RN ) =
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=
N
∑

k=1

∑

(n1,n2)∈Z×Z

|uk,n1,n2
|2 +

N
∑

k=1

∑

(n1,n2)∈Z×Z

|(n2
1 + n2

2)uk,n1,n2
|2 ≤

≤ 8π2

N
∑

k=1

N 2
r,k‖Fk(v(x), x)‖2L2(Ω). (3.2)

Let us recall inequality (2.1) of Assumption 2.1. Hence, the right side of (3.2) is finite for
v(x) ∈ L2(Ω,RN). Thus, for any v(x) ∈ H2

c (Ω,R
N) there exists a unique solution u(x) ∈

H2
c (Ω,R

N) of system (2.3), such that its Fourier image is given by (3.1). Therefore, the map
Tr : H

2
c (Ω,R

N) → H2
c (Ω,R

N) is well defined. This allows us to choose arbitrarily the vector
functions v(1),(2)(x) ∈ H2

c (Ω,R
N), such that their images u(1),(2) := Trv

(1),(2) ∈ H2
c (Ω,R

N).
By means of (2.3), we have for 1 ≤ k ≤ N, N ≥ 2, x = (x1, x2) ∈ Ω, y = (y1, y2) ∈ Ω

−∂2u
(1)
k

∂x2
1

+

√

− ∂2

∂x2
2

u
(1)
k =

∫

Ω

Gk(x− y)Fk(v
(1)
1 (y), v

(1)
2 (y), ..., v

(1)
N (y), y)dy, (3.3)

−∂2u
(2)
k

∂x2
1

+

√

− ∂2

∂x2
2

u
(2)
k =

∫

Ω

Gk(x− y)Fk(v
(2)
1 (y), v

(2)
2 (y), ..., v

(2)
N (y), y)dy. (3.4)

Let us apply the Fourier transform (4.1) to both sides of the equations of systems (3.3),
(3.4). This gives us for 1 ≤ k ≤ N, (n1, n2) ∈ Z× Z

u
(1)
k,n1,n2

= 2π
Gk,n1,n2

f
(1)
k,n1,n2

n2
1 + |n2|

, u
(2)
k,n1,n2

= 2π
Gk,n1,n2

f
(2)
k,n1,n2

n2
1 + |n2|

, (3.5)

(n2
1 + n2

2)u
(1)
k,n1,n2

= 2π
(n2

1 + n2
2)Gk,n1,n2

f
(1)
k,n1,n2

n2
1 + |n2|

, (3.6)

(n2
1 + n2

2)u
(2)
k,n1,n2

= 2π
(n2

1 + n2
2)Gk,n1,n2

f
(2)
k,n1,n2

n2
1 + |n2|

. (3.7)

Here f
(1)
k,n1,n2

and f
(2)
k,n1,n2

stand for the images of Fk(v
(1)(x), x) and Fk(v

(2)(x), x) respectively
under transform (4.1). By virtue of (3.5), (3.6) and (3.7), we derive the inequalities

|u(1)
k,n1,n2

− u
(2)
k,n1,n2

| ≤ 2πNr,k|f (1)
k,n1,n2

− f
(2)
k,n1,n2

|,

|(n2
1 + n2

2)[u
(1)
k,n1,n2

− u
(2)
k,n1,n2

]| ≤ 2πNr,k|f (1)
k,n1,n2

− f
(2)
k,n1,n2

|
with 1 ≤ k ≤ N, (n1, n2) ∈ Z× Z. Hence,

‖u(1) − u(2)‖2H2
c (Ω,RN ) =

=
N
∑

k=1

∑

(n1,n2)∈Z×Z

|u(1)
k,n1,n2

− u
(2)
k,n1,n2

|2 +
N
∑

k=1

∑

(n1,n2)∈Z×Z

|(n2
1 + n2

2)[u
(1)
k,n1,n2

− u
(2)
k,n1,n2

]|2 ≤
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≤ 8π2N 2
r

N
∑

k=1

‖Fk(v
(1)(x), x)− Fk(v

(2)(x), x)‖2L2(Ω),

with Nr defined in (4.6). We recall condition (2.2) of Assumption 2.1. Thus,

‖Trv
(1) − Trv

(2)‖H2
c (Ω,RN ) ≤ 2

√
2πNrL‖v(1) − v(2)‖H2

c (Ω,RN ). (3.8)

The constant in the right side of (3.8) is less than one as we assume. Therefore, by means
of the Fixed Point Theorem, there exists a unique vector function vr ∈ H2

c (Ω,R
N ), such

that Trvr = vr. This is the only solution of the system of equations (1.2) in H2
c (Ω,R

N). Let
us suppose that vr(x) vanishes identically in Ω. This will contradict to the given condition
that the Fourier coefficients Gk,n1,n2

Fk(0, x)n1,n2
6= 0 for some 1 ≤ k ≤ N and a certain pair

(n1, n2) ∈ Z× Z.

Let us proceed to establishing the solvability in the sense of sequences for our system of
integro-differential equations in the square Ω.

Proof of Theorem 2.3. By virtue of the result of Theorem 2.2 above, each system (2.12)
possesses a unique solution u(m)(x) ∈ H2

c (Ω,R
N), m ∈ N. Limiting system of equations

(1.2) admits a unique solution u(x) ∈ H2
c (Ω,R

N ) by means of Lemma 4.2 below along with
Theorem 2.2. Let us apply the Fourier transform (4.1) to both sides of systems (1.2) and
(2.12). Hence, for 1 ≤ k ≤ N, (n1, n2) ∈ Z× Z and m ∈ N, we obtain

uk,n1,n2
= 2π

Gk,n1,n2
ϕk,n1,n2

n2
1 + |n2|

, (n2
1 + n2

2)uk,n1,n2
= 2π

(n2
1 + n2

2)Gk,n1,n2
ϕk,n1,n2

n2
1 + |n2|

, (3.9)

u
(m)
k,n1,n2

= 2π
Gk,m,n1,n2

ϕ
(m)
k,n1,n2

n2
1 + |n2|

, (n2
1 + n2

2)u
(m)
k,n1,n2

= 2π
(n2

1 + n2
2)Gk,m,n1,n2

ϕ
(m)
k,n1,n2

n2
1 + |n2|

. (3.10)

In formulas (3.9) and (3.10) above ϕk,n1,n2
and ϕ

(m)
k,n1,n2

stand for the Fourier images of

Fk(u(x), x) and Fk(u
(m)(x), x) respectively under transform (4.1). Clearly,

|u(m)
k,n1,n2

− uk,n1,n2
| ≤ 2π

∥

∥

∥

∥

Gk,m,n1,n2

n2
1 + |n2|

− Gk,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

|ϕk,n1,n2
|+

+2π

∥

∥

∥

∥

Gk,m,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

|ϕ(m)
k,n1,n2

− ϕk,n1,n2
|,

such that

‖u(m)
k − uk‖L2(Ω) ≤ 2π

∥

∥

∥

∥

Gk,m,n1,n2

n2
1 + |n2|

− Gk,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

‖Fk(u(x), x)‖L2(Ω)+

+2π

∥

∥

∥

∥

Gk,m,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

‖Fk(u
(m)(x), x)− Fk(u(x), x)‖L2(Ω).

10



We recall bound (2.2) of Assumption 2.1. Hence,

√

√

√

√

N
∑

k=1

‖Fk(u(m)(x), x)− Fk(u(x), x)‖2L2(Ω) ≤ L‖u(m)(x)− u(x)‖L2(Ω,RN ). (3.11)

Thus, using (4.9) and (4.10), we derive

‖u(m)(x)− u(x)‖2L2(Ω,RN ) ≤

≤ 8π2
N
∑

k=1

∥

∥

∥

∥

Gk,m,n1,n2

n2
1 + |n2|

− Gk,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

2

l∞

‖Fk(u(x), x)‖2L2(Ω)+

+8π2
[

N (m)
r

]2

L2‖u(m)(x)− u(x)‖2L2(Ω,RN ).

By means of (4.12), we obtain

‖u(m)(x)− u(x)‖2L2(Ω,RN ) ≤
8π2

ε(2− ε)

N
∑

k=1

∥

∥

∥

∥

Gk,m,n1,n2

n2
1 + |n2|

− Gk,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

2

l∞

‖Fk(u(x), x)‖2L2(Ω).

Inequality (2.1) of Assumption 2.1 yields that all Fk(u(x), x) ∈ L2(Ω) for u(x) ∈ H2
c (Ω,R

N).
Hence, under the given conditions

u(m)(x) → u(x), m → ∞ (3.12)

in L2(Ω,RN) via the result of Lemma 4.2 of the Appendix. Formulas (3.9) and (3.10) yield

|(n2
1+n2

2)u
(m)
k,n1,n2

−(n2
1+n2

2)uk,n1,n2
| ≤ 2π

∥

∥

∥

∥

(n2
1 + n2

2)Gk,m,n1,n2

n2
1 + |n2|

−(n2
1 + n2

2)Gk,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

|ϕk,n1,n2
|+

+2π

∥

∥

∥

∥

(n2
1 + n2

2)Gk,m,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

|ϕ(m)
k,n1,n2

− ϕk,n1,n2
|,

such that

‖∆u
(m)
k (x)−∆uk(x)‖L2(Ω) ≤ 2π

∥

∥

∥

∥

(n2
1 + n2

2)Gk,m,n1,n2

n2
1 + |n2|

− (n2
1 + n2

2)Gk,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

×

×‖Fk(u(x), x)‖L2(Ω) + 2π

∥

∥

∥

∥

(n2
1 + n2

2)Gk,m,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

‖Fk(u
(m)(x), x)− F (u(x), x)‖L2(Ω).

Inequality (3.11) enables us to derive the estimate

‖∆u
(m)
k (x)−∆uk(x)‖L2(Ω) ≤ 2π

∥

∥

∥

∥

(n2
1 + n2

2)Gk,m,n1,n2

n2
1 + |n2|

− (n2
1 + n2

2)Gk,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

×

11



×‖Fk(u(x), x)‖L2(Ω) + 2π

∥

∥

∥

∥

(n2
1 + n2

2)Gk,m,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

L‖u(m)(x)− u(x)‖L2(Ω,RN ).

Let us recall the result of Lemma 4.2 of the Appendix along with statement (3.12). We

obtain that ∆u
(m)
k (x) → ∆uk(x) in L2(Ω) as m → ∞ for 1 ≤ k ≤ N . By virtue of definition

(2.8) of the norm, we have u(m)(x) → u(x) in H2
c (Ω,R

N) as m → ∞.
Let us suppose the solution u(m)(x) of system (2.12) discussed above vanishes identically in
the square Ω for some m ∈ N. This will contradict to the given condition that the Fourier
coefficients Gk,m,n1,n2

Fk(0, x)n1,n2
6= 0 for some 1 ≤ k ≤ N and a certain pair (n1, n2) ∈ Z×Z.

The similar argument is valid for the solution u(x) of the limiting problem (1.2).

4 Appendix

Let the function Gk(x1, x2) : Ω → R, such that Gk(0, x2) = Gk(2π, x2) with 0 ≤ x2 ≤ 2π
and Gk(x1, 0) = Gk(x1, 2π) with 0 ≤ x1 ≤ 2π. Its Fourier image on the square equals to

Gk,n1,n2
:=

∫ 2π

0

∫ 2π

0

Gk(x1, x2)
e−in1x1

√
2π

e−in2x2

√
2π

dx1dx2, (n1, n2) ∈ Z× Z, (4.1)

such that

Gk(x1, x2) =
∑

(n1,n2)∈Z×Z

Gk,n1,n2

ein1x1

√
2π

ein2x2

√
2π

, (x1, x2) ∈ Ω.

Obviously, the upper bound

‖Gk,n1,n2
‖l∞ ≤ 1

2π
‖Gk(x1, x2)‖L1(Ω) (4.2)

is valid with ‖Gk,n1,n2
‖l∞ := sup(n1,n2)∈Z×Z|Gk,n1,n2

|. Evidently, (4.2) yields

‖n2Gk,n1,n2
‖l∞ ≤ 1

2π

∥

∥

∥

∂Gk(x1, x2)

∂x2

∥

∥

∥

L1(Ω)
. (4.3)

Furthermore, for a function continuous in the square Ω, the inequality

‖Gk(x1, x2)‖L1(Ω) ≤ ‖Gk(x1, x2)‖C(Ω)(2π)
2, (4.4)

is valid with ‖Gk(x1, x2)‖C(Ω) := max(x1,x2)∈Ω|Gk(x1, x2)|. Let us introduce the following
technical quantities

Nr,k := max

{
∥

∥

∥

∥

Gk,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

,

∥

∥

∥

∥

(n2
1 + n2

2)Gk,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

}

. (4.5)

with 1 ≤ k ≤ N, N ≥ 2. Under the assumptions of Lemma 4.1 below, all the expressions
(4.5) will be finite. Thus,

Nr := max1≤k≤NNr,k < ∞. (4.6)

12



The auxiliary statements below are the adaptations of the ones used in [19] to study the
single integro-differential problem with mixed diffusion, analogical to the system of equations
(1.2). Let us provide them for the convenience of the readers.

Lemma 4.1. Let N ≥ 2, 1 ≤ k ≤ N , the functions Gk(x1, x2) : Ω → R, so that Gk(0, x2) =
Gk(2π, x2) with 0 ≤ x2 ≤ 2π and Gk(x1, 0) = Gk(x1, 2π) with 0 ≤ x1 ≤ 2π. Moreover,

Gk(x1, x2) ∈ C(Ω) and
∂Gk(x1, x2)

∂x2

∈ L1(Ω). Then Nr,k < ∞ if and only if

(Gk(x1, x2), 1)L2(Ω) = 0. (4.7)

Proof. Let us first demonstrate that under the given conditions
(n2

1 + n2
2)Gk,n1,n2

n2
1 + |n2|

∈ l∞.

Clearly, by means of (4.2) and (4.4),

∣

∣

∣

n2
1Gk,n1,n2

n2
1 + |n2|

∣

∣

∣
≤ ‖Gk,n1,n2

‖l∞ ≤ 2π‖Gk(x1, x2)‖C(Ω) < ∞

as we assume. By virtue of (4.3), we have

∣

∣

∣

n2
2Gk,n1,n2

n2
1 + |n2|

∣

∣

∣
≤ ‖n2Gk,n1,n2

‖l∞ ≤ 1

2π

∥

∥

∥

∂Gk(x1, x2)

∂x2

∥

∥

∥

L1(Ω)
< ∞

as assumed. Thus,
(n2

1 + n2
2)Gk,n1,n2

n2
1 + |n2|

is bounded. We can write

Gk,n1,n2

n2
1 + |n2|

=
Gk,n1,n2

n2
1 + |n2|

χ{(n1,n2)∈Z×Z | n1=n2=0} +
Gk,n1,n2

n2
1 + |n2|

χ{(n1,n2)∈Z×Z | n1=n2=0}c . (4.8)

Here and further down χA will stand for the characteristic function of a set A ⊆ Z× Z and
Ac will denote the complement of A. Obviously, the second term in the right side of (4.8)
can be estimated from above in the absolute value by means of (4.2) along with (4.4) by

|Gk,n1,n2
| ≤ 2π‖Gk(x1, x2)‖C(Ω) < ∞

via the one of our assumptions. Evidently, the first term in the right side of (4.8) is bounded
if and only if Gk,0,0 vanishes. This is equivalent to orthogonality relation (4.7).

Let us note that the proof of the lemma above uses only on a single orthogonality condition
for each 1 ≤ k ≤ N, N ≥ 2, as distinct from the analogical case in the whole R

2 considered
in [18].

For the purpose of the studies of the systems of equations (2.12), we will use the auxiliary
expressions

N (m)
r,k := max

{
∥

∥

∥

∥

Gk,m,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

,

∥

∥

∥

∥

(n2
1 + n2

2)Gk,m,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

}

, m ∈ N, (4.9)
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where 1 ≤ k ≤ N, N ≥ 2. Under the conditions of Lemma 4.2 below, all expressions (4.9)
will be finite. This will enable us to introduce

N (m)
r := max1≤k≤NN (m)

r,k , m ∈ N. (4.10)

The final statement of the article is as follows.

Lemma 4.2. Let m ∈ N, N ≥ 2, 1 ≤ k ≤ N , the functions Gk,m(x1, x2) : Ω → R,
such that Gk,m(0, x2) = Gk,m(2π, x2) with 0 ≤ x2 ≤ 2π and Gk,m(x1, 0) = Gk,m(x1, 2π) with
0 ≤ x1 ≤ 2π. Furthermore,

Gk,m(x1, x2) ∈ C(Ω), Gk,m(x1, x2) → Gk(x1, x2) in C(Ω) as m → ∞.

Additionally,

∂Gk,m(x1, x2)

∂x2

∈ L1(Ω),
∂Gk,m(x1, x2)

∂x2

→ ∂Gk(x1, x2)

∂x2

in L1(Ω) as m → ∞.

We also suppose that for all 1 ≤ k ≤ N, m ∈ N

(Gk,m(x1, x2), 1)L2(Ω) = 0 (4.11)

holds. Finally, we assume that
2
√
2πN (m)

r L ≤ 1− ε (4.12)

is valid for each m ∈ N with some fixed 0 < ε < 1.

Then, for all 1 ≤ k ≤ N , we have

Gk,m,n1,n2

n2
1 + |n2|

→ Gk,n1,n2

n2
1 + |n2|

, m → ∞, (4.13)

(n2
1 + n2

2)Gk,m,n1,n2

n2
1 + |n2|

→ (n2
1 + n2

2)Gk,n1,n2

n2
1 + |n2|

, m → ∞ (4.14)

in l∞, such that
∥

∥

∥

∥

Gk,m,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

→
∥

∥

∥

∥

Gk,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

, m → ∞, (4.15)

∥

∥

∥

∥

(n2
1 + n2

2)Gk,m,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

→
∥

∥

∥

∥

(n2
1 + n2

2)Gk,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

, m → ∞. (4.16)

Moreover,
2
√
2πNrL ≤ 1− ε (4.17)

holds.

Proof. Evidently, under the stated assumptions all N (m)
r,k are finite by virtue of the result of

Lemma 4.1 above, such that N (m)
r < ∞, m ∈ N.
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It can be easily verified that the limiting kernels are periodic functions as well. Indeed, for
0 ≤ x2 ≤ 2π, we obtain

|Gk(0, x2)−Gk(2π, x2)| ≤ |Gk,m(0, x2)−Gk(0, x2)|+ |Gk,m(2π, x2)−Gk(2π, x2)| ≤

≤ 2‖Gk,m(x1, x2)−Gk(x1, x2)‖C(Ω) → 0, m → ∞
due to our assumptions. Hence,

Gk(0, x2) = Gk(2π, x2) for 0 ≤ x2 ≤ 2π

with 1 ≤ k ≤ N . Analogously, for 0 ≤ x1 ≤ 2π

|Gk(x1, 0)−Gk(x1, 2π)| ≤ |Gk,m(x1, 0)−Gk(x1, 0)|+ |Gk,m(x1, 2π)−Gk(x1, 2π)| ≤

≤ 2‖Gk,m(x1, x2)−Gk(x1, x2)‖C(Ω) → 0, m → ∞
as we assume. Thus,

Gk(x1, 0) = Gk(x1, 2π) for 0 ≤ x1 ≤ 2π,

where 1 ≤ k ≤ N . Let us demonstrate that the limiting orthogonality relations

(Gk(x1, x2), 1)L2(Ω) = 0, 1 ≤ k ≤ N (4.18)

are valid. With the help of (4.11), we derive

|(Gk(x1, x2), 1)L2(Ω)| = |(Gk(x1, x2), 1)L2(Ω) − (Gk,m(x1, x2), 1)L2(Ω)| ≤

≤ ‖Gk,m(x1, x2)−Gk(x1, x2)‖C(Ω)(2π)
2 → 0, m → ∞

via the one of our assumptions, such that (4.18) holds.
Hence, by means of Lemma 4.1, all Nr,k are finite, such that Nr < ∞ as well.
Let us recall orthogonality conditions (4.18) and (4.11) along with the definition of the
Fourier transform (4.1). Clearly, we have

Gk,0,0 = 0, Gk,m,0,0 = 0, 1 ≤ k ≤ N, m ∈ N.

Then by virtue of bounds (4.2) and (4.4), we arrive at
∥

∥

∥

∥

Gk,m,n1,n2

n2
1 + |n2|

− Gk,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

≤ 2π‖Gk,m(x1, x2)−Gk(x1, x2)‖C(Ω) → 0, m → ∞

as we assume, so that (4.13) is valid. Note that (4.15) is an immediate consequence of (4.13)
due to the standard triangle inequality.
Obviously, the estimate

∣

∣

∣

∣

(n2
1 + n2

2)Gk,m,n1,n2

n2
1 + |n2|

− (n2
1 + n2

2)Gk,n1,n2

n2
1 + |n2|

∣

∣

∣

∣

≤
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≤ ‖Gk,m,n1,n2
−Gk,n1,n2

‖l∞ + ‖n2[Gk,m,n1,n2
−Gk,n1,n2

]‖l∞
holds. Using formulas (4.2), (4.3) and (4.4), we derive the upper bound

∥

∥

∥

∥

(n2
1 + n2

2)Gk,m,n1,n2

n2
1 + |n2|

− (n2
1 + n2

2)Gk,n1,n2

n2
1 + |n2|

∥

∥

∥

∥

l∞

≤ 2π‖Gk,m(x1, x2)−Gk(x1, x2)‖C(Ω)+

+
1

2π

∥

∥

∥

∥

∂Gk,m(x1, x2)

∂x2
− ∂Gk(x1, x2)

∂x2

∥

∥

∥

∥

L1(Ω)

→ 0, m → ∞

by means of our assumptions. Hence, (4.14) is valid. Let us use the standard triangle
inequality to establish that (4.16) follows easily from (4.14).
An easy limiting argument relying on (4.5), (4.6), (4.9), (4.10), (4.12), (4.15) and (4.16)
yields (4.17).

Remark 4.3. The existence in the sense of sequences of the solutions of the system of
equations (1.2) involving the transport terms will be covered in the following article.
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