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Abstract The evolution of the universe is in accor-

dance with the second law of thermodynamics, and fol-

lowing Penrose’s hypothesis of describing cosmological

evolution in the form of gravitational entropy via the

Weyl curvature, there have been many proposals de-

scribing gravitational entropy using different formalisms.

In this paper, we will use the spin coefficients formal-

ism to gravitational entropy and understand its impli-

cations in terms of spacetimes with a horizon using a

recent proposal [1]. Our particular interest is in the mo-

tivation towards horizons and the gravitational entropy

for a given spacetime with a horizon. We will also look

at a comparison with the CET proposal and the Weyl

invariant based proposal in general, with emphasis on

the formalism adopted and the results obtained for cer-

tain spacetimes.

Keywords Cosmology, gravitational entropy,

Newman-Penrose formalism

1 Introduction

The gravitational entropy propsoal is based on Pen-

rose’s hypothesis [18] that the Weyl curvature can be

used to define a geometric contribution towards the en-

tropy of the universe. The conditions on gravitational

entropy are that (1) it must necessarily be monoton-

ically increasing, following the second law of thermo-

dynamics, (2) it must account for the structure forma-

tions that result in anisotropies, and (3) it must re-

duce to the usual Hawking-Bekenstein entropy in the

case of black holes. The proposals use the Weyl curva-

ture to formulate the gravitational entropy. This was

first formulated by [3], who used the equivalence of the
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gravitational entropy and the holographic entropy as a

base and defined a surface integral to define the grav-

itational entropy. However, this model has a problem

with the de Sitter spacetime, since the entropy of such

cosmologies is defined based on the cosmological hori-

zon, and as it was shown by Gibbons and Hawking [4],

the entropy of such models reduces to a form resem-

bling the Hawking-Bekenstein relation, while the Rud-

jord and Gron proposal results in a vanishing Weyl cur-

vature. The Clifton, Ellis and Tavakol proposal [2] uses

the notion of tetrads to define the gravitational analogs

of thermodynamic parameters, and this allows us to de-

fine the gravitational entropy as the integral composed

of the gravitational energy density analog and the tem-

perature. While this only holds for Petrov type D or N

spacetimes, this proposal is quite consistent with most

of the models, but as it was shown by Gregoris et al in

2020 [5], the CET proposal was applied for a spacetime

that resulted in a non-increasing gravitational entropy,

which is an important condition we originally wished

to be consistent with the proposal. A recent paper by

Gregoris and Ong [1] adopts the Newman-Penrose for-

malism [7] to define the gravitational entropy, based on

the spin coefficients for the spacetime in consideration.

In this paper, we will use the formulation of gravita-

tional entropy suggested by Gregoris And Ong and un-

derstand the case of static and spherically symmetric

black hole solutions. A discussion on cosmologies will

also be provided in this paper.

The description of gravitational entropy was first

provided by Rudjord and Gron, who started by consid-

ering the equivalence between the Hawking-Bekenstein

relation in the case of the gravitational entropy of black

hole solutions. The Hawking-Bekenstein relation shows

that the entropy of black holes is proportional to the

area by a factor of 4 (in the units c = kB = h̄ = G = 1).
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The aspect of gravitational entropy in the case of black

hole solutions is interesting for two reasons – firstly,

black holes posses the maximal entropy configuration

for any physical state of their area, with the entropy

being only related to the area by a factor of 4 rather

than a large fractional exponent in the case of stars.

Secondly, since the contribution of entropy even in the

case of vacuum solutions would be non-zero for black

holes (following the generalised second law of thermo-

dynamics as given by Bekenstein), a gravitational de-

scription would explain the non-zero value of the black

hole entropy. For black holes, the gravitational entropy

is given by [2,6]

Sg = SHB (1)

Where SHB is the holographic entropy. Using this, the

first proposal was that the gravitational entropy could

be written in terms of a surface integral on the horizon:

Sg = ks

∫
Σ

Ψer · dΣ (2)

Where Ψ is a scalar built of the Weyl invariant defined

by the ”square” of the Weyl tensor, W = CabcdC
abcd.

However, while this is the most elementary form of the

scalar, this would render the proposal inconsistent in

cases of isotropic singularities Wainwright and Ander-

son [8]. We therefore consider a factor of the Kretschmann

invariant along with the Weyl invaraint. From this and

the divergence theorem, we can define a volume integral

to define the entropy density

sd = ks|∇ · Ψ |

Where the absolute brackets prevent a negative value

of the entropy density. We can solve for the case of the

Schwarzschild solution, where for our chosen form of

the scalar Ψ we would have a maximal entropy config-

uration. This would result in a consistent result, where

the entropy would be equal to the Hawking-Bekenstein

entropy by adopting the above formulation.

However, there appears a problem when we consider

the case of cosmological horizons, where the entropy in

terms of the Weyl curvature in the case of the de Sit-

ter spacetime is zero even though the entropy of the

cosmology is non-zero, which is given by the Gibbons-

Hawking entropy. This would resemble the Hawking-

Bekenstein entropy – however, instead of a black hole

horizon, we would instead consider the cosmological

horizon.

The proposal we will consider in this paper requires,

in fact, a horizon to define gravitational entropy. This

particular point is our interest in this paper, and we will

explore different forms of spacetimes with a horizon and

the description of entropy in such cases.

2 Tetrads and formalism

The recent proposal describes gravitational entropy in a

similar format as that of the CET proposal, which uses

the gravitational analogs of thermodynamic variables

to describe gravitational entropy:

TgdSg = dUg + pgdV (3)

Where Tg, Sg, Ug and pg are the gravitational analogs

of temperature, entropy, internal energy and pressure1.

In order to find the gravitational entropy, we built a

tetrad, using which we find the gravitational terms ρg
and Tg, which would give us the volume integral that

gives the gravitational entropy. The tetrad is built of

two real null vectors and a complex null vector and its

conjugate. In terms of spacelike and timelike vectors

(xa, ya, za, ua), the tetrad can be written as the follow-

ing:

la = 1√
2
(ua − za)

na = 1√
2
(ua + za)

ma = 1√
2
(xa − iya)

m̄a = 1√
2
(xa + iya)

In order to be able to understand the forms of the Weyl

scalars we wish to solve for certain types of spacetimes,

we will follow the Petrov classification, i.e. those space-

times that have a non-vanishing Ψ2 are Petrov type D

and those that have a non-vanishing Ψ4 are of type N,

and D and N contain Petrov type O spacetimes as a

subclass.

The Friedmann-Robertson metric defines a cosmology

that is homoegeneous and isotropic, and is defined based

on the scale factor a(t) and the sectional curvature k:

ds2 = −dt2 + a2
[

dr2

1− kr2
+ r2dΩ2

]
(4)

At the beginning of the universe, the anisotropies would

have been far lesser than at later times, accounting for

the lower entropy state at that time. Therefore, the

universe would resemble a Friedmann-Robertson space-

time due to the homogeneous and isotropic nature of

the model at times when S → 0. Since gFRW is confor-

mally flat, i.e. gµν = ωηµν , the Weyl tensor here would

be vanishing, and therefore we expect the gravitational

entropy to be zero at the initial singularity and mono-

tonically increase, a gravitational version of the second

law of thermodynamics, referring to the clumping of

1Note that these terms do not contribute to the energy-
momentum tensor in the Einstein field equations in any form
– these are more or less gravitational contributions and are
defined in terms of geometric quantities and not matter field
contributions.
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matter due to gravitation. Since (M, gFRW ) is a Petrov

O spacetime, the Weyl scalars vanish, and using the

CET formulation (the gravitational energy density is

related to the Weyl scalar Ψ2 only by a constant fac-

tor), the gravitational entropy is given by [2,10]

Sg =

∫
ρg
Tg

dV = 0 Petrov O spacetimes (5)

It is important here to note that this means that the

gravitational entropy of an FLRW universe is zero, as

we initially imposed as a condition for gravitational en-

tropy proposals. However, since the gravitational en-

tropy must also be non-zero and resemble the Gibbons-

Hawking entropy for cosmological spacetimes with a

horizon (for a de Sitter spacetime this is the conflict-

ing point – the gravitational entropy is zero following

the Weyl invariant proposal, which implied that the

non-zero thermodynamic entropy was making the con-

tribution towards the cosmology). Therefore, there is

a weak and a strong aspect of gravitational entropy –

the ”weak” aspect being that the gravitational entropy

must be zero following a direct use of the Weyl invari-

ant, while the ”strong” aspect defines the gravitational

entropy of cosmologies in terms of the horizon, in ac-

ceptance with the Gibbons-Hawking entropy (refer to

[13] to look at a description of Lemaitre-Tolman-Bondi

spacetimes using the Weyl invariant).

Following an almost similar track, the spin coeffi-

cients proposal starts by considering a tetrad, then con-

structing the spin coefficients for the gravitational en-

tropy. Using the spin coefficients, the resulting form of

gravitational entropy can be found out. We will consider

the example of the Schwarzschild solution (M, gsch),

with the metric defined as:

ds2 = −dt2f(r) + dr2g(r) + r2dΩ2 (6)

Where f(r) = g(r)−1 =
(
1− 2GM

c2r

)
. In this space-

time, we have a horizon at r = Rsch, where Rsch is

the Schwarzschild radius. The spin coefficients in the

Newman-Penrose formalism would be equal and of the

form ∆W/Ψ2, where W is the Weyl tensor, and Ψ2 is

the non-zero Weyl scalar in D type spacetimes [7].

For this, we will work with the tetrad

la = 1√
2

(√
f(r)dt−

√
g(r)dr

)
na = 1√

2

(√
f(r)dt+

√
g(r)dr

)
ma = 1√

2
(rdθ + ir sin θdϕ)

m̄a = 1√
2
(rdθ − ir sin θdϕ)

Using this tetrad, we can find the respective Weyl scalar

Ψ2 and ∆W ≡ na∇aCabcd. Using this, the integral for

the gravitational entropy can be written as:

Sg = ks

∫ rsch

0

∫
Σ

∣∣∣∣∆W

Ψ2

∣∣∣∣ dV√
f(r)

(7)

Where we used f(r) = g(r)−1 and dV is the volume ele-

ment dV = r2 sin θdrdθdϕ. The integrand can be found

out by the tetrad listed by recalling that the Weyl scalar

Ψ2 is of the form

Ψ2 = Cabcdn
ambm̄cld

Using this, the integral would be simply

Sg = ks

∫ Rsch

0

∫
Σ

∣∣∣∣∣3
√
2(1− 2Mr−1)

2r

∣∣∣∣∣ dV√
1− 2Mr−1

(8)

The integral reduces to S ∼ A, in agreement with the

reduction condition to the Hawking-Bekenstein rela-

tion. The factor ks is discussed in section IIB of [1].

The approach used here requires the existence of

a horizon as the upper limit in the integral to define

the entropy of the spacetime. This has many impor-

tant aspects in terms of cosmology, where the horizon

is replaced by a cosmological horizon. In the case of the

Rudjord and Gron proposal, there was a complication

in the case of the de Sitter spacetime. In this spacetime,

the entropy is given by

SdS =
AdS

4
(9)

Where AdS is the area of the de Sitter horizon, rdS =√
3/Λ, where Λ is the cosmological constant. The de

Sitter spacetime can be represented as a case of M = 0

and Λ > 0 under the Schwarzschild de Sitter spacetime.

Due to this, the gravitational entropy proposal would

be vanishing, since it is directly based on the Weyl in-

variant. However, by the Gregoris and Ong proposal,

the spin coefficients make the contribution to the inte-

gral, and therefore the cosmological horizon can be set

as the upper limit on the integral, allowing us to define

the gravitational entropy in the form of (14).

We will now consider the case of the Schwarzschild

solution, where we will implement the above mentioned

approach following Gregoris and Ong, and see that the

holographic entropy is obtained from the gravitational

entropy, which is the form we wish the gravitational en-

tropy of black hole solutions to reduce to. We will fur-

ther look at the cosmological implications of the spin co-

efficients approach, and compare some particular mod-

els with the CET formulation.
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3 Schwarzschild spacetime gravitational

entropy

The Schwarzschild spacetime is defined as a pair (M, g)

such that g is static and spherically symmetric, and

the energy-momentum tensor is vanishing. The metric

in this spacetime is given by

ds2 = −dt2
(
1− 2GM

c2r

)
+dr2

(
1− 2GM

c2r

)−1

+r2dΩ2

(10)

We can identify the tetrad for this spacetime directly,

which would be of the form (we have set
(
1− 2GM

c2r

)
=

f(r) for convenience):

lµ = 1
2

(√
f(r)− dr√

f(r)

)
nµ = 1√

2

(√
f(r) + dr√

f(r)

)
mµ = 1√

2
(rdθ + ir sin θdϕ)

m̄µ = 1√
2
(rdθ − ir sin θdϕ)

In the Schwarzschild case, the black hole is perfectly

static and spherically symmetric2, and the terms µ and

ρ (the spin coefficients) are defined in the usual way.

Note that the spin coefficients µ and ρ are equal to

each other in the case of a static spacetime (such as the

LRS Bianchi type I spacetime), and therefore we can

generalise the approach towards forms of f(r) that also

include angular momentum Ω. The proposal considers

the gravitational entropy to be given by the integral

Sg = k

∫ rH

0

∫
Σ

∣∣∣∣∆W

Ψ2

∣∣∣∣ dV (11)

Where ∆ ≡ nµ∇µ and dV is the volume element. In

this approach, we will consider the non-vanishing Weyl

scalar Ψ2 and find out the integral above. We start by

recalling that the Weyl tensor is simply the form

Ψ2 = Cαβγδl
αmβm̄γnδ

Using this, we can find out the components for the in-

tegral in terms of the derivatives of f(r) with respect to

the radial coordinate r. The integral can then be found

out by noting that the volume element would be

dV =
1√
f(r)

r2 sin θdrdθdϕ

Solving the integral by identifying the upper limit on

the integral would yield us the usual Hawking-Bekenstein

2As opposed to those metrics that define black holes with
an angular momentum which causes the black holes to be
static but not spherically symmetric, such as Kerr and Kerr-
Newmann black holes.

entropy, which is an important condition in the consis-

tency of gravitational entropy proposals in the case of

black holes. In the Schwarzschild case, rH is merely

the Schwarzschild radius, and the integral seen above

reduces to the proper entropy without any ad hoc op-

erations such as the removal of the singularity at r = 0

by defining a sphere of radius r and removing this from

the integral to prevent divergence.

Higher order theories of black holes can also be de-

scribed by the gravitational entropy proposal described

above. The metric of a Schwarzschild black hole in D =

5 (called the Tangherlini metric) would resemble the

usual Schwarzschild metric with an additional coordi-

nate ω:

ds2 = −dt2
(
1− 2GM

c2r

)
+dr2

(
1− 2GM

c2r

)−1

+r2dΩ2
5

(12)

In this case, we consider the Weyl tensor directly rather

than constructing the scalar Ψ2 and the mµ terms have

additional components. The volume element would be

of the form dV = 1√
f(r)

r3 sin2 θ sinϕdrdθdϕdω, and the

integral would reduce to the Hawking-Bekenstein for-

mula in D = 5.

The proposal can also be considered in the case of

Kerr and Reissner-Nordstrom black holes by following

the above mentioned approach, only with setting the

appropriate parameters non-zero and identifying the

nature of the spacetime. In the case of a Kerr black

hole, clearly the black hole is not spherically symmetric

due to angular momentum – however, this is based on

the identification of the type of metric it is with regard

to the case where the |g00| component is equal to the

|g11| component (where || denote the absolute brackets).
In this case, we can see that the gravitational entropy

is based on an extra factor (the angle θ) [1] and has

a constraint to be satisfied in order to prove to be a

viable gravitational entropy reducing to the Hawking-

Bekenstein entropy.

Interestingly, in the case of this proposal, one of

the requirements is that the upper limit is necessar-

ily a horizon. In the case of the Weyl invariant based

proposal, there were three points that limited the pro-

posal’s consistency – first, we required the removal of

a spherical element around the singularity to prevent a

divergence of the integral. Second, we required curva-

ture invariant corrections to the considered form of Ψ

in (2) due to isotropic singularities, meaning that the

gravitational entropy was based on a form of Ψ that

requires corrections to including the Ricci scalar or the

Kretschmann scalar. Third, the proposal predicts that

the gravitational entropy would vanish in the case of the
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de Sitter spacetime, indicating either that the proposal

requires additional corrections or a non-gravitational

contribution of the entropy – this particularly has to do

with the explicit nature of the gravitational entropy’s

dependence on the Weyl invariant, whereas in our case,

the proposal only requires the spin coefficients and the

Weyl scalar to define the gravitational entropy. Cur-

vature invariant corrections, therefore, are no longer a

requirement in our integral. Secondly, since the inte-

gral specified in (7) is defined in terms of the horizon

rH = (for the Schwarzschild spacetime this is rsch), our

only requirement is that the integral’s upper limit be

a horizon – selecting some r = k would not yield the

gravitational entropy, since the solution contains a hori-

zon within which the entropy is specified. Due to this,

there are several key features in this proposal that al-

low us to define spacetimes with a horizon consistently,

which can be measured by looking at the corresponding

horizon-dependent entropy expression (for black holes

this would be the Hawking-Bekenstein entropy, while

for cosmological spacetimes this would be the Gibbons-

Hawking entropy).

It would then be important to compare the CET

proposal with the new proposal in terms of cosmologi-

cal horizons. Since these gravitational entropy propos-

als also form the basis for the Weyl curvature hypoth-

esis, it is important to look at the behaviour of cosmo-

logical spacetimes and their gravitational entropy vari-

ation with time. The Weyl curvature hypothesis can be

loosely defined as [18]3:

Definition 1 For a given spacetime (M, g) for which a

gravitational entropy Sg is attributed, the variation Ṡg

must always be non-negative in order to account for the

structure formations and the increasing thermodynamic

entropy.

One of the many reasons this is of particular interest

is because one of the primary reasons the gravitational

entropy landscape was introduced was specifically to

understand how different models follow WCH. It is also

important to note that we don’t require the Weyl tensor

to be a direct quantification of the gravitational entropy

such as the case of Weyl invariant based proposal – we

only a weak condition on the Weyl curvature, i.e. we

require the Weyl curvature to be zero in the case of

conformally flat spacetimes, accounting for spatial ho-

mogeneity and isotropicity. While this has been investi-

gated in several papers, the results of the CET proposal

and the results using the spin coefficients proposal can

be compared to look at the factors that contribute to

3Again, here we are not defining Sg in terms of the Weyl
tensor directly.

the determination of the monotonically increasing grav-

itational entropy. We will illustrate this by considering

a spacetime with multiple scale factors (referred to as

a Bianchi type I spacetime) with local rotational sym-

metry to look at the factors adding up to the variation

being non-negative.

4 Comparing to the CET proposal

The CET proposal uses the tetrad formalism in a sim-

ilar way in some sense, but has no relation to the spin

coefficients in that there is no role of µ, ρ or ∆W de-

termining the gravitational entropy. However, the CET

proposal uses the gravitational analogs defined in (3)

to define the gravitational entropy Sg. Noting that the

CET proposal works only for Petrov type D or N (i.e.

the scalars Ψ2 and Ψ4 determine the proposal), since

type O spacetimes are a class under D and N, we can

consider the case of the FLRW spacetime to look at the

CET proposal. The FLRW metric is defined by (14),

and the tetrad in this case can be identified as:

lµ = 1√
2

(
dt− a(t)√

1−kr2
dr
)

nµ = 1√
2

(
dt+ a(t)√

1−kr2
dr
)

mµ = 1√
2
(ra(t)dθ + ira(t) sin θdϕ)

m̄µ = 1√
2
(ra(t)dθ − ira(t) sin θdϕ)

It is trivial to see that the Weyl tensor in this space-

time vanishes since this spacetime is conformally flat.

However, following the CET proposal, we define the

gravitational entropy as the integral

Sg =

∫
ρg
Tg

dV (13)

Since ρg would be a function of the Weyl scalar Ψ2 and

Tg ̸= 0, the integral would reduce to zero:

Sg =

∫
ρg
Tg

dV −→ ρg = 0 ⇐⇒ Sg = 0

Which is what we expected, since the Weyl curvature

must be zero, which would imply that the gravitational

entropy is zero. However, considering cosmological space-

times with a horizon require a non-zero gravitational

entropy. In the case of the spin coefficients approach,

we can simply start by considering the tetrad specified

above and use it to define the integral (11) in terms

of the spin coefficients µ and ρ in the integrand. Us-

ing this approach, the FLRW model gravitational en-

tropy will be defined in a similar format to that of

the Schwarzschild case, only with the spin coefficients

in consideration and a cosmological horizon. Observing

that the FLRW model will asymptotically approach a
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de Sitter spacetime, it is then necessary to look at the

gravitational entropy in this perspective.

The integral for the FLRW model with a horizon

rH would reduce to (refer to Appendix B):

Sg = π (a(t)rH)
2 ≡ πR2

H (14)

The de Sitter spacetime would then have an entropy

defined by the Gibbons-Hawking formula (9), which

would have to be the entropy we wish the above gravita-

tional entropy to reduce to. As seen before in section 2,

the horizon of a de Sitter spacetime is at rdS =
√
3/Λ,

and therefore we require rH = rdS , which would be the

upper bound for the integral above. This is therefore

consistent with the expectation of the entropy to be of

a gravitational contribution rather than a purely ther-

modynamic contribution.

Other types of spacetimes are also of interest, par-

ticularly those that are homogeneous and anisotropic.

The metric for the Bianchi type I spacetime is generally

described as

ds2 = −dt2 + a21(t)dx
2 + a22(t)dy

2 + a23dz
2 (15)

Where a1(t), a2(t) and a3(t) are scale factors of the

model. Spacetimes with local rotational symmetry (des-

ignated LRS spacetimes) can be considered as (for a

more detailed description of LRS spacetimes, the inter-

ested reader is directed to [9])

Definition 2 A given spacetime (M, g) is said to be

an LRS spacetime if there is a tetrad (l, n,m, m̄) such

that the spin coefficients κ, π, σ, τ , λ and ν are equal to

zero, implying rotational invariance. These spacetimes

are assumed to be of Petrov type D, and therefore the

only non-vanishing Weyl scalar is Ψ2, or Ψ0 = Ψ1 =

Ψ3 = Ψ4 = 0 among other conditions.

The FLRWmetric is a homogeneous and isotropic model

with a scale factor a(t). The Bianchi type I spacetime

is defined in terms of multiple scale factors for each

spatial component as seen above. Imposing the locally

rotationally symmetric condition, which would give us

the metric [10]

ds2 − dt2 + a21(t)dx
2 + a22(t)dy

2 + a22(t)dz
2 (16)

The tetrad in this spacetime would be given by the

following vectors

uµ = (1, 0, 0, 0)

zµ = (0, a1(t), 0, 0)

xµ = (0, 0, a2(t), ia2(t))

yµ = (0, 0, a2(t), −ia2(t))

Using this tetrad, we can find out the gravitational en-

tropy via the CET proposal. Using this approach, the

gravitational entropy for this spacetime would be de-

pendent on the scale factors a1(t) and a2(t). Clearly,

in order to investigate the Weyl curvature hypothesis

it is necessary to take into consideration of the addi-

tional contributions that may act as constraints on the

gravitational entropy. Following this, the derivative of

Sg with respect to t would be non-negative only in cer-

tain conditions where the scale factors are non-negative

or their combinations are non-negative, which may also

contribute to the spin coefficients approach since the

scale factors determine the scalar Ψ2.

An example of how the CET proposal compares

to the approach via spin coefficients can be taken in

the case of Lemaitre-Tolman-Bondi (LTB) spacetimes,

which describe an inhomogeneous cosmology. For this,

the metric is of the form

ds2 = −dt2 +
R′2(r, t)

1− kr2
+R2(r, t)dΩ2 (17)

Where R′(r, t) ≡ ∂R(r,t)
∂r . In the CET framework, both

ρg and Tg are determined in terms of R(r, t). The tetrad

for this spacetime is:

lµ = 1√
2

(
dt− R′(r,t)√√

1−kr2

)
nµ = 1√

2

(
dt+ R′(r,t)√√

1−kr2

)
mµ = 1√

2
(R(r, t)dθ + iR(r, t) sin θdϕ)

m̄µ = 1√
2
(R(r, t)dθ − iR(r, t) sin θdϕ)

In the previously seen case of the Schwarzschild space-

time in section 3, the spin coefficients we considered

were of the form µ = ρ being proportional to the di-

rectional derivative ∆W/Ψ2 (refer to Appendix A for a

note on the proportionality between the spin coefficient

ρ and the directional derivatives in terms of Petrov type

D spacetimes.). In cases when this is not so, we consider

µ + ρ form to find out the gravitational entropy. The

proportionality arises in several cases, and the equiva-

lence of µ and ρ is found in several spacetimes. For in-

stance, in the case of a Kerr-NUT AdS spacetime, the

spin coefficients µ and ρ are equal to each other and ρ

is proportional to a Cartan invariant. In fact, this is the

motivation towards considering∆W/Ψ2 forms, and why

the spin coefficient ρ is of particular interest in terms of

understanding the horizon. This is because ρ has to be

related to the fact that this would be a trapped surface,

and therefore non-expanding and ρ = 0. It is therefore

of particular interest to notice the nature of the spin

coefficients, and the combined µ + ρ integrand allows

us to define gravitational entropy in cases where the

∆W/Ψ2 form is not the integrand. This specifically has

been applied to the FLRW spacetime, which resulted in
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the result (14). In general, it is of interest to understand

those metrics that are Schwarzschild-like4.

If we wish to impose the condition of the Weyl in-

variant also being in accordance with the Weyl curva-

ture hypothesis and not merely of interest in terms of

the holographic entropy, we can choose to define the

case of the above spacetime via the curvature invari-

ant CabcdC
abcd [13]. However, if we adopt the case of

R(r, t) being the areal radius RH ≡ a(t)r, the Weyl

tensor vanishes under certain conditions that are based

on the factor r – this is in fact the natural case when

the considered model is an FLRW spacetime. In the

case of observing a divergence for the LTB spacetime

(17) without any settings reducing to the FLRW space-

time, the natural case of R(r, t) → 0 would yield a

divergence at the initial singularity, which is in con-

flict with the statement of the WCH, which would re-

quire curvature invariant corrections such as includ-

ing the prefactor RabR
ab or RabcdR

abcd. However, the

CET proposal achieves this without requiring curva-

ture invariant corrections to the gravitational entropy.

Since both the effective energy density ρg and temper-

ature Tg increase, the evolution from the initial FLRW

state would be guided by an increasing gravitational

entropy, in accordance with the WCH. The spin co-

efficients method from can be used to directly iden-

tify the gravitational entropy in terms of the radius

RH = πR2(r, t). The nature of the formalism in partic-

ular spacetimes such as the LRS Bianchi I spacetime,

Lemaitre-Tolman-Bondi spacetime and other forms of

homogeneous and anisotropic (or inhomogeneous solu-

tions such as the LTB case), etc. will be explored in

future works.

Remarks

The landscape of gravitational entropy can be divided

into two distinct problems – the first being that of cor-

responding to a monotonically increasing description of

entropy using the Weyl curvature, as Penrose hypoth-

esised. The second part of the landscape concerns in

particular the specific cosmology in consideration. This

can be illustrated by looking at the case of the de Sit-

ter spacetime. In such a spacetime, under solely the

Weyl invariant based proposal, the Weyl tensor van-

ishes, which indicates that the gravitational entropy in

4Here by ”Schwarzschild-like” solutions we mean those space-
times (M, g) where the metric is of the form gµν =
diag(−f(r, t), g(r, t), P (r, t)r2, P (r, t)r2 sin2 θ). The case of
the Lemaitre-Tolman-Bondi solution above is such a partic-
ular case. The explicit nature of the gravitational entropy of
such spacetimes in a general format can be seen by using the
µ+ ρ formulation as seen above.

this spacetime is zero. However, clearly this is not so,

following [4], and therefore the contribution towards en-

tropy must be either purely based on thermodynamic

parameters or the formulation considered must be mod-

ified. In the case of the FLRW model, the Weyl curva-

ture is zero – however, as seen in section 4, the grav-

itational entropy can be defined in terms of the spin

coefficients, which would allow us to quantify the grav-

itational entropy in terms of the cosmology rather than

being a direct measurement in terms of the Weyl ten-

sor. Therefore, the gravitational entropy proposal has

two aspects – one concerning the Weyl curvature, which

Penrose had not stated to be a direct measure of gravi-

tational entropy, and secondly, that concerning the cos-

mological horizon. It is of interest to understand how

the proposal works for other types of spacetimes that

contain a cosmological horizon. It is yet to be deter-

mined how different spin coefficients correspond to dif-

ferent physical parameters, such as the spin coefficient

ρ. In particular, it is of interested also to see the rela-

tion between the CET proposal and the spin coefficients

approach. If the proposals are related, the link between

the invariant ∆W and Ψ2 as seen in section 2 and the

effective energy density and temperature ρg and Tg can

be found out. This was in fact mentioned in [1], how-

ever whether there is a relation between the spin coef-

ficients µ and ρ and the gravitational terms is yet to

be found out. However, since the gravitational entropy

of the FLRW universe is zero following the CET pro-

posal while the gravitational entropy is non-zero and

in terms of the Gibbons-Hawking entropy following the

spin coefficients approach, this hints that there is a dif-

ference between the proposals, which will be studied

in later works. The proposal for solutions, particularly

those involving homogeneous and anisotropic cosmo-

logical models and the determination of the variation

of the gravitational entropy to understand the contri-

bution of different parameters to the consistency with

the Weyl curvature hypothesis will also be studied in

later works.

Acknowledgements

I would like to thank D. Gregoris for helpful comments

on the spin coefficients in this approach.

References

1. D. Gregoris, Y. Ong, Understanding gravitational en-
tropy of black holes: A new proposal via curvature in-
variants. Phys. Rev. D 105, 104017 (2022)

2. T. Clifton, G. Ellis, R. Tavakol, A Gravitational Entropy
Proposal. Class. Quant. Grav. 30 125009 (2013)



8

3. O. Rudjord, O. Gron, The Weyl curvature conjecture and
black hole entropy. Phys. Scripta 77 055901 (2008)

4. G. Gibbons, S. Hawking, Cosmological event horizons,
thermodynamics, and particle creation. Phys. Rev. D 15,
2738 (1977)

5. D. Gregoris, Y. Ong, B. Wang, Thermodynamics of
Shearing Massless Scalar Field Spacetimes is Inconsis-
tent With the Weyl Curvature Hypothesis. Phys. Rev. D
102, 023539 (2020)

6. J. Bekenstein, Generalized Second Law of Thermody-
namics in Black-Hole Physics. Phys. Rev. D 9, 3292
(1974)

7. E. Newman, R. Penrose, An Approach to Gravitational
Radiation by a Method of Spin Coefficients. Jour. Math.
Phys. 3, 566 (1962)

8. J. Wainwright, P. Anderson, Isotropic singularities and
isotropization in a clas of Bianchi type VIh cosmologies.
Gen. Rel. Grav. 16, 609 (1984)

9. M. MacCallum, Spacetimes with continuous linear
isotropies I: spatial rotations. Gen Relativ Gravit 53, 57
(2021)

10. S. Chakraborty, S. Guha, R. Goswami, An investiga-
tion on gravitational entropy of cosmological models. Int,
Journal Mod. Phys. D 30, 7, 2150051 (2021)

11. D. McNutt, M. MacCallum, D. Gregoris, A. Forget, A.
Coley, P. Chavy-Waddy, D. Brooks, Cartan Invariants
and Event Horizon Detection. arXiv:1709.03362 (2017)

12. J. Barrow, S. Hervick, The Weyl tensor in spatially ho-
mogeneous cosmological models. Class. Quantum Grav.
19, 5173 (2002)

13. O. Gron, S. Hervick, Gravitational Entropy and Quan-
tum Cosmology. Class. Quant. Grav. 18 601 (2001)

14. K. Enqvist, Lemaitre-Tolman-Bondi model and acceler-
ating expansion, Gen. Relativ. Gravit. 40, 451 (2008)

15. T. Rothman, A phase space approach to gravitational
entropy, Gen. Relativ. Gravit. 32, 1185 (2000)

16. N. Li, X. Li, S. Song, An exploration of the black hole
entropy via the Weyl tensor, Eur. Phys. J. C 76, 111
(2016)

17. N. Pelavas, K. Lake, Measures of gravitational entropy I.
Self-similar spacetimes, Phys. Rev. D 62, 044009 (2000)

18. R. Penrose, General Relativity, an Einstein Centenary
Survey. Cambridge University Press, Cambridge, Eng-
land (1979)

19. S. Carroll, M. Johnson, L. Randall, Extremal limits and
black hole entropy, J. High Energy Phys. 11, 109 (2009)

20. K. Bolejko, W. Stoeger, Intermediate homogenization of
the universe and the problem of gravitational entropy,
Phys. Rev. D 88, 063529 (2013)

21. A. Edery, B. Constantineau, Extremal black holes, grav-
itational entropy and nonstationary metric fields, Class.
Quant. Grav. 28, 045003 (2011)

22. S. Stotyn, A tale of two horizons, Can. J. Phys. 93, 995
(2015)

Appendix A

The interest of static but spherically asymmetric space-
times in terms of gravitational entropy can be found also
in terms of the invariants that build the spin coefficients.
for instance, the example of the Kerr metric can be con-
sidered for a motivation towards the employment of µ = ρ
terms. The tetrad for the Kerr metric in D = 4 can be
found out, using which we can compute the Weyl scalars
Ψ0, Ψ1, Ψ2, Ψ3 and Ψ4. In this case, the only non-zero

Weyl scalar would be Ψ2, indicating that the spacetime
we are working in is a Petrov type D spacetime. For this,
the spin coefficients would be of the form µ = ρ, and
further, the spin coefficient would be of the form

ρ =
∆Ψ2

3Ψ2
(.1)

This indicates that the spin coefficient is proportional
to ∆W , where by W we adopt the notation convention
specified in [1], where by W we mean the Weyl tensor
Cabcd or the Weyl scalar Ψ2 for Petrov D spacetimes.
This approach can be used for any Petrov D spacetime
that is a vacuum solution, and the corresponding deriva-
tives are related to the spin coefficients and the corre-
sponding Weyl scalar. A detailed description of this for
several spacetimes is given in [11].

Appendix B

In the case of spacetimes where the proportionality ρ ∝
∆Ψ2/Ψ2 cannot be used (as illustrated in section 4 in the
case of the FLRW spacetime), for instance in the case of
spacetimes with Ψ2 = 0, we can use the spin coefficients
µ and ρ to define the gravitational entropy. This is done
by defining the integral

Sg = ks

∫ rH

0

∫
Σ

∣∣∣∣µ+ ρ

2

∣∣∣∣ dV (.2)

This would reduce to the form (14) as seen above, where
the spin coefficients would be defined in terms of the con-
stant k and the scale factor a(t). Note that the sectional
curvature k does not make any contribution to the gravi-
tational entropy since this cancels out due to the inclusion
of the 1/(

√
1− kr2) factor in the volume element (refer

to section III C of [1]).
For the LTB spacetime (17), we use the above integral
to solve for the general case of the metric rather than
define the parameter R(r, t). This metric in itself is a
particular case of Schwarzschild-like spacetimes defined
by the metric

ds2 = −dt2f(r, t) + dr2g(r, t) +R2dΩ2 (.3)

We can obtain the gravitational entropy by first finding
the tetrad l, n,m, m̄ and finding the spin coefficients µ
and ρ. This can be directly used to find the gravitational
entropy using the respective volume element, which will
yield the usual Hawking-Bekenstein entropy, with the up-
per limit of the integral being the horizon defined in terms
of the parameter R(r, t), which implies that the areal ra-
dius RH is a function of r and t.
This algorithm is of interest in determining the gravi-
tational entropy of different types of cosmologies. Par-
ticularly, those cosmologies that have multiple scale fac-
tors have different properties to that of homogeneous and
isotropic spacetimes. Such spacetimes fall under many
categories, and Bianchi spacetimes are a part of such cos-
mologies. The case of the LRS Bianchi I spacetime con-
sidered in section 4 has additional factors contributing to
the gravitational entropy as per the CET proposal. In fur-
ther works, we will look at the variation of gravitational
entropy with time to account for the Weyl curvature hy-
pothesis.
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