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1 Introduction

Many memories appear when thinking of Sergei Naboko, his charming personality
and sharp mathematical mind. Here we choose as a starting point one of his papers
[NS06] written with Michael Solomyak, in which he used his deep knowledge
of Jacobi operators to enrich our understanding of a model of spectral transition
originally proposed by Smilansky and Solomyak [Sm04, SmS05]. This model has
different physical interpretations, either as a model of an irreversible behavior on a
graph coupled to a caricature heat bath [Sm04] or as the two-dimensional Schrödinger
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operator with a singular interaction of a position-dependent strength [So04a, So04b].
It contains a parameter that controls its spectrum; it has a critical value at which
the spectral nature abruptly changes from a below bounded and partly discrete to an
absolutely continuous one covering the whole real axis.
The original model wasmodified in various ways. For instance, the harmonic con-

fining potential in (2.1a) below can be replaced by a more general function [So06a]
and the line on which the coupling is imposed can be replaced by a more general
graph [So06b]. Another modification consists of replacing the singular interaction
by a regular potential channel [BE14, BE17a]; the advantage is that one is able in
this setting to compare the quantum dynamics with its classical counterpart which
exhibits an interesting irregular scattering behavior [Gu18]. We note also that even
the basic model still poses open questions, for example, having in addition to the
discrete spectrum in the subcritical case also an infinite family of resonances the
behavior of which is not fully understood [ELT17].
A generalization going, so to say, in the opposite direction to [BE14, BE17a]

consists of replacing the 𝛿 interaction of the original model by a more singular
coupling. In [EL18] we did that with the interaction commonly known as 𝛿′ [AGHH].
The aim of the present paper is to extend the conclusions to the situation where such
a singular interaction is of the most general type depending on four real parameters;
the mentioned 𝛿 and 𝛿′ coupling are now included as particular cases. We are going
to show that the effect of abrupt spectral transition is robust, however, it occurs
now on a hypersurface in the parameter space. The key element in our analysis of
the spectral transition is the link to spectral properties of a specific Jacobi operator
introduced in [NS06].
The paper is structured as follows. In the next section, we introduce our 4-

parameter model. Section 3 is devoted to the study of the quadratic form associated
with the Hamiltonian; we prove a lower bound for it. In Section 4, we obtain the recur-
rence system which defines the Jacobi operator associated to the problem. Section 5
includes the proof of self-adjointness of the Hamiltonian. In Section 6, the absolutely
continuous spectrum of the Hamiltonian is obtained, using the known properties of
another Jacobi operator, which differs from the Jacobi operator associated with the
system by a compact operator. Theorem 6.2 similarly to the previous results on 𝛿
and 𝛿′-coupling shows the abrupt change of the spectra of the Jacobi operator from
purely absolutely continuous to discrete depending on a real parameter depending
on the coupling parameters. Using this result, Theorem 6.3 studies the absolutely
continuous spectrum of the Hamiltonian. Finally, in Section 7 we obtain results on
the discrete spectrum, in particular, we compare the number of eigenvalues of the
Hamiltonian and the Jacobi operator (see Theorem 7.2) and find the asymptotic for-
mulæ for the number of eigenvalues (Theorem 7.3). The Appendix 8 includes some
technical results needed in Section 5.
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2 The model

The model we are going to discuss describes a quantum system the Hamiltonian of
which is the operator of the form

H𝛼,𝛽,𝛾Ψ(𝑥, 𝑦) = −𝜕
2Ψ

𝜕𝑥2
(𝑥, 𝑦) + 1

2

(
−𝜕
2Ψ

𝜕𝑦2
(𝑥, 𝑦) + 𝑦2Ψ(𝑥, 𝑦)

)
(2.1a)

with the general contact interaction with position-dependent coefficients supported
by the axis 𝑥 = 0, characterized by choosing the operator domain as the family of
functions in the Sobolev space Ψ ∈ 𝐻2 ((0,∞) × R) ⊕ 𝐻2 ((−∞, 0) × R) satisfying
the boundary conditions

𝜕Ψ

𝜕𝑥
(0+, 𝑦) − 𝜕Ψ

𝜕𝑥
(0−, 𝑦) = 𝛼

2
𝑦
(
Ψ(0+, 𝑦) +Ψ(0−, 𝑦)

)
+ 𝛾
2

( 𝜕Ψ
𝜕𝑥

(0+, 𝑦) + 𝜕Ψ
𝜕𝑥

(0−, 𝑦)
)
,

(2.1b)

Ψ(0+, 𝑦) −Ψ(0−, 𝑦) = − 𝛾̄
2
(
Ψ(0+, 𝑦) +Ψ(0−, 𝑦)

)
+ 𝛽

2𝑦

( 𝜕Ψ
𝜕𝑥

(0+, 𝑦) + 𝜕Ψ
𝜕𝑥

(0−, 𝑦)
)

(2.1c)

with the parameters 𝛼, 𝛽 ∈ R and 𝛾 ∈ C. We note that the conditions defining the
general contact interaction are written in different ways [AGHH, Appendix K.1];
here we choose the form proposed in [EG99] which has the advantage that one easily
singles out the particular cases of 𝛿- and 𝛿′-interactions: the choice 𝛽 = 𝛾 = 0
leads to the original Smilansky-Solomyak model with the 𝛿-interaction on the 𝑥 axis
[Sm04, So04a, So04b, SmS05] and 𝛼 = 𝛾 = 0 yields its 𝛿′-modification discussed in
[EL18]. One of the features of those models was that the spectrum was independent
of the coupling constant sign. In the general case the mirror transformation, 𝑦 → −𝑦
can be compensated by a simultaneous change of the ‘diagonal’ parameters, 𝛼 → −𝛼
and 𝛽 → −𝛽 which thus leaves the spectrum invariant.

3 The quadratic form

A convenient way to deal with the operator (2.1) is to use the quadratic form method.

Theorem 3.1 The operator H𝛼,𝛽,𝛾 is associated with the quadratic form given by

a𝛼,𝛽,𝛾 [Ψ] = a0 [Ψ] +
1
𝛽

(
b1 [Ψ] + b2 [Ψ] + b3 [Ψ]

)
for 𝛽 ≠ 0,

a𝛼,0,𝛾 [Ψ] = a0 [Ψ] + b4 [Ψ] for 𝛽 = 0,

where
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a0 [Ψ] =
∫
R2

( ����𝜕Φ𝜕𝑥 ����2 + 12 ����𝜕Φ𝜕𝑦 ����2 + 12 𝑦2 |Ψ|2
)
d𝑥d𝑦,

b1 [Ψ] =
∫
R
𝑦 |Ψ(0+, 𝑦) −Ψ(0−, 𝑦) |2 d𝑦,

b2 [Ψ] =
∫
R

𝛼𝛽 + |𝛾 |2
4

𝑦 |Ψ(0+, 𝑦) +Ψ(0−, 𝑦) |2 d𝑦,

b3 [Ψ] =
∫
R
𝑦 Re

[
𝛾(Ψ̄(0+, 𝑦) + Ψ̄(0−, 𝑦)) (Ψ(0+, 𝑦) −Ψ(0−, 𝑦))

]
d𝑦,

b4 [Ψ] =
∫
R

𝛼

4
𝑦 |Ψ(0+, 𝑦) +Ψ(0−, 𝑦) |2 d𝑦

and the domain 𝐷 = dom a0 of the form a0 is

𝐷 =
{
Ψ ∈ 𝐻1 ((0,∞) × R) ⊕ 𝐻1 ((−∞, 0) × R) : a0 [Ψ] < ∞

}
.

Proof The quadratic form is given by the integral over R2 of the expression
Ψ̄(𝑥, 𝑦) (𝐻Ψ) (𝑥, 𝑦) where 𝐻 is the symbol given by the right-hand side of (2.1a).
By integration by parts in both variables 𝑥, 𝑦 and using the fact that Ψ̄(𝑥, 𝑦) 𝜕Ψ

𝜕𝑥
(𝑥, 𝑦)

vanishes as 𝑥, 𝑦 → ±∞ we obtain

a𝛼,𝛽,𝛾 [Ψ] = a0 [Ψ] +
∫
R

(
Ψ̄(0+, 𝑦) 𝜕Ψ

𝜕𝑥
(0+, 𝑦) − Ψ̄(0−, 𝑦) 𝜕Ψ

𝜕𝑥
(0−, 𝑦)

)
d𝑦.

Introducing the shorthands

𝑓+ := Ψ(0+, 𝑦) +Ψ(0−, 𝑦) , 𝑓− := Ψ(0+, 𝑦) −Ψ(0−, 𝑦),

𝑓 ′+ := Ψ′(0+, 𝑦) +Ψ′(0−, 𝑦) , 𝑓 ′− := Ψ′(0+, 𝑦) −Ψ′(0−, 𝑦)

one can rewrite the last integral as

1
2

∫
R
( 𝑓+ 𝑓 ′− + 𝑓− 𝑓

′
+) d𝑦.

We start with the case 𝛽 ≠ 0. Rewrite the matching conditions (2.1b) and (2.1c)
as

𝑓 ′+ =
2𝑦
𝛽
( 𝑓− + 𝛾̄

2
𝑓+),

𝑓 ′− =
𝛾𝑦

𝛽
𝑓− + 𝑦

2
(𝛼 + |𝛾 |2

𝛽
) 𝑓+ .

and substituting it into the above equation we arrive at



Spectral transition model with the general contact interaction 5

a𝛼,𝛽,𝛾 [Ψ] − a0 [Ψ] =
∫
R

𝑦

4𝛽
[
(𝛼𝛽 + |𝛾 |2) | 𝑓+ |2 + 4| 𝑓− |2 + 4Re (𝛾 𝑓+ 𝑓−)

]
d𝑦

=
1
𝛽
(b1 [Ψ] + b2 [Ψ] + b3 [Ψ]).

For 𝛽 = 0 the matching conditions (2.1b) and (2.1c) yield

𝑓− = − 𝛾̄
2
𝑓+ , 𝑓 ′− =

𝛼𝑦

2
𝑓+ +

𝛾

2
𝑓 ′+,

so that
1
2
( 𝑓+ 𝑓 ′− + 𝑓− 𝑓

′
+) =

1
2

(𝛼𝑦
2
| 𝑓+ |2 +

𝛾

2
𝑓+ 𝑓

′
+ + 𝑓− 𝑓

′
+

)
=
𝛼𝑦

4
| 𝑓+ |2,

and as a result, we get a𝛼,0,𝛾 [Ψ] − a0 [Ψ] = b4 [Ψ] which completes the proof. �

Next we state a simple lemma; if a proof is needed it can be found, for instance
in [EL18] as Lemma 5.

Lemma 3.2 For all 𝑐, 𝑑 ∈ C we have 2|Re (𝑐𝑑) | ≤ |𝑐 |2 + |𝑑 |2 .

The second simple lemma generalizes Lemma 3.2:

Lemma 3.3 Let 𝜎𝑗 , 𝑗 = 1, 2, 3 be the Pauli matrices and 𝜎0 the 2×2 identity matrix.
Let further u, v be complex two-component column vectors. Then for any 𝜔 𝑗 ∈ R we
have

Re
[
ū𝑇 ·

( 3∑︁
𝑗=0
𝜔 𝑗𝜎𝑗

)
· v

]
≤ 1
2
(
‖u‖2 + ‖v‖2

) (
|𝜔0 | +

√︃
𝜔21 + 𝜔

2
2 + 𝜔

2
3

)
Proof Since the real part of a complex number is bounded by its modulus, we have

Re
[
ū𝑇 ·

( 3∑︁
𝑗=0
𝜔 𝑗𝜎𝑗

)
· v

]
≤





ū𝑇 ·
( 3∑︁
𝑗=0
𝜔 𝑗𝜎𝑗

)
· v





 = ‖u‖‖v‖




 3∑︁
𝑗=0
𝜔 𝑗𝜎𝑗





,
where the matrix norm is the operator norm. Using 2‖u‖‖v‖ ≤ ‖u‖2 + ‖v‖2 we
complete the proof noting that the eigenvalues of the matrix

3∑︁
𝑗=0
𝜔 𝑗𝜎𝑗 =

(
𝜔0 + 𝜔3 𝜔1 − 𝑖𝜔2
𝜔1 + 𝑖𝜔2 𝜔0 − 𝜔3

)
are 𝜔0 ±

√︃
𝜔21 + 𝜔

2
2 + 𝜔

2
3. �

For the following particular choice of parameters 𝜔 𝑗 , 𝑗 = 0, . . . , 3

𝜔0 = 4 + 𝛼𝛽 + |𝛾 |2 , 𝜔1 = 𝛼𝛽 + |𝛾 |2 − 4 , 𝜔2 = 4 Im 𝛾 , 𝜔3 = 4Re 𝛾 (3.1)

we denote the matrix
∑3
𝑗=0 𝜔 𝑗𝜎𝑗 by Σ. This matrix appears later in the text.
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Let the subspaces of 𝐷 𝑗 , 𝑗 = 1, 2 consist of functions 𝜓 ( 𝑗) ∈ 𝐻1 ((−∞, 0)) ⊕

𝐻1 ((0,∞)) with
(
𝜓 ( 𝑗) (0+)
𝜓 ( 𝑗) (0−)

)
= Span

(
𝐾

( 𝑗)
+

𝐾 ( 𝑗)
−

)
, where

(
𝐾

( 𝑗)
+

𝐾 ( 𝑗)
−

)
are eigenvectors of Σ.

Simple calculation yields up to a constant

𝐾
(1)
+ = 𝜔3 −

√︃
𝜔21 + 𝜔

2
2 + 𝜔

3
3 = 4Re 𝛾 −

√︃
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2 , (3.2a)

𝐾 (1)
− = 𝜔1 + 𝑖𝜔2 = 𝛼𝛽 + |𝛾 |2 − 4 + 4𝑖Im 𝛾 , (3.2b)

𝐾
(2)
+ = 𝜔3 +

√︃
𝜔21 + 𝜔

2
2 + 𝜔

3
3 = 4Re 𝛾 +

√︃
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2 , (3.2c)

𝐾 (2)
− = 𝜔1 + 𝑖𝜔2 = 𝛼𝛽 + |𝛾 |2 − 4 + 4𝑖Im 𝛾 . (3.2d)

The following lemma generalizes [EL18, Lemma 6]

Lemma 3.4 For all 𝛿 > 0 and 𝜓 ∈ 𝐻1 ((−∞, 0)) ⊕ 𝐻1 ((0,∞)) it holds

𝛿 |𝜓(0±)|2 ≤ ±
∫ ±∞

0±

(
|𝜓 ′(𝑥) |2 + 𝛿2 |𝜓(𝑥) |2

)
d𝑥 .

On the subspaces of 𝐷 𝑗 these inequalities are saturated for

𝜓̃
( 𝑗)
𝛿

(𝑥) :=


𝐾 ( 𝑗)
− e𝛿𝑥√︃

𝛿 ( |𝐾 ( 𝑗)
+ |2+|𝐾 ( 𝑗)

− |2)
for 𝑥 < 0

𝐾
( 𝑗)
+ e−𝛿𝑥√︃

𝛿 ( |𝐾 ( 𝑗)
+ |2+|𝐾 ( 𝑗)

− |2)
for 𝑥 > 0

, (3.3)

with 𝑗 = 1, 2 and the constants 𝐾 ( 𝑗)
± given by (3.2).

Proof The proof is a minor modification of the one in [EL18, Lemma 6]. The result
follows from the positivity of the integrals

∫ 0
−∞ |𝜓 ′(𝑥) − 𝛿𝜓(𝑥) |2 d𝑥 and

∫ ∞
0 |𝜓 ′(𝑥) +

𝛿𝜓(𝑥) |2 d𝑥. The second part of the lemma can be verified by a direct inspection. �

With these preliminaries we can derive upper and lower bounds to the forms
involved:

Theorem 3.5 We have the following inequalities:

b1 [Ψ] + b2 [Ψ] + b3 [Ψ] ≤
|4 + 𝛼𝛽 + |𝛾 |2 | +

√︁
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

2
√
2𝛽

a0 [Ψ],

b4 [Ψ] ≤
𝛼
√
2

a0 [Ψ] .

For 𝛽 ≠ 0
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a𝛼,𝛽,𝛾 [Ψ] ≥
(
1 − |4 + 𝛼𝛽 + |𝛾 |2 | +

√︁
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

2
√
2𝛽

)
a0 [Ψ]

≥ 1
2

(
1 − |4 + 𝛼𝛽 + |𝛾 |2 | +

√︁
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

2
√
2𝛽

)
‖Ψ‖2 .

For 𝛽 = 0

a𝛼,0,𝛾 [Ψ] ≥
(
1 − 𝛼

√
2

)
a0 [Ψ] ≥

1
2

(
1 − 𝛼

√
2

)
‖Ψ‖2 .

Proof Weproceed away similar to [EL18], where the bound for b1 [Ψ] was obtained,
and to [So04b], where bounds for b2 and b4 were found, cf. [So04b, Lemma 2.1] or
[EL18, Theorem 4] for more details. To get the first inequality, one has to estimate
the expression b1 [Ψ] +b2 [Ψ] +b3 [Ψ]. In view of the mentioned results, we can skip
a part of the computation related to the first two terms and focus on the form b3 [Ψ]
only.
As in [EL18, So04b], we use the expansion of the function in terms of the

‘transverse’ basis,
Ψ(𝑥, 𝑦) =

∑︁
𝑛∈N0

𝜓𝑛 (𝑥)𝜒𝑛 (𝑦), (3.4)

with the coefficients 𝜓𝑛 depending on the variable 𝑥 only, where 𝜒𝑛 (𝑦) is the 𝑛-th
Hermite function, that is, the normalized harmonic oscillator eigenfunction referring
to the eigenvalue 𝑛+ 12 , andN0 denotes the set of non-negative integers. We note that
the Ansatz (3.4) can be also used to analyze the model numerically as it was done in
[ELT17] for the eigenvalues and resonances appearing in the subcritical case.
The quadratic form a0 can be in terms of the coefficient functions 𝜓𝑛 written as

a0 [Ψ] =
∑︁
𝑛∈N0

∫
R

(
|𝜓 ′
𝑛 (𝑥) |2 +

(
𝑛 + 12

)
|𝜓𝑛 (𝑥) |2

)
d𝑥, (3.5)

giving the bound

a0 [Ψ] ≥
1
2

∑︁
𝑛∈N0

∫
R
|𝜓𝑛 (𝑥) |2 d𝑥 =

1
2
‖Ψ‖2.

Moreover, one can use the well-known recurrent relation for Hermite functions,
√
𝑛 + 1𝜒𝑛+1 (𝑦) −

√
2𝑦𝜒𝑛 (𝑦) +

√
𝑛𝜒𝑛−1 (𝑦) = 0. (3.6)

Using theAnsatz (3.4) in the definition ofb3 [Ψ] substituting subsequently for 𝑦𝜒𝑛 (𝑦)
from (3.6), we get
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b3 [Ψ] =
∑︁

𝑛,𝑚∈N0

∫
R
𝑦 Re

[
𝛾
(
𝜓̄𝑚 (0+) + 𝜓𝑚 (0−)

)
𝜒̄𝑚 (𝑦)

(
𝜓𝑛 (0+) − 𝜓𝑛 (0−)

)
𝜒𝑛 (𝑦)

]
d𝑦

=
1
√
2

∑︁
𝑛,𝑚∈N0

∫
R
𝜒̄𝑚 (𝑦) Re

{
𝛾
(
𝜓̄𝑚 (0+) + 𝜓𝑚 (0−)

)
×

(
𝜓𝑛 (0+) − 𝜓𝑛 (0−)

) (√
𝑛 + 1𝜒𝑛+1 (𝑦) +

√
𝑛𝜒𝑛−1 (𝑦)

)}
d𝑦.

Using the orthogonality of Hermite functions,
∫
R
𝜒̄𝑚 (𝑦)𝜒𝑛 (𝑦) d𝑦 = 𝛿𝑚𝑛, we further

obtain

b3 [Ψ] =
1
√
2

∑︁
𝑛∈N0

Re
{
𝛾
[√
𝑛 + 1

(
𝜓̄𝑛+1 (0+) + 𝜓̄𝑛+1 (0−)

)
+
√
𝑛
(
𝜓̄𝑛−1 (0+) + 𝜓̄𝑛−1 (0−)

) ]
× (𝜓𝑛 (0+) − 𝜓𝑛 (0−)

)}
=
1
√
2

∑︁
𝑛∈N
Re

{
𝛾
[√
𝑛
(
𝜓̄𝑛 (0+) + 𝜓̄𝑛 (0−)

) (
𝜓𝑛−1 (0+) − 𝜓𝑛−1 (0−)

)
+
√
𝑛
(
𝜓̄𝑛−1 (0+) + 𝜓̄𝑛−1 (0−)

) (
𝜓𝑛 (0+) − 𝜓𝑛 (0−)

) ]}
=

∑︁
𝑛∈N

√
2𝑛Re

{
Re 𝛾

[
𝜓̄𝑛 (0+)𝜓𝑛−1 (0+) − 𝜓̄𝑛 (0−)𝜓𝑛−1 (0−)

]
+ 𝑖 Im 𝛾

[
𝜓̄𝑛 (0−)𝜓𝑛−1 (0+) − 𝜓̄𝑛 (0+)𝜓𝑛−1 (0−)

]}
.

In the first term of the second equality, we have changed the summation index from
𝑛 to 𝑛 − 1; notice that the sum now runs over N, not N0. In an analogous way, the
other two terms entering the form a𝛼,𝛽,𝛾 [Ψ] can be written as

b1 [Ψ] + b2 [Ψ] =
∑︁
𝑛∈N

√
2𝑛Re

[ (
𝜓̄𝑛 (0+) − 𝜓̄𝑛 (0−)

) (
𝜓𝑛−1 (0+) − 𝜓𝑛−1 (0−)

)
+ 𝛼𝛽 + |𝛾 |2

4
(
𝜓̄𝑛 (0+) + 𝜓̄𝑛 (0−)

) (
𝜓𝑛−1 (0+) + 𝜓𝑛−1 (0−)

) ]
=

∑︁
𝑛∈N

√
2𝑛Re

[4 + 𝛼𝛽 + |𝛾 |2
4

(
𝜓̄𝑛 (0+)𝜓𝑛−1 (0+) + 𝜓̄𝑛 (0−)𝜓𝑛−1 (0−)

)
+ 𝛼𝛽 + |𝛾 |2 − 4

4
(
𝜓̄𝑛 (0+)𝜓𝑛−1 (0−) + 𝜓̄𝑛 (0−)𝜓𝑛−1 (0+)

) ]
.

The sum of all the three forms can be written elegantly using the Pauli matrices and
the identity matrix,

b1 [Ψ] + b2 [Ψ] + b3 [Ψ] =
∑︁
𝑛∈N

√
𝑛

2
√
2
Re

[
ū𝑇 · Σ · v

]
, (3.7)
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where the notation is the same as in Lemma 3.3, u =

(
𝜓𝑛 (0+)
𝜓𝑛 (0−)

)
and v =

(
𝜓𝑛−1 (0+)
𝜓𝑛−1 (0−)

)
,

and the numbers 𝜔 𝑗 are given by (3.1). Applying now Lemma 3.3, we obtain

b1 [Ψ] + b2 [Ψ] + b3 [Ψ] ≤
∑︁
𝑛∈N

√
𝑛

4
√
2

(
|𝜓𝑛 (0+)|2 + |𝜓𝑛 (0−)|2

+ |𝜓𝑛−1 (0+)|2 + |𝜓𝑛−1 (0−)|2
)

×
[
|4 + 𝛼𝛽 + |𝛾 |2 | +

√︃
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

]
.

We divide the sum into two parts and in the part containing 𝜓𝑛−1 we raise the
summation index by one; in this way we get

b1 [Ψ] + b2 [Ψ] + b3 [Ψ] ≤
∑︁
𝑛∈N0

√
𝑛 +

√
𝑛 + 1

4
√
2

(
|𝜓𝑛 (0+)|2 + |𝜓𝑛 (0−)|2

)
×

[
|4 + 𝛼𝛽 + |𝛾 |2 | +

√︃
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

]
.

Furthermore, we employ the inequality
√
𝑛 +

√
𝑛 + 1 ≤ 2

√︃
𝑛 + 12 which yields

b1 [Ψ] + b2 [Ψ] + b3 [Ψ] ≤
|4 + 𝛼𝛽 + |𝛾 |2 | +

√︁
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

2
√
2

×
∑︁
𝑛∈N0

√︃
𝑛 + 12

(
|𝜓𝑛 (0+)|2 + |𝜓𝑛 (0−)|2

)
.

Applying now Lemma 3.4 with 𝛿 =
√︃
𝑛 + 12 we arrive at

b1 [Ψ] + b2 [Ψ] + b3 [Ψ] ≤
|4 + 𝛼𝛽 + |𝛾 |2 | +

√︁
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

2
√
2

×
∑︁
𝑛∈N0

∫
R

[
|𝜓 ′(𝑥) |2 +

(
𝑛 + 12

)
|𝜓(𝑥) |2

]
d𝑥

=
|4 + 𝛼𝛽 + |𝛾 |2 | +

√︁
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

2
√
2

a0 [Ψ] .

The obtained upper bound for b1 [Ψ] + b2 [Ψ] + b3 [Ψ] leads to the lower bound
for a𝛼,𝛽,𝛾 [Ψ]. The second inequality follows from a0 [Ψ] ≥ 1

2 ‖Ψ‖2 which is a
consequence of (3.5).
The last inequality, the lower bound to a𝛼,0,𝛾 [Ψ] for 𝛽 = 0, follows from an upper

bound to b4 [Ψ] that can be obtained in a way similar to [So04b, Lemma 2.1] or
[EL18, Theorem 4] with the use of Lemma 3.2. �
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The form a𝛼,𝛽,𝛾 [Ψ] is closed on 𝐷. First, the form a0 [Ψ] is closed, as proven in
[BE17b]. The closedness of the full form can be obtained by the same reasoning as
in [BE17b, Proposition 2.2] using the bounds in Theorem 3.5; as in the said paper,
the argument applies only if the form is semibounded from below.

4 The Jacobi operator

The second main step of our argument is the construction of the Jacobi operator
associated with H𝛼,𝛽,𝛾 . Let us begin with the case 𝛽 ≠ 0. First of all, we rewrite the
matching conditions (2.1b) and (2.1c) in an equivalent form [EG99],

𝜕Ψ

𝜕𝑥
(0+, 𝑦) = 𝑦

4𝛽
[
(𝛼𝛽 + |𝛾 |2 + 4 + 4Re 𝛾)Ψ(0+, 𝑦)

+ (𝛼𝛽 + |𝛾 |2 − 4 − 4𝑖 Im 𝛾)Ψ(0−, 𝑦)
]
,

𝜕Ψ

𝜕𝑥
(0−, 𝑦) = 𝑦

4𝛽
[
(−𝛼𝛽 − |𝛾 |2 + 4 − 4𝑖 Im 𝛾)Ψ(0+, 𝑦)

+ (−𝛼𝛽 − |𝛾 |2 − 4 + 4Re 𝛾)Ψ(0−, 𝑦)]

Mimicking the construction in [NS06, EL18] we use the Ansatz (3.4) and the recur-
rent relation (3.6), multiply both equations from the left by 𝜒̄𝑚 (𝑦) and integrate over
R obtaining thus conditions for the coefficient functions,

𝜕𝜓𝑚

𝜕𝑥
(0+) = 1

4
√
2𝛽

[
(𝛼𝛽 + |𝛾 |2 + 4 + 4Re 𝛾) (𝜓𝑚−1 (0+)

√
𝑚 + 𝜓𝑚+1 (0+)

√
𝑚 + 1)

+ (𝛼𝛽 + |𝛾 |2 − 4 − 4𝑖Im 𝛾) (𝜓𝑚−1 (0−)
√
𝑚 + 𝜓𝑚+1 (0−)

√
𝑚 + 1)

]
,

(4.1a)
𝜕𝜓𝑚

𝜕𝑥
(0−) = 1

4
√
2𝛽

[
(−𝛼𝛽 − |𝛾 |2 + 4 − 4𝑖Im 𝛾) (𝜓𝑚−1 (0+)

√
𝑚 + 𝜓𝑚+1 (0+)

√
𝑚 + 1)

+ (−𝛼𝛽 − |𝛾 |2 − 4 + 4Re 𝛾) (𝜓𝑚−1 (0−)
√
𝑚 + 𝜓𝑚+1 (0−)

√
𝑚 + 1)

]
.

(4.1b)

We seek solutions of the form

𝜙𝑛 (𝑥,Λ) = 𝑘1 (Λ, 𝑛) e−𝜁𝑛 (Λ)𝑥 , 𝑥 > 0, (4.2a)

𝜙𝑛 (𝑥,Λ) = 𝑘2 (Λ, 𝑛) e𝜁𝑛 (Λ)𝑥 , 𝑥 < 0, (4.2b)

where 𝜁𝑛 (Λ) :=
√︃
𝑛 + 12 − Λ, to the equation
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−𝜙′′𝑛 (𝑥) +
(
𝑛 + 1
2
− Λ

)
𝜙𝑛 (𝑥) = 0 , 𝑛 ∈ N0, (4.3)

with 𝜙𝑛 ∈ 𝐻2 (−∞, 0) ⊕ 𝐻2 (0,∞) satisfying the conditions (4.1). In the definition
of 𝜁𝑛 (Λ) we take the branch of the square root which is analytic in C\[𝑛 + 12 ,∞) and
for a number Λ from this set it holds

Re 𝜁𝑛 (Λ) > 0 , Im 𝜁𝑛 (Λ) · ImΛ < 0.

Substituting the Ansätze (4.2) into (4.1) we get

−𝜁𝑛 (Λ)𝑘1 (Λ, 𝑛) =
1
4
√
2𝛽

[
(𝛼𝛽 + |𝛾 |2 + 4 + 4Re 𝛾) (𝑘1 (Λ, 𝑛 − 1)

√
𝑛

+ 𝑘1 (Λ, 𝑛 + 1)
√
𝑛 + 1) + (𝛼𝛽 + |𝛾 |2 − 4 − 4𝑖Im 𝛾)

× (𝑘2 (Λ, 𝑛 − 1)
√
𝑛 + 𝑘2 (Λ, 𝑛 + 1)

√
𝑛 + 1)

]
,

𝜁𝑛 (Λ)𝑘2 (Λ, 𝑛) =
1
4
√
2𝛽

[
(−𝛼𝛽 − |𝛾 |2 + 4 − 4𝑖Im 𝛾) (𝑘1 (Λ, 𝑛 − 1)

√
𝑛
√
𝑛 + 1)

+ 𝑘1 (Λ, 𝑛 + 1) + (−𝛼𝛽 − |𝛾 |2 − 4 + 4Re 𝛾) (𝑘2 (Λ, 𝑛 − 1)
√
𝑛

+ 𝑘2 (Λ, 𝑛 + 1)
√
𝑛 + 1)

]
.

Adding and subtracting the previous two equations we get

𝜁𝑛 (Λ)
[
𝑘2 (Λ, 𝑛) − 𝑘1 (Λ, 𝑛)] =

2
√
2𝛽

[(𝑘1 (Λ, 𝑛 − 1) − 𝑘2 (Λ, 𝑛 − 1))
√
𝑛

+ (𝑘1 (Λ, 𝑛 + 1) − 𝑘2 (Λ, 𝑛 + 1))
√
𝑛 + 1

]
+ 𝛾̄
√
2𝛽

[
(𝑘1 (Λ, 𝑛 − 1) + 𝑘2 (Λ, 𝑛 − 1))

√
𝑛

+ (𝑘1 (Λ, 𝑛 + 1) + 𝑘2 (Λ, 𝑛 + 1))
√
𝑛 + 1

]
,

−𝜁𝑛 (Λ)
[
𝑘1 (Λ, 𝑛) + 𝑘2 (Λ, 𝑛)] =

𝛾
√
2𝛽

[(𝑘1 (Λ, 𝑛 − 1) − 𝑘2 (Λ, 𝑛 − 1))
√
𝑛

+ (𝑘1 (Λ, 𝑛 + 1) − 𝑘2 (Λ, 𝑛 + 1))
√
𝑛 + 1

]
+ 𝛼𝛽 + |𝛾 |2

2
√
2𝛽

[
(𝑘1 (Λ, 𝑛 − 1) + 𝑘2 (Λ, 𝑛 − 1))

√
𝑛

+ (𝑘1 (Λ, 𝑛 + 1) + 𝑘2 (Λ, 𝑛 + 1))
√
𝑛 + 1

]
.

To simplify these relations, we define

𝐶± (𝑛) := 𝑘1 (Λ, 𝑛) ± 𝑘2 (Λ, 𝑛),

then the previous two equations can be rewritten as
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−𝜁𝑛 (Λ)
(
𝐶− (𝑛)
𝐶+ (𝑛)

)
=

©­«
2√
2𝛽

𝛾̄√
2𝛽

𝛾√
2𝛽

𝛼𝛽+|𝛾 |2
2
√
2𝛽

ª®¬
(
𝐶− (𝑛 − 1)

√
𝑛 + 𝐶− (𝑛 + 1)

√
𝑛 + 1

𝐶+ (𝑛 − 1)
√
𝑛 + 𝐶+ (𝑛 + 1)

√
𝑛 + 1

)
Computing the eigenvalues and eigenspaces of the matrix involved in the previous
equation and putting

𝐶𝑛,1 :=
(
𝑛 + 12

)−1/4 [
− 4𝛾𝐶− (𝑛) +

(
4 − 𝛼𝛽 − |𝛾 |2 +

√︃
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

)
𝐶+ (𝑛)

]
,

(4.4a)

𝐶𝑛,2 :=
(
𝑛 + 12

)−1/4 [
4𝛾𝐶− (𝑛) +

(
− 4 + 𝛼𝛽 + |𝛾 |2 +

√︃
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

)
𝐶+ (𝑛)

]
,

(4.4b)

we find that 𝐶𝑛,1 satisfies the same equation as, for instance, in [EL18], namely

(𝑛 + 1)1/2
(
𝑛 + 32

)1/4
𝐶𝑛+1,1 + 2𝜇

(
𝑛 + 12

)1/4
𝜁𝑛 (Λ)𝐶𝑛,1 + 𝑛1/2

(
𝑛 − 1

2

)1/4
𝐶𝑛−1,1 = 0

(4.5)
with 𝜇 = 𝜇1 given by

𝜇1 :=
2
√
2𝛽

4 + 𝛼𝛽 + |𝛾 |2 −
√︁
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

. (4.6a)

Similarly, 𝐶𝑛,2 satisfies the same equation, the only difference is that with 𝜇 equals
now to

𝜇2 :=
2
√
2𝛽

4 + 𝛼𝛽 + |𝛾 |2 +
√︁
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

. (4.6b)

With the above mentioned symmetry (𝛼, 𝛽) → (−𝛼,−𝛽) in mind, we can without
the loss of generality take 𝛽 > 0. Then we easily find that for 𝛼 > 0 it holds
𝜇1 ≥ 𝜇2 > 0, for 𝛼 < 0 it holds 𝜇1 < 0 < 𝜇2 and for 𝛼 = 0 the parameter 𝜇1
diverges.
The general solution of the equation (4.3) can be written in the form of linear

combination of functions corresponding to the above-mentioned eigenspaces 𝜙𝑛 =

𝐶𝑛,1𝜂
(1)
𝑛 + 𝐶𝑛,2𝜂 (2)𝑛 , where

𝜂
(1)
𝑛 =

{
(𝑛 + 1/2)1/4 (𝜔3 −

√︃
𝜔21 + 𝜔

2
2 + 𝜔

2
3) e

−𝜁𝑛 (Λ)𝑥 𝑥 > 0
(𝑛 + 1/2)1/4 (𝜔1 + 𝑖𝜔2) e𝜁𝑛 (Λ)𝑥 𝑥 < 0

𝜂
(2)
𝑛 =

{
(𝑛 + 1/2)1/4 (𝜔3 +

√︃
𝜔21 + 𝜔

2
2 + 𝜔

2
3) e

−𝜁𝑛 (Λ)𝑥 𝑥 > 0
(𝑛 + 1/2)1/4 (𝜔1 + 𝑖𝜔2) e𝜁𝑛 (Λ)𝑥 𝑥 < 0

with 𝜔 𝑗 as in (3.1). There exist constants 𝐶1, 𝐶2 not dependent on 𝑛 so that

𝐶1 (𝜆) ≤ ‖𝜂 (1)𝑛 ‖2 + ‖𝜂 (2)𝑛 ‖2 ≤ 𝐶2 (Λ) for all 𝑛 ∈ N0 (4.7)
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provided 𝛾 ≠ 0 or 𝛼𝛽 ≠ 4. In the degenerate case 𝛾 = 0 and 𝛼𝛽 = 4 it holds 𝜇1 = 𝜇2
and we have, for instance,

𝜂
(1)
𝑛 =

{
(𝑛 + 1/2)1/4 e−𝜁𝑛 (Λ)𝑥 𝑥 > 0

0 𝑥 < 0 ,

𝜂
(2)
𝑛 =

{
0 𝑥 > 0

(𝑛 + 1/2)1/4 e𝜁𝑛 (Λ)𝑥 𝑥 < 0 .

The procedure for 𝛽 = 0 is similar. We rewrite the coupling conditions as

(
1 + 𝛾̄
2

)
Ψ(0+, 𝑦) −

(
1 − 𝛾̄

2

)
Ψ(0−, 𝑦) = 0, (4.8a)(

1 − 𝛾

2

) 𝜕Ψ
𝜕𝑥

(0+, 𝑦) −
(
1 + 𝛾
2

) 𝜕Ψ
𝜕𝑥

(0−, 𝑦) = 𝛼𝑦

2
[
Ψ(0+, 𝑦) +Ψ(0−, 𝑦)

]
. (4.8b)

From (4.8a) we infer that there exist a sequence of coefficients 𝐶𝑛 such that

𝑘1 (Λ, 𝑛) =
(
𝑛 + 1
2

)1/4 (
1 − 𝛾̄

2

)
𝐶𝑛,

𝑘2 (Λ, 𝑛) =
(
𝑛 + 1
2

)1/4 (
1 + 𝛾̄
2

)
𝐶𝑛,

where 𝑘 𝑗 , 𝑗 = 1, 2, are the coefficients in the solutions 𝜙 𝑗 , 𝑗 = 1, 2, of (4.2a)
and (4.2b). After multiplying (4.8b) by 𝜒̄𝑚 (𝑦), integrating it using the orthogonality
of Hermite functions, and substituting for 𝑘 𝑗 , 𝑗 = 1, 2, we obtain again the equa-
tion (4.5), now with the parameter in the middle term taking the value 𝜇 := 4+|𝛾 |2

2
√
2𝛼
.

This is the departing point for the spectral analysis.

5 Self-adjointness of the Hamiltonian

In this section, we prove that the HamiltonianH𝛼,𝛽,𝛾 is self-adjoint. The strategy of
our proof is inspired by the proof of [NS06, Thm. 4.1].
The vector Ψ can be using (3.4) identified with the sequence {𝜓𝑛}𝑛∈N0 (further

denoted only by {𝜓𝑛}). The HamiltonianH𝛼,𝛽,𝛾 defined in (2.1) can be alternatively
defined via its action

H𝛼,𝛽,𝛾{𝜓𝑛} = {−𝜓 ′′
𝑛 + (𝑛 + 1/2)𝜓𝑛} .

and the domain 𝐷𝛼,𝛽,𝛾 . We say that the vector {𝜓𝑛} ∈ 𝐷𝛼,𝛽,𝛾 if and only if
𝜓𝑛 ∈ {𝑢, 𝑢 �R±∈ 𝐻2 (R±)} = W, conditions (4.1) are satisfied and∑𝑛∈N0 ‖−𝜓 ′′

𝑛 (𝑥)+
(𝑛 + 1/2)𝜓𝑛 (𝑥)‖2 < ∞. This construction identifies the 𝐿2 (R2) space of Ψ with the
space ℌ = ℓ2 ⊗ 𝐿2 (R). Moreover, we define H0

𝛼,𝛽,𝛾
:= H𝛼,𝛽,𝛾 � 𝐷

0
𝛼,𝛽,𝛾

, where the
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domain 𝐷0
𝛼,𝛽,𝛾

⊂ 𝐷𝛼,𝛽,𝛾 consists of all 𝜓𝑛 ∈ 𝐷𝛼,𝛽,𝛾 with finite number of non-zero
elements.

Theorem 5.1 The Hamiltonian H𝛼,𝛽,𝛾 is self-adjoint and coincides with the closure
of H0

𝛼,𝛽,𝛾
.

Proof We give the proof for the general case. We proceed similarly to [NS06, Thm.
4.1]. First we prove that

H𝛼,𝛽,𝛾 = H0𝛼,𝛽,𝛾
∗
. (5.1)

The inclusion ⊂ is trivial. We will prove the opposite inclusion. Suppose {𝑣𝑛} ⊂
Dom (H0

𝛼,𝛽,𝛾

∗) and H0
𝛼,𝛽,𝛾

∗{𝑣𝑛} = {𝑤𝑛}. The definition of the adjoint operator
yields ∑︁

𝑛∈N0

∫
R
(−𝑢′′𝑛 + (𝑛 + 1/2)𝑢𝑛)𝑣𝑛 d𝑥 =

∑︁
𝑛∈N0

∫
R
𝑢𝑛𝑤𝑛 d𝑥 . (5.2)

Let us fix 𝑛0 ∈ N and take the element {𝑢𝑛} ∈ 𝐷0𝛼,𝛽,𝛾 such that for a fixed 𝑛0 ∈ N0
it holds 𝑢𝑛 ≡ 0 for 𝑛 ≠ 𝑛0 and 𝑢𝑛0 ∈ W, 𝑢𝑛0 = 0 in the vicinity of 𝑥 = 0. Then
equation (5.2) applied to all such {𝑢𝑛} implies that if 𝑣 ∈ Dom (H0

𝛼,𝛽,𝛾

∗), 𝑤𝑛 ∈ W
and 𝑤𝑛 = −𝑣′′𝑛 + (𝑛 + 1/2)𝑣𝑛 for all 𝑛 ∈ N0. Moreover, 𝑤𝑛 ∈ 𝑙2 (N0) implies that∑
𝑛∈N0 ‖ − 𝜓 ′′

𝑛 (𝑥) + (𝑛 + 1/2)𝜓𝑛 (𝑥)‖2 < ∞.
As the final part of the proof of the equality (5.1), we prove that the coupling

conditions (4.1) are satisfied for {𝑣𝑛}. We choose {𝑢𝑛} such that for a fixed 𝑛0

𝑢𝑛0±1 (0±) = 0 , 𝑢′𝑛0 (0±) = 0 , 𝑢𝑛0 (0±) = ℎ± , (5.3a)
𝑢𝑛 (𝑥) ≡ 0 for all 𝑛 ∉ {𝑛0 − 1, 𝑛0, 𝑛0 + 1} , (5.3b)(

𝑢′
𝑛0+1 (0+)

−𝑢′
𝑛0+1 (0−)

)
=

√
𝑛0 + 1
4
√
2𝛽

Σ

(
ℎ+
ℎ−

)
,

(
𝑢′
𝑛0−1 (0+)

−𝑢′
𝑛0−1 (0−)

)
=

√
𝑛0

4
√
2𝛽

Σ

(
ℎ+
ℎ−

)
. (5.3c)

Clearly, such {𝑢𝑛} satisfies (4.1) and belongs to 𝐷0𝛼,𝛽,𝛾 . The equation (5.2) implies
by Green’s identity that∑︁

𝑛∈N0
[𝑢′𝑛 (𝑥)𝑣𝑛 (𝑥) − 𝑢𝑛 (𝑥)𝑣′𝑛 (𝑥)]0+0− = 0 .

From this, (5.3) and the hermiticity of the matrix Σ it follows that {𝑣𝑛} satisfies (4.1).
This proves the equation (5.1).
In the second part of the proof, we find that the deficiency indices of the operator

H𝛼,𝛽,𝛾 are zero. We will prove that the only solution to the equation

H𝛼,𝛽,𝛾𝑉 − 𝑖𝑉 = 0 (5.4)

is trivial. The equation (5.4) is the equation (4.3) for Λ = 𝑖. For its general so-
lution 𝑉 = {𝜙𝑛} = {𝐶𝑛,1𝜂 (1)𝑛 + 𝐶𝑛,2𝜂 (2)𝑛 } we have due to

∫
R
𝜂
(1)
𝑛 𝜂

(2)
𝑛 d𝑥 = 0 that

‖𝜙𝑛‖2 = |𝐶𝑛,1 |2‖𝜂 (1)𝑛 ‖2 + |𝐶𝑛,2 |2‖𝜂 (2)𝑛 ‖2. Hence one can deal with the two subspaces
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separately. Using this fact and (4.7), the construction of large 𝑛 asymptotics of the
coefficients 𝐶𝑛,1 and 𝐶𝑛,2 follows similarly to [NS06]. In the rest of the proof, we
will use the abbreviation 𝐶𝑛 for both 𝐶𝑛,1 and 𝐶𝑛,2. From Lemma 8.2 we obtain for
the particular cases the following asymptotics.

1. For 𝜇2 < 1 it holds |𝐶±
𝑛 |2 ∼ 𝑛

−1± 𝜇√
1−𝜇2 . The sequence 𝐶+

𝑛 is not in ℓ2, hence
the corresponding solution does not belong to ℌ. Furthermore, we use the
identity (8.3) for 𝐶−

𝑛 . Its rhs vanishes for 𝑁 → ∞. All the terms on the lhs have
the same sign (note that Im 𝜁𝑛 (𝑖) < 0), hence all 𝐶−

𝑛 = 0.
2. For 𝜇2 > 1 it holds |𝐶±

𝑛 |2 ∼ (
√︁
𝜇2 − 1 − 𝜇)±2𝑛𝑛−1 = (

√︁
𝜇2 − 1 + 𝜇)∓2𝑛𝑛−1.

Hence one solution exponentially grows and the other exponentially decays. The
growing solution is not in ℓ2, the decaying one is zero due to the identity (8.3).

3. For 𝜇 = ±1 it holds |𝐶±
𝑛 |2 ∼ 𝑛−1/2e±2

√
2𝑛. The growing sequence is not in ℓ2, the

decaying sequence vanishes due to (8.3).

Hence 𝑉 ≡ 0 and the operator is self-adjoint. �

6 Absolutely continuous spectrum

Having obtained the equation (4.5) having the Jacobi operator structure, we can
proceed in a way similar to that of [NS06, EL18] to obtain the absolutely continuous
spectrum of our model Hamiltonian. The proofs of the claims made below are non-
trivial, being based on the existence/nonexistence of subordinate solutions, but we
are not going to present them as the argument is a straightforward adaptation of the
particular cases treated in the mentioned publications, cf. especially Theorem 3.1
and Appendix A in [NS06].
To state the result, let us first introduce the needed operators:

Definition 6.1 Given a sequence {𝜔𝑛}𝑛∈N0 the operators D ≡ D{𝜔𝑛} of multi-
plication by a this sequence and of right shift S mapping ℓ2 (N0) → ℓ2 (N0) act
as

D{𝜔𝑛} : {𝑟0, 𝑟1, . . . } ↦→ {𝜔0𝑟0, 𝜔1𝑟1, . . . },
S : {𝑟0, 𝑟1, . . . } ↦→ {0, 𝑟0, 𝑟1, . . . }.

Using them we define

𝑃 := D(𝑑𝑛), 𝑑𝑛 := 𝑛1/2 (𝑛 + 12 )
1/4 (𝑛 − 1

2 )
1/4,

𝑌 := D{(𝑛 + 12 )
1/2𝜁𝑛 (Λ)},

𝑌0 := D{𝑛 + 12 },
J (Λ, 𝜇) := 𝑃S + S∗𝑃 + 2𝜇𝑌 .
J0 (𝜇) := 𝑃S + S∗𝑃 + 2𝜇𝑌0 .
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The Jacobi matrix corresponding to the equation (4.5) multiplied by (𝑛 + 12 )
1/4 is

J (Λ, 𝜇). The difference J (Λ, 𝜇) − (J0 (𝜇) − 𝜇Λ) is a compact operator (see, e.g.,
[NS06]), hence we can study the absolutely continuous spectrum of the operator
J0 (𝜇). Its spectrum is determined by the value of the parameter 𝜇 and its character
changes abruptly at 𝜇 = 1.

Theorem 6.2 We have

𝜎(J0 (𝜇)) = 𝜎ac (J0 (𝜇)) = R for 0 < 𝜇 < 1,
𝜎(J0 (1)) = 𝜎ac (J0 (1)) = [0,∞),

𝜎(J0 (𝜇)) = 𝜎disc (J0 (𝜇)) ⊂ (0,∞) for 𝜇 > 1,
𝔪ac (𝐸,J0 (𝜇)) = 1 a.e. on 𝜎(J0 (𝜇))

where 𝔪ac denotes the multiplicity function of the absolutely continuous spectrum.

Repeating the reasoning of [NS06, Sec. 6–8] one can check that the spectrum of our
Hamiltonian is the union of spectra of the ‘free’ operator and that of the above Jacobi
operator:

Theorem 6.3 The spectrum of H0,0,0 is purely absolutely continuous, 𝜎(H0,0,0) =[ 1
2 ,∞

)
. For the ‘full’ operator we have

𝜎ac (H𝛼,𝛽,𝛾) = 𝜎ac (H0,0,0)

∪ 𝜎ac
(
J0

( 2
√
2𝛽

4 + 𝛼𝛽 + |𝛾 |2 −
√︁
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

))
∪ 𝜎ac

(
J0

( 2
√
2𝛽

4 + 𝛼𝛽 + |𝛾 |2 +
√︁
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

))
, 𝛽 ≠ 0,

𝔪ac (𝐸,H𝛼,𝛽,𝛾) = 𝔪ac (𝐸,H0,0,0)

+𝔪ac

(
𝐸,J0

( 2
√
2𝛽

4 + 𝛼𝛽 + |𝛾 |2 −
√︁
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

))
+𝔪ac

(
𝐸,J0

( 2
√
2𝛽

4 + 𝛼𝛽 + |𝛾 |2 +
√︁
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

))
, 𝛽 ≠ 0,

𝜎ac (H𝛼,0,𝛾) = 𝜎ac (H0,0,0) ∪ 𝜎ac
(
J0

(4 + |𝛾 |2

2
√
2𝛼

))
,

𝔪ac (𝐸,H𝛼,0,𝛾) = 𝔪ac (𝐸,H0,0,0) +𝔪ac

(
𝐸,J0

(4 + |𝛾 |2

2
√
2𝛼

))
.

The point where the expressions (4.6) equal to one, or where 4+|𝛾 |
2

2
√
2𝛼

= 1 if 𝛽 = 0,
characterize the manifold in the parameter space at which the spectral transition
occurs.
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7 Discrete spectrum

We know from the particular cases of the 𝛿 and 𝛿′ coupling that in the situation
naturally called subcritical, corresponding here to 𝜇 > 1, the discrete spectrum is
nonempty whenever the interaction is ‘switched on’. Let us look at it now in more
detail. We denote by 𝑁+ (𝜆,A) := dim 𝐸A (𝜆,∞) and 𝑁− (𝜆,A) := dim 𝐸A (−∞, 𝜆)
the dimension of the spectral projection on the intervals (𝜆,∞) and (−∞, 𝜆), respec-
tively; the symbol 𝐸A (·) denotes here the spectral measure of the operator A. These
quantities are introduced in the subcritical situation (𝜇 > 1) only.
To state the resultswe again need an auxiliary notion. By J(𝜀)wedenote the Jacobi

operator in ℓ2 (N0) such that the only nonzero entries in its matrix representation are

𝑗𝑛,𝑛−1 (𝜀) = 𝑗𝑛−1,𝑛 (𝜀) =
𝑛1/2

2(𝑛 + 𝜀)1/4 (𝑛 − 1 + 𝜀)1/4
, 𝑛 ∈ N.

We will also employ another Jacobi operator in ℓ2 (N0), denoted as J0, not to be
mixed up with J0 (𝜇) used above, with the non-zero entries

𝑗𝑛,𝑛−1 = 𝑗𝑛−1,𝑛 =
1

2(1 − 𝑛−1)1/4
, 𝑛 ∈ N\{1} .

Then we have the following result:

Theorem 7.1 Let the numbers (4.6) satisfy 𝜇1 > 1 or 𝜇2 > 1, then

𝑁−
(1
2
− 𝜀,H𝛼,𝛽,𝛾

)
= 𝑁1 (𝜀) + 𝑁2 (𝜀)

holds for 𝛽 ≠ 0, where

𝑁 𝑗 (𝜀) := 𝑁+ (𝜇 𝑗 , J(𝜀)) = 𝑁− (−𝜇 𝑗 , J(𝜀)) , 𝑗 = 1, 2 .

Furthermore, if 𝛽 = 0 and 4+|𝛾 |
2

2
√
2𝛼

> 1, we have

𝑁−
(1
2
− 𝜀,H𝛼,0,𝛾

)
= 𝑁+

(4 + |𝛾 |2

2
√
2𝛼

, J(𝜀)
)
= 𝑁−

(
− 4 + |𝛾 |2

2
√
2𝛼

, J(𝜀)
)
.

Proof The argument follows closely [So04b, Thm. 3.1] and [EL18, Thm. 10]. We
will give the proof for 𝛽 ≠ 0, the procedure for 𝛽 = 0 is similar. We remind that the
subspaces 𝐷 𝑗 ⊂ 𝐷, 𝑗 = 1, 2, defined in Section 3, are the subspaces of functions for
which the Jacobi equation holds with 𝜇 𝑗 , 𝑗 = 1, 2, cf. the formulæ (4.4a)–(4.4b). By
the variational principle,

𝑁−
( 1
2 − 𝜀, H𝛼,𝛽,𝛾

��
𝐷 𝑗

)
= maxF∈𝔉 𝑗 (𝜀) dimF ,

where 𝔉 𝑗 (𝜀) is the family of all subspaces F ⊂ 𝐷 𝑗 such that



18 Pavel Exner and Jiří Lipovský

a𝛼,𝛽,𝛾 [Ψ] −
( 1
2 − 𝜀

)
‖Ψ‖2

𝐿2 (R2) < 0 (7.1)

We define
‖Ψ‖2𝜀 :=

∑︁
𝑛∈N0

∫
R

(
|𝜓 ′
𝑛 (𝑥) |2 + (𝑛 + 𝜀) |𝜓𝑛 |2

)
d𝑥 ,

where 𝜓𝑛 (𝑥) are the coefficient functions ofΨ in the decomposition (3.4). As argued
in [EL18], the norm ‖Ψ‖𝜀 =

√︁
‖Ψ‖2𝜀 satisfies the parallelogram law, hence it is

induced by an inner product, namely

(Φ,Ψ)𝜀 :=
∑︁
𝑛∈N0

∫
R

(
𝜓 ′
𝑛 (𝑥)𝜙′𝑛 (𝑥) + (𝑛 + 𝜀)𝜓𝑛 (𝑥)𝜙𝑛 (𝑥)

)
d𝑥.

Next we define the subspaces 𝐷̃ 𝑗 (𝜀) ⊂ 𝐷 𝑗 , 𝑗 = 1, 2 consisting of the functions
Ψ̃ which are projections of Ψ with the components 𝑃𝑛𝜓̃ ( 𝑗)√

𝑛+𝜀 and the coefficient

sequence {𝑃𝑛}∞𝑛=0 ∈ ℓ
2 (N0), where 𝜓̃ ( 𝑗)√

𝑛+𝜀 are the functions defined in (3.3). In the
further text, we drop the subscript/supperscript 𝑗 , where it is not necessary. One
can check easily that the functions 𝑃𝑛𝜓̃√

𝑛+𝜀 are normalized in such a way that
‖Ψ̃‖𝜀 = ‖{𝑃𝑛}∞𝑛=0‖ℓ2 , and that

𝑃𝑛 :=
∫
R

(
𝜓 ′
𝑛 (𝑥) ¯̃𝜓 ′√

𝑛+𝜀 (𝑥) + (𝑛 + 𝜀)𝜓𝑛 (𝑥) ¯̃𝜓√
𝑛+𝜀 (𝑥)

)
d𝑥 .

Integrating by parts, one finds

𝑃𝑛 = 𝜓𝑛 (0−) ¯̃𝜓 ′√
𝑛+𝜀 (0−) − 𝜓𝑛 (0+)

¯̃𝜓 ′√
𝑛+𝜀 (0+)

= (𝜓𝑛 (0+)𝐾̄+ + 𝜓𝑛 (0−)𝐾̄−)
(𝑛 + 𝜀)1/4√︁
|𝐾+ |2 + |𝐾− |2

. (7.2)

The expression on the left-hand side of condition (7.1) can be rewritten as

a𝛼,𝛽,𝛾 [Ψ] −
(
1
2
− 𝜀

)
‖Ψ‖2

𝐿2 (R2) = ‖Ψ‖2𝜀 +
1
𝛽
(b1 [Ψ] + b2 [Ψ] + b3 [Ψ]) (7.3)

To deal with the second term on the right-hand side, we use formula (3.7). Let us as-
sume that the functionsΨ, Ψ̃𝜀 belong to a given𝐷 𝑗 , 𝐷̃ 𝑗 (𝜀) 𝑗 = 1, 2 ;wewant to check
that the mentioned expression will not change if we substitute Ψ̃𝜀 = {𝑃𝑛𝜓̃√

𝑛+𝜀} in-
stead of Ψ = {𝜓𝑛}. Using the values of 𝜓̃√

𝑛+𝜀 (0+), 𝜓̃√
𝑛+𝜀 (0−) from (3.3) and 𝑃𝑛

from (7.2) we have
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𝑃𝑛

(
𝜓̃√

𝑛+𝜀 (0+)
𝜓̃√

𝑛+𝜀 (0−)

)
= (𝜓𝑛 (0+)𝐾̄+ + 𝜓𝑛 (0−)𝐾̄−)

(𝑛 + 𝜀)1/4√︁
|𝐾+ |2 + |𝐾− |2

(
𝐾+
𝐾−

)
× 1

(𝑛 + 𝜀)1/4
√︁
|𝐾+ |2 + |𝐾− |2

=
1

|𝐾+ |2 + |𝐾− |2

(
𝐾+ 0
0 𝐾−

)
·
(
1 1
1 1

)
·
(
𝐾̄+ 0
0 𝐾̄−

)
·
(
𝜓𝑛 (0+)
𝜓𝑛 (0−)

)
,

where ‘·’ denotes matrix multiplication. We have used

(𝜓𝑛 (0+)𝐾̄+ + 𝜓𝑛 (0−)𝐾̄−) =
(
1 1

)
·
(
𝐾̄+ 0
0 𝐾̄−

)
·
(
𝜓𝑛 (0+)
𝜓𝑛 (0−)

)
,(

𝐾+
𝐾−

)
=

(
𝐾+ 0
0 𝐾−

) (
1
1

)
.

Both the coefficient functions 𝜓𝑛 and 𝜓𝑛−1 belong to 𝐷 𝑗 , hence we can write(
𝜓𝑛 (0+)
𝜓𝑛 (0−)

)
= 𝑄𝑛

(
𝐾+
𝐾−

)
,

where 𝑄𝑛 is a normalization constant, the value of which is not important. Defining

𝑀 :=
1

|𝐾+ |2 + |𝐾− |2

(
𝐾+ 0
0 𝐾−

) (
1 1
1 1

) (
𝐾̄+ 0
0 𝐾̄−

)
and writing 𝑀† for the Hermitian conjugate of this matrix, the equation we have to
check in order to justify the claim we made about the second term in (7.3) simplifies
to

|𝑄𝑛 |2
(
𝐾+
𝐾−

)†
𝑀†Σ𝑀

(
𝐾+
𝐾−

)
= |𝑄𝑛 |2

(
𝐾+
𝐾−

)†
Σ

(
𝐾+
𝐾−

)
which is not difficult to verify, for instance, using Mathematica.
In the rest of the proof, one can proceed in a way similar to that of [EL18, So04b].

If we replace Ψ by Ψ̃𝜀 in (7.3), the first term does not increase, because Ψ̃𝜀 is a
projection of the functionΨ. The second term is not affected by the change, as argued
previously, thus the inequality (7.1) holds true for Ψ̃𝜀 as well.
Consider two subspaces F , F ′ ∈ 𝔉 such that F ⊂ F ′ and F ∈ 𝐷̃ 𝑗 (𝜀). Should

there be an elementΨ ∈ 𝐷 𝑗 orthogonal to 𝐷̃ 𝑗 (𝜀), then we would have 𝑃𝑛 = 0 for all
𝑛 ∈ N which in turn implies b1 [Ψ] + b2 [Ψ] + b3 [Ψ] = 0. In such a case, however,
the inequality (7.1) would not hold, which is a contradiction. Consequently,

𝑁−

(
1
2
− 𝜀, H𝛼,𝛽,𝛾

��
𝐷 𝑗

)
= maxF∈𝔉 𝑗 (𝜀) , F∈𝐷̃ 𝑗 (𝜀) dimF .

For each Ψ̃𝜀 ∈ 𝐷̃ (𝜀) we have
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‖Ψ̃𝜀 ‖2𝜀+
1
𝛽
(b1 [Ψ] + b2 [Ψ] + b3 [Ψ])

=
∑︁
𝑛∈N0

|𝑃𝑛 |2 +
∑︁
𝑛∈N

√
𝑛

2
√
2
Re

[(
𝜓𝑛 (0+)
𝜓𝑛 (0−)

)†
Σ

(
𝜓𝑛−1 (0+)
𝜓𝑛−1 (0−)

)]
Using next the relation

𝑃𝑛 =
(
𝐾̄+ 𝐾̄−

) (
𝜓𝑛 (0+)
𝜓𝑛 (0−)

)
(𝑛 + 𝜀)1/4√︁
|𝐾+ |2 + |𝐾− |2

which follows from (7.2), the fact that the matrix Σ can be diagonalized using the
unitary matrix composed of its eigenvectors with the eigenvalues 2

√
2𝛽𝜇−1

𝑗
, and the

fact that we have restricted ourselves to the subspace 𝐷̃ 𝑗 (𝜀) corresponding to one of
its eigenspaces, we can rewrite the above expression as

‖Ψ̃𝜀 ‖2𝜀 +
1
𝛽
(b1 [Ψ] + b2 [Ψ] + b3 [Ψ]) =

∑︁
𝑛∈N0

|𝑃𝑛 |2 + 2𝜇−1𝑗
∑︁
𝑛∈N

𝑗𝑛,𝑛−1 (𝜀) Re (𝑃̄𝑛𝑃𝑛−1)

= ‖𝑔‖2
ℓ2 (N0) + 𝜇

−1
𝑗 (J(𝜀)𝑔, 𝑔)ℓ2 (N0)

= (𝐼 + 𝜇−1𝑗 J(𝜀)𝑔, 𝑔),

where 𝑔 = {𝑃𝑛} ∈ ℓ2 (N0). The claim of the theorem now follows from the decompo-
sition of the operator H𝛼,𝛽,𝛾 to the subspaces 𝐷 𝑗 in combination with the spectrum
of J(𝜀). �

Next we proceed in analogy with [So04b, Theorem 3.2] and [EL18, Theorem 11].
One cannot apply the previous theorem directly to the case 𝜀 = 0, because 𝑗1,0 = ∞.
Restricting the quadratic form to the subspace of 𝑔 = 𝑃𝑛 with 𝑃0 = 0, however, the
limit 𝜀 → 0 leads to the operator J0 introduced in the opening of this section. The
price we pay for this restriction is the possible change of the number of eigenvalues
by one. This leads to the first main result about the discrete spectrum.

Theorem 7.2 Let 𝛽 ≠ 0, 𝜇1 > 1and 𝜇2 ≤ 1. Then
��𝑁− ( 12 ,H𝛼,𝛽,𝛾) − 𝑁+ (𝜇1, J0)

�� ≤ 1;
the analogous relation holds if the roles of 𝜇1, 𝜇2 are interchanged. If both
𝜇1, 𝜇2 > 1, we have

��𝑁− ( 12 ,H𝛼,𝛽,𝛾) − 𝑁+ (𝜇1, J0) − 𝑁+ (𝜇2, J0)
�� ≤ 2. On the other

hand, for 𝛽 = 0 and 4+|𝛾 |
2

2
√
2𝛼

> 1 the inequality
��𝑁− ( 12 ,H𝛼,0,𝛾) − 𝑁+

( 4+|𝛾 |2
2
√
2𝛼
, J0

) �� ≤ 1
holds.

Finally, let us look how the cardinality of the discrete spectrum behaves when the
coupling parameters approach the critical values.

Theorem 7.3 We have the following asymptotic formulæ:

(i) If 0 < 𝛽 ≤ 2
√
2 and 𝛼 → 1

𝛽

[
|𝛾 |2

2
√
2(2

√
2−𝛽)

− (|𝛾 |2 − 4) −
√
2(2

√
2 − 𝛽)

]
as the

left limit, then 𝜇1 → 1+ and 𝑁− ( 12 ,H𝛼,𝛽,𝛾) ∼ 1
4
√
2
√
𝜇1−1

.
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(ii) If 𝛽 ≥ 2
√
2 and 𝛼 → 1

𝛽

[
|𝛾 |2

2
√
2(2

√
2−𝛽)

− (|𝛾 |2 − 4) −
√
2(2

√
2 − 𝛽)

]
as the left

limit, then 𝜇2 → 1+ and 𝑁− ( 12 ,H𝛼,𝛽,𝛾) ∼ 1
4
√
2
√
𝜇2−1

.

(iii) If 𝛾 = 0 and 𝛼𝛽 = 4, 𝛽 ≥ 2
√
2, then 𝜇1 = 𝜇2 and 𝑁− ( 12 ,H𝛼,𝛽,𝛾) ∼ 1

2
√
2
√︃

𝛽

2
√
2
−1

in the limit 𝛽 → 2
√
2+.

(iv) If 𝛽 = 0 then 𝑁− ( 12 ,H𝛼,0,𝛾) ∼ 21/4
4

√︃
𝛼

4+|𝛾 |2−2
√
2𝛼

holds as 4+|𝛾 |
2

2
√
2𝛼

→ 1+.

Proof One can check directly that for a nonzero 𝛽 satisfying the assumption we have

𝜇−11,2 =
𝛼𝛽 + |𝛾 |2 − 4
2
√
2𝛽

∓
√︁
(𝛼𝛽 + |𝛾 |2 − 4)2 + 16|𝛾 |2

2
√
2𝛽

+ 2
√
2
𝛽

→ 1−

in the limit

𝛼 → 1
𝛽

[
|𝛾 |2

2
√
2(2

√
2 − 𝛽)

− (|𝛾 |2 − 4) −
√
2(2

√
2 − 𝛽)

]
−

and to proceed as in [EL18, Thm 13] and [So04b, eq. (3.10)]. Specifically, by [So04b,
Thm3.3], the Jacobi operator J0 spectrum satisfies 𝑁+ (𝜇, J0) ∼ 1

4
√
2
√
𝜇−1
as 𝜇 → 1+;

by Theorem 7.2 we then obtain the claims (i) and (ii). The relation 𝜇1 = 𝜇2 in claim
(iii) can be easily verified under the condition 𝛾 = 0 and 𝛼𝛽 = 4, the rest follows
from Theorem 7.2. Finally, claim (iv) follows from the last part of Theorem 7.2. �
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8 Appendix: Asymptotics of solutions of the Jacobi equation

In this appendix, we give technical results on large 𝑛 asymptotics of the solutions
of the equation (4.5). First, we give without the proof the result by Birkhoff and
Adams [Ela99, Theorem 8.36] on the asymptotics of a more general system. A
misprint was corrected according to [NS06].

Theorem 8.1 Let the Jacobi equation

𝐶 (𝑛 + 1) + 𝑝1 (𝑛)𝐶 (𝑛) + 𝑝2 (𝑛)𝐶 (𝑛 − 1) = 0 (8.1)
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have the following large 𝑛 expansion of the functions 𝑝1 and 𝑝2

𝑝1 (𝑛) =
∞∑︁
𝑗=0
𝑎 𝑗𝑛

− 𝑗 , 𝑝2 (𝑛) =
∞∑︁
𝑗=0

𝑏 𝑗𝑛
− 𝑗 , 𝑏0 ≠ 0 .

Let 𝜆± be the roots of the quadratic equation 𝜆2 +𝑎0𝜆+ 𝑏0 = 0. Then the system (8.1)
has two linearly independent solutions𝐶± (𝑛) with the following large 𝑛 asymptotics.

1. For 𝜆+ ≠ 𝜆− it holds

𝐶± (𝑛) ∼ 𝜆𝑛±𝑛𝑑± , 𝑑± =
𝑎1𝜆± + 𝑏1
𝑎0𝜆± + 2𝑏0

.

2. For 𝜆+ = 𝜆− = 𝜆 it holds

𝐶± (𝑛) ∼ 𝜆𝑛e±𝛿
√
𝑛𝑛𝜅 , 𝛿 = 2

√︂
𝑎0𝑎1 − 2𝑏1
2𝑏0

, 𝜅 =
1
4
+ 𝑏1
2𝑏0

.

We use the previous theorem for finding the asymptotics of the solutions of the
equation (4.5).We slightly generalize [NS06, Lemma 3.3], allowing 𝜇 to be negative.

Lemma 8.2 Let 𝜇 ∈ R and Λ ∈ C\( 12 ,∞). Then the system (4.5) has two linearly
independent solutions 𝐶±

𝑛 with the following large 𝑛 asymptotics

1. For 𝜇2 < 1 it holds 𝐶±
𝑛 ∼ (𝜇 + 𝑖

√︁
1 − 𝜇2)±𝑛 𝑛

− 12∓
𝑖Λ𝜇

2
√
1−𝜇2 .

2. For 𝜇2 > 1 it holds 𝐶±
𝑛 ∼ (−𝜇 +

√︁
𝜇2 − 1)±𝑛 𝑛

− 12±
Λ𝜇

2
√
𝜇2−1 .

3. For 𝜇 = 1 it holds 𝐶±
𝑛 ∼ (−1)𝑛e±2

√
−Λ𝑛 𝑛−1/4.

4. For 𝜇 = −1 it holds 𝐶±
𝑛 ∼ e±2

√
−Λ𝑛 𝑛−1/4.

Proof The results follows directly fromTheorem 8.1. The system (4.5) is a particular
case of the system (8.1) with

𝑎0 = 2𝜇 , 𝑎1 = −𝜇(1 + Λ) , 𝑏0 = 1, 𝑏1 = −1 .

Using these values we obtain the quadratic equation 𝜆2 + 2𝜇𝜆 + 1 = 0 with the roots
𝜆± = −𝜇 ±

√︁
𝜇2 − 1. In the first two cases, we use the first case of Theorem 8.1 with

𝑑± = − 12 −
Λ
2

𝜇 (−𝜇±
√
𝜇2−1)

𝜇 (−𝜇±
√
𝜇2−1)+1

. In the latter two cases we apply the second case of
Theorem 8.1 since 𝜆± = −1 for 𝜇 = 1 and 𝜆± = 1 for 𝜇 = −1. �

The following lemma is taken from [NS06, eq. (3.20)].

Lemma 8.3 The solutions 𝐶𝑛 of the equation

𝑄𝑛+1𝐶𝑛+1 + 𝑃𝑛𝐶𝑛 +𝑄𝑛𝐶𝑛−1 = 0 , 𝑛 ∈ N0 (8.2)

with 𝑄𝑛 ∈ R, 𝑄0 = 0 satisfy the identity
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𝑁∑︁
𝑛=0

|𝐶𝑛 |2 Im 𝑃𝑛 = −𝑄𝑁+1 Im(𝐶𝑁+1𝐶𝑁 ) .

Proof The identity follows from multiplying (8.2) by 𝐶𝑛, taking the imaginary part
and taking the sum of 𝑛 from 0 to 𝑁 . �

Its corollary is also inspired by [NS06], however, its form is slightly different than
in the mentioned paper.

Corollary 8.4 Solutions of the equation (4.5) satisfy

2𝜇
𝑁∑︁
𝑛=0

|𝐶𝑛 |2 (𝑛+1/2)1/2 Im 𝜁𝑛 (Λ) = −(𝑁 +1)1/2
(
(𝑁 + 1)2 − 1

4

)1/4
Im (𝐶𝑁+1𝐶𝑁 ) .

(8.3)

Proof Taking in the Lemma 8.3 the values 𝑄𝑛 = 𝑛1/2 (𝑛2 − 1/4)1/4 and 𝑃𝑛 =

2𝜇(𝑛 + 1/2)1/2𝜁𝑛 (Λ), which correspond to (4.5) multiplied by (𝑛 + 1/2)1/4, the
result follows. �
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