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1. Introduction

In the present article we establish the existence of statjosolutions of the fol-
lowing nonlocal reaction-diffusion equation

?‘97: _D_u“)_ / K(x —y)g(w(y)uly,t))dy + ad(x), (1.1)

where the constants « € R are nontrivial andv(x) is the cut-off function. The
conditions on it will be stated further down. The equatiohshos kind are used
in the cell population dynamics. The solvability of the peh analogical to (1.1)



without the transport term was studied in [35]. Emergenak@opagation of pat-
terns in nonlocal reaction-diffusion equations arisinth@theory of speciation and
containing the transport term were discussed in [33]. TleEsyariabler here
corresponds to the cell genotypé;, ¢) stands for the cell density as a function of
their genotype and time. The right side of (1.1) describesatrolution of the cell
density via the cell proliferation, mutations and the ceflux/efflux. The diffusion
term here corresponds to the change of genotype by means siidll random mu-
tations, and the nonlocal term describes large mutatione fdnctiong (w(x)u(z))
denotes the rate of cell birth which dependswm (density dependent prolifer-
ation), and the kernek'(x — y) gives the proportion of newly born cells, which
change their genotype fromto x. Let us assume that it depends on the distance
between the genotypes. Finally, the last term in the righe sf our equation, which
is proportional to the Dirac delta function is the influx/eflof cells for different
genotypes. A similar equation on the real line in the caséefstandard negative

: 1. e :
Laplace operator raised to the powet s < — in the diffusion term was discussed

recently in [42]. But in the article [42] it was assumed thHa tnflux/efflux term
f(x) € LY(R) N L*(R). Thus, in the present work we address the more singular
situation. In neuroscience, the integro-differentiallpeons describe the nonlocal
interaction of neurons (see [9] and the references therein)
We setD = 1 and demonstrate the existence of solutions of the equation

2 00
% + bj—z + /OO K(x —y)g(w(y)u(y))dy + ad(z) = 0. (1.2)

Let us discuss the situation when the linear part of suchatpedoes not satisfy
the Fredholm property. As a consequence, the conventioattiods of the non-
linear analysis may not be applicable. We use the solvalbbinditions for the
non-Fredholm operators along with the method of contraati@ppings.
Consider the problem

—Au+V(x)u —au = f, (1.3)

whereu € F = H*(RY) andf € F = L*(R?), d € N, a is a constant and the
scalar potential functior’(x) is either trivial or tends t® at infinity. Fora > 0,
the essential spectrum of the operator £ — F, which corresponds to the left
side of equation (1.3) contains the origin. As a consequesutdh operator does not
satisfy the Fredholm property. Its image is not closeddfor 1 the dimension of its
kernel and the codimension of its image are not finite. Thegurearticle is deals
with the studies of the certain properties of the operatbithis kind. Note that
the elliptic equations involving the non-Fredholm operatoere treated actively in
recent years. Approaches in weighted Sobolev and Holderespwere developed
in [4], [5], [7], [8], [6]. The non-Fredholm Schrodingerpg operators were
studied with the methods of the spectral and the scattehegry in [17], [20],
[30], [32], [36], [37]. Fredholm structures, topologicalvariants and their ap-
plications were covered in [13]. The article [14] deals wiitle finite and infinite
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dimensional attractors for the evolution problems of theéframatical physics. The
large time behavior of the solutions of a class of fourtheorparabolic equations
defined on unbounded domains via the Kolmogoreantropy as a measure was
investigated in [15]. The attractor for a nonlinear reacithffusion system in an
unbounded domain iR? was studied in [22]. The works [24] and [29] are impor-
tant for the understanding of the Fredholm and propernegsepties of quasilinear
elliptic systems of the second order and of the operatorkisfkind onR". The
exponential decay and Fredholm properties in the secoderguasilinear elliptic
systems were covered in [25]. The Laplace operator with tiof the point of
view of the non-Fredholm operators was considered in [3€] 9] and the lin-
earized Cahn-Hilliard equations in [32] and [40]. The noe&r non-Fredholm
elliptic problems were considered in [16], [18], [19], [20]21], [31], [38],
[41], [42]. The interesting applications to the theory o tleaction-diffusion equa-
tions were developed in [11], [12]. The non-Fredholm opmsaarise also when
studying wave systems with an infinite number of localizedéting waves (see
[2]). The standing lattice solitons in the discrete NLS peobwith saturation were
considered in [3]. In particular, when= 0 our operatotA is Fredholm in certain
properly chosen weighted spaces (see [4], [5], [7], [8]).[6]Jowever, the case of
a # 0 is considerably different and the method developed in thhesks cannot be
used. The existence, stability and bifurcations of thetswhs of the nonlinear par-
tial differential equations involving the Dirac delta fuion potentials were treated
actively in [1], [23], [26], [27].

Let us setk'(z) = ek(x) with ¢ > 0. When our nonnegative parametss trivial,
we arrive at the linear Poisson type equation with drift, ejm

——— —b— = ad(x), (1.4)

whereb, o € R andb, a # 0 are the constants. It can be trivially checked that
problem (1.4) admits a continuous solution, which vanisireshe negative semi-

axis. Itis given by
a(, —bx
_ e —=1), >0 15
o) {0, z <0 (15)

Clearly, uo(x) does not belong td7'(R). It is bounded forb > 0 and it is un-
bounded ifb < 0. Let us recall the analogous situation described in [35]e Th
solution of the Poisson equation without the drift term ¢desed there was propor-
tional to the ramp function. It was unbounded and it did ndobg to 7'(R). In
[42] the authors were dealing with the Poisson type equatiaiving the fractional
Laplacian and the transport term. Its bounded solution wataned inf ! (R). Let

us suppose that the assumption below is fulfilled.

Assumption 1.1.Let K(x) : R — R be nontrivial, so thatC(z), zK(z) € L*(R)
and orthogonality relation (4.2) is valid. We also assumat tihe cut-off function
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w(z) : R — R is such thatw(x)uy(z) is nontrivial andw(z)ug(x) € H'(R).
Furthermorew(z) € HY(R) and forb, o € R, b, a # 0 the inequality

|w(z)uo(w)|| @) <1 (1.6)
holds.

It can be trivially checked thaw(z) = e~2Fll*l 2z € R satisfies the conditions
above. Thus, it can be used as our cut-off function. Noteith#tie argument of

[42] such cut-off function was not needed due to the moreleeduehaviour of the
solution of the Poisson type equation. In our work we chobsespace dimension

d = 1, which is related to the solvability of the linear Poissopéyequation (1.4)
discussed above. From the point of view of the applicatitresspace dimension is

not restricted tal = 1 because the space variable corresponds to the cell genotype
but not to the usual physical space. We use the Sobolev space

H'(R) := {u(z) : R = R |u(z) € L*(R), Z—z € L*(R)}.

It is equipped with the norm

(1.7)

du
2 o 2
ey = ey + || 5o

Obviously, by means of the standard Fourier transform (213 norm can be ex-
pressed as

[l ) = Ha(p)”%m@) + Hpﬂ(p)H%z(R)- (1.8)
By virtue of the Sobolev inequality in one dimension (see &gct 8.5 of [28]),
the upper bound

1
()| Lo @) < EHU(SC)HHI(R)- (1.9)
holds. We seek the resulting solution of nonlinear equgtlo?) as
u(z) = up(z) + up(x). (1.10)
Evidently, we arrive at the perturbative equation
d*u,(x du,(x o0
= dgi ) ;’i ) - 6/ K(z —y)g(w(y)[uo(y) +uy(y)))dy.  (1.11)

—00

Let us use a closed ball in our Sobolev space
B, = {u(z) € H'(R) | [ulm@ < p}, 0<p<1. (1.12)

We look for the solution of equation (1.11) as the fixed pointhe auxiliary non-
linear problem

R | K=t +o@dy (113

4



in ball (1.12). For a given function(y) this is an equation with respect tdx).
The left side of (1.13) contains the operator

Ly = —=5 —b— (1.14)

acting onZ?(R). By means of the standard Fourier transform, it can be thvia
checked that the essential spectrunigfs given by

\o(p) == p* —ibp, pER. (1.15)

Since (1.15) contains the origii,, does not satisfy the Fredholm property, such
operator has no bounded inverse. The similar situationarctimtext of the integro-
differential equations occurred also in works [38] and [40)e problems studied
there also required the application of the orthogonalitstiens. The contraction
argument was used in [34] to estimate the perturbation tetdreling solitary wave
of the Nonlinear Schrodinger (NLS) equation when eitherdgkternal potential or
the nonlinear term in the NLS were perturbed but the Scinigitioperator involved
in the nonlinear equation there satisfied the Fredholm ptpgeee Assumption 1
of [34], also [10]). Let us introduce the interval on the rixad

1 1 1 1

== s = sl 5+ gle@lne]  @16)

along with the closed ball in the space®f() functions, namely
Dy = {g(2) € C'(I) | lgllcray < M}, M >0. (1.17)
In this context the norm
9llcray = lgllew + 119 lew. (1.18)

where||g||c(r) := maxe;|g(z)|. From the biological point of view, the rate of cell
birth function is nonlinear and is trivial at the origin.

Assumption 1.2. Let g(z) : R — R, such thaty(0) = 0. It is also assumed that
g(z) € Dy and it does not vanish identically on the interval

We recall the article [42]. The functiog(z) there was assumed to be twice con-
tinuously differentiable on the corresponding interyalLet us use the following
positive auxiliary expression

Q = max{ f(imb , &mb } (1.19)
PP | oy P00 o)



We introduce the operatdr,;, so thatu = 7,v, whereu is a solution of equation
(1.13). Our first main statement is as follows.

Theorem 1.3.Let Assumptions 1.1 and 1.2 hold. Then equation (1.13) cheffivee
map7, : B, — B,, which is a strict contraction for all

p
2/7QM (14 L))

The unique fixed point,(z) of this mapl, is the only solution of problem (1.11) in
B

O<e<

(1.20)

P

Clearly, the resulting solution of equation (1.2) given laymula (1.10) will not
vanish identically on the real line, becaug@) = 0 anda # 0 due to our assump-
tions.

Our second main proposition is about the continuity of thenglative solution of
problem (1.2) given by (1.10) with respect to the nonlineactiong. We introduce
the following positive, auxiliary quantity

o = V2rQM||w(x)| g (r)- (1.21)
Theorem 1.4. Letj = 1,2, suppose that the assumptions of Theorem 1.3 hold,
such thatu,, ;(x) is the unique fixed point of the mdp, : B, — B,, which is a

strict contraction for all the values of satisfying (1.20) and the resulting solution
of problem (1.2) withy(z) = g;(#) is given by

w;(z) = uo(z) + up (). (1.22)
Then for all values of, which satisfy inequality (1.20), the estimate

w1 () — ue(2) || g1y <

_ 21+ @)

- 1—¢co

l91(2) = g2(2)ll ey (1.23)

is valid.
We proceed to the proof of our first main result.
2. The existence of the perturbed solution

Proof of Theorem 1.3Let us choose arbitrarily(z) € B, and denote the term
contained in the integral expression in the right side obfem (1.13) as

G(x) == g(w(@)[uo(x) + v(x)]).
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The standard Fourier transform is defined as

oy 1 - —ipT
) = = | e per (2.1)
Evidently, the inequality
~ 1
[P(P) | oo ) < E!W(m)l!um) (2.2)

is valid. We apply (2.1) to both sides of problem (1.13). Tdnises us

p — zb — zb
so that R R
[a(p)| < eV2rQ|G(p)l, |pulp)| < eV2rQ|G(p), (2.3)

where( is defined in (1.19). Note that under the stated assumptjbrs co by
means of Lemma 4.1 below. By virtue of (1.8) along with (2.3 easily estimate
the norm as

() By < A2 Q|G ) 2o (2.4)
It can be trivially checked that far( ) € B,, we have
(@) () + 0(@)]] < —= + + (2] (2.5)
wlx )| uplx v\r — —||w\T 1 . .
0 =52 H(R)

Indeed, the left side of (2.5) can be bounded from above usegpalities (1.6) and
(1.9) by

[w(z)uo (@) oo ) + lw (@) || oo @) [0 () || oo () <
(@)uo () || 1 ) (z) @)@ <

1
w xr — |V
+ @)l |

S = _1” (@)
+ —||lw(x
S \/Q 9 H1(R)

Similarly, forv(x) € B, the estimate

<1
— ||W
_ﬂ

lw (@) [uo(x) + v(@)l| 2@ <1+ %Hw(fﬁ)Hm(R) (2.6)

holds. Clearly, the left side of (2.6) can be estimated frddove by virtue of (1.6)
and (1.9) by

[w(@)uo(@)| 2@ + [[w(@)o(@)]| 2@y < llw(z)uo(@)]]m @+
Hlw(@)l @ llv(@) 2@ < 1+\7Hw( M @)-
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Obviously,
w(@)[uo(z)+v(x)]
G(x) = / g (z)dz.
0

Hence,

|G(@)] < maxe/|g'(2)[[w(z)uo(x) + v(@)]] < Mlw(z)uo(x) +v(2)]|, (2.7)

with the intervall is defined in (1.16). By means of (2.7) along with (2.6) we\ari
at

IG@) ey < Mlfw@)lun(a) + o(@)le) < M (14— u@)linc). @8)

Upper bounds (2.4) and (2.8) give us

(@)l < 2v/meQM (1+ 7Hw( Dllme) < p (2.9)
for all the values of the parameterwhich satisfy (1.20). Thusy(z) € B, as well.
Let us suppose that for a certaifw) € B, there exist two solutions, »(z) € B,
of problem (1.13). Their difference(z) := ui(z) — us(x) € L*(R) solves the
homogeneous equation
d*w(x) bdw(x)

Cdr? dx
The operatorl, defined in (1.14) and considered on the whole real line doés no
have any nontrivial square integrable zero modes, suchuthat vanishes identi-
cally onR. Therefore, problem (1.13) defines a mAp: B, — B, for all the
values ofz, which satisfy inequality (1.20).
Let us demonstrate that under the stated assumptions tlpissnaastrict contrac-
tion. We choose arbitrarily, »(z) € B,. By virtue of the argument abovg , :=
T,v1 2 € B, as well fore satisfying inequality (1.20). By means of (1.13), we have
precisely

=0.

= j;;g:c) - bd“;f) =€ / Z K(z —y)g(w(y)[uo(y) +vi(y)))dy,  (2.10)
_dzgj;gx) - bdu;ix) =c / Z K(z —y)g(w(y)uo(y) + va(y)dy.  (2.11)

Let us introduce

Gi(z) = g(w(@)[ug(z) + vi(2)]), Ga(x) := g(w(@)[uo(z) + v2(x)])
and apply the standard Fourier transform (2.1) to both safipsoblems (2.10) and
(2.11). This gives us

) = i WGD) g KDGH)

p* —ibp p* —ibp



so that

o~

(p) — ) — e B C D) — Calo)]

p? —ibp

Pl () — Ba(p)) = =var 2 ;(Zi) Ul

Thus, the upper bounds
@1 (p) — a(p)| < eV2rQIGi(p) — Galp),
bl (p) — @a(p)]| < £v27Q|G1(p) — Ga(p)|

hold. This enables us to estimate the norm via (1.8) as

o) = o) ey = [ @) — @)Pdp + / " p@(p) — @) Pdp <

[e.9] — 00

< Are*Q*|Go(x) — Ga(@) 2wy,
so that
Jur(z) — w2 (@) | @) < 2VmeQl|Gr(2) — Go(2) | 2(w)- (2.12)

Clearly, we have the equality

w(z)[uo(z)+v1 ()]

Gi(x) — Gala) = / ¢ (2)dz,

w(z)[uo (z)+v2 ()]
such thatiG,(z) — Go(z)| <
< maxerlg'(2)|lw(@)(vi(z) = va(2))| < Mlw(z) (v () — v2(2))]. (2.13)
Let us obtain the upper bound on the right side of (2.13) u€ir@) as
M |[w ()| poe@lv1(z) — va ()] < \fllw( M @lvi(z) — va(2)].

This allows us to estimate the norm as

|G1(z) — Ga() || L2r) < \/—Hw( N @ llvi(z) — va ()| L2m) <
< el (@) = va) o (2.14)

By means of (2.12) along with (2.14) we derive

s (@) = uz (@)l gy < V2meQM [[w(@) | llor(2) — va(@) g (2.15)



Evidently,

p 1
< .
2ﬁQM(1 + %”UJ(x)”Hl(R)) V2rQM |[w(@)| i w)

By virtue of inequality (1.20) for our parametemwe have

1
<e< ,
V2rQM||w ()| m ()

so that the constant in the right side of upper bound (2.18sis than one. This
implies that our maff, : B, — B, defined by problem (1.13) is a strict contrac-
tion for all the values ot satisfying (1.20). Its unique fixed point,(x) is the
only solution of equation (1.11) in the ball,. We easily deduce from (2.9) that
|up()|| ey — 0 @ase — 0. The resultingu(z) given by formula (1.10) is a
solution of problem (1.2). [ |

0

We turn our attention to the demonstration of the validitytef second main propo-
sition of our work.

3. The continuity of the cumulative solution

Proof of Theorem 1.4Clearly, for all the values of, which satisfy inequality (1.20),
we have
Upy = Ty upa,  Upa = TyUpo.

Thus,
Up1 — Upo = Tgup1 — Ty upo+ Tgupo — Ty upo.

We obtain
[tp — upell ey < | Tgups — Ty up2ll i@y + [Ty up2 — Toptp 2l -
By means of bound (2.15), we have
[T up1 — Ty up ol mwy < eollupr — up ol m),

whereo is defined in (1.21). Evidently,o < 1, since the mafi,, : B, — B,is a
strict contraction under the stated assumptions. Henceyme at

(1 —eo)|lups — upallm @) < | Tgtp2 — Tooupollm(w)- (3.1)

Evidently, for our fixed point,,u, » = u,». We introduc€(x) := T}, u,». There-
fore,

()

dx?

N bdz(;) =€ /_ Z Kz = y)gi(w(y)luo(y) + ups(y)))dy,  (3.2)
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d 13;22(3:) B bduzz(:c) —c / h K(z — ) ga(w(y)[uo(y) + upa(y)))dy. (3.3)

Let us designate

[e.e]

Gra(z) = gi(w(w)[uo(w) + upa(2)]), Goo(r) = g2(w(x)[uo(T) + up2(z)]).

We apply the standard Fourier transform (2.1) to both sidegjoations (3.2) and
(3.3) above. This gives us

E(p) - 5mw’ Ua(p) = E\/%K(p)Gg,z(p)’
p* — ibp ’ p? —ibp

so that R
K(p)
p* —ibp

E(p) — Upa(p) = eV (Gra(p) — Ga2(p)),

pIE) — T = =v2r2 L {GLalp) — o)

This allows us to derive the estimates from above

Ep) — T3(0)] < ev270|Gra(p) — Caalp)], (3.4)
PIED) — Tpa(p)]] < evV27Q|Gra(p) — Gaa(p)]. (3.5)
By means of (3.4), we have
1) — T3 (0) 22y = / Ep) — T ()| Pdp <

< 2me?Q?(| G o (2) — Goa()|[72(m)- (3.6)

Similarly, using (3.5) we obtain

1PIE(P) — Upa ()32 r) = / PIE(D) — Tpa(p)]Pdp <

< 21 Q?(| G 2(2) — Goo(2) |72y - (3.7)

By virtue of (1.8) along with inequalities (3.6) and (3.Metnorm can be easily
bounded above as

~ ~

€ (@) — up2 (@)l ) = 1€(P) — Up2(P) 72y + IPIE(P) — U2 ()] 2y <

< 47T52Q2||G1,2($) - G272("E)”%Q(R)’

so that
[€(x) — up2(@) |y < 2VTEQ||Gr2(x) — Go2(2)]| L2(R)- (3.8)
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Clearly,

(@) [uo(z)+up,2(x)]
Gral) — Gan(z) = / 6,(2) — gh())d=.
Hence,
1Gra() — Caale)] < Maxer|gh(2) — ()l (@)[uo(x) + upa(@)]] <

< [191(2) = g2(2) lor oy |w (@) [uo () + up2(2)]]-
This enables us to estimate the norm by means of (2.6) as

1G12(2) = Gaop(@) 2@y < [l91(2) = g2(2) oy (@) [0 (%) + wp 2(2)] | 2wy

< 91(2) = (D eran (1+ @) (3.9)

Using (3.8) along with (3.9) we obtaift () — up2(®) || m1®) <

< 2V72Q)01(2) — g2(2lleneny (1 + fnw D). (310

By virtue of (3.1) and (3.10) we arrive 8,  (z) — up2(2)|| m1(r) <

_ 2\/7?5@(1 + %Hw(x)HHl(R))

1—¢o

191(2) = g2(2)|lc1n)- (3.11)
Equalities (1.22) along with inequality (3.11) imply thdiday of (1.23). [ |

4. Auxiliary results

Let us obtain the conditions under which the expresgiantroduced in (1.19) is
finite. We denote the inner product as

@) g = [ f@g, @)

with a slight abuse of notations when the functions invoived.1) do not belong to
L?*(R), like for instance the ones present in orthogonality refa(4.2) of Lemma
4.1 below. Indeed, iff(x) € L*(R) andg(z) € L>*(R), then the integral in the
right side of (4.1) is well defined. The proof of Lemma 4.1 wastially presented
in the part b) of Lemma Al of [16]. Let us present it here for to@venience of
the readers.
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Lemma4.1.LetK(x) : R — R be nontrivial, so thatC(x), zK(x) € L'(R). Then
@ < oo if and only if the orthogonality condition

(K(z),D)r2@) =0 (4.2)

is valid.

Proof. It can be trivially checked using (2.2) thalg(i,)b € L*(R). Indeed, we have
p—1

K@) | _ K@)
p—ib \/m ||IC( )| L m) < 00

as assumed. Note that when the drift constasainishes, the situation here becomes
more singular. Clearly, we can write

Rip) =)+ [ %Py

so that
P d/C(q)

K@) 13(0) 0

p?—ibp  p? — ibp p? — sz

From the definition of the standard Fourier transform (2 Tan be easily derived
that

4.3)

die(p)’ 1
< K :
“a | = Tl
Hence, ~
P dK(q)
0 dg M 1
, olC(x) || my < 00
via the one of our assumptions. By virtue of definition (2u¢, have
~ 1
K(0) = (K(z), 1) 12®).-

V2T
Therefore, the first term in the right side of (4.3) is given by
(K(2), 1) 2(w)
V2r(p? —ibp)

Obviously, expression (4.4) is bounded if and only if ortboglity relation (4.2) is
valid. |

(4.4)

Note that as distinct from the similar proposition in theuation without a drift
term discussed in [35], the statement of Lemma 4.1 abovesrelly on a single
orthogonality condition (4.2) and the argument of the prisoess cumbersome.
The argument of [42] does not use the orthogonality relatetdrall.
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