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Abstract: We study solvability of certain linear nonhomogeneous equations in-
volving the sum of the two distinct fractional powers of a Schrödinger operator in
higher dimensions and establish that under reasonable technical assumptions the
convergence inL2(Rd) of the right sides implies the existence and the convergence
in L2(Rd) of the solutions. The problems contain the operators without the Fred-
holm property and we use the methods of the spectral and scattering theory for the
Schrödinger type operators similarly to our preceding work [21].
AMS Subject Classification:35J15, 35R11
Key words: solvability conditions, non-Fredholm operators, function spaces

1. Introduction

Consider the problem
−∆u + V (x)u− au = f, (1.1)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant and the
scalar potential functionV (x) converges to0 at infinity. Fora ≥ 0, the essential
spectrum of the operatorA : E → F , which corresponds to the left side of equation
(1.1) contains the origin. Consequently, this operator fails to satisfy the Fredholm
property. Its image is not closed, ford > 1 the dimension of its kernel and the
codimension of its image are not finite. The present work deals with the studies
of certain properties of the operators of this kind. Let us recall that the elliptic
equations involving the non-Fredholm operators were treated extensively in recent
years (see [10], [18], [19], [20], [22], [23], [24], [25], [26], [27], [28],
also [4]) along with their potential applications to the theory of reaction-diffusion
problems (see [8], [9]). Non-Fredholm operators are also very important when
studying the wave systems with an infinite number of the localized traveling waves
(see [1]). In particular, whena = 0 the operatorA satisfies the Fredholm property
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in certain properly chosen weighted spaces (see [2], [3], [5], [6], [4]). However, the
case ofa 6= 0 is considerably different and the method developed in theseworks
cannot be applied.

One of the important issues concerning the equations with non-Fredholm opera-
tors is their solvability. We address it in the following setting. Letfn be a sequence
of functions in the image of the operatorA, such thatfn → f in L2(Rd) asn → ∞.
Designate byun a sequence of functions fromH2(Rd) such that

Aun = fn, n ∈ N.

Because the operatorA does not satisfy the Fredholm property, the sequenceun may
not be convergent. We call a sequenceun such thatAun → f a solution in the sense
of sequences of problemAu = f (see [18]). If this sequence converges to a function
u0 in the norm of the spaceE, thenu0 is a solution of this problem. The solution
in the sense of sequences is equivalent in this case to the usual solution. However,
in the case of the non-Fredholm operators, this convergencemay not hold or it can
occur in some weaker sense. In this case, the solution in the sense of sequences
may not imply the existence of the usual solution. In the present work we will find
the sufficient conditions of equivalence of solutions in thesense of sequences and
the usual solutions. In the other words, the conditions on sequencesfn under which
the corresponding sequencesun are strongly convergent. Solvability in the sense
of sequences for the non-Fredholm Schrödinger type operators raised to a fractional
power minus a nonnegative constant was discussed in [21]. The present work is our
modest attempt to generalize these results. In the first partof the article we consider
the equation

{−∆x + V (x)−∆y + U(y)}s1u+
+{−∆x + V (x)−∆y + U(y)}s2u = f(x, y), x, y ∈ R

3 (1.2)

with the powers0 < s1 < s2 < 1. The operator in the left side of problem (1.2)

HU, V := {−∆x + V (x)−∆y + U(y)}s1 + {−∆x + V (x)−∆y +U(y)}s2 (1.3)

is defined by virtue of the spectral calculus. Here and below the Laplacians∆x and
∆y are acting on thex andy variables respectively. The sum of the two Schrödinger
type operators involved in both terms in the right side of (1.3) has the physical
meaning of the cumulative hamiltonian of the two non interacting three dimensional
quantum particles in external potentials. The fractional powers of second order dif-
ferential operators are actively used, for example in the studies of the anomalous
diffusion problems (see e.g. [29], [30], [31] and the references therein). The prob-
abilistic realization of the anomalous diffusion was discussed in [15]. The equa-
tions involving the sum of the disctinct fractional powers of a differential operator
similarly to (1.2) above are relevant to the studies of the double scale anomalous
diffusion. The form boundedness criterion for the relativistic Schrödinger opera-
tor was established in [14]. The article [13] is devoted to proving the imbedding
theorems and the studies of the spectrum of a certain pseudodifferential operator.
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The scalar potential functions involved in operatorHU, V are assumed to be
shallow and short-range, satisfying the assumptions analogous to the ones of [22]
and [23].

Assumption 1.1.The potential functionsV (x), U(y) : R3 → R satisfy the bounds

|V (x)| ≤ C

1 + |x|3.5+ε
, |U(y)| ≤ C

1 + |y|3.5+ε

with a certainε > 0 andx, y ∈ R
3 a.e. so that
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The norm of a functionf1 ∈ Lp(Rd), 1 ≤ p ≤ ∞, d ∈ N is designated as
‖f1‖Lp(Rd). By means of Lemma 2.3 of [23], under Assumption 1.1 above on the
scalar potentials, the operator

−∆x + V (x)−∆y + U(y)

onL2(R6) is self-adjoint and is unitarily equivalent to−∆x − ∆y via the product
of the wave operators (see [11], [17])

Ω±
V := s− limt→∓∞eit(−∆x+V (x))eit∆x , Ω±

U := s− limt→∓∞eit(−∆y+U(y))eit∆y ,

with the limits here understood in the strongL2 sense (see e.g. [16] p.34, [7] p.90).
Therefore, operator (1.3) has only the essential spectrum

σess(HU, V ) = [0,+∞)

and no nontrivialL2(R6) eigenfunctions. Hence, operator (1.3) does not satisfy the
Fredholm property. The functions of the continuos spectrumof the first differential
operator involved in (1.3) are the solutions the Schrödinger equation

[−∆x + V (x)]ϕk(x) = k2ϕk(x), k ∈ R
3,
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in the integral form the Lippmann-Schwinger equation

ϕk(x) =
eikx

(2π)
3

2

− 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕk)(y)dy (1.6)

and the orthogonality relations

(ϕk(x), ϕk1(x))L2(R3) = δ(k − k1), k, k1 ∈ R
3.

hold. The integral operator involved in (1.6)

(Qϕ)(x) := − 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕ)(y)dy, ϕ(x) ∈ L∞(R3).

We considerQ : L∞(R3) → L∞(R3) and its norm‖Q‖∞ < 1 under our As-
sumption 1.1 via Lemma 2.1 of [23]. In fact, this norm is bounded above by the
k-independent quantityI(V ), which is the left side of bound (1.4). Analogously,
for the second differential operator involved in (1.3) the functions of its continuous
spectrum solve

[−∆y + U(y)]ηq(y) = q2ηq(y), q ∈ R
3,

in the integral formulation

ηq(y) =
eiqy

(2π)
3

2

− 1

4π

∫

R3

ei|q||y−z|

|y − z| (Uηq)(z)dz, (1.7)

such that the the orthogonality conditions

(ηq(y), ηq1(y))L2(R3) = δ(q − q1), q, q1 ∈ R
3

are valid. The integral operator involved in (1.7) is

(Pη)(y) := − 1

4π

∫

R3

ei|q||y−z|

|y − z| (Uη)(z)dz, η(y) ∈ L∞(R3).

ForP : L∞(R3) → L∞(R3) its norm‖P‖∞ < 1 under Assumption 1.1 by means
of Lemma 2.1 of [23]. As above, such norm can be estimated fromabove by the
q-independent quantityI(U), which is the left side of inequality (1.5). By virtue of
the spectral theorem, we have

HU, V ϕk(x)ηq(y) = [(k2 + q2)s1 + (k2 + q2)s2]ϕk(x)ηq(y).

Let us denote by the double tilde sign the generalized Fourier transform with the
product of these functions of the continuous spectrum

˜̃
f(k, q) := (f(x, y), ϕk(x)ηq(y))L2(R6), k, q ∈ R

3. (1.8)
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(1.8) is a unitary transform onL2(R6). Our first main result is as follows.

Theorem 1.2. Let Assumption 1.1 hold andf(x, y) ∈ L1(R6) ∩ L2(R6). Then
equation (1.2) admits a unique solutionu(x, y) ∈ L2(R6).

We turn our attention to the issue of the solvability in the sense of sequences for
our problem. The corresponding sequence of approximate equations withn ∈ N is
given by

{−∆x + V (x)−∆y + U(y)}s1un+

+{−∆x + V (x)−∆y + U(y)}s2un = fn(x, y), x, y ∈ R
3 (1.9)

where0 < s1 < s2 < 1 and the right sides tend to the right side of (1.2) inL2(R6)
asn → ∞.

Theorem 1.3.Let Assumption 1.1 hold,n ∈ N andfn(x, y) ∈ L1(R6)∩L2(R6), so
thatfn(x, y) → f(x, y) in L1(R6) asn → ∞ andfn(x, y) → f(x, y) in L2(R6) as
n → ∞. Then equations (1.2) and (1.9) possess unique solutionsu(x, y) ∈ L2(R6)
andun(x, y) ∈ L2(R6) respectively, so thatun(x, y) → u(x, y) in L2(R6) asn →
∞.

The second part of the article is devoted to the studies of theproblem

{−∆x −∆y + U(y)}s1u+

+{−∆x −∆y + U(y)}s2u = φ(x, y), x ∈ R
d, y ∈ R

3 (1.10)

whered ∈ N and the powers0 < s1 < s2 < 1. The scalar potential function in-
volved in (1.10) is shallow and short-range under our Assumption 1.1. The operator

LU := {−∆x −∆y + U(y)}s1 + {−∆x −∆y + U(y)}s2 (1.11)

here is defined by means of the spectral calculus. The sum of the free negative
Laplacian and the Schrödinger type operator involved in both terms in the right
side of (1.11) has the physical meaning of the cumulative hamiltonian of a freed
dimensional particle and a three dimensional particle in anexternal potential. The
particles do not interact. As above, the operator

−∆x −∆y + U(y)

onL2(Rd+3) is self-adjoint and is unitarily equivalent to−∆x−∆y. Hence, operator
(1.11) has only the essential spectrum

σess(LU) = [0,∞),

and no nontrvialL2(Rd+3) eigenfunctions. Thus, operator (1.11) is non Fredholm.
By means of the spectral theorem

LU

eikx

(2π)
d
2

ηq(y) = [(k2 + q2)s1 + (k2 + q2)s2]
eikx

(2π)
d
2

ηq(y).
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Let us consider another useful generalized Fourier transform with the standard
Fourier harmonics and the perturbed plane waves, namely

˜̂
φ(k, q) :=

(

φ(x, y),
eikx

(2π)
d
2

ηq(y)

)

L2(Rd+3)

, k ∈ R
d, q ∈ R

3. (1.12)

(1.12) is a unitary transform onL2(Rd+3). We have the following statement.

Theorem 1.4.Let the potential functionU(y) satisfy Assumption 1.1 andφ(x, y) ∈
L1(Rd+3)∩L2(Rd+3), d ∈ N. Then equation (1.10) has a unique solutionu(x, y) ∈
L2(Rd+3).

The final result of the article deals with the issue of the solvability in the sense
of sequences for our problem (1.10). The corresponding sequence of approximate
equations withn ∈ N, x ∈ R

d, d ∈ N, y ∈ R
3, 0 < s1 < s2 < 1 is given by

{−∆x −∆y + U(y)}s1un+

+{−∆x −∆y + U(y)}s2un = φn(x, y). (1.13)

The right sides of (1.13) tend to the right side of (1.10) inL2(Rd+3) asn → ∞.

Theorem 1.5. Let the potential functionU(y) satisfy Assumption 1.1,n ∈ N and
φn(x, y) ∈ L1(Rd+3) ∩ L2(Rd+3) d ∈ N, so thatφn(x, y) → φ(x, y) in L1(Rd+3)
asn → ∞ andφn(x, y) → φ(x, y) in L2(Rd+3) asn → ∞. Then equations (1.10)
and (1.13) admit unique solutionsu(x, y) ∈ L2(Rd+3) andun(x, y) ∈ L2(Rd+3)
respectively, so thatun(x, y) → u(x, y) in L2(Rd+3) asn → ∞.

Note that for the statements of the theorems above we do not require any orthog-
onality conditions for the right sides of our equations. We proceed to the proofs of
our results.

2. Solvability in the sense of sequences with two potentials

Proof of Theorem 1.2.Let us first establish the uniqueness of solutions for equation
(1.2). Suppose it admits two solutionsu1(x, y), u2(x, y) ∈ L2(R6). Then their
differencew(x, y) := u1(x, y)− u2(x, y) ∈ L2(R6) solves the problem

HU, Vw = 0.

Since operator (1.3) has no nontrivial square integrable zero modes in the whole
space as discussed above,w(x, y) vanishes inR6.

Let us apply the generalized Fourier transform (1.8) to bothsides of problem
(1.2). This yields

˜̃u(k, q) =
˜̃
f(k, q)

{k2 + q2}s1 + {k2 + q2}s2χ
{√

k2+q2≤1
}+ (2.14)
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+
˜̃
f(k, q)

{k2 + q2}s1 + {k2 + q2}s2 χ
{√

k2+q2>1
}

with k, q ∈ R
3. Here and further downχA will denote for the characteristic function

of a setA. Evidently, the second term in the right side of (2.14) can bebounded

from above in the absolute value by
| ˜̃f(k, q)|

2
∈ L2(R6) due to the one of our as-

sumptions. By means of Corollary 2.2 of [23] (see also [22]) under the stated
conditions fork, q ∈ R

3 we haveϕk(x), ηq(y) ∈ L∞(R3) and

‖ϕk(x)‖L∞(R3) ≤
1

1− I(V )

1

(2π)
3

2

, ‖ηq(y)‖L∞(R3) ≤
1

1− I(U)

1

(2π)
3

2

. (2.15)

This enables us to estimate the first term in the right side of (2.14) from above in
the absolute value by by

1

(2π)3
1

1− I(V )

1

1− I(U)
‖f‖L1(R6)

χ{√
k2+q2≤1

}

{k2 + q2}s1 .

Hence,
∥

∥

∥

∥

∥

˜̃
f(k, q)

{k2 + q2}s1 + {k2 + q2}s2χ
{√

k2+q2≤1
}

∥

∥

∥

∥

∥

L2(R6)

≤

≤ 1

(2π)3
1

1− I(V )

1

1− I(U)
‖f‖L1(R6)

√

|S6|
6− 4s1

< ∞

by virtue of the conditions of our theorem. Here|S6| denotes the Lebesgue measure
of the unit sphere in the space of six dimensions. Therefore,for the unique solution
of equation (1.2) we haveu(x, y) ∈ L2(R6).

Let us turn our attention to the solvability in the sense of sequences for our
equation in the case of two scalar potentials.

Proof of Theorem 1.3.Problems (1.2) and (1.9) possess unique square integrable
solutionsu(x, y), un(x, y) respectively inR6, wheren ∈ N via the result of Theo-
rem 1.2 above. Let us apply the generalized Fourier transform (1.8) to both sides of
equations (1.2) and (1.9). This yields

˜̃u(k, q) =
˜̃
f(k, q)

{k2 + q2}s1 + {k2 + q2}s2 ,
˜̃un(k, q) =

˜̃
fn(k, q)

{k2 + q2}s1 + {k2 + q2}s2

with 0 < s1 < s2 < 1 andn ∈ N. Thus,˜̃un(k, q)− ˜̃u(k, q) can be written as

˜̃
fn(k, q)− ˜̃

f(k, q)

{k2 + q2}s1 + {k2 + q2}s2χ
{√

k2+q2≤1
}+ (2.16)
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+
˜̃
fn(k, q)− ˜̃

f(k, q)

{k2 + q2}s1 + {k2 + q2}s2χ
{√

k2+q2>1
}.

Clearly, the second term in (2.16) can be trivially bounded from above in the abso-

lute value by
| ˜̃fn(k, q)− ˜̃

f(k, q)|
2

. Hence,

∥

∥

∥

∥

∥

˜̃
fn(k, q)− ˜̃

f(k, q)

{k2 + q2}s1 + {k2 + q2}s2χ
{√

k2+q2>1
}

∥

∥

∥

∥

∥

L2(R6)

≤

≤ ‖fn(x, y)− f(x, y)‖L2(R6)

2
→ 0, n → ∞

as assumed. The first term in (2.16) can be estimated from above in the absolute
value by means of inequalities (2.15) by

1

(2π)3
1

1− I(V )

1

1− I(U)
‖fn(x, y)− f(x, y)‖L1(R6)

χ{√
k2+q2≤1

}

{k2 + q2}s1 ,

so that
∥

∥

∥

∥

∥

˜̃
fn(k, q)− ˜̃

f(k, q)

{k2 + q2}s1 + {k2 + q2}s2χ
{√

k2+q2≤1
}

∥

∥

∥

∥

∥

L2(R6)

≤

≤ 1

(2π)3
1

1− I(V )

1

1− I(U)
‖fn(x, y)− f(x, y)‖L1(R6)

√

|S6|
6− 4s1

→ 0, n → ∞

via our assumptions. Therefore,un(x, y) → u(x, y) in L2(R6) asn → ∞, which
completes the proof of our theorem.

The final section of the article deals with the situation whenthe free negative
Laplacian is added to the three dimensional Schrödinger operator.

3. Solvability in the sense of sequences with Laplacian and asingle potential

Proof of Theorem 1.4.To demonstrate the uniqueness of solutions for our equation,
let us suppose that (1.10) admits two solutionsu1(x, y), u2(x, y) ∈ L2(Rd+3). Then
their differencew(x, y) := u1(x, y)− u2(x, y) ∈ L2(Rd+3) satisfies the equation

LUw = 0.

Since operator (1.11) considered in the whole space does nothave any nontrivial
square integrable zero modes as discussed above,w(x, y) vanishes inRd+3.

We apply the generalized Fourier transform (1.12) to both sides of equation
(1.10). This yields

˜̂u(k, q) =
˜̂
φ(k, q)

{k2 + q2}s1 + {k2 + q2}s2χ
{√

k2+q2≤1
}+ (3.17)
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+
˜̂
φ(k, q)

{k2 + q2}s1 + {k2 + q2}s2 χ
{√

k2+q2>1
}

with k ∈ R
d, q ∈ R

3. Clearly, the second term in the right side of (3.17) can be

bounded from above in the abosolute value by
| ˜̂φ(k, q)|

2
∈ L2(Rd+3) due to the one

of our assumptions. Using (2.15), we easily derive

| ˜̂φ(k, q)| ≤ 1

(2π)
d+3

2

1

1− I(U)
‖φ(x, y)‖L1(Rd+3).

Thus, the first term in the right side of (3.17) can be easily estimated from above in
the abosolute value by

1

(2π)
d+3

2

1

1− I(U)
‖φ(x, y)‖L1(Rd+3)

χ{√
k2+q2≤1

}

{k2 + q2}s1 .

Hence,
∥

∥

∥

∥

∥

˜̂
φ(k, q)

{k2 + q2}s1 + {k2 + q2}s2χ
{√

k2+q2≤1
}

∥

∥

∥

∥

∥

L2(Rd+3)

≤

≤ 1

(2π)
d+3

2

1

1− I(U)
‖φ(x, y)‖L1(Rd+3)

√

|Sd+3|
d+ 3− 4s1

,

which is finite due to the given conditions. Here|Sd+3| stands for the Lebesgue
measure of the unit sphere in the space ofd + 3 dimensions. Therefore,u(x, y) ∈
L2(Rd+3), which completes the proof of our theorem.

We conclude the article with demonstrating the solvabilityin the sense of se-
quences for our problem when the free negative Laplacian is added to a three di-
mensional Schrödinger operator.

Proof of Theorem 1.5.Equations (1.10) and (1.13) have unique square integrable in
R

d+3 solutionsu(x, y) andun(x, y) respectively forn ∈ N via Theorem 1.4 above.
We apply the generalized Fourier transform (1.12) to both sides of problems (1.10)
and (1.13). This gives us

˜̂u(k, q) =
˜̂
φ(k, q)

{k2 + q2}s1 + {k2 + q2}s2 ,
˜̂un(k, q) =

˜̂
φn(k, q)

{k2 + q2}s1 + {k2 + q2}s2

with 0 < s1 < s2 < 1 andn ∈ N. Let us express̃̂un(k, q)− ˜̂u(k, q) as

˜̂
φn(k, q)− ˜̂

φ(k, q)

{k2 + q2}s1 + {k2 + q2}s2χ
{√

k2+q2≤1
}+ (3.18)
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+
˜̂
φn(k, q)− ˜̂

φ(k, q)

{k2 + q2}s1 + {k2 + q2}s2χ
{√

k2+q2>1
}.

Obviously, the second term in (3.18) can be trivially estimated from above in the

absolute value by
| ˜̂φn(k, q)− ˜̂

φ(k, q)|
2

. Thus,

∥

∥

∥

∥

∥

˜̂
φn(k, q)− ˜̂

φ(k, q)

{k2 + q2}s1 + {k2 + q2}s2χ
{√

k2+q2>1
}

∥

∥

∥

∥

∥

L2(Rd+3)

≤

≤ 1

2
‖φn(x, y)− φ(x, y)‖L2(Rd+3) → 0, n → ∞

as assumed. Let us obtain the upper bound in the the absolute value for the first
term in (3.18) using (2.15). It is given by

1

(2π)
d+3

2

1

1− I(U)
‖φn(x, y)− φ(x, y)‖L1(Rd+3)

χ{√
k2+q2≤1

}

{k2 + q2}s1 .

Therefore,
∥

∥

∥

∥

∥

˜̂
φn(k, q)− ˜̂

φ(k, q)

{k2 + q2}s1 + {k2 + q2}s2χ
{√

k2+q2≤1
}

∥

∥

∥

∥

∥

L2(Rd+3)

≤

≤ 1

(2π)
d+3

2

1

1− I(U)
‖φn(x, y)− φ(x, y)‖L1(Rd+3)

√

|Sd+3|
d+ 3− 4s1

→ 0, n → ∞

by means of our assumptions. This gives us thatun(x, y) → u(x, y) in L2(Rd+3) as
n → ∞.
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problème ext́erieur de Dirichlet, Comm. Partial Differential Equations,26
(2001), no. 1-2, 315–334.

[7] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon,Schr̈odinger operators
with application to quantum mechanics and global geometry. Texts and Mono-
graphs in Physics. Springer Study Edition. Springer-Verlag, Berlin (1987), 319
pp.

[8] A. Ducrot, M. Marion, V. Volpert,Systemes de réaction-diffusion sans pro-
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