
Investigating f (R) gravity and cosmologies

Vaibhav R. Kalvakota∗

July 11, 2021

Abstract

The f(R) theory of gravity is an extended theory of gravity that is based on
general relativity in the simplest case of f(R) = R. This theory extends such a
function of the Ricci scalar into arbitrary functions that are not necessarily linear,
i.e. could be of the form f(R) = αR2. The action for such a theory would be
SEH = 1

2k

∫
f(R) + Lm d4x

√
−g, where SEH is the Einstein-Hilbert action for our

theory, g is the determinant of the metric tensor gµν and Lm is the Lagrangian density
for matter. In this paper, we will look at some of the physical implications of such a
theory, and the importance of such a theory in cosmology and in understanding the
geometric nature of such f(R) theories of gravity.
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1 Introduction to formalisms

f(R) theories of gravity are extended theories of gravity which simplify to general relativity
in the most elementary case of the function f(R). The idea of understanding this theory
stemmed in two ways – one by considering a variation of the Einstein-Hilbert action with
the metric (the metric formalism), and the other by varying the metric and an independent
connection (called the Palatini formalism)1. Each of these methods describe a form of an
extended theory of gravity by considering some function of the Ricci scalar – the field equa-
tions in each case (i.e. the field equations for an f(R) theory of gravity for some form of the
function) can be derived by either of these two formalisms. We can recover the Brans-Dicke
theory in these formalisms by setting the Brans-Dicke parameter suitably [2]. The nature of
the actions of f(R) theories of gravity was first studied extensively in [3].

We will first look at the variation of the Einstein-Hilbert action in the usual way. We
will start by noting that general relativity starts by describing an action of the form

SEH =
1

2k

∫
R+ Lm d4x

√
−g

Where k = 8πG. In the f(R) theories of gravity, the Ricci scalar R is replaced by a function
of the Ricci scalar f(R). In order to find the field equations for this theory, we need the
individual variations of the metric and the connection coefficients, which would be as follows:

δ
√
−g = −1

2

√
−g gµνδgµν

δΓγµν =
1

2
gγλ(∇µδgλν +∇νδgλµ −∇λgµν)

The variation of the Ricci scalar can also be computed by these variations. This would be

δR = Rµνδg
µν + gµν∇µ∇νδg

µν −∇µ∇νδg
µν

The variation condition is set by demanding that the variation of the Einstein-Hilbert action
is zero – therefore, we have

δSEH = δ

∫
f(R) d4x

√
−g = 0

From this, the required field equations would be

f ′(R)Rµν −
1

2
gµνf(R)− [∇µ∇ν − gµν�]f ′(R) = kTµν (1)

The nature of the field equations in f(R) gravity is not the same as in GR. The field equations
in GR are

Gµν ≡ Rµν −
1

2
gµνR = kTµν

1Interestingly, the formalism in this method was introduced by Einstein, and not Palatini.
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By taking the trace of the above equation, we see that we get an alternative form of the field
equations in GR as

Rµν = k(Tµν −
1

2
gµνT ) (2)

Where T is the trace of the energy-momentum tensor. We see that (2) is such that a non-zero
value of Tµν

2 would always correspond to a non-zero value of the Ricci tensor. This is to say
that if T = 0, then necessarily R = 0, which is seen in the algebraic relation

R = kT

However, this is not so in the case of f(R) gravity when f(R) 6= R. This can be seen by
looking at the trace of (1), which is of the form

f ′(R)R+ 3�f ′ − 2f(R) = kT (3)

It is therefore quite straightforward to see that a case where T = 0 does not necessarily
imply R = 0. This is a primary difference between GR and f(R) gravity. This nature of the
f(R) theories of gravity implies that there exist many different solutions than does GR. It
is going to be convenient to look at an elementary case of f(R) theory of gravity where we
have a non-zero trace of the energy-momentum tensor and a fixed value of R – this would
give us an algebraic equation of the Ricci scalar. This would admit two different types of
solutions – one when R = 0, and the other when R = k, where k is a constant. This is
an indication that there are many possibilities of solutions to a single case of f(R) gravity.
This is, in general a reason why showing a direct way of testing an f(R) theory of gravity
is difficult – there exist many solutions to each of these theories.

Another way of describing an f(R) theory of gravity is by considering a variation inde-
pendent of the metric and a connection, i.e. by introducing a new connection [4]. In this
way, the action in the Palatini formalism can be described as

SPalatini =

∫
f(R′) d4x

√
−g + Sm(gµν, Ψ) (4)

In this action, R′ denotes the Ricci scalar defined by the new connection. We will denote the
covariant derivative by the new connection as ∇̄. In this new formalism, the field equations
are of the form

f ′(R′)R′µν −
1

2
f(R′)gµν = kTµν (5)

∇̄α(
√
−gf ′(R′)gµν) = 0 (6)

Look at the simplest case of f(R′) = R′ – then, from (5), we would see that we would get
the usual field equations in GR, and (6) would yield the standard Levi-Civita connection.
From (6), we can introduce a metric defined by g̃µν such that it is related by a transformation
g̃µν = f ′(R′)gµν .

f ′(R′)R′ − 2f(R) = kgµνTµν (7)

2Since the trace of the energy-momentum tensor is T = Tα
α , it is quite easy to see that for non-zero values

of Tµν the relation (2) would mean that Rµν would also be non-zero.
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Which is quite simple to get. By some manipulations on a conformal3 metric to gµν (which
would involve understanding the Christoffel symbols and the Ricci scalars in the initial and
primed connection systems), the final equation (5) would take a form independent of the new
connection term we used in (5) and (6). In the case of a vacuum solution to (7), we would
have T = 0, for which the case of quadratic solutions would contain conformal invariance,
as seen in [6].

2 An example: the case of quadratic f (R)
One of the most elementary examples of an f(R) theory of gravity is the case when

f(R) = R+ αR2 (8)

In this case, the first thing to do would be to define the field equations for this theory. The
action for this theory can be written as the form

δ

∫
R+ αR2 d4x

√
−g (9)

By varying this action, we get an expansion of the terms R and αR2 as the following, where
the variation of the Ricci scalar would reduce into the usual variation that includes the
Einstein tensor Gµν : ∫

δgµνGµν d
4x
√
−g + δ

∫
αR2 d4x

√
−g = 0 (10)

Here, we can define the term

α δ

∫
R2 d4x

√
−g

as

2α

(
−1

4

∫
gµνδg

µνR2 d4x
√
−g +

∫
{δgµνRµν + gµνδRµν}R d4x

√
−g
)

Here, the terms in the paranthesis are the results of varying the quadratic term of the Ricci
scalar R2. We can define a new metric and its trace as the variation γµν = −δgµν and
γ = gµνh

µν , and transform the integrals into

δ

∫
R2 d4x

√
−g =

∫
R{2Rµν−

1

2
gµνR}δgµν d4x

√
−g + 2

∫
R{gµν�−∇µ∇µ}δgµν d4x

√
−g

(11)
We can use (11) in equation (10) to derive the required field equations in our f(R) theory
as

Gµν + 2αR
(
Rµν −

1

4
gµνR

)
+ (gµν�−∇µ∇ν)2αR = Tµν (12)

3A conformal metric γµν would be a metric that is based on the metric as γµν = Ω2gµν , where Ω is the
conformal factor relating γ and g.
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This is the required set of field equations for our theory of gravity where f(R) = R+ αR2.
Further, the trace of (12) is of the form

�R− χR = χT

Where χ is a constant equal to 1
6α

.
f(R) theories of gravity such as the one we saw above have many implications in cosmology.
Such theories have been investigated for a long time, and there has been a considerable
advance in understanding cosmological implications of f(R) theories of gravity in works
such as [8, 15,16]. We will now discuss cosmology in terms of such theories of gravity.

3 Cosmology and f (R) gravity

3.1 Dynamics of cosmology in f(R) gravity

Measurements in observational cosmology show that the rate of expansion (defined by the

Hubble factor H = ȧ(t)
a(t)

, where a(t) is the acceleration of the universe) is positive, meaning

that there is a speed-up of acceleration. Supernovae measurements [14] show that the uni-
verse has a positive acceleration, in contrast to previous predictions that the universe must
slow down over time. Such measurements using Type Ia supernovae and stellar distance
indicators show that the acceleration of the Universe is caused by an additional term in the
physical content of the Universe in the form of a field adding up to the matter content and
as an additional source of gravity. In f(R) gravity, we can define the nature of the model
in terms of f ′ to understand the degrees of freedom. We can do this by first looking at the
trace of the field equations in f(R) gravity (3). By identifying the derivative f ′ as some
scalar φ and a potential V (φ) in terms of the derivative f ′. Using this, we can define the
trace of the field equations in f(R) gravity as

�φ =
3V ′ + 8πG

3
T (13)

The Friedmann equations in this theory would be of the form

H(H +
φ̇

φ
)− f(R)− φR

6φ
=

8πG

3
(ρtotal) (14)

Where ρtotal is the total density of matter content and is composed of the matter and radi-
ation densities, or ρtotal = ρmatter + ρradiation. The dynamics of such f(R) cosmologies would
therefore be composed of a collection {φ, φ̇, H, a}. There are several papers that discuss
the idea of explaining cosmic speed-up in terms of a description of the ”effective” dark mat-
ter terms that can be formulated into our theory. Studying the resulting equations of state
would show that such a term would have to be less than −1

3
in order to incorporate such

speed-up.
f(R) theories of gravity have been studied for quite some time, and they have many impli-
cations particularly in the aspect of terms in the form of 1/R. We will study a particular
case of

f(R) = R− α2

nR
(15)
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3.2 The case of Palatini f(R) = R− α2/nR cosmologies

In this section, we will investigate in particular the case of Palatini n = 3 (15), which would
give an f(R) theory of gravity of the form [7]

f(R) = R− α2

3R
(16)

In this case, our theory would have the field equations (1) as(
1 +

α2

3R2

)
Rµν −

1

2
gmuν

(
R− α2

3R

)
= −kTµν (17)

By suitably contracting this equation, (17) takes a quadratic form in R as

R(R− kT ) = α2 (18)

The solutions of (18) under suitable conditions4 can be seen to reduce into the form of

R =
kT −

√
k2T 2 + 4α2

2
(19)

The vacuum solution of (19) would give a de Sitter model defining our universe in the case
of an f(R) theory taking the form (16). We can further study the nature of the universe in
terms of this theory by considering the FLRW metric, which is of the form

ds2 = −dt2 + a2(t)dx2

In terms of the parameter α, we can identify that the acceleration factor would be identical
to the form a(t) = eHt + b, where b ≡ b(t) is an additional term that we wish to look at in
the later phase of the evolution of the near-de Sitter universe, and H would be defined in
terms of α by some factor. We can then show that b would take the form

b = −ψe−Ht (20)

Where ψ is a coefficient that can be found to be of the following form, where we define α in
later times as 3H2:

ψ =
8πG ρ

3α
e−Ht

We have done this manipulation to capture that we are describing the evolution of a universe
into de Sitter space. (20) shows that the evolution of the universe is exponential into de Sitter
space. At early times the universe would be described by the usual field equations in GR –
however, at later times this universe would evolve into a de Sitter universe, and eventually
(20) shows this evolution to be exponential.

There have also been several papers5 that considered a form of modified theory of gravity
to replace the idea of dark energy with a function of the Ricci scalar so that such cosmic
speed-up is explained without dark energy. We will discuss this aspect of a modified form of
theory in the following section.

4When the dominant energy condition holds true for our theory.
5most notably Carroll et al ’s paper in Physical Review D on a model of modified gravity that considered a

function of the Ricci scalar such that it replaces the idea of unaccounted matter contribution to the expansion
of the universe (dark energy) with only gravitational effects involving a modified term in the action for our
theory.
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3.3 Cosmic speed-up with f(R) gravity

Carroll et al in [9] introduced the idea of a function f(R) replacing the terms for dark energy
to explain cosmic speed-up. It was shown that for a function

f(R) = R− µ4

R
, (21)

we can define a theory of gravity such that the need for dark energy was eliminated, and at
the same time formulate a model of a non-static universe. The action for our theory when
f(R) takes the form of (21) would be

S =
1

2k

∫ (
R− µ4

R

)
d4x
√
−g + Sm(gµν , Ψ) (22)

We can use the standard set of field equations (1) to derive the field equations for the case
when f(R) is as (21). This would be of the form(

1 +
µ4

R2

)
Rµν −

R
2

(
1− µ4

R2

)
gµν +

µ4

R2
[gµν�−∇µ∇ν ] (23)

The Friedmann equations in GR are extended into non-zero values of µ in our theory of
gravity – namely, the Friedmann equations in our f(R) theory go back to the original
Friedmann equations in GR when µ = 0, as can be seen from the Friedmann equations in
(21) theory6 as:

3 H2 = τµ4 =
ρm

k
(24)

Where τ is a coefficient comprising of the Hubble factor. When µ = 0, the usual Friedmann
equations can be seen to arise from pure GR. The coefficient τ can be seen to be of the form

τ =
2HḦ + 15H2Ḣ + 2Ḣ2 + 6H4

12(Ḣ + 2H2)3

(24) is the 00 component of the field equations. We can switch the terms of our degree
of freedom into the Einstein frame, where a scalar φ is introduced. We will define a new
conformal metric hµν in terms of g as [12,13]:

hµν = p(φ)gµν (25)

Through this, we can analyse the physical nature of the universe in this frame. In the original
matter frame, the energy-momentum tensor for a perfect fluid would be

T µν = (ρ+ P )uµuν + Pgµν

Where we define the pressure as P = ωρ, where ω is a coefficient that determines the form of
matter, i.e. determines if the density is added by radiation or matter. From (25), we define
the factor p as p(φ) = exp(γ) in terms of the usual degree of freedom:

γ =

√
2

3

φ

Mpl

6In this theory, we consider the energy-momentum tensor to be that of a perfect fluid.
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Where Mpl is the Planck mass,
√

8πG. We introduce a potential V (φ) as µ2M2
pl

(
p−1
p2

)
. By

analyzing the nature of this term in the Einstein frame in our cosmological setting, we can
deduce that the final nature of f(R) theories of the generalised form of (21)

f(R) = R− µ2(n+1)

Rn
(26)

would be such that there is an intrinsic form of speed-up of cosmologies described by such
theories, eliminating the need of an additional contribution by an unaccounted form of
matter. Such an effective form of matter would be of the form

−1 < ωeffective < −2/3

In [9], it was shown that such a theory of the form (26) with suitable settings on µ
and n could yield an explanation for the accelerated expansion of the universe, eliminating
the need for a matter term that accounts for the perturbed value of the acceleration of the
universe. As seen in the previous case in section 3.2, the description of the universe may
vary at different points of time. In a similar way, GR describes, in our present case, some
parts of the history of the universe, with the inflatory aspects being explained by our theory
using purely gravitational effects.

4 Conclusion

Modified theories of gravitation have many implications, from both a purely geometric back-
ground and their implications in cosmology. In this review, we have considered a look at
f(R) theories of gravity, their construction and some of their cosmological effects in the
field of explaining the nature of the universe and their physical dynamics, in particular the
acceleration of the universe. We will conclude this paper by noting that there are many
numerical implications of modified theories of gravity, and as we have seen, those models
that are quadratic have many roots in explaining the physical nature of cosmologies.
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