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Abstract. A physical rattleback is a toy that can exhibit counter-intuitive behavior when spun
on a horizontal plate. Most notably, it can spontaneously reverse its direction of rotation. Using
a standard mathematical model of the rattleback, we prove the existence of reversing motion,
reversing motion combined with rolling, and orbits that exhibit such behavior repeatedly.

1. Introduction

We consider the frictionless motion of a solid three-dimensional ellipsoid that is in no-slip
contact with a fixed horizontal plate and subject to a vertical gravitational force. If the
solid is homogeneous, then the axes of inertia agree with the geometric axes of the ellipsoid.
In this case, the equations of motion can be solved explicitly [3]. More interesting behavior
is observed when the axes of inertia are rotated by a nonzero angle δ about the geometric
axis that corresponds to smallest diameter of the ellipsoid [1]. This is a standard model
for the so-called rattleback or Celtic stone, where δ is usually chosen close to zero [2,8].
Like the homogeneous ellipsoid, it admits a rotating motion with constant angular velocity
about the vertical axis, if this axis corresponds to smallest diameter of the body. But if
this angular velocity (lies withing a certain range and) gets perturbed in a non-vertical
direction, then the rotation is observed to gradually slow down and eventually reverse
direction. The reversal is accompanied by a rattling motion, whence the name rattleback.
Some videos of such reversing orbits are posted at [22].

This behavior is somewhat counter-intuitive and appears to violate conservation of
angular momentum. But angular momentum can be exchanged with the plate; and if the
center of gravity is not vertically above the contact point, then the resulting torque can
slow down rotation and even reverse its direction. (There is a preferred direction that is
related to the sign of δ.) For a more detailed description of the rattleback reversal, the
underlying physics, numerical experiments, and more, we refer to [6,9,13,14,15,17,18] and
references therein.

Similar behavior is observed, both in physical models and numerical experiments, for
rattlebacks whose bodies are cut-off elliptic paraboloids. But to our knowledge, there are
no rigorous results in either case that establish the existence of reversing orbits. In this
paper, we prove the existence of such orbits, including orbits that are periodic and thus
reverse infinitely often.

To be more specific, let us first introduce the equation of motion. The position of a
rigid body in R3 can be described by specifying its center of mass G and an orthonormal
3 × 3 matrix Q representing a rotation about G. The unit vector e3 = [0 0 1]> will be
referred to as the vertical direction. Here, and in what follows, A> denotes the transpose
of a matrix A. The corresponding vertical direction in the body-fixed frame is the third
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column γ = Qe3 of the matrix Q. Consider now a body that is moving as a function of
time t, and denote by d

dtx or ẋ the time-derivative of a vector-valued function x. Then
d
dtQ

>x = Q>x′, where x′ = ẋ−x×ω. Here, ω is the angular velocity about G, and a×b
denotes the cross product of two vectors a and b in R3.

In the case of the rattleback with mass m, a vertical gravitational force −mgγ acts at
the center of mass G, where g is a gravitational acceleration. Suppose that the body stays
in contact with a fixed horizontal plate and satisfies a no-slip condition v = r×ω. Here, v
is the velocity of G and r denotes the vector from G to the point of contact C. Assuming
conservation of momentum, we have mv′ = f−mgγ, where f is the force exerted on the
body at C. Assuming conservation of angular momentum as well, we have (Iω)′ = r× f,
where I is the inertia tensor about G.

Notice that r× f = mr× v′+mgr×γ due to momentum conservation. Substituting
this expression into the equation (Iω)′ = r× f, we end up with the equation of motion

I ω̇ − (Iω)× ω = mr× v̇−mr× (v× ω) +mgr× γ . (1.1)

In addition, we have γ̇ = γ × ω, due to the fact that γ′ = 0. The dynamic variables here
are γ and ω. For the velocity v we can substitute r×ω, and the vector r can be expressed
in terms of γ by using the geometry of the body.

In this paper, we consider the body to be an ellipsoid in R3 with principal semi-axes
b1 > b2 > b3 > 0. Consider the 3 × 3 matrix B = diag(b1, b2, b3). Then the equation for
the surface of the body and the tangency condition at the point of contact C are given by

F (r) = 1 , ∇F (r) = −‖∇F (r)‖γ , F (r)
def
=
∥∥B−1r∥∥2 . (1.2)

Using these equations, one easily finds that

r = −s−1B2γ , s
def
= ‖Bγ‖ . (1.3)

The inertia tensor I is assumed to be a strictly positive symmetric 3 × 3 matrix. Then I
is invertible, and (1.1) together with the equation γ̇ = γ × ω defines a flow on R6. This
flow preserves the length ` = ‖γ‖. A straightforward computation shows that another
flow-invariant quantity is the total energy

H = 1
2ω

>Iω + 1
2m‖v‖

2 +mgs . (1.4)

The three terms on the right hand side of this equation can be identified with the rotational
kinetic energy, the translational kinetic energy, and the potential energy, respectively. We
note that the no-slip condition v = r×ω is a non-holonomic constraint, so the rattleback
model is not a Hamiltonian system.

In what follows, we restrict to ‖γ‖ = 1, unless specified otherwise. Then the phase
space for our flow is S2 ×R3, where S2 denotes the unit sphere in R3. The dimension can
be reduced further from 5 to 4, if desired, by choosing an energy E > mgb3 and restricting
to the fixed-energy surface

ME =
{
x ∈M : H(x) = E

}
, M = S2 ×R3 . (1.5)
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Clearly, these invariant surfaces are all compact. So in particular, every orbit returns
arbitrarily close to a point that it has visited earlier. This allows for a variety of different
types of motion, including periodic, quasiperiodic, and chaotic orbits. For the parameters
and energies considered in this paper, orbits that look periodic are abundant. However,
finding nontrivial periodic orbits turns out to difficult, unless one focuses on reversible
orbits.

An important feature of the rattleback flow is reversibility. To be more precise, let
Φ be the flow for some vector field X on Rn. That is, d

dtΦt = X ◦ Φt for all t ∈ R.
Given an invertible map R on Rn, we say that Φ is R-reversible if R ◦Φt = Φ−t ◦R for all
times t. Reversible dynamical systems share many qualitative properties with Hamiltonian
dynamical systems [4,5,10,12]. But they need not preserve a volume. In fact, one of our
results exploits the existence of stationary solutions that attract (or repel) nearby points
with the same energy. Nontrivial attractors of the type seen in dissipative systems have
been observed numerically e.g. in [13,14,17].

A well-known consequence of R-reversibility is the following. Assume that Φ is R-
reversible, and that some orbit of Φ includes two distinct points x and Φτ (x) that are both
R-invariant. Then the orbit is time-periodic with period 2τ . The proof is one line:

Φ2τ (x) = Φτ (Φτ (x)) = Φτ (R(Φτ (x))) = Φτ (Φ−τ (R(x))) = R(x) = x . (1.6)

This property will be used to construct symmetric periodic orbits for the rattleback flow.
It is well-known that the rattleback flow is R-reversible for the reflection

R(γ,ω) = (γ,−ω) . (1.7)

Here, and in what follows, we use the notation (x1, . . . , xn) = [x1 . . . xn]> for vectors in
Rn. A rattleback with ellipsoid geometry (1.2) has another symmetry: the flow commutes
with the reflection S0(γ,ω) = (−γ,ω). Additional symmetries exist for special choices of
the inertia tensor I. A standard choice in experiments is to take I13 = I23 = 0. Then the
system is invariant under a rotation by π about the vertical axis e3. In what follows, we
always restrict to this situation. As a consequence, the flow commutes with the reflection
S(γ,ω) = ((−γ1,−γ2, γ3), (−ω1,−ω2, ω3)). And it commutes with the reflection S′ = SS0

as well. Given that S′ commutes with R, our flows are RS′-reversible, where

RS′(γ,ω) =
(
(γ1, γ2,−γ3), (ω1, ω2,−ω3)

)
. (1.8)

As part of our investigation, we have carried out numerical simulations for various
choices of the model parameters. For simplicity, we focus here on a single set of parameters,
namely

m = 4 , b1 = 5 , b2 = 17
16 , b3 = 1 ,

I11 = 2223
1024 , I12 = − 3021

1024 , I22 = 2603
128 , I33 = 669

32 ,
(1.9)

and I13 = I23 = 0. For the gravitational acceleration we choose the value g = 40141
4096 . These

parameters can be realized in a physical experiment, with the proper choice of units for
length, mass, and time. (Possible units would be centimeters, decagrams, and deciseconds,
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respectively.) We note that the matrix I is strictly positive, and that the smallest possible
energy of a point in M is mgb3 = 40141

1024 = 39.2001953125.
The chosen inertia tensor is of the form I = R−1I0R, where I0 is roughly the inertia

tensor of a homogeneous solid ellipsoid with the given mass m and semi-axes bj , and where
R is a rotation about the vertical axis e3 by an angle δ ' π

20 .

2. Main results

A trivial solution of the rattleback equation is the stationary solution with γ = (0, 0, 1)
and ω = (0, 0, ω3). If ω3 6= 0, then this corresponds to a steady rotation about the vertical
axis. As mentioned earlier, one of the peculiar features of the rattleback is observed when
starting with a nearby initial condition that is not a stationary point. If ω3 is within a
certain range of values, then the rotation is observed to slow down and eventually reverse
direction. In order to give a precise definition of reversal, consider the column vectors α,
β, and γ of the rotation matrix Q, and define the angle ψ0 by the equation

tanψ0 =
α1

β1
, ψ0 ∈ R/(πZ) . (2.1)

When evaluated along an orbit, this “yaw-angle” ψ0 typically varies as a function of time.
Denote by ψ : R→ R a continuous lift of ψ0 to the real line. We say that the body reverses
its direction of rotation on a time interval [a, b], if there exists a time c ∈ [a, b] such that
the differences ψ(c)−ψ(a) and ψ(c)−ψ(b) have the same sign and are bounded away from
zero by some positive constant C. The largest such constant C will be referred to as the
amplitude of the reversal, and the sign of ψ(c)−ψ(a) will be called the sign of the reversal.

Theorem 2.1. There exists an R-symmetric periodic orbit of period T = 227.471 . . . that
reverses its direction of rotation on [−T/2, T/2] and on [0, T ], with opposite signs and
amplitudes larger than 4. The energy for this orbit is E = 39.683 . . .

Our proof of this theorem is computer-assisted, in the sense that it involves estimates
that have been verified (rigorously) with the aid of a computer. The same applies to
the theorems stated below. The statement E = 39.683 . . . in Theorem 2.1 means that
39.683 ≤ E < 39.684. The same notation is used for other interval enclosures. We note
that our actual bounds are much more accurate.

The orbit mentioned in Theorem 2.1 is depicted in Figure 1. To be more precise,
consider the angular velocity M = Iω − mr × v about the contact point C. This an-
gular velocity has been used as primary variable (in place of ω) in several papers. A
straightforward computation shows that

M = [I +mK(r)]ω , K(r) = ‖r‖2I− rr> . (2.2)

The matrix I + mK(r) is strictly positive, so (2.2) could be used to express ω in terms
of M. We note that the reflections R, S, and S′ commute with the change of variables
(γ,ω) 7→ (γ,M).
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Figure 1 shows the components of γ (left) and of M (right) as functions of time t, for
the orbit described in Theorem 2.1. The R-reversibility of the orbit is equivalent to the
condition that γ is an even function of t, while M is an odd function of t.
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Figure 1. Components γj (left) and Mj (right) for the orbit described in Theorem 2.1.

Remark 1. All of our results that refer to the parameters (1.9) hold for an open set
of parameter values nearby. This is a consequence of nondegeneracy properties that are
verified as part of our proofs.

Our next result concerns the existence of a reversing heteroclinic orbit between two
stationary points of the form zc = (e3, c e3). As will be shown in the next section, there
exists a value c∗ = 1.048 . . . such that zc is repelling for c < −c∗ and attracting for c > c∗,
if the flow is restricted to the surface of fixed energy E = H(zc).

Theorem 2.2. Consider the parameter values (1.9). For c = 1.849 . . . there exists a hete-
roclinic R-reversible orbit connecting z−c to zc. This orbit reverses its direction of rotation
on [−b, b] for large b > 0, and the amplitude tends to infinity as b → ∞. An analogous
orbit (in fact a one-parameter family) exists for c = 1.467 . . . that is RS-reversible. The
energies of these two orbits are E = 74.95 . . . and E = 61.72 . . ., respectively.

The first orbit described in this theorem is depicted in Figure 2. We note that this
orbit must pass through an R-invariant point x at time t = 0. Since z−c is repelling and
zc attracting (for fixed energy), every point that is sufficiently close to x and has the same
energy as x lies on some heteroclinic orbit connecting z−c to zc. We expect that there
exists heteroclinic orbits between z±c for a range of values c > c∗, and it is possible that
such orbits exist for some range of values c < c∗ as well.
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Figure 2. Components γj (left) and Mj (right) for the first orbit described in Theorem 2.2.
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Numeral experiments are most often carried out for rattlebacks whose body is a cut-off
elliptic paraboloid. If we replace F (r) = ‖ρ‖2 by F (r) = ρ21+ρ22−2ρ3−1, where ρ = B−1r,
then the behavior can be expected to be similar to the behavior of the ellipsoid, as long as
γ stays close to e3. Among the features of the ellipsoid-shaped rattleback that cannot be
studied in the cut-off paraboloid case is roll-over motion.

A possible definition of “rolling over e1” can be given in terms of the angle φ0 defined
by the equation

tanφ0 =
γ2
γ3
, φ0 ∈ R/(πZ) . (2.3)

When evaluated along an orbit, this “roll-angle” φ0 typically varies as a function of time.
Denote by φ : R → R a continuous lift of φ0 to the real line. We say that the body rolls
over e1 on a time interval [a, b], if the difference φ(b) − φ(a) is no less than π in absolute
value. The sign of φ(b)− φ(a) will be called the direction of the roll-over.

Theorem 2.3. Consider the parameter values (1.9). There exists a periodic orbit of period
T = 254.286 . . . that rolls over e1 on two time-intervals, once in the positive direction, and
once in the negative direction. In addition, the orbit reverses its direction of rotation on
[−T/2, T/2] and on [0, T ], with opposite signs and amplitudes larger than 24. The orbit is
R-symmetric, and when translated in time by T/4, it becomes RS′-symmetric. Its energy
is E = 42.0308 . . . Furthermore, there exists a one-parameter family of such orbits.

The orbit described in this theorem is depicted in Figures 3 and 4.
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Figure 3. Components γj (left) and Mj (right) for the orbit described in Theorem 2.3.
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Figure 4. Components Mj (left) and angles ψ, φ (right) for the orbit described in Theorem 2.3.
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The right part of Figure 4 shows the lifted yaw-angle ψ and the lifted roll-angle φ.
The left part shows the behavior of M near t = 0. It illustrates e.g. that the rattleback
motion exhibits many rapid variations, especially during reversals. Controlling such orbits
rigorously involves rather accurate estimates. Typical error bounds in our analysis are of
the order 2−2000.

3. Some simpler solutions
After describing a periodic orbit that rolls over e1 repeatedly in the same direction, we

will discuss some stationary solutions and their stability.

Theorem 3.1. Consider the parameter values (1.9). There exists a RS′-symmetric pe-
riodic orbit of period T = 18.061 . . . and energy E = 42.99 . . . that rolls over e1 on two
adjacent time-intervals of combined length T , both times with the same direction. In fact,
there exists a two-parameter family of such orbits.

The orbit described in this theorem is depicted in Figure 5. Our numerical results
suggest that both the yaw-angle ψ and the roll-angle φ are monotone for this orbit, but
we did not try to prove this.
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Figure 5. Components γj (left) and Mj (right) for the first orbit described in Theorem 3.1.

We note that there exist trivial roll-over orbits as well as trivial heteroclinic orbits.
Consider e.g. the manifold Fix(S′) = {(γ,ω) ∈ M : γ3 = ω1 = ω2 = 0} that is invariant
under the flow. At energy mgb1, we have a heteroclinic orbit in Fix(S′) between the points
z± = ((±1, 0, 0),0). For energies below mgb1, the orbits are all closed and avoid z±.
For energies above mgb1, the orbits are closed and clearly roll over e2 with the obvious
definition of such a roll-over.

Next, we consider some stationary solutions. A stationary point x = (γ,ω) necessarily
satisfies ω = ‖ω‖γ, since γ̇ = γ × ω has to vanish. The stability of x is best discussed in
terms of the vector field X : (γ,ω) 7→ (γ̇, ω̇). If x is invariant under R, RS, or RS′, then
the set of eigenvalues λ of DX(x) is invariant under λ 7→ λ̄ and λ 7→ −λ.

The simplest stationary points are xj = (ej ,0), where ej is the unit vector parallel to
the j-th coordinate axis. A straightforward computation shows that, besides two eigenval-
ues zero (due to the conservation of ` and H), DX(x1) has four real eigenvalues, DX(x2)
has two real and two imaginary eigenvalues, and DX(x3) has four imaginary eigenvalues.
This holds for any ellipsoid body with b1 > b2 > b3 > 0.

The stationary point x3 is part of a family of stationary points zc = (e3, c e3) param-
etrized by a real number c. The stability of these points has been investigated in several
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papers, including [7,8,9,11,18]. The consensus is that, for many choices of parameters, an
analogue of the following holds.

Lemma 3.2. Consider the parameter values (1.9). There exists a constant c∗ = 1.048 . . .
such that the stationary point zc is repelling for c < −c∗, hyperbolic for 0 < |c| < c∗,
and attracting for c > c∗, if the flow is restricted to the surface ME of constant energy
E = H(zc).

A pencil-and-paper proof of this lemma is possible, but tedious; so we carried out
the necessary (rigorous) computations with a computer. Notice that it suffices to prove
the assertions for c > 0, since DX(z−c) = DX(Rzc) = −DX(zc) by R-reversibility. We
remark that Lemma 3.2 excludes the existence of a real analytic first integral that is
independent of ` and H. A result on the non-existence of analytic integrals was proved
also in [16].

Finally, let us describe two one-parameter families of RS′-invariant stationary points.
We have not found them discussed in the literature.

Lemma 3.3. Consider the parameter values (1.9) and points z = (γ,ω) with γ3 = 0 and
ω = ±‖ω‖γ. There exist a real number q∗ = 0.025941 . . . such that the following holds. If
−q∗ < γ1

γ2
≤ 0, then z is a stationary point. For γ1 = 0 we have ‖ω‖ = 0, and ‖ω‖ → ∞

as γ1
γ2
→ −q∗ from above. Furthermore, if 0 ≤ γ2

γ1
< q∗, then z is a stationary point. For

γ2 = 0 we have ‖ω‖ = 0, and ‖ω‖ → ∞ as γ2
γ1
→ q∗ from below.

The existence of stationary points near (±e2,0) or (±e1,0) may be a known fact.
What seems surprising is that the two critical solutions (corresponding to ‖ω‖ = ∞)
are related via a rotation by π

2 . This part of Lemma 3.3 is not specific to the choice of
parameter values (1.9).

The remaining parts of this paper are devoted to our proofs of the results stated in
Sections 2 and 3.

4. Integration and Poincaré sections

The equation (1.1) determines ω̇ as a function of x = (γ,ω). Together with the equation
γ̇ = γ × ω, this defined a vector field X = (γ̇, ω̇) on R6. This vector field is considered
only in a small open neighborhood ofM in R6 where it is real analytic. The resulting flow
(t, x) 7→ Φt(x) is then real analytic as well.

In order to construct an orbit for a non-small time-interval [0, r], we partition this
interval into m small subintervals [τk−1, τk] with τ0 = 0 and τm = r. On successive
subinterval, starting with k = 1, we solve the initial value problem ẋ = X(x) with given
initial conditions at time τk−1 via the integral equation

x(τk−1 + t) = x(τk−1) +

∫ t

0

X(x(τk−1 + s)) ds , 0 ≤ t ≤ τk − τk−1 . (4.1)

If ρ = τk−τk−1 is a sufficiently small positive real number, then for 1 ≤ j ≤ 6, the function
g defined by g(t) = xj(τk−1 + t) is given by its Taylor series about t = 0 and has a finite
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norm

‖g‖ =

∞∑
n=0

|bn|ρn , bn =
g(n)(0)

n!
. (4.2)

This norm is convenient for computer-assisted proofs, since it is easy to estimate, and
since the corresponding function space Gρ is a Banach algebra for the pointwise product
of functions. Each function g ∈ Gρ extend analytically to the complex disk |z| < ρ and
continuously to its boundary. In what follows, ρ is a fixed but arbitrary positive real
number.

Consider now the integral equation (4.1), with k = 1 to simplify the discussion. Let
x0(t) = x(0). Since the vector field X defines an analytic function on some open neighbor-
hood of x(0), the equation (4.1) can be solved order by order by iterating the transformation
K given by

(K(x))(t) = x0 +

∫ t

0

X(x(s)) ds , (4.3)

starting with x = x0. That is, the Taylor polynomial xn of order n for Kn(x0) agrees with
the Taylor polynomial of order n for x.

This is of course the well-known Taylor integration method. In order to estimate the
higher order correction x− xd for some large degree d, we use a norm on G6ρ of the form

‖x‖ = max
1≤j≤6

wj‖xj‖ , (4.4)

with appropriately chosen weights wj > 0. A common approach is to apply the contraction
mapping theorem on a ball centered at xd. Instead, we use Theorem 5.1 in [19], which
only requires that some closed higher-order set gets mapped into itself. In our programs,
the radius ρ and the weights wj are chosen adaptively, depending on properties of X(xd).

Computing K(x) from the Taylor series for x involves only a few basic operations like
sums, products, antiderivatives, multiplicative inverses, and square roots. This is done by
decomposing each function g involved into a Taylor polynomial gd of some (large) degree d
and a higher order remainder g − gd. For sums, products, and antiderivatives of functions
in Gρ, it is trivial to estimate the higher order remainder of the result.

Consider now the multiplicative inverse 1 + h of a function 1 + g, where

g = g∞ , gn(t) =
n∑
k=1

bkt
k , h = h∞ , hn(t) =

n∑
k=1

ckt
k . (4.5)

The following is straightforward to prove.

Proposition 4.1. Let g ∈ Gρ with ‖g‖ < 1. Then h = (1 + g)−1 − 1 belongs to Gρ. The
Taylor coefficients cn of h are given recursively by

cn = −bn −
n−1∑
k=1

bkcn−k , n = 1, 2, . . . (4.6)
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and

‖h− hn‖ ≤
1

1− ‖g‖
∥∥1− (1 + g)(1 + hn)

∥∥ . n = 1, 2, . . . (4.7)

We note that the same holds if g takes values in some commutative Banach algebra
X with unit. Then the Taylor coefficients bn and cn in (4.5) are vectors in X . This fact is
used e.g. when estimating the flow for initial points that depend on parameters.

Next, consider the (principal branch of the) square root of a function 1 + g.

Proposition 4.2. Let g ∈ Gρ with ‖g‖ < 1
2 . Then h = (1 + g)1/2 − 1 belongs to Gρ. The

Taylor coefficients cn of h are given recursively by

cn =
1

2

[
bn −

n−1∑
k=1

ckcn−k

]
, n = 1, 2, . . . (4.8)

Furthermore,

‖h− hn‖ ≤
8

5

∥∥(1 + g)− (1 + hn)2
∥∥ , n ≥ 2 , (4.9)

provided that the norm on the right hand side of this inequality does not exceed 1
4 .

Proof. We will use that

h− hn =
1

2
(1 + hn)−1

([
(1 + g)− (1 + hn)2

]
− (h− hn)2

)
. (4.10)

Verifying this identity and (4.8) is straightforward.
Let now n ≥ 2. Using the power series for z 7→ (1 + z)1/2 − 1, and the fact that∣∣(1/2

k

)∣∣ ≤ 1
8 for k ≥ 2, one easily finds that ‖hn‖ ≤ 5

8‖g‖. This in turn yields a bound∥∥(1 + hn)−1
∥∥ ≤ 8

5 . So from (4.10) we find that δ = 4
5‖h− hn‖ satisfies

δ2 − δ + 16
25ε ≥ 0 , ε

def
=
∥∥(1 + g)− (1 + hn)2

∥∥ . (4.11)

Assuming that ε ≤ 1
4 , this implies the bound (4.9). QED

Next, we consider the problem of constructing reversible orbits for the given flow. In
what follows, we will use M as a primary variable instead of ω. The equation of motion
in the variables (γ,M) is given by

γ̇ = γ × ω , Ṁ = mg r× γ + M× ω +mṙ× (ω × r) . (4.12)

Here, r and ṙ are obtained from (1.3), while ω is determined from r and M via (2.2). In
order to simplify notation, we will now write x = (γ,M) and X = (γ̇, Ṁ). Recall that R
and RS′ commute with the change of variables (γ,ω) 7→ (γ,M).

For the construction of periodic orbits, it is convenient to consider return maps to
some codimension 1 surface Σ. The surfaces used in our analysis are

Σj = {(γ,M) ∈ R6 : Mj = 0} , (4.13)
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for j = 1 or j = 3. Since we are exploiting reversibility, only half-orbits or quarter-orbits
need to be considered. Each partial orbit starts at some symmetric (meaning R-invariant
or RS′-invariant) point. The goal is to determine such a point x, as well as a positive
time τ = τ(x), such that Φτ (x) is again symmetric. To this end, we first determine a
symmetric numerical approximation x̄ for x and an approximation τ̄ for τ . After choosing
a real number τ ′ slightly smaller than τ̄ , the associated Poincaré map P is then defined
by setting

P(x) = Φτ(x)(x) , τ(x) = min
{
t ∈ R : t > τ ′ and Φt(x) ∈ Σ

}
, (4.14)

for all (symmetric) starting points x in some neighborhood of x̄.

Consider now the problem of constructing the orbit described in Theorem 2.1. The
starting point at time t = 0 is R-invariant and thus of the form x = (γ,0). Restricting to
‖γ‖ = 1, the possible starting points are parametrized by a vector γ = (γ1, γ2) in R2 of
length less than 1. For the Poincaré section we choose Σ = Σ1. Then x̃ = P(x) is of the
form x̃ =

(
γ̃, M̃

)
with M̃1 = 0. Define P (γ) =

(
M̃2, M̃3

)
.

Lemma 4.3. There exists a vector γ̄ ∈ S2 such that the following holds. Let x̄ = (γ̄,0)
and τ ′ = 113. Then the Poincare map P with Σ = Σ1 is well-defined and real analytic
in an open neighborhood Bg × BM of x̄ in M. When restricted to Bg, the associated
mapping P is real analytic, has a nonsingular derivative, and takes the value (0, 0) at some
R-invariant point. Furthermore, all orbits with starting points in Bg × {0} have Poincaré
time τ(x) = 113.7359 . . ., energy E = 39.683 . . ., and reverse as described in Theorem 2.1.

Our proof of this lemma is computer-assisted and will be described in Section 6. Notice
that, if γ ∈ Bg is a solution of P (γ1, γ2) = (0, 0), and if we set x = (γ,0), then the point
Φτ (x) is R-invariant for τ = τ(x). Thus, as described earlier, this implies that ΦT (x) = x
with T = 2τ(x). So Theorem 2.1 follows from Lemma 4.3.

In order to construct the orbit described in Theorem 2.3, we use a Poincare map P
with Σ = Σ3. The starting point x is again R-invariant, but the desired point x̃ = P(x) is
RS′-invariant, meaning that γ3 = M3 = 0. So the goal is to find zeros of the function P
defined by P (γ) = γ̃3.

Lemma 4.4. There exists a vector γ̄ ∈ S2 such that the following holds. Let x̄ = (γ̄,0).
Then the Poincare map P with Σ = Σ3 and τ ′ = 63 is well-defined and real analytic in an
open neighborhood Bg × BM of x̄ in M. When restricted to Bg, the associated function
P is real analytic and takes the value 0 at some RS′-invariant point. Furthermore, all
orbits with starting points in Bg × {0} have Poincaré time τ(x) = 63.57172 . . ., energy
E = 42.0308 . . . and reverse/roll-over as described in Theorem 2.3. The same holds for a
two-parameter family of RS′-invariant initial points.

Our proof of this lemma will be described in Section 6. Notice that, if γ ∈ Bg is a
solution of P (γ1, γ2) = 0, and if we set x = (γ,0), then the point Φτ (x) is RS′-invariant
for τ = τ(x). Thus, by R-reversibility, the point x′ = Φ−τ (x) is RS′-invariant as well. As
described earlier, this implies that ΦT (x′) = x′ with T = 4τ(x). So Theorem 2.3 follows
from Lemma 4.4.
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Remark 2. A lemma analogous to Lemma 4.4 holds for the orbit described in Theo-
rem 3.1, with RS′-invariant starting points x. Choosing again Σ = Σ3 and P = γ̃3, the
equation that needs to be solved is P (γ1,M1,M2) = 0. Here, the value of τ ′ used in (4.14)
is τ ′ = 8.5.

5. Stationary points and heteroclinic orbits

Consider the flow on R6 in the variables (γ,ω). Clearly, x̄ = ((0, 0, γ3), (0, 0, ω3)) is a
stationary point for any real values γ3 6= 0 and ω3. So the derivative DX(x̄) has two trivial
eigenvalues 1, with eigenvectors ((0, 0, u), (0, 0, v)). The remaining eigenvalues agree with
those of the 4× 4 matrix PDX(x̄)P>, where P is the 4× 6 matrix defined by P (γ,ω) =
(γ, ω), with γ = (γ1, γ2) and ω = (ω1, ω2).

In what follows, we fix γ3 = 1 in the definition of x̄. Define two 2× 2 matrices J and
B by setting

J = d−1
[
I22 +mb23 −I12
−I21 I11 +mb23

]
, Bij = Ji,jmb

2
j , (5.1)

where d =
(
I11 +mb23

)(
I22 +mb23

)
− I12I21. Notice that J is the inverse of P [I+K(r̄)]P>.

A straightforward computation shows that

PDX(x̄)P> = L(ω3) = L0 + ω3L1 + ω2
3L2 , (5.2)

where

L0 =

 0 0 −J21 −J22
0 0 J11 J12
0 mg(b3 − a2) 0 0

−mg(b3 − a1) 0 0 0

 , (5.3)

L1 =

 −B21 1 −B22 0 0
−1 +B11 B12 0 0

0 0 −I33J21 1 − I33J22
0 0 −1 + I33J11 I33J12

 , (5.4)

and

L2 =

 0 0 0 0
0 0 0 0

−I33B21 −I33B22 0 0
I33B11 I33B12 0 0

 . (5.5)

Here a1 = b21/b3 and a2 = b22/b3 are the principal radii of curvature of the ellipsoid at
r1 = r2 = 0 and r3 = ±b3,

Sketch of a proof of Lemma 3.2. Our aim is to apply the Routh-Hurwitz criterion,
which is commonly used for such stability problems. It involves the coefficients p0, . . . , p4
of the characteristic polynomial

det
(
L(ω3)− λI

)
=

4∑
n=0

pn(ω3)λn , (5.6)
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and two other polynomials p5 and p6 that are constructed from the coefficients p0, . . . , p4.
By the Routh-Hurwitz criterion, the eigenvalues λ = λ(ω3) of L(ω3) all have a negative
real part if and only if pn(ω3) > 0 for all n. For the parameters values (1.9), an explicit
computation shows that deg(pn) = 4 − n for n ≤ 4 and deg(pn) = n − 2 for n > 4.
Furthermore, each polynomial pn is either even or odd; and up to a factor d4, its coefficients
are rationals with denominators that are powers of 2. The value of c∗ mentioned in
Lemma 3.2 is the positive zero of p5. The other polynomials pn have no zeros on the
positive real line, as can be seen immediately from their coefficients. The source code of
our program Hurwitz that computes all these coefficients can be found in [22]. QED

Consider now the two orbits described in Theorem 2.2. The first orbit is chosen to
pass at time t = 0 through the point x = (γ,0) with γ1 = −43585×2−17 = −0.3325 . . . and
γ2 = −144635× 2−20 = −0.1379 . . .. Since x is R-invariant, the orbit of x is R-symmetric.
The energy of x is E = H(x) = mbs, with s given by (1.3). The claim is that Φt(x)
approaches one of the above-mentioned stationary points x̄ = (e3, ω3e3) as t → ∞. The
value of ω3 > 0 is determined by the equation E = 1

2 I33ω
2
3 +mgb3.

The second orbit mentioned in Theorem 2.2 passes at time t = 0 through the point x =
(e3, (M1,M2, 0)) with M1 = −285332× 2−20 = −0.2721 . . ., and with M2 < 0 determined
by prescribing the energy E = 252819 × 2−12 = 61.72 . . .. Since x is RS-invariant, the
orbit of x is RS-symmetric. Defining ω3 > 0 by the equation E = 1

2 I33ω
2
3 + mgb3, the

claim is that Φt(x) approaches the stationary point x̄ = (e3, ω3e3) as t→∞.
In both cases, the goal is to prove that there exists a time τ > 0 such that Φτ (x)

belongs to an open neighborhood of x̄ in ME that is attracted to x̄ under the flow. To
this end, consider the map PE : ME → R4 given by PE(x) = Px, where P is as defined
at the beginning of this section. Then the equation of motion on ME near the origin is
conjugate via PE to the equation

ẏ = Y (y) , y = (γ1, γ2, ω1, ω2) , (5.7)

where Y = PX ◦ P−1E in some open neighborhood of x̄ in ME. The stationary point for
the associated flow is ȳ = 0.

Notice that DY (0) = L(ω3). Using Lemma 3.2, we have chosen x̄ in such a way that
ω3 > c∗. So we know that all eigenvalues of L(ω3) have a negative real part. We expect
that all eigenvalues are simple. Then there exists an inner product 〈. , .〉 on R4 such that
the matrix

Λ =
1

2

[
L(ω3) + L(ω3)∗

]
(5.8)

is strictly negative, where L(ω3)∗ denotes the adjoint of L(ω3) with respect to the above-
mentioned inner product. Assume for now that Λ is strictly negative, meaning that 〈u,Λu〉
is negative for every nonzero vector u ∈ R4. Then the derivative

d

dt
〈y, y〉 = 2〈y,Λy〉+ 2

〈
y,N(y)

〉
, N(y) = Y (y)− L(ω3)y , (5.9)

is negative, if the nonlinear part N(y) is sufficiently small compared to y.
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Let now yτ = PΦτ (x). In order to prove that yτ is attracted to zero by the flow
associated with Y , it suffices to show that yτ belongs to a ball B ⊂ R4 that is centered
at the origin, with the property that |〈y,N(y)〉| < |〈y,Λy〉| for all nonzero y ∈ B. This
property is equivalent to∣∣〈u, ϑ−1N(ϑu)

〉∣∣ < |〈u,Λu〉| , u ∈ ∂B , 0 < ϑ ≤ 1 . (5.10)

Lemma 5.1. Let yτ = PΦτ (x), with τ = 100 and x as described above. (Either the
R-invariant or the RS-invariant choice.) Then there exists an inner product 〈. , .〉 on R4

such that 〈u,Λu〉 is negative for every nonzero u ∈ R4. Moreover, there exists δ > 0 such
that yτ belongs to the ball B =

{
y ∈ R4 : |〈y, y〉|1/2 < δ

}
, and such that the condition

(5.10) holds. Furthermore, the orbit for x has the energy and reversing property described
in Theorem 2.2.

Our proof of this lemma is computer-assisted and will be described in Section 6.
Notice that Φt(x)→ x̄ as t→ ∞, since the norm of y(t) = PΦt(x) tends to zero by (5.9)
and (5.10). Furthermore Sx̄ = x̄. So by reversibility, Φt(x) converges to Rx̄ = RSx̄ as
t→ −∞. In other words, we have a heteroclinic orbit connecting Rx̄ = RSx̄ = (e,−ω3e)
to x = (e, ω3e). So Theorem 2.2 follows from Lemma 5.1.

In the remaining part of this section, we give a proof of Lemma 3.3, based in part
on (trivial) estimates that have been carried out with the aid of a computer [22]. These
estimates are specific to the choice of parameters (1.9), but analogous estimates should work
for many other choices. The remaining arguments only use that b1 6= b2 and I13 = I23 = 0.

Sketch of a proof of Lemma 3.3. We consider the equation for a stationary solution
(γ,ω) with the property that γ3 = ω3 = 0. Then ω = (ω1, ω2) must be parallel to
γ = (γ1, γ2). So ω = ±‖ω‖γ. Consider also the condition Ṁ = 0. From (4.12) we see that
the first two components of Ṁ vanish automatically. And the condition Ṁ3 = 0 becomes

g(r1γ2 − r2γ1) +m−1(M1ω2 −M2ω1) = 0 . (5.11)

This condition can be written as an equation for r = (r1, r2) by using that γj = −sb−1j rj
and ω = ±‖ω‖γ. To be more specific, we define two functions P and Q by the equation

P(r) = −sg
(
b−22 − b

−2
1

)
r1r2 ,

s2Q(r) =
(
m−1I12 − r1r2

)(
b−42 r22 − b−41 r21

)
+
[
m−1(I11 − I22) + r22 − r21

)]
b−21 b−22 r1r2 .

(5.12)

A straightforward computation shows that (5.11) reduces to

P(r) + ‖ω‖2Q(r) = 0 . (5.13)

If we stay away from the zeros of Q, then the condition is satisfied for some value of ‖ω‖
if and only if P(r) and Q(r) have opposite signs.

In addition to (5.13), we also have the ellipse condition (r1/b1)2 + (r2/b2)2 = 1. So
define p(θ) = P(r) and q(θ) = Q(r), using r1 = b1 sin(θ/2) and r2 = b2 cos(θ/2). Both p
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and q are 2π-periodic functions, since P and Q are even functions of r. In the remaining
part of this paragraph, we consider just the parameters (1.9). Restricting θ to the interval
[−π, π], the sign of p(θ) is just the sign of −θ. So it suffices to determine the sign of q(θ).
This is easily done by using interval arithmetic. By estimating q and its derivative q′ on
subintervals, one finds that q has exactly two zeros. Finally, using a (rigorous) Newton
method, the zeros are located at values θ∗ = −0.242951 . . . and θ′∗ = 3.13056 . . .. For
details we refer to the source code of the program RSp Stat in [22].

Notice that γ1
γ2

= b2
b1

tan(θ/2). When computing these ratios numerically, it appears

that the the vector γ for the angle θ = θ∗ is orthogonal to the vector γ′ for the angle θ′∗.
The following argument confirms this observation.

Consider now Q as a function of γ, say Q(r) = Q(γ). Let γ be a solution of Q(γ) = 0.
This property of γ is equivalent to M2ω1 −M1ω2 = 0, meaning that M = (M1,M2) is
parallel to ω. Recall that M = (I + mK(r))ω, where K(r) = ‖r‖2I − rr>. So ω is an
eigenvector of I+mK(r). Equivalently, ω is an eigenvector of m−1I−rr>. But ω is parallel
to γ, so γ is an eigenvector as well. Setting ρ = B−1r with B = diag(b1, b2), we have[

m−1I−Bρρ>B
]
γ = λγ , (5.14)

for some real number λ. This property is equivalent to the condition Q(γ) = 0.
Using that the matrix [· · ·] in the above equation is symmetric, we also have[

m−1I−Bρρ>B
]
γ′ = λ′γ′ , γ′ =

[
−γ2
γ1

]
, (5.15)

for some real number λ′. Notice that ρ = −‖Bγ‖−1Bγ. Let ρ′ = −‖Bγ′‖−1Bγ′. Then[
m−1I−Bρ′ρ′>B

]
γ′ = µγ′ + νγ , (5.16)

for some real numbers µ and ν. Subtracting (5.16) from (5.15) yields

B
[
ρ′ρ′

> − ρρ>
]
ρ′ = (λ′ − µ)B−1ρ′ − cνB−1ρ , (5.17)

where c is a nonzero constant. Notice that ρ′ρ′
>
ρ′ = ρ′ and ρ>ρρ> = ρ>. Thus, multiplying

both sides of (5.17) from the left by ρ>B−1 yields 0 = (λ′ − µ)ρ>B−2ρ′ − cνρ>B−2ρ. But
ρ>B−2ρ′ = 0 since γ>γ′ = 0. This implies that ν = 0. So the equation (5.16) holds with
ν = 0, and this is equivalent to Q(γ′) = 0. This proves the claim in Lemma 3.3 concerning
the limits with ‖ω‖ → ∞. QED

6. Computer estimates
What remains to be done is to prove Lemmas 4.3, 4.4, and 5.1. (Our proof of the lemma

referred to in Remark 2 is analogous to the proof of Lemma 4.4, so we will not discuss
it separately here.) The necessary estimates are carried out with the aid of a computer.
This part of the proof is written in the programming language Ada [23] and can be found
in [22]. The following is a rough guide for the reader who wishes to check the correctness
of our programs.
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6.1. Enclosures and data types

By an enclosure for (or bound on) an element x in a space X we mean a set X ⊂ X
that includes x and is representable as data on a computer. For points in Rn this could be
rectangles that contains x. Working rigorously with such enclosures is known as interval
arithmetic. What we need here are enclosures for elements in Banach spaces, such as
functions g(t) =

∑
n bnt

n in the spaces Gρ described earlier. In addition, when considering
orbits that depend on parameters (such as initial conditions), the coefficients bn can be
functions themselves.

In our programs, enclosures are associated with a data type. Let X be a commutative
real Banach algebra with unit 1. Our data of type Ball are pairs B = (B.C, B.R), where
B.C and B.R are representable numbers, with B.R ≥ 0. The enclosure associated with a
Ball B is the ball BX = {x ∈ X : ‖x − (B.C)1‖ ≤ B.R}. For specific spaces X , other types
of enclosures will be described below. In all cases, enclosures are closed convex subsets of
X that admit a canonical finite decomposition

S =
∑
n

xnB(n)X , (6.1)

where each xn is a representable element in X , and where each B(n) is a Ball centered at
0 or at 1.

Assume that X carries a type of enclosures named Scalar. For vectors in X 3 we use a
Scalar-type enclosure for each component. The corresponding data type SVector3 is sim-
ply an array(1..3) of Scalar. Our type Point defines enclosures for points x = (γ,M)
with γ,M ∈ X 3. But a Point P is in fact a 7-tuple P=(P.Alpha, P.Beta, P.Gamma, P.M,

P.Energy, P.YawPi, P.RollPi), where the first four components are of type SVector3.
The component P.Energy is a Scalar that defines an enclosure for the energy of a point,
while P.YawPi and P.RollPi are integers. More specifically, P.YawPi = (ψ − ψ0)/π and
P.RollPi = (φ−φ0)/π, where ψ is the lifted yaw-angle and φ the lifted roll-angle for points
x in the enclosure given by P. The type Point is defined in the Ada package Rattleback.

Consider now a function g : D → X on a disk D = {z ∈ C : |z| < ρ} with representable
radius ρ > 0. Denote by G the space of all such functions that admit a Taylor series
representation g(z) =

∑∞
n=0 bnz

n and have a finite norm ‖g‖ =
∑∞
n=0 ‖bn‖ρn. Here

bn ∈ X for all n. A large class of enclosures for functions in this space is determined by
the type Taylor1, which is defined in the Ada package Taylors1. Since this type has been
used several times before, we refer to [21] for a rough description and to [22] for details.

Our integration method uses a much simpler type named Taylor. A Taylor P is an
array(0..d) of Scalar, where d is some fixed positive integer. The associated enclosure
is the set

PG =

d−1∑
n=0

P(n)XZ
n + P(d)GZ

d , Z(z) = z . (6.2)

Here, P(d)G is obtained from S = P(d)X by replacing each ball B(n)X in the decomposition
(6.1) of S by the corresponding ball B(n)G . The first d terms in (6.2) provide enclosures for
the polynomial part gd−1 of a vector g ∈ G, as defined in (4.5), while the last term provides
an enclosure for both the coefficient bd and the remainder g − gd. A precise definition of
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the type Taylor is given in the package ObO (an abbreviation for order-by-order). For
analytic curves with values in X 3 we use Taylor-type enclosures for each component via
a type TVector3, which is simply an array(1..3) of Taylor.

Enclosures for real analytic curves t 7→ x(t) on D, are defined by the type Curve that is
introduced in the package Rattleback.Flows. In our programs, a Curve C is a quadruple
(C.Alpha,C.Beta,C.Gamma,C.M) whose four components are of type TVector3. These
enclosures are used in our bounds on the integral operator K defined by (4.3).

We note that the types Point, Taylor, and Curve depend on choice of the Banach
algebra X via the type Scalar. In the case X = R, we instantiate the package Rattleback
and others with Scalar => Ball. For our analysis of the characteristic polynomial (5.6),
which depends on two parameters ω3 and λ, we use an instantiation of Rattleback with
Scalar => TTay, where TTay defines enclosures for real analytic functions of two variables.
(Hurwitz.TTay is a Taylor series in λ whose coefficients are Taylor series in ω3.)

Another Banach algebra T that is very useful consists of pairs (u, u′), where u ∈ X
and u′ ∈ Xn. Addition and multiplication by scalars is as in Xn+1. The product of (u, u′)
with (v, v′) is defined as (uv, uv′ + u′v). If one thinks of u and v as being functions of
n parameters, then u′ and v′ transform like gradients. Enclosures for element in T use a
data type Tangent that is defined in the package Tangents. They are used e.g. to obtain
bounds on the derivative of Poincaré maps (by using Scalar => Tangent) without first
having to determine a formula for the derivative.

6.2. Bounds and procedures

The next step is to implement bounds on maps between the various spaces. By a bound
on a map f : X → Y we mean a function F that assigns to a set X ⊂ X of a given
type (say Xtype) a set Y ⊂ Y of a given type (say Ytype), in such a way that y = f(x)
belongs to Y whenever x ∈ X. In Ada, such a bound F can be implemented by defining
an appropriate procedure F(X: in Xtype; Y: out Ytype). In practice, the domain of F
is restricted: if X does not belong to the domain of F, the F raises an Exception which
causes the program to abort.

The type Ball used here is defined in the package MPFR.Floats.Balls, using centers
B.C of type MPFloat and radii B.R ≥ 0 of type LLFloat. Data of type MPFloat are
high-precision floating point numbers, and the elementary operations for this type are
implemented by using the open source MPFR library [26]. Data of type LLFloat are
standard extended floating-point numbers [25] of the type commonly handled in hardware.
Both types support controlled rounding. Bounds on the basic operations for this type Ball
are defined and implemented in MPFR.Floats.Balls.

The Ada package that defines a certain type also defines (usually) bounds on the
basic operations that involve this type. In particular, bounds on the maps g 7→ g−1 and
g 7→ g1/2 on G are implemented by the procedures Inv and Sqrt, respectively, in the
package Obo that defines the type Taylor. In the spirit of order-by-order computations,
these procedures include an argument Deg for the order (degree) that needs to be processed.
At the top degree, which corresponds to the last term in (6.2), the procedures Inv and Sqrt

determine bounds on the higher order terms, using the estimate given in Proposition 4.1
and Proposition 4.2, respectively.
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Bounds involving the type Point are defined mostly in Rattleback. This includes
a procedure Ham that implements a bound on the energy function H, and a procedure
VecField that implements a bound on the vector field (γ,M) 7→ (γ̇, Ṁ). Several other
procedures deal with the construction of points (initial conditions) with prescribed prop-
erties; their role is described by short comments in our programs.

The package Rattleback.Flows implements bounds on the time-t maps Φt and vari-
ous Poincaré maps. The first few procedures deal with the order-by-order computation of
cross products and other basic operations. They maintain temporary data, so that lower
order computations do not have to be repeated. And some of them can run sub-tasks in
parallel, using the standard tasking facilities that are part of Ada [23]. The procedure
VecField combines these computations into a bound on the vector field x 7→ ẋ as maps
between enclosures of the type Curve.

A bound on the solution of the integral equation K(x) = x is implemented by the
procedure Integrate. After the polynomial part xd of the solution x has been determined,
a bound on x−xd is obtained by first guessing a possible enclosure S ⊂ G6 for this function,
and then checking that xd+S is mapped into itself by the operator K. Using Theorem 5.1
in [19], this guarantees that K has a unique fixed point in xd+S. We note that Integrate
first determines a proper value of the domain parameter ρ for the space G = Gρ. This
defines the time-increments τk − τk−1 used in (4.1).

Poincaré maps are now straightforward to implement. The type Flt Affine specifies
an affine functional F : X 6 → X whose zero defines a Poincaré section Σ. To be more spe-
cific, F (γ,M) only depends on M. Besides an argument F that specifies F , the procedure
Sign Poincare also includes an argument TNeed for the time τ ′ that enters the definition
(4.14). Now Sign Poincare uses (an instantiation of) the procedure Generic Flow to
iterate Integrate, until Φt(x) with t > τ ′ lies on Σ. A bound on the zero of t 7→ F (Φt(x))
is determined by using the Newton-based procedure ObO.FindZero. We note that t is of
type Scalar, so the stopping time τ = τ(x) can depend on parameters, if X 6= R.

The angles ψ0 and φ0 are computed via their definitions (2.1) and (2.3), respectively.
This involves integrating the equations α̇ = α×ω and β̇ = β×ω besides (4.12). The lifts
of these angles to R are obtained by estimating their derivatives

ψ̇ =
α̇1β1 − α1β̇1
α2
1 + β2

1

, φ̇ =
γ̇2γ3 − γ2γ̇3
γ22 + γ23

, (6.3)

along the flow. This is done via the procedures YawNumPi and RollNumPi, respectively,
in the package Rattleback.Flows. The values of ψ and φ at the Poincaré time τ(x)
and the intermediate times τ0, τ1, . . . , τm are shown on the standard output. Our claims
concerning reversals and roll-over can be (and have been) verified by inspecting the output
of our programs.

6.3. Main programs

Our proof of Lemma 4.3 is organized in the programs R Der and R Point. The initial point
x = (γ,0) is determined from data of type Point that are read from a file [22]. It suffices
to control the map P described before Lemma 4.3 on a square centered at γ = (γ1, γ2).
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The chosen square is 2ε × 2ε, with ε = 2−2000. This square also determines a domain
Bg ⊂ S2 via the constraint ‖γ‖ = 1.

After instantiating the necessary packages, the program R Der computes an enclosure
for the derivative DP on R and saves the result to a file. It also verifies that Bg × BM

belongs to the domain of the Poincaré map for some open neighborhood BM of the origin
in R3. The program R Point uses the above-mentioned enclosure for DP to verify that a
quasi-Newton map associated with P maps R into its interior.

The necessary bounds for Lemma 4.4 are verified using the program RSpR Point. The
program takes an argument Sign DG1 with values in {−1, 0, 1}. The starting point is of the
form x = (γ,0), with γ2 = −125174× 2−17. If Sign DG1 = 0, then the value of γ1 ranges
in the interval [−δ, δ], where δ = 2−2500. To be more precise, the Point-type enclosure
P0 for x is chosen to include an open subset of M, with P0.Gamma(1) including [−δ, δ]. In
this case, RSpR Point merely verifies that P0 is included in the domain of the associated
Poincaré map. If Sign DG1 = ±1, then γ1 = ±δ. In these cases, RSpR Point computes
and shows an interval containing γ̃3 = P (γ). Inspecting the output confirms that the sign
of γ̃3 agrees with the sign of Sign DG1. Thus, there exist a value γ1 ∈ [−δ, δ] such that
P (γ1, γ2) = 0.

An additional program RSpR Der can be used (optionally) to prove that DP is nonzero.
This implies that the two-parameter family mentioned in Lemma 4.4 is real analytic.

The bounds referred to in Remark 2 are verified via the program Roll Point. This
program is analogous to RSpR Point. And there is an analogue Roll Der of RSpR Der.

The bounds needed for Lemma 5.1 are organized by the programs Het, HetRS, and
Basin. Both Het and HetRS run Plain Flow for a time τ = 100. The initial point x is as
described in Section 5. Enclosures for x and Φτ (x) are saved to data files. These files are
then read by the procedure Check in Basin.

An upper bound LambdaMax on the spectrum of the (negative) linear operator Λ
defined by (5.8) is determined and shown by Basin.Show Linear. This is done by via
approximate diagonalization. The matrix that diagonalizes Λ approximately also defines
the inner product used in (5.10). Then Basin.Show NonLinear computes and shows an
upper bound on the absolute value of the ratio 〈y, ϑ−1N(ϑy)〉/〈y, y〉 for y ∈ ∂B. By
construction, this bound is non-decreasing in ϑ, so it suffices to consider ϑ = 1. At the
end, (5.10) can be (and has been) checked by inspecting the output from Basic.

All of these programs were run successfully on a standard desktop machine, using a
public version of the gcc/gnat compiler [24]. Instructions on how to compile and run these
programs can be found in the file README that is included with the source code in [22].
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Ann. Faculté sciences Toulouse: Math 6,17, 495–517 (2008).
17] A.V. Borisov, A.Y. Jalnine, S.P. Kuznetsov, I.R. Sataev, J.V. Sedova, Dynamical phenomena

occurring due to phase volume compression in nonholonomic model of the rattleback, Regul.
Chaot. Dyn. 17, 512–532 (2012).

[18] L. Franti, On the rotational dynamics of the rattleback, Cent. Eur. J. Phys. 11, 162–172
(2013).

[19] G. Arioli, H. Koch, Existence and stability of traveling pulse solutions of the FitzHugh-
Nagumo equation, Nonlinear Analysis 113, 51–70 (2015).

[20] Y. Kondo, H. Nakanishi, Rattleback dynamics and its reversal time of rotation, Phys. Rev.
E 95, 062207, 11pp (2017).

[21] G. Arioli, H. Koch, Spectral stability for the wave equation with periodic forcing, J. Differ.
Equations, 265, 2470–2501 (2018).

[22] G. Arioli, H. Koch, The source code for our programs, data files, and some videos are available
at web.ma.utexas.edu/users/koch/papers/rback/

[23] Ada Reference Manual, ISO/IEC 8652:2012(E), available e.g. at
www.ada-auth.org/arm.html

[24] A free-software compiler for the Ada programming language, which is part of the GNU
Compiler Collection; see gnu.org/software/gnat/

[25] The Institute of Electrical and Electronics Engineers, IEEE Standard for Floating-Point
Arithmetic, in IEEE Std 754-2019, 1-84 (2019). doi: 10.1109/IEEESTD.2019.8766229

[26] The MPFR library for multiple-precision floating-point computations with correct rounding;
see www.mpfr.org/

http://web.ma.utexas.edu/users/koch/papers/rback/
http://www.ada-auth.org/arm.html
http://gnu.org/software/gnat/
https://doi.org/10.1109/IEEESTD.2019.8766229
http://www.mpfr.org/

	1. Introduction 
	2. Main results 
	3. Some simpler solutions 
	4. Integration and Poincar{accent 19 e} sections 
	5. Stationary points and heteroclinic orbits 
	6. Computer estimates 
	... 6.1. Enclosures and data types 
	... 6.2. Bounds and procedures 
	... 6.3. Main programs 
	References

