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1. Introduction

In the present article we establish the existence of stationary solutions of the fol-
lowing nonlocal reaction-diffusion equation

∂u

∂t
= D

∂2u

∂x2
+ b

∂u

∂x
+

∫ ∞

−∞
K(x− y)g(w(y)u(y, t))dy+ αδ(x), (1.1)

where the constantsb, α ∈ R are nontrivial andw(x) is the cut-off function. The
conditions on it will be stated further down. The equations of this kind are used
in the cell population dynamics. The solvability of the problem analogical to (1.1)
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without the transport term was studied in [35]. Emergence and propagation of pat-
terns in nonlocal reaction-diffusion equations arising inthe theory of speciation and
containing the transport term were discussed in [33]. The space variablex here
corresponds to the cell genotype,u(x, t) stands for the cell density as a function of
their genotype and time. The right side of (1.1) describes the evolution of the cell
density via the cell proliferation, mutations and the cell influx/efflux. The diffusion
term here corresponds to the change of genotype by means of the small random mu-
tations, and the nonlocal term describes large mutations. The functiong(w(x)u(x))
denotes the rate of cell birth which depends onu, w (density dependent prolifer-
ation), and the kernelK(x − y) gives the proportion of newly born cells, which
change their genotype fromy to x. Let us assume that it depends on the distance
between the genotypes. Finally, the last term in the right side of our equation, which
is proportional to the Dirac delta function is the influx/efflux of cells for different
genotypes. A similar equation on the real line in the case of the standard negative

Laplace operator raised to the power0 < s <
1

4
in the diffusion term was discussed

recently in [42]. But in the article [42] it was assumed that the influx/efflux term
f(x) ∈ L1(R) ∩ L2(R). Thus, in the present work we address the more singular
situation. In neuroscience, the integro-differential problems describe the nonlocal
interaction of neurons (see [9] and the references therein).
We setD = 1 and demonstrate the existence of solutions of the equation

d2u

dx2
+ b

du

dx
+

∫ ∞

−∞
K(x− y)g(w(y)u(y))dy+ αδ(x) = 0. (1.2)

Let us discuss the situation when the linear part of such operator does not satisfy
the Fredholm property. As a consequence, the conventional methods of the non-
linear analysis may not be applicable. We use the solvability conditions for the
non-Fredholm operators along with the method of contraction mappings.
Consider the problem

−∆u + V (x)u− au = f, (1.3)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant and the
scalar potential functionV (x) is either trivial or tends to0 at infinity. Fora ≥ 0,
the essential spectrum of the operatorA : E → F , which corresponds to the left
side of equation (1.3) contains the origin. As a consequence, such operator does not
satisfy the Fredholm property. Its image is not closed, ford > 1 the dimension of its
kernel and the codimension of its image are not finite. The present article is deals
with the studies of the certain properties of the operators of this kind. Note that
the elliptic equations involving the non-Fredholm operators were treated actively in
recent years. Approaches in weighted Sobolev and Hölder spaces were developed
in [4], [5], [7], [8], [6]. The non-Fredholm Schrödinger type operators were
studied with the methods of the spectral and the scattering theory in [17], [20],
[30], [32], [36], [37]. Fredholm structures, topological invariants and their ap-
plications were covered in [13]. The article [14] deals withthe finite and infinite
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dimensional attractors for the evolution problems of the mathematical physics. The
large time behavior of the solutions of a class of fourth-order parabolic equations
defined on unbounded domains via the Kolmogorovε-entropy as a measure was
investigated in [15]. The attractor for a nonlinear reaction-diffusion system in an
unbounded domain inR3 was studied in [22]. The works [24] and [29] are impor-
tant for the understanding of the Fredholm and properness properties of quasilinear
elliptic systems of the second order and of the operators of this kind onRN . The
exponential decay and Fredholm properties in the second-order quasilinear elliptic
systems were covered in [25]. The Laplace operator with drift from the point of
view of the non-Fredholm operators was considered in [39] and [29] and the lin-
earized Cahn-Hilliard equations in [32] and [40]. The nonlinear non-Fredholm
elliptic problems were considered in [16], [18], [19], [20], [21], [31], [38],
[41], [42]. The interesting applications to the theory of the reaction-diffusion equa-
tions were developed in [11], [12]. The non-Fredholm operators arise also when
studying wave systems with an infinite number of localized traveling waves (see
[2]). The standing lattice solitons in the discrete NLS problem with saturation were
considered in [3]. In particular, whena = 0 our operatorA is Fredholm in certain
properly chosen weighted spaces (see [4], [5], [7], [8], [6]). However, the case of
a 6= 0 is considerably different and the method developed in theseworks cannot be
used. The existence, stability and bifurcations of the solutions of the nonlinear par-
tial differential equations involving the Dirac delta function potentials were treated
actively in [1], [23], [26], [27].

Let us setK(x) = εK(x) with ε ≥ 0. When our nonnegative parameterε is trivial,
we arrive at the linear Poisson type equation with drift, namely

−d2u

dx2
− b

du

dx
= αδ(x), (1.4)

whereb, α ∈ R andb, α 6= 0 are the constants. It can be trivially checked that
problem (1.4) admits a continuous solution, which vanisheson the negative semi-
axis. It is given by

u0(x) :=

{
α
b
(e−bx − 1), x ≥ 0

0, x < 0
(1.5)

Clearly, u0(x) does not belong toH1(R). It is bounded forb > 0 and it is un-
bounded ifb < 0. Let us recall the analogous situation described in [35]. The
solution of the Poisson equation without the drift term considered there was propor-
tional to the ramp function. It was unbounded and it did not belong toH1(R). In
[42] the authors were dealing with the Poisson type equationinvolving the fractional
Laplacian and the transport term. Its bounded solution was contained inH1(R). Let
us suppose that the assumption below is fulfilled.

Assumption 1.1.LetK(x) : R → R be nontrivial, so thatK(x), xK(x) ∈ L1(R)
and orthogonality relation (4.2) is valid. We also assume that the cut-off function
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w(x) : R → R is such thatw(x)u0(x) is nontrivial andw(x)u0(x) ∈ H1(R).
Furthermore,w(x) ∈ H1(R) and forb, α ∈ R, b, α 6= 0 the inequality

‖w(x)u0(x)‖H1(R) ≤ 1 (1.6)

holds.

It can be trivially checked thatw(x) = e−2|b||x|, x ∈ R satisfies the conditions
above. Thus, it can be used as our cut-off function. Note thatin the argument of
[42] such cut-off function was not needed due to the more regular behaviour of the
solution of the Poisson type equation. In our work we choose the space dimension
d = 1, which is related to the solvability of the linear Poisson type equation (1.4)
discussed above. From the point of view of the applications,the space dimension is
not restricted tod = 1 because the space variable corresponds to the cell genotype
but not to the usual physical space. We use the Sobolev space

H1(R) :=
{
u(x) : R → R | u(x) ∈ L2(R),

du

dx
∈ L2(R)

}
.

It is equipped with the norm

‖u‖2H1(R) := ‖u‖2L2(R) +
∥∥∥du
dx

∥∥∥
2

L2(R)
. (1.7)

Obviously, by means of the standard Fourier transform (2.1), this norm can be ex-
pressed as

‖u‖2H1(R) = ‖û(p)‖2L2(R) + ‖pû(p)‖2L2(R). (1.8)

By virtue of the Sobolev inequality in one dimension (see e.g. Sect 8.5 of [28]),
the upper bound

‖u(x)‖L∞(R) ≤
1√
2
‖u(x)‖H1(R). (1.9)

holds. We seek the resulting solution of nonlinear equation(1.2) as

u(x) = u0(x) + up(x). (1.10)

Evidently, we arrive at the perturbative equation

−d2up(x)

dx2
− b

dup(x)

dx
= ε

∫ ∞

−∞
K(x− y)g(w(y)[u0(y) + up(y)])dy. (1.11)

Let us use a closed ball in our Sobolev space

Bρ := {u(x) ∈ H1(R) | ‖u‖H1(R) ≤ ρ}, 0 < ρ ≤ 1. (1.12)

We look for the solution of equation (1.11) as the fixed point of the auxiliary non-
linear problem

−d2u(x)

dx2
− b

du(x)

dx
= ε

∫ ∞

−∞
K(x− y)g(w(y)[u0(y) + v(y)])dy (1.13)
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in ball (1.12). For a given functionv(y) this is an equation with respect tou(x).
The left side of (1.13) contains the operator

Lb := − d2

dx2
− b

d

dx
(1.14)

acting onL2(R). By means of the standard Fourier transform, it can be trivially
checked that the essential spectrum ofLb is given by

λb(p) := p2 − ibp, p ∈ R. (1.15)

Since (1.15) contains the origin,Lb does not satisfy the Fredholm property, such
operator has no bounded inverse. The similar situation in the context of the integro-
differential equations occurred also in works [38] and [41]. The problems studied
there also required the application of the orthogonality relations. The contraction
argument was used in [34] to estimate the perturbation to thestanding solitary wave
of the Nonlinear Schrödinger (NLS) equation when either the external potential or
the nonlinear term in the NLS were perturbed but the Schrödinger operator involved
in the nonlinear equation there satisfied the Fredholm property (see Assumption 1
of [34], also [10]). Let us introduce the interval on the realline

I :=
[
− 1√

2
− 1

2
‖w(x)‖H1(R),

1√
2
+

1

2
‖w(x)‖H1(R)

]
(1.16)

along with the closed ball in the space ofC1(I) functions, namely

DM := {g(z) ∈ C1(I) | ‖g‖C1(I) ≤ M}, M > 0. (1.17)

In this context the norm

‖g‖C1(I) := ‖g‖C(I) + ‖g′‖C(I), (1.18)

where‖g‖C(I) := maxz∈I |g(z)|. From the biological point of view, the rate of cell
birth function is nonlinear and is trivial at the origin.

Assumption 1.2. Let g(z) : R → R, such thatg(0) = 0. It is also assumed that
g(z) ∈ DM and it does not vanish identically on the intervalI.

We recall the article [42]. The functiong(z) there was assumed to be twice con-
tinuously differentiable on the corresponding intervalI. Let us use the following
positive auxiliary expression

Q := max

{∥∥∥∥∥
K̂(p)

p2 − ibp

∥∥∥∥∥
L∞(R)

,

∥∥∥∥∥
K̂(p)

p− ib

∥∥∥∥∥
L∞(R)

}
. (1.19)
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We introduce the operatorTg, so thatu = Tgv, whereu is a solution of equation
(1.13). Our first main statement is as follows.

Theorem 1.3.Let Assumptions 1.1 and 1.2 hold. Then equation (1.13) defines the
mapTg : Bρ → Bρ, which is a strict contraction for all

0 < ε ≤ ρ

2
√
πQM

(
1 + 1√

2
‖w(x)‖H1(R)

) . (1.20)

The unique fixed pointup(x) of this mapTg is the only solution of problem (1.11) in
Bρ.

Clearly, the resulting solution of equation (1.2) given by formula (1.10) will not
vanish identically on the real line, becauseg(0) = 0 andα 6= 0 due to our assump-
tions.

Our second main proposition is about the continuity of the cumulative solution of
problem (1.2) given by (1.10) with respect to the nonlinear functiong. We introduce
the following positive, auxiliary quantity

σ :=
√
2πQM‖w(x)‖H1(R). (1.21)

Theorem 1.4. Let j = 1, 2, suppose that the assumptions of Theorem 1.3 hold,
such thatup,j(x) is the unique fixed point of the mapTgj : Bρ → Bρ, which is a
strict contraction for all the values ofε satisfying (1.20) and the resulting solution
of problem (1.2) withg(z) = gj(z) is given by

uj(x) = u0(x) + up,j(x). (1.22)

Then for all values ofε, which satisfy inequality (1.20), the estimate

‖u1(x)− u2(x)‖H1(R) ≤

≤
2
√
πεQ

(
1 + 1√

2
‖w(x)‖H1(R)

)

1− εσ
‖g1(z)− g2(z)‖C1(I) (1.23)

is valid.

We proceed to the proof of our first main result.

2. The existence of the perturbed solution

Proof of Theorem 1.3.Let us choose arbitrarilyv(x) ∈ Bρ and denote the term
contained in the integral expression in the right side of problem (1.13) as

G(x) := g(w(x)[u0(x) + v(x)]).
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The standard Fourier transform is defined as

φ̂(p) :=
1√
2π

∫ ∞

−∞
φ(x)e−ipxdx, p ∈ R. (2.1)

Evidently, the inequality

‖φ̂(p)‖L∞(R) ≤
1√
2π

‖φ(x)‖L1(R) (2.2)

is valid. We apply (2.1) to both sides of problem (1.13). Thisgives us

û(p) = ε
√
2π

K̂(p)Ĝ(p)

p2 − ibp
, pû(p) = ε

√
2π

K̂(p)Ĝ(p)

p− ib
,

so that
|û(p)| ≤ ε

√
2πQ|Ĝ(p)|, |pû(p)| ≤ ε

√
2πQ|Ĝ(p)|, (2.3)

whereQ is defined in (1.19). Note that under the stated assumptionsQ < ∞ by
means of Lemma 4.1 below. By virtue of (1.8) along with (2.3) we easily estimate
the norm as

‖u(x)‖2H1(R) ≤ 4πε2Q2‖G(x)‖2L2(R). (2.4)

It can be trivially checked that forv(x) ∈ Bρ, we have

|w(x)[u0(x) + v(x)]| ≤ 1√
2
+

1

2
‖w(x)‖H1(R). (2.5)

Indeed, the left side of (2.5) can be bounded from above usinginequalities (1.6) and
(1.9) by

‖w(x)u0(x)‖L∞(R) + ‖w(x)‖L∞(R)‖v(x)‖L∞(R) ≤

≤ 1√
2
‖w(x)u0(x)‖H1(R) +

1√
2
‖w(x)‖H1(R)

1√
2
‖v(x)‖H1(R) ≤

≤ 1√
2
+

1

2
‖w(x)‖H1(R).

Similarly, for v(x) ∈ Bρ the estimate

‖w(x)[u0(x) + v(x)]‖L2(R) ≤ 1 +
1√
2
‖w(x)‖H1(R) (2.6)

holds. Clearly, the left side of (2.6) can be estimated from above by virtue of (1.6)
and (1.9) by

‖w(x)u0(x)‖L2(R) + ‖w(x)v(x)‖L2(R) ≤ ‖w(x)u0(x)‖H1(R)+

+‖w(x)‖L∞(R)‖v(x)‖L2(R) ≤ 1 +
1√
2
‖w(x)‖H1(R).
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Obviously,

G(x) =

∫ w(x)[u0(x)+v(x)]

0

g′(z)dz.

Hence,

|G(x)| ≤ maxz∈I |g′(z)||w(x)[u0(x) + v(x)]| ≤ M |w(x)[u0(x) + v(x)]|, (2.7)

with the intervalI is defined in (1.16). By means of (2.7) along with (2.6) we arrive
at

‖G(x)‖L2(R) ≤ M‖w(x)[u0(x) + v(x)]‖L2(R) ≤ M
(
1 +

1√
2
‖w(x)‖H1(R)

)
. (2.8)

Upper bounds (2.4) and (2.8) give us

‖u(x)‖H1(R) ≤ 2
√
πεQM

(
1 +

1√
2
‖w(x)‖H1(R)

)
≤ ρ (2.9)

for all the values of the parameterε, which satisfy (1.20). Thus,u(x) ∈ Bρ as well.
Let us suppose that for a certainv(x) ∈ Bρ there exist two solutionsu1,2(x) ∈ Bρ

of problem (1.13). Their differencew(x) := u1(x) − u2(x) ∈ L2(R) solves the
homogeneous equation

−d2w(x)

dx2
− b

dw(x)

dx
= 0.

The operatorLb defined in (1.14) and considered on the whole real line does not
have any nontrivial square integrable zero modes, such thatw(x) vanishes identi-
cally onR. Therefore, problem (1.13) defines a mapTg : Bρ → Bρ for all the
values ofε, which satisfy inequality (1.20).
Let us demonstrate that under the stated assumptions this map is a strict contrac-
tion. We choose arbitrarilyv1,2(x) ∈ Bρ. By virtue of the argument aboveu1,2 :=
Tgv1,2 ∈ Bρ as well forε satisfying inequality (1.20). By means of (1.13), we have
precisely

−d2u1(x)

dx2
− b

du1(x)

dx
= ε

∫ ∞

−∞
K(x− y)g(w(y)[u0(y) + v1(y)])dy, (2.10)

−d2u2(x)

dx2
− b

du2(x)

dx
= ε

∫ ∞

−∞
K(x− y)g(w(y)[u0(y) + v2(y)])dy. (2.11)

Let us introduce

G1(x) := g(w(x)[u0(x) + v1(x)]), G2(x) := g(w(x)[u0(x) + v2(x)])

and apply the standard Fourier transform (2.1) to both sidesof problems (2.10) and
(2.11). This gives us

û1(p) = ε
√
2π

K̂(p)Ĝ1(p)

p2 − ibp
, û2(p) = ε

√
2π

K̂(p)Ĝ2(p)

p2 − ibp
,
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so that

û1(p)− û2(p) = ε
√
2π

K̂(p)[Ĝ1(p)− Ĝ2(p)]

p2 − ibp
,

p[û1(p)− û2(p)] = ε
√
2π

K̂(p)[Ĝ1(p)− Ĝ2(p)]

p− ib
.

Thus, the upper bounds

|û1(p)− û2(p)| ≤ ε
√
2πQ|Ĝ1(p)− Ĝ2(p)|,

|p[û1(p)− û2(p)]| ≤ ε
√
2πQ|Ĝ1(p)− Ĝ2(p)|

hold. This enables us to estimate the norm via (1.8) as

‖u1(x)− u2(x)‖2H1(R) =

∫ ∞

−∞
|û1(p)− û2(p)|2dp+

∫ ∞

−∞
|p(û1(p)− û2(p))|2dp ≤

≤ 4πε2Q2‖G1(x)−G2(x)‖2L2(R),

so that
‖u1(x)− u2(x)‖H1(R) ≤ 2

√
πεQ‖G1(x)−G2(x)‖L2(R). (2.12)

Clearly, we have the equality

G1(x)−G2(x) =

∫ w(x)[u0(x)+v1(x)]

w(x)[u0(x)+v2(x)]

g′(z)dz,

such that|G1(x)−G2(x)| ≤

≤ maxz∈I |g′(z)||w(x)(v1(x)− v2(x))| ≤ M |w(x)(v1(x)− v2(x))|. (2.13)

Let us obtain the upper bound on the right side of (2.13) using(1.9) as

M‖w(x)‖L∞(R)|v1(x)− v2(x)| ≤
M√
2
‖w(x)‖H1(R)|v1(x)− v2(x)|.

This allows us to estimate the norm as

‖G1(x)−G2(x)‖L2(R) ≤
M√
2
‖w(x)‖H1(R)‖v1(x)− v2(x)‖L2(R) ≤

≤ M√
2
‖w(x)‖H1(R)‖v1(x)− v2(x)‖H1(R). (2.14)

By means of (2.12) along with (2.14) we derive

‖u1(x)− u2(x)‖H1(R) ≤
√
2πεQM‖w(x)‖H1(R)‖v1(x)− v2(x)‖H1(R). (2.15)
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Evidently,

ρ

2
√
πQM

(
1 + 1√

2
‖w(x)‖H1(R)

) <
1√

2πQM‖w(x)‖H1(R)

.

By virtue of inequality (1.20) for our parameterε we have

0 < ε <
1√

2πQM‖w(x)‖H1(R)

,

so that the constant in the right side of upper bound (2.15) isless than one. This
implies that our mapTg : Bρ → Bρ defined by problem (1.13) is a strict contrac-
tion for all the values ofε satisfying (1.20). Its unique fixed pointup(x) is the
only solution of equation (1.11) in the ballBρ. We easily deduce from (2.9) that
‖up(x)‖H1(R) → 0 as ε → 0. The resultingu(x) given by formula (1.10) is a
solution of problem (1.2).

We turn our attention to the demonstration of the validity ofthe second main propo-
sition of our work.

3. The continuity of the cumulative solution

Proof of Theorem 1.4.Clearly, for all the values ofε, which satisfy inequality (1.20),
we have

up,1 = Tg1up,1, up,2 = Tg2up,2.

Thus,
up,1 − up,2 = Tg1up,1 − Tg1up,2 + Tg1up,2 − Tg2up,2.

We obtain

‖up,1 − up,2‖H1(R) ≤ ‖Tg1up,1 − Tg1up,2‖H1(R) + ‖Tg1up,2 − Tg2up,2‖H1(R).

By means of bound (2.15), we have

‖Tg1up,1 − Tg1up,2‖H1(R) ≤ εσ‖up,1 − up,2‖H1(R),

whereσ is defined in (1.21). Evidently,εσ < 1, since the mapTg1 : Bρ → Bρ is a
strict contraction under the stated assumptions. Hence, wearrive at

(1− εσ)‖up,1 − up,2‖H1(R) ≤ ‖Tg1up,2 − Tg2up,2‖H1(R). (3.1)

Evidently, for our fixed pointTg2up,2 = up,2. We introduceξ(x) := Tg1up,2. There-
fore,

−d2ξ(x)

dx2
− b

dξ(x)

dx
= ε

∫ ∞

−∞
K(x− y)g1(w(y)[u0(y) + up,2(y)])dy, (3.2)
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−d2up,2(x)

dx2
− b

dup,2(x)

dx
= ε

∫ ∞

−∞
K(x− y)g2(w(y)[u0(y) + up,2(y)])dy. (3.3)

Let us designate

G1,2(x) := g1(w(x)[u0(x) + up,2(x)]), G2,2(x) := g2(w(x)[u0(x) + up,2(x)]).

We apply the standard Fourier transform (2.1) to both sides of equations (3.2) and
(3.3) above. This gives us

ξ̂(p) = ε
√
2π

K̂(p)Ĝ1,2(p)

p2 − ibp
, ûp,2(p) = ε

√
2π

K̂(p)Ĝ2,2(p)

p2 − ibp
,

so that

ξ̂(p)− ûp,2(p) = ε
√
2π

K̂(p)

p2 − ibp
[Ĝ1,2(p)− Ĝ2,2(p)],

p[ξ̂(p)− ûp,2(p)] = ε
√
2π

K̂(p)

p− ib
[Ĝ1,2(p)− Ĝ2,2(p)].

This allows us to derive the estimates from above

|ξ̂(p)− ûp,2(p)| ≤ ε
√
2πQ|Ĝ1,2(p)− Ĝ2,2(p)|, (3.4)

|p[ξ̂(p)− ûp,2(p)]| ≤ ε
√
2πQ|Ĝ1,2(p)− Ĝ2,2(p)|. (3.5)

By means of (3.4), we have

‖ξ̂(p)− ûp,2(p)‖2L2(R) =

∫ ∞

−∞
|ξ̂(p)− ûp,2(p)|2dp ≤

≤ 2πε2Q2‖G1,2(x)−G2,2(x)‖2L2(R). (3.6)

Similarly, using (3.5) we obtain

‖p[ξ̂(p)− ûp,2(p)]‖2L2(R) =

∫ ∞

−∞
|p[ξ̂(p)− ûp,2(p)]|2dp ≤

≤ 2πε2Q2‖G1,2(x)−G2,2(x)‖2L2(R). (3.7)

By virtue of (1.8) along with inequalities (3.6) and (3.7), the norm can be easily
bounded above as

‖ξ(x)− up,2(x)‖2H1(R) = ‖ξ̂(p)− ûp,2(p)‖2L2(R) + ‖p[ξ̂(p)− ûp,2(p)]‖2L2(R) ≤

≤ 4πε2Q2‖G1,2(x)−G2,2(x)‖2L2(R),

so that
‖ξ(x)− up,2(x)‖H1(R) ≤ 2

√
πεQ‖G1,2(x)−G2,2(x)‖L2(R). (3.8)
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Clearly,

G1,2(x)−G2,2(x) =

∫ w(x)[u0(x)+up,2(x)]

0

[g′1(z)− g′2(z)]dz.

Hence,

|G1,2(x)−G2,2(x)| ≤ maxz∈I |g′1(z)− g′2(z)||w(x)[u0(x) + up,2(x)]| ≤

≤ ‖g1(z)− g2(z)‖C1(I)|w(x)[u0(x) + up,2(x)]|.
This enables us to estimate the norm by means of (2.6) as

‖G1,2(x)−G2,2(x)‖L2(R) ≤ ‖g1(z)− g2(z)‖C1(I)‖w(x)[u0(x) + up,2(x)]‖L2(R) ≤

≤ ‖g1(z)− g2(z)‖C1(I)

(
1 +

1√
2
‖w(x)‖H1(R)

)
. (3.9)

Using (3.8) along with (3.9) we obtain‖ξ(x)− up,2(x)‖H1(R) ≤

≤ 2
√
πεQ‖g1(z)− g2(z)‖C1(I)

(
1 +

1√
2
‖w(x)‖H1(R)

)
. (3.10)

By virtue of (3.1) and (3.10) we arrive at‖up,1(x)− up,2(x)‖H1(R) ≤

≤
2
√
πεQ

(
1 + 1√

2
‖w(x)‖H1(R)

)

1− εσ
‖g1(z)− g2(z)‖C1(I). (3.11)

Equalities (1.22) along with inequality (3.11) imply the validity of (1.23).

4. Auxiliary results

Let us obtain the conditions under which the expressionQ introduced in (1.19) is
finite. We denote the inner product as

(f(x), g(x))L2(R) :=

∫ ∞

−∞
f(x)ḡ(x)dx, (4.1)

with a slight abuse of notations when the functions involvedin (4.1) do not belong to
L2(R), like for instance the ones present in orthogonality relation (4.2) of Lemma
4.1 below. Indeed, iff(x) ∈ L1(R) andg(x) ∈ L∞(R), then the integral in the
right side of (4.1) is well defined. The proof of Lemma 4.1 was partially presented
in the part b) of Lemma A1 of [16]. Let us present it here for theconvenience of
the readers.
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Lemma 4.1.LetK(x) : R → R be nontrivial, so thatK(x), xK(x) ∈ L1(R). Then
Q < ∞ if and only if the orthogonality condition

(K(x), 1)L2(R) = 0 (4.2)

is valid.

Proof. It can be trivially checked using (2.2) that
K̂(p)

p− ib
∈ L∞(R). Indeed, we have

∣∣∣∣∣
K̂(p)

p− ib

∣∣∣∣∣ =
|K̂(p)|√
p2 + b2

≤ 1√
2πb

‖K(x)‖L1(R) < ∞

as assumed. Note that when the drift constantb vanishes, the situation here becomes
more singular. Clearly, we can write

K̂(p) = K̂(0) +

∫ p

0

dK̂(q)

dq
dq,

so that

K̂(p)

p2 − ibp
=

K̂(0)

p2 − ibp
+

∫ p

0
dK̂(q)
dq

dq

p2 − ibp
. (4.3)

From the definition of the standard Fourier transform (2.1) it can be easily derived
that ∣∣∣dK̂(p)

dp

∣∣∣ ≤ 1√
2π

‖xK(x)‖L1(R).

Hence, ∣∣∣∣∣

∫ p

0
dK̂(q)
dq

dq

p2 − ibp

∣∣∣∣∣ ≤
1√
2π|b|

‖xK(x)‖L1(R) < ∞

via the one of our assumptions. By virtue of definition (2.1),we have

K̂(0) =
1√
2π

(K(x), 1)L2(R).

Therefore, the first term in the right side of (4.3) is given by

(K(x), 1)L2(R)√
2π(p2 − ibp)

. (4.4)

Obviously, expression (4.4) is bounded if and only if orthogonality relation (4.2) is
valid.

Note that as distinct from the similar proposition in the situation without a drift
term discussed in [35], the statement of Lemma 4.1 above relies only on a single
orthogonality condition (4.2) and the argument of the proofis less cumbersome.
The argument of [42] does not use the orthogonality relations at all.
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