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Abstract. In this paper we provide a comprehensive approach to the spectral fractional heat equa-
tion that combines purely analytic and probabilistic perspectives.

Furthermore, we give two new results on the monotonicity properties of the spectral fractional heat
diffusion with respect to the fractional parameter.

The first result deals with the spectral fractional heat kernel, evaluated at the initial singularity.
The second result considers the probability for the corresponding stochastic process of being confined
in a subregion of the domain.

In both results, the monotonicity property depends on the size of the first non-zero eigenvalue. The
cases of homogeneous Dirichlet and Neumann boundary conditions are addressed in details.

1. Introduction

In this paper we consider the heat equation driven by the spectral fractional Laplacian, both
with Dirichlet and Neumann data, and we obtain two original results concerning the monotonicity
properties of the corresponding heat kernel with respect to the fractional parameter. In doing so, we
revisit the analytic and probabilistic framework related to the fractional diffusion of spectral type,
providing a unified and essentially self-contained setting.

To introduce these results at a colloquial level, we will denote by rs(t, x, y) the solution of the
spectral fractional heat equation at time t > 0 evaluated at a point x ∈ Ω, with initial condition at
time t = 0 given by a Dirac delta function concentrated at a given point y ∈ Ω.

For our purposes, Ω is an open, connected and bounded subset of Rn with smooth boundary,
which allows us to expand functions in L2(Ω) through a basis of eigenfunctions. The action of the
fractional diffusive operator is therefore modelled through a power of the corresponding eigenvalues
and the superscript s in the notation rs(t, x, y) refers to the fractional power s ∈ (0, 1] that we take
into account. More specifically, the power s = 1 would correspond to the classical Laplacian and
thus to the classical heat kernel and the eigenfunctions and eigenvalues are considered here to be
either with homogeneous Dirichlet boundary conditions (in which case the corresponding fractional
diffusion kernel will be denoted by rsD(t, x, x)) or with homogeneous Neumann boundary conditions
(in which case the corresponding fractional diffusion kernel will be denoted by rsN(t, x, x)).

The rigorous details related to these types of fractional diffusion will be presented in Sections 1.1
and 1.2, for the moment we stick to the notation rs(t, x, y) to represent the corresponding heat kernel,
either with Dirichlet or Neumann condition. In this setting, our first original contribution focuses
on the monotonicity of the function rs(t, x, x) with respect to the fractional parameter s ∈ (0, 1], for
given t ∈ (0,+∞) and x ∈ Ω.

This question has a concrete meaning since the function rs(t, x, x) measures the amount of heat
remaining at time t precisely at the point corresponding to the initial heat singularity: roughly
speaking, the larger this function is, the more persistent the “memory of the initial singularity” is,
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while the smaller this function is, the easier for the system to “discharge the initial singularity” away
from its original location.

Interestingly, our result shows that the monotonicity of the spectral fractional heat kernel rs(t, x, x)
with respect to the fractional parameter s depends on the geometry of the domain Ω encoded by the
first non-zero eigenvalue. While the precise results will be provided in Theorems 1.10 and 1.22, we
can anticipate their statements as follows:

Theorem 1.1. If the first non-zero eigenvalue is bigger than or equal to 1, then the fractional heat
kernel rs(t, x, x) is monotone decreasing in s.

If instead the first non-zero eigenvalue is strictly less than 1, then for every 0 < s0 < s1 6 1 there
exists some T > 0 such that for each t > T

rs0(t, x, x) < rs1(t, x, x).

Additional comments relating the physical aspects of the fractional diffusion with the specific
geometry of the domains considered will be provided after Theorems 1.10 and 1.22, once the formal
mathematical setting has been fully developed.

The second original result that we present in this paper deals with the conditional probability
for the stochastic process corresponding to the fractional heat equation to remain confined in a
subregion Ω′ of Ω. Roughly speaking, and for the moment surfing over the technical complications of
a precise notation (which will be detailed in the forthcoming Sections 1.1 and 1.2), one could denote
by Yt the stochastic process corresponding to the spectral fractional diffusion (indices related to the
boundary conditions can be added to be more specific, but here we aim at comprising both Dirichlet
and Neumann data in a unified notation, for the sake of simplicity). Thus, one can also denote by Ps
the probability notion related to such a process and one looks at the conditional probability for the
stochastic process to lie in the subregion Ω′ at time t, given that the initial location of the process
was also in Ω′. Denoting this conditional probability by Ps(Yt ∈ Ω′|Y0 ∈ Ω′), we obtain:

Theorem 1.2. If the first non-zero eigenvalue is bigger than or equal to 1, then the conditional
probability Ps(Yt ∈ Ω′|Y0 ∈ Ω′) is monotone decreasing in s.

If instead the first non-zero eigenvalue is strictly less than 1, then for every 0 < s0 < s1 6 1 there
exists some T > 0 such that for each t > T

Ps0(Yt ∈ Ω′|Y0 ∈ Ω′) < Ps1(Yt ∈ Ω′|Y0 ∈ Ω′).

A precise version of this result, accounting also for the specific boundary conditions, will be given
in Theorems 1.11 and 1.23.

Theorems 1.1 and 1.2 (or, better to say, their rigorous formulation in Theorems 1.10, 1.11, 1.22
and 1.23) will be exploited in our forthcoming work [DGV] related to foraging models and hunting
strategies in the study of animal behavior.

Moreover, giving a detailed formulation of these original results and providing thorough proofs
of them offered us the occasion in this paper to provide an exhaustive analytic presentation of the
spectral fractional Laplacian and its connections with the heat equation. Additionally, in this paper,
the probabilistic methods are reviewed and compared to the analytic ones, providing a somewhat
unified setting.

We also mention that the reason for which we focus here on the spectral version of the fractional
Laplacian (rather than on other fractional possibilities appearing in the literature) consists mainly
in its facility of dealing with different boundary conditions at the same time and in a rather natural
way. For example, Dirichlet conditions for the integral (instead of spectral) fractional Laplacian need
to be assigned in the whole complement of the domain, making practical computations sometimes
complicated. Even more importantly, Neumann conditions for the integral fractional Laplacian ap-
pear at least in two different formulations, compare e.g. [FJ15] with [DROV17]: while one of these
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formulations has a clean geometric meaning, it appears to be often unfeasible from the point of view
of variational methods; on the other hand, the other formulation does appear to be more amenable
in terms of functional analysis and possesses a neat probabilistic interpretation (see [DV21a]), but
its global setting as an integral prescription in the complement of the domain makes often explicit
calculations quite unpractical.

The spectral formulation of the fractional problem presents instead the advantage of offering a
natural way to encode different sorts of boundary conditions into a setting which is easy to introduce
and structurally consistent with classical functional analysis. The price to pay for this convenience is
however that the probabilistic setting related to the spectral fractional Laplacian is somewhat more
sophisticated and possibly less transparent to non-specialists: to compensate for this disadvantage
we try to offer in this paper a setting which is as accessible as possible to a broad community of
readers.

To provide the reader with a glimpse of the conceptual structure of this paper, we give the following
flowchart:

Dirichlet boundary conditions

construction
of stochastic

processes

s-monotonicity
(Theorems 1.10

and 1.11)

existence,
uniqueness

and regularity

Neumann boundary conditions

construction
of stochastic

processes

s-monotonicity
(Theorems 1.22

and 1.23)

existence,
uniqueness

and regularity

In further detail, this paper is organized as follows.
In Sections 1.1 and 1.2 we introduce the precise mathematical framework that will be used through-

out the paper, and state the main results that will be proved. Here we define the Dirichlet and
Neumann spectral fractional heat equation and we state the theorems regarding the existence, reg-
ularity and uniqueness of the solution to these systems of equations (see Theorems 1.8 and 1.20
respectively for the Dirichlet and Neumann case). Moreover, we provide a Maximum Principle for
both the Dirichlet equation (Theorem 1.9) and Neumann equation (Theorem 1.21).

At the end of these sections we present the original results of this article. Specifically, in Theo-
rem 1.10 (resp., Theorem 1.22), we give a precise statement of Theorem 1.1 for the Dirichlet case
(resp., Neumann case). Analogously, in Theorem 1.11 (resp., 1.23), we rephrase Theorem 1.2 with a
detailed probabilistic notation for the Dirichlet case (resp., Neumann case).

In Section 2.1 we provide a presentation of the stochastic process associated to the kernel rsD,
which will be called subordinate killed Brownian motion, while in Section 2.2 we prove through
analytical arguments that this kernel is the unique solution to the Dirichlet spectral fractional heat
equation (1.10), giving thus a proof of Theorems 1.8 and 1.9. Finally, in Section 2.3 we prove
Theorems 1.10 and 1.11.

Similarly, in Section 3.1 we introduce the main properties concerning the stochastic process asso-
ciated with the Neumann kernel rsN , which will be called subordinate standard reflecting Brownian
motion. Section 3.2, is instead devoted to an analytical approach to the Neumann spectral fractional
heat equation (1.35). Here we prove Theorems 1.20 and 1.21, and therefore that the kernel rsN is the
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unique solution to the Neumann spectral fractional heat equation (1.35). The proofs of the original
results for the Neumann case (Theorems 1.22 and 1.23) are given in detail in Section 3.3.

1.1. The Dirichlet spectral fractional heat equation. To introduce the Dirichlet spectral frac-
tional heat equation we need to define the Dirichlet spectral fractional Laplacian. We take a bounded,
open and connected set Ω ⊂ Rn with smooth boundary and an orthonormal basis {φk}k of L2(Ω)
satisfying

(1.1)

{
−∆φk = λkφk in Ω,

φk ∈ H1
0 (Ω),

where the values 0 < λ1 6 λ2 < λ3 . . . are the eigenvalues of the Laplace operator with homogeneous
Dirichlet datum on the boundary of the domain (see for instance [Eva10, Section 6.5]). In particular,
since Ω has smooth boundary, the eigenfunctions φk are all C∞(Ω) (namely, they are differentiable
as many times as one wishes and their derivatives of any order are uniformly continuous in Ω).

Let us now consider a function u(t, x), with (t, x) ∈ (0,+∞)× Ω, such that u(t, ·) ∈ L2(Ω). Then
we can write the L2(Ω) decomposition of u(t, ·) in eigenfunctions as

(1.2) u(t, x) =
+∞∑
k=1

uk(t)φk(x), with uk(t) :=

∫
Ω

u(t, y)φk(y) dy,

where the convergence of the series in (1.2) is meant with respect to the L2(Ω)-norm.

Definition 1.3. Let s ∈ (0, 1). We define the Dirichlet spectral fractional Laplacian as

(−∆)sD,Ω : H2s
D (Ω) ⊂L2(Ω)→ L2(Ω)

u 7−→ (−∆)sD,Ωu :=
+∞∑
k=1

uk λ
s
k φk

(1.3)

where

(1.4) H2s
D (Ω) :=

{
u ∈ L2(Ω) s.t.

+∞∑
k=1

u2
k λ

2s
k < +∞

}
.

We stress that the “Dirichlet spectral fractional Laplacian” in (1.3) is different from the “integral
fractional Laplacian” and from the “regional fractional Laplacian” that have been also widely studied
in the recent literature: see e.g. [AV19] and the references therein for similarities and differences
between these fractional operators.

From now on, we denote by pΩ
D(t, x, y) the “fundamental solution” of the heat equation in Ω

with homogeneous Dirichlet condition corresponding to an initial heat density concentrated at the
point y ∈ Ω, namely pΩ

D(t, x, y) is the solution of

(1.5)


∂tu(t, x) = ∆u(t, x) for all (t, x) ∈ (0,+∞)× Ω,

u(t, x) = 0 for all (t, x) ∈ (0,+∞)× ∂Ω,

u(0, x) = δy(x) for all x ∈ Ω.

The function pΩ
D is often referred to with the name of classical Dirichlet heat kernel in Ω.

The following result is a consequence of Theorem 1 and Theorem 9 in [Itô57], together with
Lemma A.2 in Appendix A and Lemma 2.12 in Section 2.2 (to be precise, we also mention that the
uniqueness in the space C1((0,+∞), H1

0 (Ω)) can be proved with the exact same approach used to
show uniqueness for the system of equations (1.10) as stated in Theorem 1.8).
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Theorem 1.4. Let Ω be open, connected, bounded and smooth. Let us define the function

pΩ
D : (0,+∞)×Ω× Ω→ R

(t, x, y) 7→ pΩ
D(t, x, y) :=

+∞∑
k=1

φk(x)φk(y) exp(−tλk).
(1.6)

Then, for each y ∈ Ω the function pΩ
D(·, ·, y) is the unique solution to (1.5) in C1((0,+∞), H1

0 (Ω)).
Moreover, pΩ

D ∈ C∞([ε,+∞)× Ω× Ω) for each ε > 0.

We also recall a Maximum Principle for the Dirichlet heat kernel:

Theorem 1.5 (See Theorem 10.3 in [Bre11]). Let Ω be open, bounded, connected and with smooth
boundary. For each f ∈ L2(Ω) and (t, y) ∈ (0,+∞)× Ω we have that

(1.7) min
{

0, inf
Ω
f
}
6
∫

Ω

pΩ
D(t, x, y) f(x) dx 6 max

{
0, sup

Ω
f
}
.

It is also useful to recall that, utilizing the classical Dirichlet heat kernel, one can equivalently
express the spectral fractional Laplacian via the integration against a suitable kernel, plus a linear
term of order zero. The precise details of this statement go as follows:

Proposition 1.6 (See [SV03] and [AD17]). Let u ∈ H2s
D (Ω). Then, for almost every x ∈ Ω,

(1.8) (−∆)sD,Ωu(x) = p.v.

∫
Ω

[u(x)− u(y)] JD(x, y) dy +KD(x)u(x),

where

JD(x, y) :=
s

Γ(1− s)

∫ +∞

0

pΩ
D(t, x, y)

dt

t1+s

and KD(x) :=
s

Γ(1− s)

∫ +∞

0

(
1−

∫
Ω

pΩ
D(t, x, y) dy

)
dt

t1+s
.

(1.9)

The right-hand side of (1.8) is defined for each x ∈ Ω if u ∈ C2s+ε(Ω)∩L1(Ω, δ(x) dx) for some ε > 0,
where δ(x) := dist(x, ∂Ω).

The functions JD and KD in (1.9) are called respectively the jumping kernel and killing measure.
The killing measure has a probability interpretation that relates it to the lifetime of the stochastic
process generated by the Dirichlet spectral fractional Laplacian (see Remark 2.9).

As customary, the notation “p.v.” in (1.8) stands for “the principal value sense” and it means that
the integral is intended up to the removal of a ball around its singularity in the limit sense, that is

p.v.

∫
Ω

[u(x)− u(y)] JD(x, y) dy := lim
ε→0+

∫
Ω\Bε(x)

[u(x)− u(y)] JD(x, y) dy.

Equation (1.8) can be quite useful in practice: for instance, it leads to the following Maximum
Principle for (−∆)sD,Ω:

Lemma 1.7 (See Lemma 9 in [Aba16]). Let ε > 0 and u ∈ C2s+ε
loc (Ω) ∩ L1(Ω, δ(x) dx) be such that

(−∆)sD,Ωu(x) > 0 for all x ∈ Ω

and lim inf
Ω3x→p

u(x) > 0 for all p ∈ ∂Ω,

where (−∆)sD,Ω is given as in (1.8). Then, u(x) > 0 for all x ∈ Ω.
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For each s ∈ (0, 1) and y ∈ Ω the Dirichlet spectral fractional heat equation starting at y reads as

(1.10)


∂tu(t, x) = −(−∆)sD,Ω u(t, x) for all (t, x) ∈ (0,+∞)× Ω,

u(t, x) = 0 for all (t, x) ∈ (0,+∞)× ∂Ω,

u(0, x) = δy(x) for all x ∈ Ω.

The last equation is meant in the sense of measure: more precisely, defining

(1.11) C0(Ω) :=
{
f ∈ C(Ω) s.t. f(x) = 0 for all x ∈ ∂Ω

}
,

the last line in (1.10) means that, for each f ∈ C0(Ω),

(1.12) lim
t→0+

∫
Ω

u(t, x) f(x) dx = f(y).

No confusion should arise between the space C0(Ω) introduced in (1.11) and the more standard
space Cc(Ω), which is the space of continuous functions in Ω whose support is contained in Ω: in
particular, with this notation, we have that Cc(Ω) $ C0(Ω).

In this setting, one has the following basic structural results:

Theorem 1.8 (Existence, Uniqueness and Regularity of the solution to (1.10)). Let s ∈ (0, 1) and Ω
be open, bounded, connected and with smooth boundary. If we set

rsD : (0,+∞)×Ω× Ω→ R

(t, x, y) 7→ rsD(t, x, y) :=
+∞∑
k=1

φk(x)φk(y) exp(−tλsk),
(1.13)

then for each y ∈ Ω the function rsD(·, ·, y) is the unique solution to (1.10) in C1((0,+∞), H2s
D (Ω)).

Moreover, rsD ∈ C∞([ε,+∞)× Ω× Ω) for each ε > 0.

We will refer to rsD as the Dirichlet spectral fractional heat kernel. Using the Maximum Principle
for the classical heat kernel in equation (1.7) one can prove its fractional counterpart. More precisely
we state that:

Theorem 1.9 (Maximum Principle). Let s ∈ (0, 1) and Ω be open, bounded, connected and with
smooth boundary. For each f ∈ L2(Ω) and (t, y) ∈ (0,+∞)× Ω we have that

(1.14) min
{

0, inf
Ω
f
}
6
∫

Ω

rsD(t, x, y) f(x) dx 6 max
{

0, sup
Ω
f
}
.

Theorems 1.8 and 1.9 will be proven in Section 2.2. Additionally, we will establish in the forthcom-
ing Theorem 2.6 and Proposition 2.8 that rsD(·, ·, y) is the transition density in Ω of the aforementioned
subordinate killed Brownian motion, which will be denoted by Y Ω

D,y = (S, {Pt}t>0,P , {YD,t}t>0,PsD,y).
A detailed construction for this stochastic process with its main properties is contained in Section 2.1.
This means that rsD(t, x, y) represents the density of probability that the process starting at y ∈ Ω
will be in the position x ∈ Ω at a time t > 0. Therefore, the probability PsD,y(Y Ω

D,t ∈ Ω′) of finding

the process Y Ω
D,y starting at y ∈ Ω in some subset Ω′ at a time t > 0 is

(1.15) PsD,y(YD,t ∈ Ω′) =

∫
Ω′
rsD(t, x, y) dx.

We now point out one effect of subordination on the killed Brownian motion and a direct link
between the geometry of the domain and the notion of probability set forth in equation (1.16). In
particular, one can define the conditional probability

(1.16) PsD(YD,t ∈ Ω′′|YD,0 ∈ Ω′) :=
1

|Ω′|

∫
Ω′×Ω′′

rsD(t, x, y) dx dy,
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for each Ω′,Ω′′ ⊂ Ω, where Ω′ has positive measure. The probability in equation (1.16) is the
probability of being in a set Ω′′ at some time t > 0 starting the process from a set Ω′.

The relation between the geometry of the domain and this conditional probability is stated in the
next theorems, which are the main results of this paper. Their statements detect the monotonicity
properties in the fractional parameter s in relation to the diffusive process induced by the Dirichlet
fractional Laplacian. Interestingly, these monotonicity properties differ according to the size of the
first Dirichlet eigenvalue of the Laplacian. The precise results that we have go as follows:

Theorem 1.10. Let 0 < s0 < s1 6 1 and x ∈ Ω.

(i) If λ1 > 1, then for each t > 0 it holds that

(1.17) rs0D (t, x, x) > rs1D (t, x, x).

(ii) If λ1 < 1, then there exists some T > 0, depending on x, s0 and s1, such that for each t > T

(1.18) rs0D (t, x, x) < rs1D (t, x, x).

Theorem 1.11. Let 0 < s0 < s1 6 1 and Ω′ ⊂ Ω measurable with positive measure.

(i) If λ1 > 1, then for each t > 0 it holds that

(1.19) Ps0D (YD,t ∈ Ω′|YD,0 ∈ Ω′) > Ps1D (YD,t ∈ Ω′|YD,0 ∈ Ω′).

(ii) If λ1 < 1, then there exists some T > 0, depending on Ω′, s0 and s1, such that for each t > T

(1.20) Ps0D (YD,t ∈ Ω′|YD,0 ∈ Ω′) < Ps1D (YD,t ∈ Ω′|YD,0 ∈ Ω′).

Theorems 1.10 and 1.11 will be proven in Section 2.3. The relation between the inequalities (1.17)-
(1.20) and the geometry of the domain is encoded into the first eigenvalue λ1. As a matter of fact it
is well known that the first eigenvalue of the Dirichlet Laplacian is strictly related to the volume of
the domain and (under convexity assumptions) to its perimeter (see [GN13] and references therein).
Nevertheless, the volume of the domain is not the only geometrical feature of the domain that plays
some role on the estimation of the first eigenvalue.

To make this observation clear, for a general bounded domain Ω, we have the following upper and
lower bound (see formulas (4.9) and (4.12) in [GN13])

(1.21)

(
vn
|Ω|

) 2
n

β2
n
2
−1,1 6 λ1 6

(
βn

2
−1,1

ρ

)2

,

where βn
2
−1,1 is the first positive zero of the Bessel function Jn

2
−1, vn the Lebesgue measure of the

unit ball in Rn and

(1.22) ρ := max
x∈Ω

min
y∈∂Ω
|x− y|

is the inradius of Ω, namely the radius of the largest ball inscribed in Ω.
As a consequence of (1.21), one sees that if the domain Ω has a small enough measure, then λ1 > 1,

and therefore the monotonicity properties in (1.17) and (1.19) hold true. In the case of equation (1.19)
this means that, for a small domain, in the sense of measure, for lower values of s ∈ (0, 1) the
probability of getting out of any starting set Ω′ at any time t is lower.

This phenomenon is consistent with the heuristic idea that lower values of s correspond to a “less
regular” solution of the fractional heat equation, therefore, for lower values of s, if we focus our
attention only to the vicinity of the original source, a relatively large proportion of the mass of the
solution tends to remain confined for quite a long time near its initial location.

While it is tempting to consider this situation as an occurrence of “slow diffusion”, a pinch of salt is
needed when trying to make these considerations consistent, also in view of the following observation.

If the largest ball Bρ inscribed in Ω is large enough, then thanks to the right hand side inequality
in (1.21) we infer that λ1 < 1. In this case, we have that if we choose 0 < s0 < s1 < 1 and Ω′ ⊂ Ω,
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then there exists some T > 0 such that for all t > T the probability Ps0(YD,t ∈ Ω′|YD,0 ∈ Ω′) that
YD,t will be in the starting set Ω′ is smaller than the probability Ps1(YD,t ∈ Ω′|YD,0 ∈ Ω′).

This phenomenon is also consistent with the heuristic idea that lower values of s correspond to a
“fat tail” probability of jumping far away from the original location: in this sense, if the inradius is
sufficiently large, thus allowing these long jumps to occur, the long time behavior of the solution will
exhibit this sort of “fast diffusion”.

From these comments it should now be clear that the distinction between “slow” and “fast”
diffusion is possibly more delicate than what it may seem at a first glance and it cannot be reduced
merely to quantitative considerations about the fractional exponent of the equation (since, in light
of the above comments, small fractional exponents can exhibit both “slow” and “fast” diffusion with
respect to Dirichlet boundary conditions, and the size and shape of the domain may play an essential
role in selecting the appropriate phenomenon in different situations).

Note that in the scenario where Ω has very large Lebesgue measure, but is narrow enough so that ρ
is sufficiently small, inequality (1.21) does not give us a suitable upper or lower bound in order to
apply Theorem 1.11. Nevertheless, there are other inequalities available relating the first eigenvalue
of the Laplacian to the geometric properties of the domain Ω.

For instance, if the domain Ω is convex, then one can make the right-hand side in (1.21) more
precise. In particular (see equation (4.14) in [GN13]) we have that

(1.23) λ1 6 β2
n
2
−1,1

Hn−1(∂Ω)

n ρ |Ω|
,

where Hn−1 denotes, as usual, the (n− 1)-dimensional Hausdorff measure.

Remark 1.12. We observe that, for convex sets, the upper bound for λ1 in (1.23) is sharper than
that in (1.21). This is due to the geometrically interesting fact that, for convex sets,

(1.24) ρHn−1(∂Ω) 6 n |Ω|.

To check this, up to a translation, we can assume that

(1.25) Bρ ⊆ Ω.

Thus, we recall that, given x ∈ ∂Ω, if ν(x) is the unit exterior normal of Ω at x, then

(1.26) x · ν(x) > ρ.

This is possibly a classical inequality in convex geometry (see e.g. [BM20]), but we present its simple
proof for the convenience of the reader. Let y ∈ Ω. By convexity, we know that Ω is contained in its
supporting halfspace at x, namely

Ω ⊆ {z ∈ Rn s.t. (z − x) · ν(x) 6 0},

hence (y− x) · ν(x) 6 0. In particular, recalling (1.25) and choosing y := ρν(x) ∈ Bρ ⊆ Ω, we obtain
that

ρ = ρν(x) · ν(x) = y · ν(x) 6 x · ν(x)

and this proves (1.26).
From (1.26) we deduce that

n |Ω| =
∫

Ω

div(x) dx =

∫
∂Ω

x · ν(x) dHn−1(x) > ρHn−1(∂Ω),

and this proves (1.24), as desired.
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Figure 1. The set described in Example 1.13.

Example 1.13. To better appreciate the improvement provided by (1.23) for convex sets with
respect to the general case in (1.21) and to recognize the effect of this improvement in the setting of
Theorems 1.10 and 1.11, we provide here an elementary example of a convex set Ω such that

(1.27) β2
n
2
−1,1

Hn−1(∂Ω)

n ρ |Ω|
< 1 <

(
βn

2
−1,1

ρ

)2

.

In particular, for this set, we infer from (1.23) that λ1 < 1, therefore the claims in (ii) of Theorems 1.10
and 1.11 hold true: but we stress that (1.21) would have not guaranteed this, therefore this example
showcases that inequality (1.21), only relying on the measure of a domain and on the inradius, does
not provide optimal information on convex sets and instead other geometrical features play a decisive
role in the estimation of λ1, which is in turn crucial to detect the diffusivity properties of the spectral
heat kernels according to Theorems 1.10 and 1.11.

Let us now construct an example of a convex set satisfying (1.27). The existence of sets with this
property is somewhat a general fact (see e.g. the formula in display below (2.1) in [BM20]), but
we present an elementary example to keep the discussion as simple as possible. The example that
we construct is with boundary of class C1,1, but one can also regularize the boundary and obtain a
smooth set by exploiting this example.

The example that we present is the following. We pick ε ∈ (0, 1), to be conveniently chosen below.
We let h > 0, ρ := (1− ε)βn

2
−1,1 and

Ω :=
⋃

τ∈(−h/2,h/2)

Bρ(0, . . . , 0, τ).

See Figure 1 for a sketch of this set in R3. We point out that(
βn

2
−1,1

ρ

)2

=

(
βn

2
−1,1

(1− ε)βn
2
−1,1

)2

=
1

(1− ε)2
> 1,

therefore it only remains to check the first inequality in (1.27).
To this end, we denote by vn the n-dimensional Lebesgue measure of the unit ball in Rn and

by an−1 the (n− 1)-dimensional surface area of the boundary of the unit ball in Rn. It is well known
(see e.g. [DV21b, equation (1.2.6)]) that

vn =
an−1

n
.
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We observe that Ω consists of two halfballs of radius ρ glued on the top and on the bottom of a
cylinder of height h, therefore

|Ω| = |Bρ|+ hρn−1vn−1 = ρnvn + hρn−1vn−1

and

Hn−1(∂Ω) = Hn−1(∂Bρ) + hρn−2an−2 = ρn−1an−1 + hρn−2an−2 = nρn−1vn + (n− 1)hρn−2vn−1.

As a consequence,

β2
n
2
−1,1

Hn−1(∂Ω)

n ρ |Ω|
=

(
ρ

(1− ε)

)2
nρn−1vn + (n− 1)hρn−2vn−1

n ρ (ρnvn + hρn−1vn−1)

=
1

(1− ε)2

nρvn + (n− 1)hvn−1

nρvn + nhvn−1

.

Hence, since
nρvn + (n− 1)hvn−1

nρvn + nhvn−1

< 1,

we deduce that, if ε is small enough, possibly in dependence of ρ and n, then also

1

(1− ε)2

nρvn + (n− 1)hvn−1

nρvn + nhvn−1

< 1.

The proof of (1.27) is thereby complete.

1.2. The Neumann spectral fractional heat equation. Now we deal with the counterpart of the
spectral fractional heat equation presented in Section 1.1 when the boundary data are of Neumann,
rather than Dirichlet, type. Most of the main features are in common between the Dirichlet and the
Neumann case, since the functional analysis setting can be efficiently translated from one framework
into another. However, for clarity and completeness, we provide explicitly the technical details in the
Neumann case as well. For this, we proceed as follows.

We consider an orthonormal basis {ψk}k of L2(Ω) satisfying

(1.28)


−∆ψk = µkψk in Ω,

∂ψk
∂ν

= 0 on ∂Ω,

where the values 0 = µ0 < µ1 6 µ2 6 µ3 . . . are the eigenvalues of the Laplace operator with a
Neumann homogeneous boundary condition. In principle, the boundary condition in (1.28) should
be intended in the weak sense (see e.g. page 296 in [Bre11]), but, since the boundary of Ω is assumed
to be smooth, the eigenfunctions ψk belong to C∞(Ω) and (1.28) makes sense in the classical case.

Note also that the eigenfunction associated with the eigenvalue µ0 is just the constant function
normalized in L2(Ω). If u(t, x) with (t, x) ∈ (0,+∞)× Ω is such that u(t, ·) ∈ L2(Ω), then

u(t, x) =
+∞∑
k=0

uk(t)ψk(x), with uk(t) :=

∫
Ω

u(t, y)ψk(y) dy.

In line with the setting provided in Definition 1.3 for the Dirichlet case, we can thus introduce a
fractional Neumann framework as follows:

Definition 1.14. Let s ∈ (0, 1). We define the Neumann spectral fractional Laplacian as

(−∆)sN,Ω : H2s
N (Ω) ⊂L2(Ω)→ L2(Ω)

u 7−→ (−∆)sN,Ωu :=
+∞∑
k=0

uk µ
s
k ψk,

(1.29)
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where

(1.30) H2s
N (Ω) :=

{
u ∈ L2(Ω) s.t.

+∞∑
k=0

u2
k µ

2s
k < +∞

}
.

We observe that the space H2s
N (Ω) introduced in (1.30) coincides with the space H2s

D (Ω) introduced
in (1.4), except that the weights used here are the Neumann eigenvalues of the Laplacian, instead of
the Dirichlet ones.

It is also useful to consider the classical “fundamental solution” of the heat equation with homo-
geneous Neumann condition, that is the solution of

(1.31)


∂tu(t, x) = ∆u(t, x) for all (t, x) ∈ (0,+∞)× Ω,

∂u

∂ν
(t, x) = 0 for all (t, x) ∈ (0,+∞)× ∂Ω,

u(0, x) = δy(x) for all x ∈ Ω

where ν(x) is the outward pointing normal to ∂Ω at the point x ∈ ∂Ω, and the last equation is meant
in the sense of measure. The solution of (1.31) will be denoted by pΩ

N(t, x, y) and it is often referred
to with the name of classical Neumann heat kernel in Ω.

In what follows we denote by

W 1,2(Ω) :=

{
f ∈ W 1,2

N (Ω) s.t
∂f

∂ν
= 0

}
.

Theorem 1.1 and equation (2.4) in [Hsu84] together with Lemma A.2 in Appendix A and Lemma 3.8
in Section 3.2 (with the clarification that the uniqueness in the space C1((0,+∞),W 1,2

N (Ω)) can be
proved with the exact same approach used to show uniqueness for the system of equations (1.35) as
stated in Theorem 1.20) give us the following result:

Theorem 1.15. Let Ω be open, connected, bounded and smooth. Let us define the function

pΩ
N : (0,+∞)×Ω× Ω→ R

(t, x, y) 7→ pΩ
N(t, x, y) :=

+∞∑
k=0

ψk(x)ψk(y) exp(−tµk).
(1.32)

Then, for each y ∈ Ω the function pΩ
N(·, ·, y) is the unique solution to (1.5) in C1((0,+∞),W 1,2

N (Ω)).
Moreover, pΩ

N ∈ C∞([ε,+∞)× Ω× Ω) for each ε > 0.

The following Maximum Principle is a straightforward consequence of Theorem 1.2 in [Hsu84].

Theorem 1.16. Let Ω be open, bounded, connected and with smooth boundary. For each f ∈ L2(Ω)
and (t, y) ∈ (0,+∞)× Ω we have that

min
{

0, inf
Ω
f
}
6
∫

Ω

pΩ
N(t, x, y) f(x) dx 6 max

{
0, sup

Ω
f

}
.

In agreement with Proposition 1.6, one can give an equivalent definition for the Neumann spectral
fractional Laplacian by exploiting an integral operator built via a jumping kernel of Neumann type.
The explicit details go as follows:

Proposition 1.17 (See [AV19]). Let u ∈ H2s
N (Ω). Then,

(1.33) (−∆)sN,Ωu(x) = p.v.

∫
Ω

[u(x)− u(y)] JN(x, y) dy
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for almost every x ∈ Ω, where

(1.34) JN(x, y) :=
s

Γ(1− s)

∫ +∞

0

pΩ
N(t, x, y)

dt

t1+s
.

The right-hand side of (1.33) is well defined for each x ∈ Ω if u ∈ C2s+ε
loc (Ω)∩L∞(Ω) for some ε > 0.

The function in (1.34) is called Neumann jumping kernel.

Remark 1.18. An interesting structural difference between (1.8) and (1.33) consists in the fact that
the latter does not present any additional zero order term (equivalently, the Neumann type “killing
measure” vanishes identically). Indeed, suppose that there exists some k : Ω → R such that for
each u ∈ H2s

N (Ω) one has

(−∆)sN,Ωu(x) =

∫
Ω

[u(x)− u(y)] JN(x, y) dy + k(x)u(x)

for almost x ∈ Ω. Then, since 1 ∈ H2s
N (Ω), we would have thanks to (1.29) that

0 = (−∆)sN,Ω1(x) =

∫
Ω

(1− 1) JN(x, y) dy + k(x) = 0 + k(x).

Moreover, one obtains the following Maximum Principle for the Neumann spectral fractional Lapla-
cian, which can be seen as the Neumann counterpart of Lemma 1.7:

Lemma 1.19. Let ε > 0, u ∈ C2s+ε
loc (Ω) ∩ L∞(Ω) be non-constant and x∗ ∈ Ω such that u(x∗) =

infΩ u(x). Then it holds that

(−∆)sN,Ωu(x∗) < 0.

Now, for each s ∈ (0, 1) and y ∈ Ω, we consider the Neumann spectral fractional heat equation
starting at y, which reads as

(1.35)


∂tu(t, x) = −(−∆)sN,Ω u(t, x) for all (t, x) ∈ (0,+∞)× Ω,

∂u

∂ν
(t, x) = 0 for all (t, x) ∈ (0,+∞)× ∂Ω,

u(0, x) = δy(x) for all x ∈ Ω.

The last equation is meant in the sense of measure, see equation (1.12). In Section 3.2 we will
establish the following two basic results:

Theorem 1.20 (Existence, Uniqueness and Regularity of the solution to (1.35)). Let s ∈ (0, 1) and Ω
be open, bounded, connected and with smooth boundary. If we set

rsN : (0,+∞)×Ω× Ω→ R

(t, x, y) 7→ rsN(t, x, y) :=
+∞∑
k=0

ψk(x)ψk(y) exp(−tµsk).
(1.36)

then for each y ∈ Ω the function rsN(·, ·, y) is the unique solution to (1.35) in C1((0,+∞), H2s
N (Ω)).

Moreover, rsN ∈ C∞([ε,+∞)× Ω× Ω) for each ε > 0.

We call rsN the Neumann spectral fractional heat kernel.

Theorem 1.21 (Maximum Principle). Let s ∈ (0, 1) and Ω be open, bounded, connected and with
smooth boundary. For each f ∈ L2(Ω) and (t, y) ∈ (0,+∞)× Ω we have that

(1.37) min
{

0, inf
Ω
f
}
6
∫

Ω

rsN(t, x, y) f(x) dx 6 max

{
0, sup

Ω
f

}
.
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Later on (see Theorem 3.3 and Proposition 3.5) we will also prove that rsN(·, ·, y) is the transition
density of the aforementioned subordinate standard reflecting Brownian motion, which will be de-
noted by Y Ω

N,y = (S, {Pt}t>0,P , {YN,t}t>0,PsN,y). A detailed presentation of this stochastic process is
contained in Section 3.1. In this setting, rsN(t, x, y) represents the density of probability that the pro-
cess starting at y ∈ Ω will occupy the position x ∈ Ω at a time t > 0. Therefore, the probability PsN,y
of finding the process Y Ω

N starting at y ∈ Ω in some subset Ω′ ⊂ Ω at a time t ∈ (0,+∞) is

(1.38) PsN,y(YN,t ∈ Ω′) :=

∫
Ω′
rsN(t, x, y) dx.

Additionally (see Lemma 3.10) we will establish that the transition density rsN(t, ·, y) has L1(Ω)-
norm that is constantly equal to 1 for each t (and y ∈ Ω). This property is in agreement with
the fact that the process, once it reaches the boundary of Ω, gets reflected. Indeed, this reflection
property encodes the main difference between the killed motion, corresponding to an equation with
homogeneous Dirichlet boundary data, and the reflected motion, which produces a homogeneous
Neumann condition.

We now showcase two results which can be seen as the counterpart of Theorems 1.10 and 1.11 for
the Neumann case. To this end, assuming that a starting point y ∈ Ω is chosen uniformly in Ω, one
defines the conditional probability

(1.39) PsN(YN,t ∈ Ω′′|YN,0 ∈ Ω′) =
1

|Ω′|

∫
Ω′×Ω′′

rsN(t, x, y) dx dy,

for each Ω′,Ω′′ ⊂ Ω, where Ω′ has positive measure. Note that Ps(YN,t ∈ Ω′′|YN,0 ∈ Ω′) is the
probability of being in the set Ω′′ at a time t > 0 starting from a set Ω′ at t = 0 and following the
subordinate standard reflecting Brownian motion.

Given Ω′ ⊂ Ω, we also define µk(Ω′) as the first non-zero eigenvalue associated with an eigenfunction
satisfying

(1.40)

∫
Ω′
ψk(x) dx 6= 0.

Moreover, for each x ∈ Ω we denote with µk(x) the first non-zero eigenvalue associated with an
eigenfunction satisfying

(1.41) ψk(x) 6= 0.

The existence of µk(Ω′) and µk(x) is straightforward (see Proposition 3.14 for details). With this
notation, we have the following two results, which will be proven in Section 3.3:

Theorem 1.22. Let 0 < s0 < s1 6 1 and x ∈ Ω.

(i) If µk(x) > 1, then for each t > 0 it hods

(1.42) rs0N (t, x, x) > rs1N (t, x, x).

(ii) If µk(x) < 1, then there exists some T > 0, depending on s0, s1 and x, such that for each t > T

(1.43) rs0N (t, x, x) < rs1N (t, x, x).

Theorem 1.23. Let 0 < s0 < s1 6 1, Ω′ ⊂ Ω measurable with positive measure.

i) If µk(Ω′) > 1, then for each t > 0 we have

(1.44) Ps0N (YN,t ∈ Ω′|YN,0 ∈ Ω′) > Ps1N (YN,t ∈ Ω′|YN,0 ∈ Ω′).

ii) If µk(Ω′) < 1, then there exists some T > 0, depending on s0, s1 and Ω′, such that for
each t > T

(1.45) Ps0N (YN,t ∈ Ω′|YN,0 ∈ Ω′) < Ps1N (YN,t ∈ Ω′|YN,0 ∈ Ω′).
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Similarly to Theorems 1.10 and 1.11, also Theorems 1.22 and 1.23 relate the local behavior of
the subordinate standard reflecting Brownian motion to the geometry of the domain, through the
Neumann eigenvalues. However, differently from the Dirichlet case, the first eigenfunction µ0 does not
play any role in Theorems 1.22 and 1.23 concerning the behavior of Ps(YN,t ∈ Ω′|YN,0 ∈ Ω′) in relation
to s, since obviously µ0 = 0 and therefore a finer investigation is needed. Interestingly, as stated
in Theorems 1.22 and 1.23, the essential ingredient in this setting becomes the first eigenvalue µk
with k 6= 0 whose corresponding eigenfunction has either non-zero average in Ω′ (as detailed in (1.40),
corresponding to the statement in Theorem 1.22) or non-zero value at the point (as specified in (1.41),
in correspondence with Theorem 1.23).

We stress that, by construction, in (1.40) and (1.41) we have that k(Ω′) > 1 and k(x) > 1,
respectively. Therefore, µ1 6 µk(Ω′) and µ1 6 µk(x). Accordingly, if µ1 > 1 we get that also µk(Ω′) > 1
and µk(x) > 1. For this reason, a simple consequence of Theorems 1.22 and 1.23 is that if µ1 > 1
then the monotonicity claims with respect to the fractional parameter stated in (1.42) and (1.44)
hold true.

It is therefore desirable to have explicit lower bounds on µ1 in order to conveniently apply point (i)
in Theorems 1.22 and 1.23. To this end, we recall that, if Ω is convex, one has that

µ1 >
π2

δ2
,

where we have denoted by

δ := max
x,y∈∂Ω

|x− y|,

see [PW60, equation (1.9)]. Thus, if Ω is convex and its diameter δ is smaller than π, it follows
that µk(x), µk(Ω′) > 1, which in turns gives the validity of (1.42) and (1.44).

When µ1 < 1, it could still be possible that (1.42) and (1.44) hold true and therefore in this case
a finer analysis is needed to detect the size of µk(Ω′) and µk(x) respectively. To this end, we recall
(see [Krö92]) that, for all k = 0, 1, 2 . . . ,

µk 6

(
n+ 2

2

) 2
n 4π2k2/n

(vn|Ω|)
2
n

,

where vn is the Lebesgue measure of the unit ball in Rn. In particular, if the measure of Ω is
large enough with respect to either k(x) or k(Ω), one can deduce from the above inequality that
either µk(x) < 1 or µk(Ω) < 1, which permits to conclude that point (ii) in either Theorem 1.22
and 1.23 hold true in this case.

2. The spectral fractional heat equation with Dirichlet boundary conditions

In this section we study the Dirichlet spectral fractional heat equation (1.10) from a probabilistic
and analytic point of view.

Section 2.1 introduces some background on a stochastic process called the subordinate killed Brow-
nian motion. More precisely, we show that the transition density of this process coincides with the
Dirichlet spectral fractional heat kernel rsD given in equation (1.13).

Section 2.2 is devoted to the analytical study of the solution to the system of equations (1.10).
Here we prove Theorems 1.8 and 1.9. The first result states that the unique solution to (1.10) is
the Dirichlet spectral fractional heat kernel rsD, while Theorem 1.9 is a Maximum Principle for the
spectral fractional heat equation with Dirichlet boundary conditions.

In Section 2.3 we prove two new results, namely Theorems 1.10 and 1.11, which give us some inter-
esting monotonicity properties (with respect to the parameter s) of the kernel rsD and the conditional
probability given in equation (1.16).
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2.1. From the killed Brownian motion to the subordinate killed Brownian motion. In
this section we present a brief and self-contained construction of the subordinate killed Brownian
motion, which is a stochastic process built from the killed Brownian motion by introducing a random
choice of the time via a procedure called subordination (see [Boc49]). The detailed construction of
such a process is given in Theorem 2.6. More precisely, in Theorem 2.6 and Proposition 2.8 we prove
that the transition density associated with this stochastic process is the Dirichlet spectral fractional
heat kernel rsD defined in equation (1.13). Further details on this subject can be found for instance
in [SSV12].

Now we recall some basic facts related to the notion of Killed Brownian process. Roughly speaking,
the gist is that when the particle leaves the reference set Ω, it is placed into a “cemetery” where it
remains forever.

To formalize this heuristic idea, we let

(2.1) X :=
(
S,F , {Ft}t>0, {Xt}t>0, {Px}x∈Ω

)
be a family of classical n-dimensional Brownian motions in Rn starting at x ∈ Ω, namely

Px(X0 = x) = 1.

For a definition of Brownian motion see for instance [Bal17]; in practice, in (2.1) one can consider S =
C([0,+∞),Rn) and Xt(ω) = ω(t) for each ω ∈ S and t > 0.

Let us now recall the notion of first exit time random variable τΩ := inf{t : Xt 6∈ Ω}, and1 a
point ∂ ∈ Rn \ Ω.

Theorem 2.1 (See Theorems 2.2 and 2.4 in [CZ95]). Let Ω be open, bounded, smooth and con-
nected and x ∈ Ω. Consider the process XD,x := (S,F , {Ft}t>0, {XΩ

t }t>0,Px), where the random
variable XΩ

t : S→ Rn is defined by

XΩ
t :=

{
Xt if t < τΩ,

∂ if t > τΩ.

Then, the process XD,x is a Markov process and for each Lebesgue measurable set Ω′ ⊂ Ω and t > 0
it holds that

(2.2) Px(XΩ
t ∈ Ω′) =

∫
Ω′
pΩ
D(t, x, y) dy.

Definition 2.2. Let x ∈ Ω. The Markov process XD,x := (S,F , {Ft}t>0, {XΩ
t }t>0,Px) as defined in

Theorem 2.1 is called killed Brownian motion.

In view of Theorem 2.1, the semigroup {Tt}t>0 associated with XD,x is

Ttf(x) :=

∫
Ω

f(y) pΩ
D(t, x, y) dy = Ex[f(XΩ

t )],

for each f ∈ L2(Ω). Note that we are using the term “transition density” for pΩ
D(t, x, y) even

though pΩ
D is just the part of the transition density concentrated in Ω, which is not the whole state

space, that is instead Ω ∪ {∂}. Furthermore, for each x ∈ Ω,

(2.3) lim
t→+∞

P(XΩ
t ∈ Ω) = lim

t→+∞

∫
Ω

pΩ
D(t, x, y) dy = 0,

1The point ∂ is often called the “cemetery” of the stochastic process. Using “∂” to denote the cemetery is a typical
notation in the literature, hence we stick to it. No confusion should arise with the boundary of a set (as a matter of
fact, the two notations somewhat coincide for a classical Brownian motion, in the sense that the cemetery in this case
can be seen as the boundary of the domain, with all points identified into a single one).
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see e.g. [CZ95, Chapter 2]. From a physical point of view, the result in (2.3) highlights that the
process will eventually reach the boundary of Ω and will therefore be constrained in ∂, or, in other
terms, it will be killed.

The generator of the killed Brownian motion coincides with the Dirichlet Laplacian, namely

d

dt
Ttf |t=0 = lim

t→0+

Ttf − f
t

= ∆Ωf

for each f ∈ H1
0 (Ω).

We now frame the notion of Brownian motion into a more general concept, according to the
following classical framework:

Definition 2.3 (Lévy processes). Let (D̃,B,P) be a probability space. Then, we say that the stochastic
process X = (D̃,B, {Bt}t>0, {Xt}t>0,P) is a Lévy process if:

1) P(X0 = 0) = 1;
2) for any n ∈ N and 0 6 t1 < t2 < · · · < tn+1, the random variables (Xtj+1

− Xtj , 1 6 j 6 n)
are independent, and also Xtj+1

− Xtj and Xtj+1−tj − X0 are identically distributed for each
1 6 j 6 n;

3) X is stochastically continuous, namely for each a > 0 and for all s > 0 it holds

lim
t→s

P(|Xt −Xs| > a) = 0.

The Brownian motion is the prototype example of Lévy process, see for instance [App09].
We now recall the notion of s-stable subordinator. In a nutshell, a Lévy process is a subordinator

if its realization is increasing as a function of time. Also, a subordinator is stable when its Laplace
transform reduces to an exponential function of a power, as made precise through the following
setting:

Definition 2.4 (s-stable subordinator). Let s ∈ (0, 1) and S1 := C([0,+∞), [0,+∞)). We say that
a Lévy process

(2.4) S = (S1,G, {St}t>0, P̃s)
is an s-stable subordinator if the following properties are satisfied:

1) St(ω) is an increasing function of t > 0 for each ω ∈ S1;
2) for each λ > 0

(2.5) Ẽs[exp(−λSt)] :=

∫ +∞

0

exp(−xλ)µst(dx) = exp(−tλs),

where µst is the law associated with the random variable St, namely

(2.6) P̃s(St ∈ A) = µst(A)

for each Borel subset A ⊂ [0,+∞).

Some comments are in order about the reason behind the name of s-stability in Definition 2.4.
While the parameter s obviously refers to the exponent in (2.5), the notion of stability refers to the
fact that

if St and St are independent and satisfy (2.5),

then S̃t := St/2 + St/2 satisfies (2.5) as well.
(2.7)

To check this, we recall that the probability density µ̃st of S̃t satisfies the condition∫ +∞

0

f(z) µ̃st(dz) =

∫ +∞

0

∫ +∞

0

f(x+ y)µst/2(dx)µs
t/2

(dy)
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for each f which is Borel measurable, where µst/2 and µs
t/2

are the corresponding probability densities

respectively for St/2 and St/2. Therefore, we obtain that for each λ > 0∫ +∞

0

e−λx µ̃st(dx) =

∫ +∞

0

∫ +∞

0

e−λ(x+y) µst/2(dx)µs
t/2

(dy)

=

∫ +∞

0

∫ +∞

0

e−λx e−λy µst/2(dx)µs
t/2

(dy)

= e−λ
st/2

∫ +∞

0

e−λx µs
t/2

(dy)

= e−λ
st,

(2.8)

which confirms (2.7).

Remark 2.5. We also remark that the density µst of a s-stable subordinator is absolutely continuous
with respect to the Lebesgue measure for each s ∈ (0, 1). As a matter of fact, see for instance
Proposition 3.1 in [KV18], if we call

µst(l) :=

∫ +∞

0

e−lu−tu
s cos(πs) sin(tus sin(πs)) du for all l > 0,

then, µst ∈ L1((0,+∞)) for each t > 0 and s ∈ (0, 1), and also for each Borel subset A ⊂ [0,+∞) it
holds that

µst(A) =

∫
A

µst(l) dl.

Since the absolute continuity with respect to the Lebesgue measure is not needed in this paper, we
will keep using the notation

µst(A) =

∫
A

µst(dl),

for each Borel subset A ⊂ [0,+∞).

Now we introduce the subordinate killed Brownian motion through the operation of subordination,
which was first introduced by Bochner in [Boc49]. Roughly speaking, in this framework subordination
determines a random choice of the time t through the s-stable subordinator S, providing in this way
a new process (a formalization of this concept will be given in equation (2.9) here below). In the
following result we recall a classical formula for the transition density of this subordinate process,
which will be called subordinate killed Brownian motion. The formula is given in (2.10) and we
provide here a detailed analytic proof for the convenience of the reader.

Theorem 2.6. Let s ∈ (0, 1), Ω be open, bounded smooth and connected. Furthermore, let S =

(S1,G, {St}t>0, P̃s) be an s-stable subordinator and XD,x := (S,F , {Ft}t>0, {XΩ
t }t>0,Px) be a killed

Brownian motion as in Definition 2.2.
Let us define the family of stochastic processes

Y Ω
D := (S×S1, {Ft × G}t>0,F × G, {YD,t}t>0, {PsD,x}x∈Ω)

and YD,t(ω, ω1) := XΩ
St(ω1)(ω),

(2.9)

where PsD,x := Px × P̃s.
Then, for each x ∈ Ω the stochastic process Y Ω

D,x is a Markov process. Moreover, for each Lebesgue
measurable subset Ω′ ⊂ Ω we have that

(2.10) PsD,x(YD,t ∈ Ω′) =

∫
Ω′

∫ +∞

0

pΩ
D(l, x, y)µst(dl) dy.
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Proof. The process Y Ω
D,x is a Markov process (see for instance [Bou84]). Thus, we only have to prove

formula (2.10). Let Ω′ ⊂ Ω and t > 0, then we see that

PsD,x(YD,t ∈ Ω′) = PsD,x({(ω, ω1) ∈ S×S1 s.t. XSt(ω1)(ω) ∈ Ω′})

=

∫
S1

Px({ω ∈ S s.t. XSt(ω1)(ω) ∈ Ω′}) dP̃s(ω1).
(2.11)

Now we consider h > 0 and define the following quantities

Ik(h) :=

∫
{St(ω1)∈[kh,(k+1)h)}

(
Px(
{
ω ∈ S s.t XSt(ω1)(ω) ∈ Ω′

}
)

− Px({ω ∈ S s.t Xkh(ω) ∈ Ω′})
)
dP̃s(ω1)

and Jk(h) :=

∫ (k+1)h

kh

(Px({ω ∈ S s.t Xkh(ω) ∈ Ω′})− Px({ω ∈ S s.t Xl(ω) ∈ Ω′}))µst(l)dl.

(2.12)

With the notation in (2.12), we observe that∫
S1

Px(
{
ω ∈ S s.t XSt(ω1)(ω) ∈ Ω′

}
)dP̃s(ω1)

=
+∞∑
k=0

∫
{St(ω1)∈[kh,(k+1)h)}

Px(
{
ω ∈ S s.t XSt(ω1)(ω) ∈ Ω′

}
)dP̃s(ω1)

=
+∞∑
k=0

∫
{St(ω1)∈[kh,(k+1)h)}

Px({ω ∈ S s.t Xkh(ω) ∈ Ω′})dP̃s(ω1) +
+∞∑
k=0

Ik(h)

=
+∞∑
k=0

Px({ω ∈ S s.t Xkh(ω) ∈ Ω′})
∫
{St(ω1)∈[kh,(k+1)h)}

dP̃s(ω1) +
+∞∑
k=0

Ik(h)

=
+∞∑
k=0

Px({ω ∈ S s.t Xkh(ω) ∈ Ω′})P̃s(St(ω1) ∈ [kh, (k + 1)h)) +
+∞∑
k=0

Ik(h)

=
+∞∑
k=0

Px({ω ∈ S s.t Xkh(ω) ∈ Ω′})
∫ (k+1)h

kh

µst(dl) +
+∞∑
k=0

Ik(h)

=
+∞∑
k=0

∫ (k+1)h

kh

Px({ω ∈ S s.t Xl(ω) ∈ Ω′})µst(dl) +
+∞∑
k=0

Jk(h) +
+∞∑
k=0

Ik(h)

=

∫ +∞

0

∫
Ω′
pΩ
D(l, x, y) dyµst(dl) +

+∞∑
k=0

Jk(h) +
+∞∑
k=0

Ik(h).

(2.13)

Now we note that since Px(A) 6 1 for each A ∈ F , then

+∞∑
k=0

‖Ik(h)‖L∞((0,+∞)) 6
+∞∑
k=0

∫
{St(ω1)∈[kh,(k+1)h)}

dP̃s(ω1) = 1

and
+∞∑
k=0

‖Jk(h)‖L∞((0,+∞)) 6
+∞∑
k=0

∫ (k+1)h

kh

µst(l) dl = 1.

(2.14)

Furthermore, using (2.2) and the regularity of pΩ
D stated in Theorem 1.4 one gets that for each k ∈ N

(2.15) lim
h→0
Ik(h) = 0 and lim

h→0
Jk(h) = 0.
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By equations (2.14) and (2.15) we deduce that

lim
h→0

+∞∑
k=0

Ik(h) = 0 and lim
h→0

+∞∑
k=0

Jk(h) = 0.

Therefore, using the identity in (2.11) and taking the limit for h→ 0 in (2.13) we find that

(2.16) PsD,x(YD,t ∈ Ω′) =

∫ +∞

0

∫
Ω′
pΩ
D(l, x, y) dy µst(dl).

Hence we have proved formula (2.10), which concludes the proof of Theorem 2.6. �

According to Theorem 2.6, we can give the following:

Definition 2.7 (Subordinate killed Brownian motion, see [SV03]). For each x ∈ Ω the process Y Ω
D,x :=

(S × S1, {Ft × G}t>0,F × G, {YD,t}t>0,PsD,x) defined in Theorem 2.6 is called subordinate killed
Brownian motion starting at x and it is given by

(2.17) YD,t(ω, ω1) =

{
XΩ
St(ω1)(ω) if St(ω1) < τΩ(ω),

∂ if St(ω1) > τΩ(ω).

Now we show that the transition density of the subordinate killed Brownian motion coincides with
the Dirichlet spectral fractional heat kernel rsD defined in equation (1.13).

Proposition 2.8. Let rsD : (0,+∞)× Ω× Ω→ R be as in equation (1.13). Then,

(2.18) rsD(t, x, y) =

∫ +∞

0

pΩ
D(l, x, y)µst(dl) for all (t, x, y) ∈ (0,+∞)× Ω× Ω.

Proof. Thanks to Theorem 1.4 we have that

pΩ
D(t, x, y) =

+∞∑
k=1

φk(x)φk(y) exp(−tλk).

Using this and equation (2.5) we obtain that∫ +∞

0

pΩ
D(l, x, t)µst(dl) =

∫ +∞

0

+∞∑
k=1

φk(x)φk(y) exp(−lλk)µst(dl)

=
+∞∑
k=1

φk(x)φk(y)

∫ +∞

0

exp(−lλk)µst(dl)

=
+∞∑
k=1

φk(x)φk(y) exp(−tλsk)

= rsD(t, x, y).

(2.19)

The identity between the first and second line in (2.19) is guaranteed by the Dominated Convergence
Theorem, which can be applied thanks to (A.1) in Proposition A.1 and Lemma A.2. �

As a straightforward consequence of Theorem 2.6 and Proposition 2.8, the transition density asso-
ciated with the subordinate killed Brownian motion coincides with the Dirichlet spectral fractional
heat kernel given in equation (1.13). Therefore,

PsD,x(YD,t ∈ Ω′) =

∫
Ω′
rsD(t, x, y) dy



20 SERENA DIPIERRO, GIOVANNI GIACOMIN, AND ENRICO VALDINOCI

and accordingly

(2.20) PsD(YD,t ∈ Ω′′|YD,0 ∈ Ω′) =
1

|Ω′|

∫
Ω′×Ω′′

rsD(t, x, y) dx dy,

as anticipated in equation (1.16). The term |Ω′|−1 in equation (2.20) is a normalizing factor, and it is
introduced so that Ps(·|YD,0 ∈ Ω′) is actually a probability in S×S1. Clearly, since the state space
is not Ω (but Ω ∪ {∂}), for t > 0 we have Ps(YD,t ∈ Ω|YD,0 ∈ Ω′) < 1. By defining

PsD(YD,t ∈ ∂|YD,0 ∈ Ω′) := 1− PsD(YD,t ∈ Ω|YD,0 ∈ Ω′),

we deduce that Ps(·|YD,0 ∈ Ω′) is a probability with state space Ω ∪ {∂}.
In equation (1.8) of Proposition 1.6 we have stated that the Dirichlet spectral fractional Laplacian

admits an integral representation. In that expression, a zero order term KD, called the “killing
measure”, is present. In the following remark we point out its relation with the subordinate killed
Brownian motion.

Remark 2.9. For each x ∈ Ω there is a connection between the killing measure KD(x) computed
in x and the rapidity with which the process Y Ω

D,x exits the domain Ω. More specifically, we have the
identity (see Lemma 3.1 in [SV03])

KD(x) =
1

Γ(1− s)
Ex(τ−sΩ ).

In particular this means that a subordinate killed process with low values for the exit time τΩ will
have a greater “killing component”. In this sense the killing measure keeps track of the killing rate.

From Proposition 2.8 we also obtain that:

Proposition 2.10. Let s ∈ (0, 1) and Y Ω
D as in Definition 2.7. The semigroup associated with Y Ω

D

Rt :L2(Ω)→ L2(Ω)

f 7→ Rtf(x) :=

∫
Ω

f(y) rsD(t, x, y) dy,
(2.21)

satisfies
‖Rtf‖L2(Ω) < ‖f‖L2(Ω).

Proof. We can rewrite (2.21) as

Rtf(x) =

∫
Ω

f(y) rsD(t, x, y) dy

=

∫
Ω

+∞∑
k=1

φk(y)φk(x) exp(−tλsk) f(y) dy

=
+∞∑
k=1

φk(x) exp(−tλsk)
∫

Ω

φk(y) f(y) dy

=
+∞∑
k=1

fk φk(x) exp(−tλsk)

(2.22)

for each f ∈ L2(Ω). The identity between the second and third line is due to the bounds for the
eigenfunctions given in Proposition A.1, to Lemma A.2 and the Dominated Convergence Theorem.
Hence, we find that

‖Rtf‖L2(Ω) =

∥∥∥∥ +∞∑
k=1

φk(x)fk exp(−tλsk)
∥∥∥∥
L2(Ω)

=
+∞∑
k=1

f 2
k exp(−2λskt) <

+∞∑
k=1

f 2
k = ‖f‖L2(Ω). �
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As well known, the generator associated with the killed Brownian motion is the Dirichlet Laplacian
(see e.g. [CZ95, Theorem 2.13]). Now we show a similar result for the subordinate killed Brownian
motion, namely that the Dirichlet spectral fractional Laplacian in (1.3) is the generator of Y Ω

D .

Proposition 2.11. The generator of the process Y Ω
D is given by equation (1.3). Namely, for each

f ∈ H2s
D (Ω),

lim
t→0+

Rtf − f
t

= −(−∆)sD,Ωf,

where the convergence is meant in L2(Ω).

Proof. We will prove the statement first for the eigenfunctions of the Laplacian, and then by density
for all f ∈ H2s

D (Ω). Let φk be as in equation (1.1). Then we have that for each x ∈ Ω

Rtφk(x)− φk(x)

t
=

1

t

(∫
Ω

φk(y) rsD(t, x, y) dy − φk(x)

)
=

1

t

(∫
Ω

φk(y)
+∞∑
j=1

φj(x)φj(y) exp(−tλsj) dy − φk(x)

)

= φk(x)

(
exp(−tλsk)− 1

t

)
.

(2.23)

Let now f ∈ H2s
D (Ω), and consider its L2(Ω) decomposition f =

∑+∞
k=1 fk φk. Given ε > 0, we

pick N ∈ N sufficiently large such that∥∥∥∥∥f −
N∑
k=1

fk φk

∥∥∥∥∥
L2(Ω)

6 ε.

Thus, owing to Proposition 2.10,∥∥∥∥∥Rtf −
N∑
k=1

fk Rtφk

∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥Rt

(
f −

N∑
k=1

fk φk

)∥∥∥∥∥
L2(Ω)

6 ε.

This gives that

Rtf =
+∞∑
k=1

fk Rtφk,

where the convergence is intended in L2(Ω).
Since f ∈ H2s

D (Ω), we have that (−∆)sD,Ωf ∈ L2(Ω), hence

(−∆)sD,Ωf =
N∑
k=1

λskfk φk.

As a consequence, by (2.23),

Rtf − f
t

+ (−∆)sD,Ωf =
+∞∑
k=1

fk

(
Rtφk − φk

t
+ λskφk

)
=

+∞∑
k=1

fkφk

(
exp(−tλsk)− 1

t
+ λk

)
This gives that ∥∥∥∥Rtf − f

t
+ (−∆)sD,Ωf

∥∥∥∥2

L2(Ω)

=
+∞∑
k=1

f 2
k

(
exp(−tλsk)− 1

t
+ λsk

)2

.
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We observe that −λsk 6
exp(−tλsk)−1

t
< 0 for each t > 0, which means that

+∞∑
k=1

∥∥∥∥f 2
k

(
exp(−tλsk)− 1

t

)2 ∥∥∥∥
L∞(0,+∞)

6
+∞∑
k=1

f 2
kλ

2s
k < +∞,

where the last inequality is due to the fact that f ∈ H2s
D (Ω). Therefore,

lim
t→0

∥∥∥∥Rtf − f
t

+ (−∆)sD,Ωf

∥∥∥∥2

L2(Ω)

=
+∞∑
k=1

lim
t→0

f 2
k

(
exp(−tλsk)− 1

t
+ λsk

)2

= 0. �

2.2. Existence, Uniqueness and Maximum Principle for the Dirichlet spectral fractional
heat equation. We now focus on the existence, uniqueness and regularity of the solution to the
Dirichlet spectral fractional heat equation (1.10) and on a Maximum Principle for its solution, ad-
dressing the proofs of Theorems 1.8 and 1.9.

To start with, the following result establishes the regularity of the kernel rsD, which will be later
proved to be the solution to (1.10).

Lemma 2.12. Let s ∈ (0, 1] and Ω be open, bounded, smooth and connected. Then, rsD ∈ C∞([ε,+∞)×
Ω× Ω) for each ε > 0.

Proof. Consider the truncated series

(2.24) SM(t, x, y) :=
M∑
k=1

φk(x)φk(y) exp(−tλsk)

and (t, y) ∈ (0,+∞)× Ω. Thanks to Proposition A.1 and Lemma A.2
+∞∑
k=1

|φk(y)|2 exp(−2tλsk) 6 c2
m0,Ω,0

+∞∑
k=1

λ
2α(m0)
k exp(−2tλsk) < +∞,

and therefore

(2.25) SM(t, ·, y) converges to rsD,y(t, ·) := rsD(t, ·, y) in L2(Ω) for each (t, y) ∈ (0,+∞)× Ω.

From the L2(Ω) convergence of the series we obtain, possibly up to a subsequence, that SM(t, ·, y) is
converging a.e. to rsD,y(t, ·) in Ω. Using the estimates (A.1) and Lemma A.2 we observe that

+∞∑
k=1

‖φk(·)φk(y) exp(−tλsk)‖Cr(Ω) 6 cmr,Ω,rcm0,Ω,0

+∞∑
k=1

λ
α(m0)+α(mr)
k exp(−tλsk) < +∞.

This gives that SM(t, ·, y) is converging in Cr(Ω) to rsD(t, ·, y) for each r ∈ N. From this, we conclude
that rsD(t, ·, y) ∈ C∞(Ω), and since rsD is symmetric in the last two variables, we have that rsD(t, ·, ·) ∈
C∞(Ω× Ω) for each t ∈ (0,+∞).

The next step is to show that rsD ∈ C∞([ε,+∞) × Ω × Ω) for each ε > 0. Given (x, y) ∈ Ω × Ω
and ε > 0, we note that

+∞∑
k=1

‖Dγφk(x)Dβφk(y)
dr

dtr
exp(−tλsk)‖C0([ε,+∞))

6
+∞∑
k=1

‖φk‖C|γ|(Ω) ‖φk‖C|β|(Ω) ‖ exp(−tλsk)‖Cr([ε,+∞)) (λsk)
r

6cm|γ|,Ω,|γ|cm|β|,Ω,|β|

+∞∑
k=1

λ
α(m|γ|)+α(m|β|)+rs

k exp(−ελsk)

<+∞
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for each multindex β, γ ∈ Nn and r ∈ N. In particular, this estimate gives that

dr

dtr
DγDβSM →

dr

dtr
DγDβrsD for M → +∞

in C0([ε,+∞)), leading to rsD ∈ C∞([ε,+∞)× Ω× Ω) for any ε > 0. �

Now we prove that rsD is a solution to the first two equations in (1.10). The proof of the fact
that rsD solves also the third equation in (1.10) and that the solution is unique can be found at the
end of this section (see the proof of Theorem 1.8).

Lemma 2.13. Let s ∈ (0, 1) and Ω be open, bounded, smooth and connected. Then, for each y ∈ Ω
the function rsD,y(t, x) := rsD(t, x, y) is a solution to the first and second equation in (1.10).

Proof. First we show that rsD,y solves the first equation in (1.10). For this, we observe that Propo-
sition A.1 and Lemma A.2 yield that we can differentiate with respect to t inside the sum, and
thus

∂tr
s
D,y(t, x) = −

+∞∑
k=1

φk(x)φk(y)λsk exp(−t λsk) = −(−∆)sD,Ωr
s
D,y(t, x),

which proves that rsD,y solves the first equation in (1.10).
Furthermore, we recall the uniform convergence of the series SM(t, ·, y) in Ω for each (t, y) ∈

(0,+∞)×Ω to rsD,y(t, ·), as given by (2.25). Since φk(x) = 0 for each x ∈ ∂Ω and k > 1, then we get
that also rsD,y(t, x) = 0 for each x ∈ ∂Ω. These observations show that rsD,y solves also the second
equation in (1.10), and this concludes the proof of Lemma 2.13. �

We now state and prove a technical result that will be useful later in order to prove the Maximum
Principle stated in Theorem 1.9. More specifically, we will obtain a continuity with respect to the
initial data (see the forthcoming equation (2.27)) which will be used to prove that rsD satisfies the
third equation in (1.10) (as stated in Theorem 1.8 below).

Lemma 2.14. Let s ∈ (0, 1) and Ω be open, bounded, smooth and connected. For each f ∈ L2(Ω)
the function Rtf defined in (2.21) is the unique solution in C([0,+∞), L2(Ω))∩C1((0,+∞), H2s

D (Ω))
to the system of equations

(2.26)


∂tu(t, y) = −(−∆)sD,Ωu(t, y) for all (t, y) ∈ (0,+∞)× Ω,

u(t, y) = 0 for all (t, y) ∈ (0,+∞)× ∂Ω,

u(0, y) = f(y) for all y ∈ Ω.

The last equation in (2.26) is meant as

lim
t→0
‖u(t, y)− f(y)‖L2(Ω) = 0.

Furthermore, for each ε > 0, it holds that Rtf(y) ∈ C∞([ε,+∞)×Ω). Moreover, if f ∈ C∞c (Ω), then

(2.27) lim
t→0
‖Rtf(y)− f(y)‖L∞(Ω) = 0.

Proof. Let f ∈ L2(Ω). First we show that Rtf satisfies the first equation in (2.26). By Lemma 2.12
we have that rsD ∈ C∞([ε,+∞) × Ω × Ω) for each ε > 0. From this regularity result one easily
deduces that Rtf(y) ∈ C∞([ε,+∞)× Ω) for each ε > 0. In view of (2.22), we know that

(2.28) Rtf(y) =
+∞∑
k=1

fk φk(y) exp(−tλsk),
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and using Proposition A.1 and Lemma A.2 we obtain that

∂tRtf(y) =
+∞∑
k=1

fk φk(y)
d

dt
exp(−tλsk) = −

+∞∑
k=1

λsk fk φk(y) exp(−tλsk) = −(−∆)sD,ΩRtf(y).

This proves that Rtf satisfies the first equation in (2.26).
Also the second equation in (2.26) is satisfied by Rtf . Indeed, thanks to Proposition A.1 and

Lemma A.2 for each t > 0 the series on the right-hand side of (2.28) converges uniformly in y ∈ Ω,
and since the φk’s are all vanishing on ∂Ω, we can conclude that the second equation in (2.26) holds
true.

Now we verify that Rtf satisfies the last equation in (2.26). Using (2.28) and the fact that f ∈
L2(Ω) we obtain that

lim
t→0+

∫
Ω

|Rtf(y)− f(y)|2 dy = lim
t→0+

+∞∑
k=1

(exp(−tλsk)− 1)2 f 2
k = 0

=
+∞∑
k=1

lim
t→0+

(exp(−tλsk)− 1)2 f 2
k = 0.

(2.29)

Therefore, we have proved that Rtf satisfies also the third equation in (2.26). Now, from the fact
that Rtf(y) ∈ C∞([ε,+∞)× Ω) for each ε > 0 together with equations (2.29) and (2.28) we deduce
that Rtf(y) ∈ C([0,+∞), L2(Ω)) ∩ C1((0,+∞), H2s

D (Ω)). Therefore, we have proved that Rtf is a
solution to (2.26) in the space C([0,+∞), L2(Ω)) ∩ C1((0,+∞), H2s

D (Ω)).
Let us now discuss the uniqueness of the solution of (2.26). It is showed by using the monotonicity2

of the operator (−∆)sD,Ω. In particular suppose that g(t, y) ∈ C([0,+∞), L2(Ω))∩C1((0,+∞), H2s
D (Ω))

is another solution to (2.26), then

d

dt

∫
Ω

|Rtf(y)− g(t, y)|2 dy =
d

dt

∫
Ω

(Rtf(y)− g(t, y)) (Rtf(y)− g(t, y)) dy

= −
∫

Ω

(−∆)sD,Ω (Rtf(y)− g(t, y)) (Rtf(y)− g(t, y)) dy

6 0

Therefore, the function κ(t) := ‖Rtf(y) − g(t, y)‖2
L2(Ω) is positive, decreasing, continuous and by

hypothesis κ(0) = 0. This implies that κ(t) = 0 for each t > 0, which means that Rtf(y) = g(t, y)
for each t ∈ (0,+∞) and for almost every y ∈ Ω.

We now prove the limit in equation (2.27). Let f ∈ C∞c (Ω). For this, we note that, by Proposi-
tion A.4,

+∞∑
k=1

‖fkφk‖L∞(Ω)‖(1− exp(−tλsk))‖L∞([0,+∞)) 6
+∞∑
k=1

‖fkφk‖L∞(Ω) < +∞.

2An operator A : D(A) ⊂ H → H is said monotone if (Av, v) > 0 for each v ∈ D(A), where (H, (·, ·)) is an Hilbert
space. For further details see [Bre11].
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Therefore, using (2.28) we conclude that

lim
t→0+
‖Rtf − f‖L∞(Ω) = lim

t→0+

∥∥∥∥ +∞∑
k=1

fk φk exp(−tλsk)−
∞∑
k=1

fkφk

∥∥∥∥
L∞(Ω)

6 lim
t→0+

+∞∑
k=1

‖fkφk‖L∞(Ω)(1− exp(−tλsk))

=
+∞∑
k=1

‖fkφk‖L∞(Ω) lim
t→0+

(1− exp(−tλsk))

= 0. �

Now we are ready to prove the Maximum Principle for the Dirichlet spectral fractional heat equa-
tion (1.10) as stated in Theorem 1.9. With a rather standard method in parabolic PDEs, in the
following proof we use an argument based on the Maximum Principle for the operator (−∆)sD,Ω.

Alternatively, Theorem 1.9 can be proved by making use of the probabilistic framework developed
in Section 2.1. More specifically, one can deduce the two-sided inequality in (1.14) from the Maximum
Principle for the classical Dirichlet heat equation and formula (2.18). A proof using the probabilistic
approach can be found in Appendix B. Instead, here we present a purely analytical proof which does
not require any probability result.

Proof of Theorem 1.9. We focus on the proof of the right-hand side inequality in (1.14). Let us first
assume that f ∈ C∞c (Ω) (the general case will then be treated by using an approximation argument).
By Lemma 2.14 we know that Rtf(y) =: f(t, y) ∈ C([0,+∞)×Ω)∩C∞([δ,+∞)×Ω) for each δ > 0.
Let us call K := max {0, supΩ f}, and assume by contradiction that there exists (t∗, y∗) ∈ (0,+∞)×Ω
such that

f(t∗, y∗) > K.

We define a new function W (t, y) := f(t∗, y∗)− ε− f(t, y), where ε > 0 is a constant satisfying

(2.30) ε < inf
Ω

(f(t∗, y∗)− f(x)) .

Note that W (t, y) ∈ C([0,+∞)× Ω) ∩ C∞([δ,+∞)× Ω) for each δ > 0. Then, we observe that

W (0, y) > 0 and W (t∗, y∗) < 0,

and therefore there exists a point (t̃, ỹ) ∈ (0,+∞)× Ω such that

W (t, y) > 0 for all (t, y) ∈ [0, t̃)× Ω,

W (t̃, ỹ) = 0 and W (t̃, y) > 0 for all y ∈ Ω.
(2.31)

In particular this means that
∂tW (t̃, ỹ) 6 0.

Moreover, using the Maximum Principle for (−∆)sD,Ω given in Lemma 1.7 and the fact that ỹ is a

minimum for W (t̃, ·), we deduce that

(−∆)sD,ΩW (t̃, ỹ) 6 0.

Therefore, we get
∂tW (t̃, ỹ) + (−∆)sD,ΩW (t̃, ỹ) 6 0.

On the other hand, using the fact that f(t, y) is a solution to the first equation in (2.26) (as established
by Lemma 2.14) we obtain that

∂tW (t̃, ỹ) + (−∆)sD,ΩW (t̃, ỹ) = −∂tf(t̃, ỹ) + (−∆)sD,Ω(f(t∗, y∗)− ε)− (−∆)sD,Ωf(t̃, ỹ)

= (−∆)sD,Ω(f(t∗, y∗)− ε) > 0,
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providing a contradiction. This completes the proof of the right-hand side inequality in (1.14)
when f ∈ C∞c (Ω).

We now prove the right-hand side inequality in (1.14) when f ∈ L2(Ω). To do so let us first observe
that

(2.32) rsD(t, x, y) > 0 for each (t, x, y) ∈ (0,+∞)× Ω× Ω.

Indeed, if by contradiction there exist (t0, x0, y0) such that rsD(t0, x0, y0) < 0, then by continuity there
exists a neighbourhood Vx0 of x0 such that rsD(t0, ·, y0)|Vx0 < 0. Now, given a function g ∈ C∞c (Vx0)
such that g > 0, we define

g(t, y) :=

∫
Vx0

rsD(t, x, y) g(x) dx

and we see that

g(t0, y0) =

∫
Vx0

rsD(t0, x, y0) g(x) dx < 0.

On the other hand, g(t, y) is the solution to (2.26) with initial condition g(x), and therefore g(t, x) > 0
for each (t, x) ∈ (0,+∞)× Ω, thus providing the desired contradiction and establishing (2.32).

Let us now consider a sequence of invading compact sets Kn ⊂ Ω, namely ∪+∞
k=1Kn = Ω, and Kn ⊂

Kn+1 for each n, and a sequence of smooth functions fn ∈ C∞c (Ω) such that fn|Kn = 1 and 0 6 fn 6 1.
Then for each (t, y) ∈ (0,+∞)× Ω we have that∫

Ω

rsD(t, x, y) dx = lim
n→+∞

∫
Ω

rsD(t, x, y) fn(x) dx,

where the identity is guaranteed by the Dominated Convergence Theorem.
Furthermore, notice that, for each n,∫

Ω

rsD(t, x, y) fn(x) dx 6 max

{
0, sup

Ω
fn

}
= 1.

These observations give that

(2.33)

∫
Ω

rsD(t, x, y) dx 6 1.

Therefore, if f ∈ L2(Ω) we have that

f(t, y) =

∫
Ω

rsD(t, x, y) f(x) dx 6 max

{
0, sup

Ω
f

}∫
Ω

rsD(t, x, y) dx 6 max

{
0, sup

Ω
f

}
,

and this proves the right-hand side inequality of (1.14) when f ∈ L2(Ω).
The left-hand side inequality of (1.14) can be proved analogously. �

For the sake of completeness, we now improve the statement in (2.32) by showing the strict
positivity of the Dirichlet spectral fractional heat kernel rsD.

Corollary 2.15. Let s ∈ (0, 1) and Ω be open, bounded, smooth and connected. Then, for each (t, x, y) ∈
(0,+∞)× Ω× Ω it holds that

rsD(t, x, y) > 0.

Proof. We recall (2.32) and we argue by contradiction supposing that there exists some (t0, x0, y0) ∈
(0,+∞)× Ω× Ω such that rsD(t0, x0, y0) = 0. Then, using (1.8) and Lemma 2.13 we have that

∂tr
s
D(t0, x0, y0) = −(−∆)sD,Ωr

s
D(t0, x0, y0)

= −
∫

Ω

(0− rsD(t0, x, y0)) JD(x0, x) dx > 0.

Therefore, the function t 7→ rsD(t, x0, y0) is strictly increasing in t in a neighbourhood of t0.
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Since rsD(t0, x0, y0) = 0, we conclude that there exists some t < t0 such that rsD(t, x0, y0) < 0, which
is in contradiction with (2.32). �

As a consequence of Corollary 2.15 we establish that Rt : C0(Ω) → C0(Ω) is continuous with
Lipschitz constant 1. This continuity result will be fundamental when proving that rsD(t, x, y) solves
also the third equation in (1.10).

Corollary 2.16. Let s ∈ (0, 1) and Ω ⊂ Rn be open, bounded, smooth and connected. Then,

Rt : C0(Ω)→ C0(Ω)

f 7−→ Rtf

satisfies

(2.34) ‖Rtf‖L∞(Ω) 6 ‖f‖L∞(Ω).

Proof. From Corollary 2.15 and inequality (2.33) we obtain that

|Rtf(y)| =
∣∣∣∣ ∫

Ω

rsD(t, x, y) f(x) dx

∣∣∣∣ 6 ‖f‖L∞(Ω)

∫
Ω

rsD(t, x, y) dx 6 ‖f‖L∞(Ω),

for every y ∈ Ω. Taking the maximum in y ∈ Ω of both sides we get (2.34), as desired. �

Now we address the proof of Theorem 1.8.

Proof of Theorem 1.8. In Lemma 2.12 we already proved that rsD ∈ C∞([ε,+∞) × Ω × Ω) for each
ε > 0. Moreover, thanks to Lemma 2.13 we know that rsD,y is a solution to the first and second
equation in (1.10). It is left to show that it satisfies the third equation, and that is unique in
C1((0,+∞), H2s

D (Ω)). Let us first prove that rsD(·, ·, y) satisfies the third equation in (1.10).
Let f ∈ C0(Ω) and consider a sequence of smooth functions {fn}n ⊂ C∞c (Ω) such that fn converges

uniformly in Ω to f . Then we have that for each y ∈ Ω,

|Rtf(y)− f(y)| 6 |Rtf(y)−Rtfn(y)|+ |Rtfn(y)− fn(y)|+ |fn(y)− f(y)|
6 ‖Rtf −Rtfn‖L∞(Ω) + ‖Rtfn − fn‖L∞(Ω) + ‖fn − f‖L∞(Ω).

Given ε > 0, there exists Nε ∈ N such that for all n > Nε with n ∈ N it holds ‖fn − f‖L∞(Ω) < ε.
Thanks to Corollary 2.16 we know that Rt : C0(Ω) → C0(Ω) is continuous, and therefore if n > Nε

we get that
‖Rtf −Rtfn‖L∞(Ω) 6 ‖fn − f‖L∞(Ω) < ε.

Given n > Nε, thanks to equation (2.27), we have that for each t > 0 small enough it holds
‖Rtfn − fn‖L∞(Ω) < ε. Therefore, we have just proved that for each f ∈ C0(Ω) and y ∈ Ω it holds
that

lim
t→0

∫
Ω

rsD(t, x, y) f(x) dx = f(y),

which establishes that the function rsD,y(t, x) := rsD(t, x) satisfies also the third equation in (1.10).

Note that rsD,y(t, x) ∈ C1((0,+∞);H2s
D (Ω)). Indeed, in view of Proposition A.1, Lemma A.2 and

equation (1.4) we have that for each δ > 0

+∞∑
k=1

λ2s
k φk(y)2‖ exp(−2tλsk)‖L∞((δ,+∞)) < +∞

and
+∞∑
k=1

λ2s
k φk(y)2

∥∥∥∥ ddt exp(−2tλsk)

∥∥∥∥
L∞((δ,+∞))

< +∞.

Now that we have showed that rsD,y ∈ C1((0,+∞);H2s
D (Ω)) is a solution to (1.10), let us prove that

it is unique in C1((0,+∞);H2s
D (Ω)). Suppose by contradiction that there exists, for some y ∈ Ω, a
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map vy(t, x) that satisfies equations (1.10) and such that vy(t, x) ∈ C1((0,+∞), H2s
D (Ω)). Then we

can write

vy(t, x) =
+∞∑
k=1

ck(t, y)φk(x),

where ck(t, y) ∈ C1((0,+∞)) as a consequence of the hypothesis vy(t, x) ∈ C1((0,+∞);H2s
D (Ω)).

Since vy is a solution to the Dirichlet spectral fractional heat equation (1.10) we have that

+∞∑
k=1

d

dt
ck(t, y)φk(x) = ∂tvy(t, x) = −(−∆)sD,Ωvy(t, x) = −

+∞∑
k=1

λsk ck(t, y)φk(x),

from which we deduce that ck(t, y) = mk,y exp(−tλsk), for some constant mk,y to be specified. Since
vy(t, x) satisfies the third equation in (1.10) we finally get that for each k > 1

φk(y) = lim
t→0+

∫
Ω

vy(t, x)φk(x) dx

= lim
t→0+

∫
Ω

+∞∑
j=1

mj,y exp(−tλsj)φj(x)φk(x) dx

= lim
t→0+

mk,y exp(−tλsk)

= mk,y,

and therefore vy(t, x) = rD,y(t, x), which proves that the solution to (1.10) in C1((0,+∞);H2s
D (Ω)) is

unique. This last step concludes the proof of Theorem 1.8. �

2.3. Proof of Theorems 1.10 and 1.11. In this section we prove Theorems 1.10 and 1.11. We
begin by pointing out that (2.18) means that rsD(t, x, y) is equal to the probability that St has values
in the infinitesimal interval dl, times the density of probability pΩ

D(l, x, y) that a point starting at y,
following a killed Brownian motion, will be in the position x at a time l, integrated over all possible
values of l. Therefore, the action of subordination introduces a random s-dependent choice of the time
in which we consider the classical Dirichlet heat kernel, so that rsD(t, x, y) results in a time-weighted
superposition of pΩ

D(l, x, y).
In Theorems 1.10 and 1.11 we analyze the monotonicity with respect to s of the fractional Dirichlet

heat kernel rsD on the diagonal, and the monotonicity of the conditional probability in equation (2.20)
when Ω′′ = Ω′.

Proof of Theorems 1.10 and 1.11. First we show point (i) of Theorems 1.10 and 1.11. We take the
derivative of rsD(t, x, y) with respect to s, which gives us

d

ds
rsD(t, x, y) =

d

ds

+∞∑
k=1

φk(x)φk(y) exp(−tλsk)

= −t
+∞∑
k=1

φk(x)φk(y) exp(−tλsk)λsk ln(λk).

(2.35)

Note that we can differentiate inside the sum thanks to Proposition A.1 and Lemma A.2. Therefore,
if we take the integral over Ω′ × Ω′ of both sides of (2.35) we get

d

ds

∫
Ω′×Ω′

rsD(t, x, y) dx dy =

∫
Ω′×Ω′

d

ds
rsD(t, x, y) dx dy

= −t
+∞∑
k=1

c2
k,Ω′ exp(−tλsk)λsk ln(λk),

(2.36)
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where we have defined ck,Ω′ :=
∫

Ω′ φk(x) dx. The first identity in (2.36) is a consequence of Proposi-
tion A.1, Lemma A.2 and the Dominated Convergence Theorem. Therefore, if λ1 > 1, the last term
in (2.36) is strictly negative, and this implies (i) of Theorem 1.11.

Moreover, if x = y ∈ Ω, then from (2.35) we also have that

rs0D (t, x, x) > rs1D (t, x, x),

for each t ∈ (0,+∞), and 0 < s0 < s1 6 1, which proves point (i) of Theorem 1.10.
Let us now focus on the proof of point (ii) of Theorems 1.10 and 1.11. If λ1 < 1, then from (2.36)

we obtain that

exp(tλs1)

t

(
d

ds

∫
Ω′×Ω′

rsD(t, x, y) dx dy

)
= c2

1,Ω′λs1| ln(λ1)| −
+∞∑
k=2

c2
k,Ω′ exp(−t(λsk − λs1))λsk ln(λk).

Since the first eigenfunction is strictly positive, see for instance [Eva10], recalling also the classical
estimates on the Dirichlet eigenvalues (see e.g. (A.7)), the above computation yields that c1,Ω′ > 0.

We claim that for each t > 0 large enough (depending on s and Ω′) we get

(2.37)
d

ds

∫
Ω′×Ω′

rsD(t, x, y) dx dy > 0.

Indeed, using Hölder’s inequality and the fact that for each k > 1 the φk’s are normalized in L2(Ω),
we obtain

c2
k,Ω′ =

(∫
Ω′
φk(x) dx

)2

6

((∫
Ω′
φk(x)2 dx

) 1
2

|Ω′|
1
2

)2

6 |Ω′|.

Thus, we can employ this last inequality to obtain the bound

exp(tλs1)

t

(
d

ds

∫
Ω′×Ω′

rsD(t, x, y) dx dy

)
= c2

1,Ω′λs1| ln(λ1)| −
+∞∑
k=2

c2
k,Ω′ exp(−t(λsk − λs1))λsk ln(λk)

> c2
1,Ω′λs1| ln(λ1)| − |Ω′|

+∞∑
k=k′′

exp(−t(λsk − λs1))λsk ln(λk),

(2.38)

where k′′ = min {k > 1 s.t. λk > 1}.
Also, thanks to equation (A.7), we can apply Lemma A.3 to the last series in (2.38) with ak =

λsk ln(λk) and bk = (λsk − λs1), and deduce that

lim
t→+∞

|Ω′|
+∞∑
k=k′′

exp(−t(λsk − λs1))λsk ln(λk) = 0.

By combining this limit with the inequality in (2.38) we conclude the proof of the claim in (2.37).
Therefore, as a consequence of (2.37), if we fix 0 < s0 < s1 6 1, there exists some T > 0 depending

on s0, s1 and Ω′ such that for each t > T∫
Ω′×Ω′

rs0D (t, x, y) dx dy <

∫
Ω′×Ω′

rs1D (t, x, y) dx dy.

This concludes the proof of point (ii) of Theorem 1.11.
Point (ii) of Theorem 1.10 is proved similarly. To show it, we note that from equation (2.35), we

obtain that if x = y ∈ Ω, then

exp(tλ1)

t

d

ds
rsD(t, x, x) = φ1(x)2λs1| lnλ1| −

+∞∑
k=2

φk(x)2 exp(−t(λsk − λs1))λsk ln(λk).
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Now, thanks to this last identity and Proposition A.1 we deduce the lower bound

(2.39)
exp(tλ1)

t

d

ds
rsD(t, x, x) > φ1(x)2λs1| lnλ1| −

+∞∑
k=k′′

λ
2α(m0)
k exp(−t(λsk − λs1))λsk ln(λk),

where k′′ = min {k > 1 s.t. λk > 1}.
Therefore, thanks to equation (A.7) we can apply Lemma A.3 to the last series in (2.39) with

ak = λ
2α(m0)+s
k ln(λk) and bk = (λsk − λs1), and obtain that

(2.40) lim
t→+∞

+∞∑
k=k′′

λ
2α(m0)
k exp(−t(λsk − λs1))λsk ln(λk) = 0.

By this limit and (2.39) we prove that for each t > 0 large enough, depending on s ∈ (0, 1] and x ∈ Ω
we get

d

ds
rsD(t, x, x) > 0.

Hence, if we fix some 0 < s0 < s1 6 1 and x ∈ Ω there exists some T ′ > 0 depending on s0, s1 and x
such that for each t > T ′

(2.41) rs0D (t, x, x) < rs1D (t, x, x).

This proves point (ii) of Theorem 1.10. �

3. The spectral fractional heat equation with Neumann boundary conditions

In this section we provide an analytical and probabilistic exposition on the Neumann spectral
fractional heat equation (1.35).

Section 3.1 is dedicated to the introduction of the stochastic process called the subordinate standard
reflecting Brownian motion. We show that the transition density of this process is the Neumann
spectral fractional heat kernel rsN given in equation (1.36).

In Section 3.2 we propose an analytical study of the solution to the system of equations (1.35).
Specifically, we prove Theorems 1.20 and 1.21. The first result states that the unique solution to (1.35)
is the Neumann spectral fractional heat kernel rsN , while Theorem 1.21 is a Maximum Principle for
the spectral fractional heat equation with Neumann boundary conditions.

Section 3.3 consists in the proof of the original Theorems 1.22 and 1.23. These results provide
some insight on the monotonicity properties (with respect to the parameter s) of the Neumann heat
kernel rsN and the conditional probability introduced in equation (1.39).

3.1. From the standard reflecting Brownian motion to the subordinate standard reflect-
ing Brownian motion. In this section, through a suitable modification of the setting introduced in
Section 2.1, we will construct the subordinate standard reflecting Brownian motion. This stochastic
process is obtained by starting from the standard reflecting Brownian motion via the introduction
of a random choice of time. This type of procedure belongs to a class of operations between Markov
processes which takes the name of subordination (see [Boc49]). We give a more detailed presenta-
tion on the subordinate standard reflecting Brownian motion in Theorem 3.3 below. More precisely,
in Theorem 3.3 and Proposition 3.5 we will show that the transition density associated with this
stochastic process is the Neumann spectral fractional heat kernel rsN given in equation (1.36).

We now briefly recall the main properties of the standard reflecting Brownian motion. There are
different ways of defining a standard reflecting Brownian motion, and they all lead to the same Markov
process. There exists a broad literature treating this problem, see e.g. [LS84, Fuk67, BH90, DI08].
In this paper we will follow the more analytic approach to define this stochastic process, namely
by first constructing a transition density starting from a system of parabolic PDEs. In particular
the main definitions and procedures here follow [Hsu84]. We now reconsider the Neumann heat
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kernel pΩ
N(t, x, y) introduced in (1.32). As stated in Theorem 1.15, we can write the heat kernel as

the L2(Ω) expansion in eigenfunctions

(3.1) pΩ
N(t, x, y) =

+∞∑
k=0

ψk(x)ψk(y) exp(−tµk).

Let us denote by S = C([0,+∞),Ω). Then, we have the following result (see [Hsu84]).

Theorem 3.1. Let y ∈ Ω. There exists a Markov process XΩ
N = (S,F ,Ft, {Xt}t>0,Py) such that for

each t > 0 and Ω′ ⊂ Ω it holds

(3.2) Py(Xt ∈ Ω′) =

∫
Ω′
pΩ
N(t, x, y) dx.

Definition 3.2. Let y ∈ Ω. A stochastic process XΩ
N,y = (S,F ,Ft, {XΩ

t }t>0,Py) is defined as a
standard reflecting Brownian motion starting at y ∈ Ω if its transition density satisfies the equations
in (1.31).

In view of Theorem 3.1, the semigroup Nt associated with XN,x is

Ntf(x) :=

∫
Ω

pΩ
N(t, x, y) f(y) dy = Ex[f(XΩ

t )],

for each f ∈ L2(Ω). Therefore, the generator of the standard reflecting Brownian motion coincides
with Neumann Laplacian, namely

d

dt
Ntf |t=0 = lim

t→0+

Ntf − f
t

= ∆N,Ωf,

for each f ∈ W 1,2
N (Ω).

We observe (see [Hsu84]) that for each (t, x) ∈ (0,+∞)× Ω

(3.3) Py(Xt ∈ Ω) =

∫
Ω

pΩ
N(t, x, y)dy = 1.

We mention that this is a consequence of the fact that the first eigenvalue of the Neumann Laplacian
is zero. In particular, the identity in (3.3) highlights the fact that the process is restricted to Ω and
cannot escape the domain. Note that this is in contrast with the behavior of the killed Brownian
motion, which was instead eventually doomed to be confined in the cemetery ∂ (see equation (2.3)).

In the following result we build the subordinate standard reflecting Brownian motion, by intro-
ducing in the previously discussed standard reflecting Brownian motion a random choice of the time.
More specifically, we will assume that such a choice follows the motion of a s-stable subordinator (see
Definition 2.4). The proof of the next result is analogous to the one of Theorem 2.6 and therefore
will be omitted.

Theorem 3.3. Let s ∈ (0, 1), S = (S1,G, {St}t>0, P̃s) be an s-stable subordinator and XN,x :=
(S,F , {Ft}t>0, {XΩ

t }t>0,Px) be a standard reflecting Brownian motion as in Definition 3.2. Let us
define the family of stochastic processes

Y Ω
N := (S×S1, {Ft × G}t>0,F × G, {YN,t}t>0, {PsN,y}y∈Ω)

and YN,t(ω, ω1) := XSt(ω1)(ω)
(3.4)

where PsN,y := Py × P̃s. Then, for each x ∈ Ω the stochastic process Y Ω
N,x is a Markov process.

Moreover, for each Lebesgue measurable set Ω′ ⊂ Ω,

(3.5) PsN,y(YN,t ∈ Ω′) =

∫
Ω′

∫ +∞

0

pΩ
N(l, x, y)µst(dl) dy.
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Definition 3.4 (Subordinate standard reflecting Brownian motion). For each x ∈ Ω the process
Y Ω
N,x := (S × S1, {Ft × G}t>0,F × G, {YN,t}t>0,PsN,x) defined in Theorem 3.3 is called subordinate

standard reflecting Brownian motion starting at x.

Now we show that the transition density of the subordinate standard reflecting Brownian motion
coincides with the Neumann spectral fractional heat kernel rsN defined in equation (1.36).

Proposition 3.5. Let rsN : (0,+∞)× Ω× Ω→ R be as in equation (1.36). Then,

(3.6) rsN(t, x, y) =

∫ +∞

0

pΩ
N(l, x, y)µst(dl) for all (t, x, y) ∈ (0,+∞)× Ω× Ω.

Proof. Thanks to Theorem 1.15 we have that

pΩ
N(t, x, y) =

+∞∑
k=0

ψk(x)ψk(y) exp(−tµk).

Using this and equation (2.5) we conclude that∫ +∞

0

pΩ
N(l, x, t)µst(dl) =

∫ +∞

0

+∞∑
k=0

ψk(x)ψk(y) exp(−lµk)µst(dl)

=
+∞∑
k=0

ψk(x)ψk(y)

∫ +∞

0

exp(−lµk)µst(dl)

=
+∞∑
k=0

ψk(x)ψk(y) exp(−tµsk)

= rsN(t, x, y).

(3.7)

The identity between the first and second line in (3.7) is guaranteed by the Dominated Convergence
Theorem, which can be applied thanks to Proposition A.1 and Lemma A.2. �

Thanks to Theorem 3.3 and Proposition 3.5, the transition density associated with the subordinate
standard reflecting Brownian motion is the Neumann spectral fractional heat kernel rsN given in
equation (1.36). Hence, we can consider the probability function

PsN,x(YN,t ∈ Ω′) =

∫
Ω′
rsN(t, x, y) dy.

Similarly to what we have done in Section 2.1, we can also take into account the conditional proba-
bility

(3.8) PsN(YN,t ∈ Ω′|YN,0 ∈ Ω′′) :=
1

|Ω′′|

∫
Ω′×Ω′′

rsN(t, x, y) dx dy.

Note that in this case the state space coincide with Ω, and thus Ps(YN,t ∈ Ω|YN,0 ∈ Ω′′) = 1 for
each t > 0. This last observation follows from the fact that for each (t, x) ∈ (0,+∞)× Ω

PsN,x(YN,t ∈ Ω) =

∫
Ω

rsN(t, x, y) dy = 1,

thanks to (3.3) and (3.6). An alternative analytical proof of this fact will be given in Lemma 3.10.

Another consequence of Theorem 3.3 and Proposition 3.5 is the following result on the continuity
of the semigroup associated to the subordinate standard reflecting Brownian motion Y Ω

N .
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Proposition 3.6. Let s ∈ (0, 1) and Y Ω
N as in Definition 3.4. For each t > 0 the semigroup associated

with Y Ω
N

Qt :L2(Ω)→ L2(Ω)

f 7→ Qtf(x) :=

∫
Ω

f(y) rsN(t, x, y) dy,
(3.9)

satisfies

‖Qtf‖L2(Ω) 6 ‖f‖L2(Ω).

In Proposition 2.11 we established that the generator associated with the subordinate killed Brow-
nian motion is the Dirichlet spectral fractional Laplacian. The next result provides the corresponding
property for the subordinate standard reflecting Brownian motion, namely that the Neumann spec-
tral fractional Laplacian (−∆)sN,Ω in (1.29) is the generator of Y Ω

N . Since the proof of this fact is
similar to the one of Proposition 2.11, we omit it.

Proposition 3.7. The generator of the process Y Ω
N is given by the spectral fractional Laplacian with

Neumann boundary conditions. Namely for each f ∈ H2s
N (Ω) the following limit holds

lim
t→0

Qtf − f
t

= −(−∆)sN,Ωf

where the convergence is meant in L2(Ω).

3.2. Existence, Uniqueness and Maximum Principle for the Neumann spectral fractional
heat equation. Now we state the main auxiliary results that lead to Theorems 1.20 and 1.21, on
the existence, uniqueness and regularity of the solution to the Neumann spectral fractional heat
equation (1.35) and on the Maximum Principle for its solution. The procedure to prove these results
is the same that we used in Section 2.2 for the Dirichlet case. For this reason most of the proof will
be omitted.

Thus, following the same steps of Section 2.2 we begin this discussion by establishing the following
regularity result for the Neumann spectral fractional heat kernel rsN given in equation (1.36).

Lemma 3.8. Let s ∈ (0, 1] and Ω be open, bounded, smooth and connected. Then, rsN ∈ C∞([ε,+∞)×
Ω× Ω) for each ε > 0.

In the following result we state that the Neumann kernel rsN is a solution to the first and second
equation in (1.35).

Lemma 3.9. Let s ∈ (0, 1) and Ω be open, bounded, smooth and connected. Then, for each y ∈ Ω
the function rsN,y(t, x) := rsN(t, x, y) is a solution to the first and second equation in (1.35).

We now prove that the Neumann Kernel rsN has unit mass.

Lemma 3.10. Let s ∈ (0, 1] and Ω be open, bounded, smooth and connected. Then for each (t, x) ∈
(0,+∞)× Ω it holds

(3.10)

∫
Ω

rsN(t, x, y) dy = 1.
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Proof. Using Lemma 3.8, Proposition A.1 and Lemma A.2, together with the integration by parts
formula, we deduce that for each (t, x) ∈ (0,+∞)× Ω it holds that

d

dt

∫
Ω

rsN(t, x, y) dy =
d

dt

∫
Ω

+∞∑
k=0

ψk(x)ψk(y) exp(−tµsk) dy

= −
∫

Ω

+∞∑
k=1

µsk ψk(x)ψk(y) exp(−tµsk) dy

=
+∞∑
k=1

ψk(x) exp(−tµsk)
∫

Ω

−µsk ψk(y) dy

=
+∞∑
k=1

ψk(x) exp(−tµsk)
∫

Ω

∆ψk(y) dy

=
+∞∑
k=1

ψk(x) exp(−tµsk)
∫
∂Ω

∂ψk
∂ν

(y) dHn−1
y (y)

= 0.

Furthermore, one easily observes that

lim
t→+∞

∫
Ω

rsN(t, x, y) dy = lim
t→+∞

∫
Ω

1

|Ω|
+

+∞∑
k=1

ψk(x)ψk(y) exp(−tµsk) dy = 1,

as desired. �

For completeness, we mention that an alternative approach to establish (3.10) relies on the proba-
bilistic framework previously developed, using equation (3.3) and equation (3.6), which allow one to
write rsN as a time weighted superposition of the classical Neumann heat kernel pΩ

N . The computation
provided above instead does not make use of the probabilistic setting, but relies on the fact that the
first eigenvalue of (−∆)sN,Ω is vanishing.

Now we remark that a result in the spirit of Lemma 2.14 holds true in the Neumann case as
well, thus providing the existence, uniqueness and regularity of the solution to the Neumann spectral
fractional heat equation with initial datum f ∈ L2(Ω). This result, which is showcased here below,
will be employed in this paper to prove a Maximum Principle in the Neumann framework. Moreover,
the uniform continuity with respect to the initial datum will be used to prove that rsN satisfies also
third equation in (1.35), in analogy with what we already did for the Dirichlet case.

Lemma 3.11. Let s ∈ (0, 1) and Ω be open, bounded smooth and connected. For each f ∈ L2(Ω) the
function Qtf defined in (3.9) is the unique solution in C([0,+∞), L2(Ω)) ∩ C1((0,+∞), H2s

N (Ω)) to
the system of equations

(3.11)


∂tu(t, y) = −(−∆)sN,Ωu(t, y) for all (t, y) ∈ (0,+∞)× Ω,

∂u

∂ν
(t, y) = 0 for all (t, y) ∈ (0,+∞)× ∂Ω,

u(0, y) = f(y) for all y ∈ Ω.

The last equation in (3.11) is meant as

lim
t→0
‖u(t, y)− f(y)‖L2(Ω) = 0.

Furthermore, for each ε > 0, it holds that Qtf(y) ∈ C∞([ε,+∞)×Ω). Moreover, if f ∈ C∞c (Ω), then

(3.12) lim
t→0
‖Qtf(y)− f(y)‖L∞(Ω) = 0.
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Below we give a proof of the Maximum Principle in the Neumann setting that was stated in
Theorem 1.21. The argument that we present here can be seen as a natural modification of the
analytic proof that we provided in the case of Dirichlet boundary conditions.

Alternatively, one can also obtain this Maximum Principle by using the probabilistic framework
previously developed, relying on the Maximum Principle for the classical Neumann heat equation
(this approach is developed in Appendix B for the Dirichlet case, but the Neumann case can be
treated similarly).

Proof of Theorem 1.21. We prove the right-hand side inequality in (1.37). First we assume that f ∈
C∞c (Ω), since the general case of f ∈ L2(Ω) will be addressed below using an approximation argument.
Thanks to Lemma 3.11 we know that Qtf(y) =: f(t, y) ∈ C([0,+∞) × Ω) ∩ C∞((0,+∞) × Ω).
Let K := max {0, supΩ f} and assume, by contradiction, that there exists (t∗, y∗) ∈ (0,+∞)×Ω such
that

f(t∗, y∗) > K.

We define the function W (t, y) := f(t∗, y∗)− ε− f(t, y), where ε is as in (2.30). Applying the same
reasoning as in proof of Theorem 1.9 we get the existence of (t̃, ỹ) ∈ (0,+∞)×Ω as in equation (2.31).
In particular, this means that

∂tW (t̃, ỹ) 6 0.

We note that W (t̃, ·) cannot identically vanish in Ω. Indeed, W (t, y) = f(t∗, y∗) − ε − f(t, y),
and f(t, y) cannot be constant unless its initial data f is, as one can easily infer from the L2(Ω)
decomposition of f(t, y) in eigenfunctions. Therefore, since ỹ is a minimum for W (t̃, ·), Lemma 1.19
gives us that

(−∆)sN,ΩW (t̃, ỹ) < 0.

Therefore
∂tW (t̃, ỹ) + (−∆)sN,ΩW (t̃, ỹ) < 0.

On the other hand,

∂tW (t̃, ỹ) + (−∆)sN,ΩW (t̃, ỹ) = −∂tf(t̃, ỹ) + (−∆)sN,Ω(f(t∗, y∗)− ε)− (−∆)sN,Ωf(t̃, ỹ)

= (−∆)sN,Ω(f(t∗, y∗)− ε) = 0,

providing a contradiction. Therefore we have proved the right-hand side inequality in (1.37) for each
solution with initial condition smooth with compact support. The left-hand side inequality is proved
similarly.

With the same procedure followed in the proof of Theorem 1.9 one can show that also rsN(t, x, y) > 0
for each (t, x, y) ∈ (0,+∞)× Ω× Ω.

If f ∈ L2(Ω), according to equation (3.10) we have

f(t, y) =

∫
Ω

rsN(t, x, y) f(x)dx 6 max

{
0, sup

Ω
f

}∫
Ω

rsN(t, x, y) dx = max

{
0, sup

Ω
f

}
,

which proves the right-hand side of (1.37) when f ∈ L2(Ω). Similarly we also obtain the left-hand
side inequality in (1.37). �

The following result is the analogous of Corollary 2.15 for the Neumann kernel rsN .

Corollary 3.12. Let s ∈ (0, 1) and Ω be bounded, smooth and connected. Then, for each (t, x, y) ∈
(0,+∞)× Ω× Ω it holds that

rsN(t, x, y) > 0.

While a modification of the proof of Corollary 2.15 would produce a purely analytical argument to
establish Corollary 3.12, for completeness we also note that the proof of this result can be alterna-
tively achieved by using equation (3.6) and the strict positivity of the classical Neumann kernel pΩ

N

(see [Hsu84]).
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As a consequence of Corollary 3.12 we have the following result:

Corollary 3.13. Let s ∈ (0, 1) and Ω ⊂ Rn be bounded, smooth and connected. Then,

Qt : C0(Ω)→ C(Ω)

f 7−→ Qtf

satisfies

‖Qtf‖C(Ω) 6 ‖f‖C0(Ω).

Now we prove Theorem 1.20.

Proof of Theorem 1.20. In Lemma 3.8 we have already stated that rsN ∈ C∞([ε,+∞) × Ω × Ω) for
each ε > 0, while in Lemma 3.9 we showed that rsN,y(t, x) := rsN(t, x, y) satisfies the first and second
equation in (1.35) for each y ∈ Ω.

It remains to prove that rsN,y satisfies the third equation and that such a solution is unique in the

space C1((0,+∞);H2s
N (Ω)). One can obtain that rsN ∈ C1((0,+∞);H2s

N (Ω)) proceeding analogously
to the Dirichlet case.

Using Proposition 3.6 and Corollary 3.13, one can show that, if f ∈ C0(Ω), then

lim
t→0+

Qtf(y) = f(y)

for each y ∈ Ω. Therefore, we have showed that rsN,y is a solution to (1.35) for each y ∈ Ω. The proof
of the uniqueness statement is analogous to the one in the Dirichlet case. �

3.3. Proof of Theorems 1.22 and 1.23. Here we give the proof of Theorems 1.22 and 1.23 related
to the monotonicity properties, with respect to the fractional parameter of subordination s, of the
Neumann heat kernel rsN and of the conditional probability in equation (3.8). To prove these results,
we account for the effects of subordination on the standard reflecting Brownian motion from a
probabilistic point of view, in dependence of the geometric properties of the domain Ω encoded
by the first non-trivial eigenvalue of the Neumann Laplacian.

To prove Theorems 1.22 and 1.23 we also rely on the following ancillary result:

Proposition 3.14. Let Ω′ ⊂ Ω with positive measure, and x ∈ Ω. Then, the eigenvalues µk(Ω′)

and µk(x) defined respectively in (1.40) and (1.41) exist.

Proof. We argue by contradiction. Suppose that for each k ∈ N and k > 1 we have that∫
Ω′
ψk(x) dx = 0,

and let f ∈ C∞c (Ω) such that f > 0 and f = 0 in Ω′. In view of Proposition A.4 the Fourier series
in eigenfunctions of a smooth and compactly supported function converges uniformly. Then we see
that

0 =

∫
Ω′
f(y) dy =

∫
Ω′

∞∑
k=0

fk ψk(y) dy =
∞∑
k=0

fk

∫
Ω′
ψk(y) dy

= f0
|Ω′|
|Ω| 12

=

(
1

|Ω′| 12

∫
Ω

f(y) dy

)
|Ω′|
|Ω| 12

6= 0,

which provides a contradiction.
Similarly, suppose that for each k > 1 one has that

ψk(x) = 0,
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and take f ∈ C∞c (Ω) such that f(x) = 0 and f > 0. Then,

0 = f(x) =
∞∑
k=0

fk ψk(x) = f0 ψ0 =
1

|Ω|

∫
Ω

f(y) dy 6= 0,

which provides a contradiction. �

Proof of Theorems 1.22 and 1.23. Let us first prove point (i) of Theorems 1.22 and 1.10. We take
the derivative of rsN(t, x, y) with respect to s and obtain

d

ds
rsN(t, x, y) =

d

ds

+∞∑
k=0

ψk(x)ψk(y) exp(−tµsk)

= −t
+∞∑
k=1

ψk(x)ψk(y) exp(−tµsk)µsk ln(µk).

(3.13)

Note that we can differentiate with respect to s inside the sum thanks to Proposition A.1 and
Lemma A.2. Let us assume x = y ∈ Ω, and let µk(x) be defined as in equation (1.41). Then,
from (3.13) we deduce that if µk(x) > 1, then all the terms in the sum are positive. Therefore,

d

ds
rsN(t, x, y) =

d

ds

+∞∑
k=k(x)

ψk(x)2 exp(−tµsk)

= −t
+∞∑

k=k(x)

ψk(x)2 exp(−tµsk)µsk ln(µk) < 0,

which proves point (i) in Theorem 1.22. Similarly, if we take the integral over Ω′ × Ω′ of both sides
of (3.13), with Ω′ as in the statement of Theorem 1.23, we get

d

ds

∫
Ω′×Ω′

rsN(t, x, y) dx dy =

∫
Ω′×Ω′

d

ds
rsN(t, x, y) dx dy

= −t
+∞∑

k=k(Ω′)

c2
k,Ω′ exp(−tµsk)µsk ln(µk),

(3.14)

where we have defined ck,Ω′ :=
∫

Ω′ ψk(x) dx, and k(Ω′) is the index of the eigenvalue µk(Ω′) defined
in (1.40). Therefore, if µk(Ω′) > 1, the right-hand side of (3.14) is strictly negative, which proves
point (i) of Theorem 1.23.

We prove now point (ii) of Theorems 1.22 and 1.23. If µk(Ω′) < 1, from (3.14) we obtain

exp
(
tµsk(Ω′)

)
t

(
d

ds

∫
Ω′×Ω′

rsN(t, x, y) dx dy

)
= c2

k(Ω′),Ω′ µsk(Ω′) | ln(µk(Ω′))| −
+∞∑

k=k(Ω′)+1

c2
k,Ω′ exp(−t(µsk − µsk(Ω′)))µ

s
k ln(µk).

(3.15)

We claim that for each t ∈ (0,+∞) large enough (depending on s and Ω′) one has

(3.16)
d

ds

∫
Ω′×Ω′

rsN(t, x, y) dx dy > 0.

Indeed, using Hölder’s inequality and the fact that ψk’s are normalized in L2(Ω) we observe that

(3.17) c2
k,Ω′ =

(∫
Ω′
ψk(x) dx

)2

6

((∫
Ω′
ψk(x)2 dx

) 1
2

|Ω′|
1
2

)2

6 |Ω′|.
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Thus from this latter inequality and (3.15) we deduce that

exp
(
tµsk(Ω′)

)
t

(
d

ds

∫
Ω′×Ω′

rsN(t, x, y) dx dy

)
> c2

k(Ω′),Ω′ µsk(Ω′) | ln(µk(Ω′))| − |Ω′|
+∞∑

k=k(Ω′)+1

exp(−t(µsk − µsk(Ω′)))µ
s
k ln(µk)

> c2
k(Ω′),Ω′ µsk(Ω′) | ln(µk(Ω′))| − |Ω′|

∞∑
k=k′′

exp(−t(µsk − µsk(Ω′)))µ
s
k ln(µk),

(3.18)

where k′′ = min {k ∈ N s.t. µk > 1}.
Also, thanks to the classical estimates on the Neumann eigenvalues (see e.g. (A.8)), we can apply

Lemma A.3 to the last series in (3.18) with ak = µsk ln(µk) and bk = (µsk − µsk(Ω′)). In this way, we
obtain that

lim
t→+∞

|Ω′|
+∞∑
k=k′′

exp(−t(µsk − µsk(Ω′)))µ
s
k ln(µk) = 0.

By combining this limit with the inequality in (3.18) we conclude the proof of the claim in (3.16).
Now, given 0 < s0 < s1 6 1, we deduce from inequality (3.16) that there exists some T > 0

depending on s0, s1 and Ω′ such that for each t > T∫
Ω′×Ω′

rs0N (t, x, y) dx dy <

∫
Ω′×Ω′

rs1N (t, x, y) dx dy.

This concludes the proof of point (ii) of Theorem 1.23.
Analogously, from (3.13) one obtains that, if x = y ∈ Ω, then

exp(tµsk(x))

t

(
d

ds
rsN(t, x, y) dx dy

)
= ψk(x)(x)2µsk(x)| ln(µk(x))| −

+∞∑
k=k(x)+1

ψk(x)2 exp(−t(µsk − µsk(x)))µ
s
k ln(µk).

We claim that for each t > 0 large enough (depending on x and s) it holds that

(3.19)
d

ds
rsN(t, x, x) > 0.

Indeed, thanks to Proposition A.1 and this latter inequality we obtain that

exp(tµsk(x))

t

(
d

ds
rsN(t, x, y) dx dy

)
> ψk(x)(x)2µsk(x)| ln(µk(x))| −

+∞∑
k=k′′

µ
2α(m0)
k exp(−t(µsk − µsk(x)))µ

s
k ln(µk),

(3.20)

where k′′ = min {k ∈ N s.t. µk > 1}. Using inequality (A.8), we are in the position of applying

Lemma A.3 to the last series in (3.20) with ak = µ
2α(m0)+s
k ln(µk) and bk = (µsk−µsk(x))), proving thus

that

(3.21) lim
t→+∞

+∞∑
k=k′′

µ
2α(m0)
k exp(−t(µsk − µsk(x)))µ

s
k ln(µk) = 0.
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This limit and the lower bound in (3.20) yield to the claim in (3.19). Hence if 0 < s0 < s1 6 1, there
exists some T ′ > 0 depending on s0, s1 and x such that

rs0N (t, x, x) < rs1N (t, x, x)

for each t > T ′. This concludes the proof of point (ii) of Theorem 1.22. �

Appendix A. Auxiliary and technical results

Proposition A.1. Let {φk}k be defined as in equation (1.1), and {ψk}k as in (1.28) with k > 1.
Then for each r ∈ N, we have the following estimates

‖φk‖Cr(Ω) 6 cmr,Ω,rλ
α(mr)
k

and ‖ψk‖Cr(Ω) 6 c̃mr,Ω,rµ
α(mr)
k

(A.1)

where cmr,Ω,r, c̃mr,Ω,r are positive constants depending on mr, r and Ω, and

α(m) :=


m

2
+ 1 if m is even,[m

2

]
+

3

2
if m is odd

and

mr :=


[
n+ 2r − 4

2

]
+ 1 if n+ 2r − 4 > 0,

0 otherwise.

Proof. We apply the elliptic estimate (77) at page 323 of [Eva10] to the eigenfunctions φk’s and get

(A.2) ‖φk‖H2+m(Ω) 6 cm,Ω λk‖φk‖Hm(Ω) ∀m ∈ N,

where cm,Ω > 0 is a constant depending on m and on the domain Ω. We also observe that

(A.3) ‖φk‖2
H1

0 (Ω) :=

∫
Ω

|∇φk|2dx = −
∫

Ω

∆φk φkdx = λk

∫
Ω

|φk|2dx = λk,

where we have used the fact that the φk’s are eigenfunctions of the Laplacian, and that they are
normalized in L2(Ω). Applying iteratively inequality (A.2), we see that if m = 2n0 for some n0 ∈ N,
then

(A.4) ‖φk‖H2+m(Ω) 6 Cm,Ωλ
1+n0
k ‖φk‖L2(Ω) = Cm,Ωλ

1+n0
k ,

while if m = 2n0 + 1 for some n0 ∈ N, using now also identity (A.3), we get

(A.5) ‖φk‖H2+m(Ω) 6 Cm−1,Ωλ
n0+ 3

2
k ,

where Cm,Ω is a constant depending on m ∈ N and Ω. Let us take r ∈ N and call mr the smallest
integer with respect to which the following Sobolev embedding is satisfied

(A.6) H2+mr(Ω) ↪→ Cr(Ω),

namely mr := [n+2r−4
2

] + 1, if n+ 2r− 4 > 0, otherwise mr = 0. Therefore, if mr is even, using (A.4)
and (A.6) we obtain

‖φk‖Cr(Ω) 6 cr,Ω‖φk‖H2+mr (Ω) 6 cmr,Ω,rλ
1+mr

2
k ,

where cr,Ω is the constant of the Sobolev embedding, and if instead mr is odd, then using the Sobolev
embedding (A.6) and the estimate (A.5) we get

‖φk‖Cr(Ω) 6 cr,Ω‖φk‖H2+mr (Ω) 6 cmr,Ω,rλ
3
2

+[mr
2

]

k .
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The constants cmr,Ω,r depends on Ω, r and mr. Since the elliptic estimate in (A.2) and the identities
in (A.3), with obvious adjustments, hold true also for the eigenfunctions ψ′ks, we can repeat the above
reasoning to obtain the bound (A.1) for the family {ψk}k. �

Lemma A.2. Let λk’s and µk’s be defined respectively as in equations (1.1) and (1.28). Then, for
each m ∈ N, s ∈ (0, 1] and t ∈ (0,+∞), we have

+∞∑
k=1

λmk exp(−t λsk) < +∞

+∞∑
k=1

µmk exp(−t µsk) < +∞

Proof. We prove the first inequality only, since the proof of the second one is the same. Indeed,
thanks to Weyl’s law (see [Pro87]), we know that there exists some k0 ∈ N such that if k > k0 then
the following double sided inequality holds for both λk’s and µk’s

c k
2
n 6 λk 6 C k

2
n ,(A.7)

c k
2
n 6 µk 6 C k

2
n(A.8)

for some constants C, c > 0. Therefore, if k > k0 we have that that

λmk exp(−t λsk) 6 Cmk
2m
n exp(−cst k

2s
n ).

Since it holds that

lim
k→+∞

k
2m
n exp

(
−c

st k
2s
n

2

)
= 0,

then there exists k1 ∈ N such that for all k > k1

k
2m
n exp(−cst k

2s
n ) 6 exp

(
−c

st k
2s
n

2

)
.

Therefore, if we call k2 := max{k0, k1} we have that

+∞∑
k=1

λmk exp(−t λsk) 6
k2−1∑
k=1

λmk exp(−t λsk) + Cm

+∞∑
k=k2

k
2m
n exp(−cst k

2s
n )

6
k2−1∑
k=1

λmk exp(−t λsk) +
+∞∑
k=k2

exp

(
−c

st k
2s
n

2

)
< +∞.

This concludes the proof of Lemma A.2. �

Lemma A.3. Let {ak}k∈N,{bk}k∈N be sequences of real numbers such that

lim
t→+∞

ak
kM

= C(A.9)

lim
t→+∞

bk
km

= c,(A.10)

for some M,m ∈ (0,+∞) and C, c > 0. Then,

lim
t→+∞

+∞∑
k=1

ak exp(−tbk) = 0.
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Proof. We assume d > 0 and t ∈ [d,+∞). In view of (A.9) and (A.10), we obtain that there exists
some k0 ∈ N such that for each k > k0 one has

ak exp(−tbk) 6 C1k
M exp(−tc1k

m),

for some c1, C1 > 0 and for all t ∈ [d,+∞). Moreover, since

(A.11) lim
k→+∞

C1k
M exp

(
−tc1k

m

2

)
= 0,

we deduce the existence of some k1 ∈ N such that for all k > k1 it holds

C1k
M exp(−tc1k

m) 6 exp

(
−c1tk

m

2

)
.

Therefore, taking k2 = max {k0, k1} we obtain that

+∞∑
k=1

‖ak exp(−tbk)‖L∞([d,+∞)) =

k2−1∑
k=1

‖ak exp(−tbk)‖L∞([d,+∞)) +
+∞∑
k=k2

‖ak exp(−tbk)‖L∞([d,+∞))

6
k2−1∑
k=1

‖ak exp(−tbk)‖L∞([d,+∞)) +
+∞∑
k=k2

exp

(
−c1dk

m

2

)
< +∞.

Thus, we can take the limit inside the sum as follows

lim
t→+∞

+∞∑
k=1

ak exp(−tbk) =
+∞∑
k=1

lim
t→+∞

ak exp(−tbk) = 0. �

Proposition A.4. Let f ∈ C∞c (Ω), and consider the L2(Ω) expansion f =
∑+∞

k=1 fk φk, where fk :=
(f, φk)L2(Ω) and the φk’s are given in equation (1.1). Then the following estimate for the L2 projection
fk holds

(A.12) |fk| 6 λ−mk ‖f‖H2m
0 (Ω) ∀m ∈ N.

In particular, for each r ∈ N, the sequence fM(x) :=
∑M

k=1 fkφk(x) converges in Cr(Ω) to f as M →
+∞.

Similarly, if we consider as L2(Ω) Hilbert basis {ψk}k, then by calling now fk := (f, ψk)L2(Ω), for
each k > 1 it holds

(A.13) |fk| 6 µ−mk ‖f‖H2m
0 (Ω) ∀m ∈ N.

and, as M → +∞, the sequence fM(x) :=
∑M

k=0 fkψk(x) converges to f in Cr(Ω) for each r ∈ N.

Proof. As usual, we use the notation ∆mf := ∆ ◦∆ · · · ◦∆︸ ︷︷ ︸
m-times

f and ∆0f := f .

We prove by induction on m ∈ N the following identity

(A.14) fk =
(−1)m

λmk

∫
Ω

∆mf(x)φk(x) dx

Let m = 1, using first equation (1.1) and then the integration by parts formula we obtain

fk :=

∫
Ω

f(x)φk(x) dx = − 1

λk

∫
Ω

f(x)∆φk(x) dx = − 1

λk

∫
Ω

∆f(x)φk(x) dx.
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Next we show that if the identity (A.14) holds true for m − 1, then it is valid also for m. Indeed,
using the induction hypothesis and repeating the latter computations we get

fk =
(−1)m−1

λm−1
k

∫
Ω

∆m−1f(x)φk(x) dx

=
(−1)m

λmk

∫
Ω

∆m−1f(x)∆φk(x) dx

=
(−1)m

λmk

∫
Ω

∆mf(x)φk(x) dx.

From equation (A.14), applying Hölder’s inequality we obtain

(A.15) |fk| 6 λ−mk ‖φk‖L2(Ω)‖f‖H2m
0 (Ω) = λ−mk ‖f‖H2m

0 (Ω)

which is the desired estimate. The series fN(x) is converging a.e. in Ω to f , as consequence of the
L2(Ω) convergence. The estimates proved in Proposition A.1 lead us to the Ck(Ω) convergence of
the series. Indeed,

+∞∑
k=1

‖fkφk‖Cr(Ω) 6
+∞∑
k=1

|fk|λα(mr)
k 6 ‖f‖H2m

0 (Ω)

+∞∑
k=1

λ
−m+α(mr)
k =: Im

and choosing m such that it satisfies m−α(mr) > 1, we see that Im is a finite quantity, proving our
latter claim.

The identity (A.14), with obvious adjustments, holds true also for the ψk’s when k > 1. By
repeating the above reasoning we obtain the desired result. �

Appendix B. Alternative proofs of Theorems 1.9 and 1.21

Here we give an alternative proof of the Maximum Principle for the Dirichlet spectral fractional
heat equation (see Theorem 1.9), using the probabilistic framework developed in Section 2.1. To be
more precise, in Proposition 2.8 we showed that the Dirichlet spectral fractional heat kernel rsD can
be rewritten as

rsD(t, x, y) =

∫ +∞

0

pΩ
D(l, x, y)µst(dl),

where pΩ
D(t, x, y) is the classical Dirichlet heat kernel, and µst is the probability density in (0,+∞)

given in Definition 2.4. From the above equation it is clear that starting from the Maximum Principle
for the classical Dirichlet heat equation one can obtain the corresponding result for the fractional
case.

The proof for the Neumann case is analogous, and therefore here we will stick to the one for the
Dirichlet equation.

Proof of Theorem 1.9. Let us prove the right-hand side inequality in (1.14). Let f ∈ L2(Ω) and
consider the map

f(t, y) =

∫
Ω

rsD(t, x, y) f(x) dx.

Then, using equation (2.18) one gets that

f(t, y) =

∫
Ω

∫ +∞

0

pΩ
D(l, x, y)µst(dl) f(x) dx =

∫ +∞

0

∫
Ω

pΩ
D(l, x, y) f(x) dxµst(dl).

Accordingly, by the Maximum Principle for the classical Dirichlet heat equation (see equation (1.7))
one gets that

f(t, y) 6
∫ +∞

0

max

{
0, sup

Ω
f

}
µst(dl) = max

{
0, sup

Ω
f

}
.
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This prove the right-hand side inequality in (1.14). The left-hand side inequality of (1.14) is obtained
analogously using (2.18) and the left-hand side inequality in (1.7). �
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