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Abstract: We study solvability of certain linear nonhomogeneous &quoa in-
volving the sum of the two distinct fractional powers of a Ratinger operator in
higher dimensions and establish that under reasonableitatlassumptions the
convergence iri?(R%) of the right sides implies the existence and the convergence
in L?(R%) of the solutions. The problems contain the operators withiwa Fred-
holm property and we use the methods of the spectral andesoattheory for the
Schrodinger type operators similarly to our precedingkwv1].
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1. Introduction

Consider the problem
—Au+V(x)u —au = f, (1.1)

whereu € £ = H*(RY) andf € F = L*(R%), d € N, a is a constant and the
scalar potential functioly’ (x) converges td at infinity. Fora > 0, the essential
spectrum of the operatot : £ — F', which corresponds to the left side of equation
(1.1) contains the origin. Consequently, this operatds fa satisfy the Fredholm
property. Its image is not closed, fdr > 1 the dimension of its kernel and the
codimension of its image are not finite. The present work<death the studies
of certain properties of the operators of this kind. Let usatlethat the elliptic
equations involving the non-Fredholm operators were éaktensively in recent
years (see [10], [18], [19], [20], [22], [23], [24], [25], &, [27], [28],
also [4]) along with their potential applications to thedhgof reaction-diffusion
problems (see [8], [9]). Non-Fredholm operators are algy iraportant when
studying the wave systems with an infinite number of the iaedltraveling waves
(see [1]). In particular, whea = 0 the operatorA satisfies the Fredholm property
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in certain properly chosen weighted spaces (see [2], [B][6b [4]). However, the
case ofa # 0 is considerably different and the method developed in thes&s
cannot be applied.

One of the important issues concerning the equations withfredholm opera-
tors is their solvability. We address it in the following seg. Let f,, be a sequence
of functions in the image of the operatdr such thatf,, — fin L?(R¢) asn — cc.
Designate by, a sequence of functions froit?(R?) such that

Au, = fn, n € N.

Because the operatdrdoes not satisfy the Fredholm property, the sequepceay
not be convergent. We call a sequengesuch thatdw,, — f a solution in the sense
of sequences of probler: = f (see [18]). If this sequence converges to a function
uo In the norm of the spacg, thenu, is a solution of this problem. The solution
in the sense of sequences is equivalent in this case to tla¢ sdution. However,
in the case of the non-Fredholm operators, this convergeragenot hold or it can
occur in some weaker sense. In this case, the solution ineihgesof sequences
may not imply the existence of the usual solution. In the gmésvork we will find
the sufficient conditions of equivalence of solutions in sease of sequences and
the usual solutions. In the other words, the conditions guseces/,, under which
the corresponding sequences are strongly convergent. Solvability in the sense
of sequences for the non-Fredholm Schrodinger type opsredised to a fractional
power minus a nonnegative constant was discussed in [2&]pfdsent work is our
modest attempt to generalize these results. In the firsbp#re article we consider
the equation

{=A, +V(z) = Ay + U(y)} ut

HA + V(@) = Ay + U)}?u = f(z,y), z,yecR’ (1.2)
with the powerd) < s; < s, < 1. The operator in the left side of problem (1.2)

Hy v ={-A +V(x) = A, +U(y)}* +{-A, +V(z) = A, +U(y)}* (1.3)

is defined by virtue of the spectral calculus. Here and belma aplaciang\, and
A, are acting on the andy variables respectively. The sum of the two Schrodinger
type operators involved in both terms in the right side oB)lhas the physical
meaning of the cumulative hamiltonian of the two non intéragcthree dimensional
quantum patrticles in external potentials. The fractiormal@rs of second order dif-
ferential operators are actively used, for example in theiss of the anomalous
diffusion problems (see e.g. [29], [30], [31] and the refees therein). The prob-
abilistic realization of the anomalous diffusion was dissed in [15]. The equa-
tions involving the sum of the disctinct fractional powefsadifferential operator
similarly to (1.2) above are relevant to the studies of thehi® scale anomalous
diffusion. The form boundedness criterion for the relatid Schrodinger opera-
tor was established in [14]. The article [13] is devoted tovong the imbedding
theorems and the studies of the spectrum of a certain ps#eigdedtial operator.
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The scalar potential functions involved in operaféy v are assumed to be
shallow and short-range, satisfying the assumptions goa®to the ones of [22]
and [23].

Assumption 1.1.The potential function¥ (z), U(y) : R* — R satisfy the bounds

C C
V < - U < —
V()| < 1+ [z]35+e Uyl < 1+ |y[35+

with a certaine > 0 andx, y € R? a.e. so that
19

8
49§(47T)"||V||Loo R3)||V||z% <1, (1.4)
22 um 2o Ulb, <1 15
) o 1 @5

and

‘/CHLS”V”L%(RS) <47T, ‘/CHLSHUHL%(R:’,) < A4

HereC' denotes a finite positive constant ang s given on p.98 of [12] is the
constant in the Hardy-Littlewood-Sobolev inequality

/ hloty )d dy| < curs|| fill? s fi € L3(R%).
rs Jrs |7 — Y2

L (R?’)

The norm of a functionf; € LP(R?%), 1 < p < oo, d € N is designated as
|| 1| o (mey. By means of Lemma 2.3 of [23], under Assumption 1.1 abovehen t
scalar potentials, the operator

A, +V(x)—A,+Uly)

on L*(R%) is self-adjoint and is unitarily equivalent teA, — A, via the product
of the wave operators (see [11], [17])

it~ Ay U () gitAy

it(— A+ V(z)) JitA Q[i] =5 — lim_zo0€ )

£ ._ i
OF =5 —lim;_zo0€ et

with the limits here understood in the stroh§sense (see e.g. [16] p.34, [7] p.90).
Therefore, operator (1.3) has only the essential spectrum

Uess(HU, V) - [07 _'_OO)

and no nontrivialL?(IR%) eigenfunctions. Hence, operator (1.3) does not satisfy the
Fredholm property. The functions of the continuos spectofithe first differential
operator involved in (1.3) are the solutions the Schroeiregjuation

[—As + V(2)|pr(z) = Kor(z), keR’,
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in the integral form the Lippmann-Schwinger equation

eikx 1 ei\k||a:—y|
o) = oy 3w L T Ve (16)

[SIY)

and the orthogonality relations
(gOk(Jf), POk, (SL’))Lz(RS) = (5(/{7 — /{Zl), ]i], k€ Rg.

hold. The integral operator involved in (1.6)

1 etlkllz—yl

(Vo) (y)dy, e(z) € L=(R?).

@)@ =4 | T
We consider : L>*(R?) — L*(R?®) and its norm||Q|l» < 1 under our As-
sumption 1.1 via Lemma 2.1 of [23]. In fact, this norm is boeddbove by the
k-independent quantity(1'), which is the left side of bound (1.4). Analogously,
for the second differential operator involved in (1.3) thadtions of its continuous
spectrum solve

[=A, +UW)ng(y) = ¢*nq(y),  q € R,
in the integral formulation

el 1 etlally—=|
wo) = s g L O (1.7)

such that the the orthogonality conditions

(M6(¥): 101 (¥)) 12(3) = 6(0 — @), ¢, 1 € R’
are valid. The integral operator involved in (1.7) is

1 etlally—=|

(Pn)(y) == (Un)(z)dz,  n(y) € L=(R?).

4 R |y — 2|

For P : L>*(R?) — L*(R?) its norm|| P||., < 1 under Assumption 1.1 by means
of Lemma 2.1 of [23]. As above, such norm can be estimated &bave by the
g-independent quantity(U ), which is the left side of inequality (1.5). By virtue of
the spectral theorem, we have

Hy, veor(@)ng(y) = [(K* + )™ + (K + ¢°)*)w(x)n,(y).

Let us denote by the double tilde sign the generalized Fotraasform with the
product of these functions of the continuous spectrum

F(k,q) = (F(x,9), ox(@)me(v)) r2ze)s kv q € RE, (1.8)
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(1.8) is a unitary transform of?(R®). Our first main result is as follows.

Theorem 1.2. Let Assumption 1.1 hold anf(z,y) € L'(R®) N L*(R%). Then
equation (1.2) admits a unique solutiofz, ) € L*(R®).

We turn our attention to the issue of the solvability in thesseof sequences for
our problem. The corresponding sequence of approximatatieqs withn € N is
given by

{=As +V(x) = Ay + U(y) } un+
+{_Am + V(ZC) o Ay + U(y)}SQUn = fn(xv y)7 T,y € R’ (19)

where( < s; < sy < 1 and the right sides tend to the right side of (1.2).#{R°)
asn — oo.

Theorem 1.3.Let Assumption 1.1 hold, € N and f,,(z,y) € L'(R®) N L*(R), so
that f,,(z,y) — f(z,y) in L'(R%) asn — co and f,(z,y) — f(z,y) in L*(R®) as
n — oo. Then equations (1.2) and (1.9) possess unique solutiong) € L*(R°)
andu,(z,y) € L*(R%) respectively, so that,(z,y) — u(z,y) in L>(R%) asn —
Q.

The second part of the article is devoted to the studies gbribielem
{=A: = Ay + Uy)} ut

+H{=A, = A, + Uy} 2u = ¢(z,y), z€R? yeR’ (1.10)

whered € N and the power§ < s; < sy < 1. The scalar potential function in-
volved in (1.10) is shallow and short-range under our Asdiond..1. The operator

Ly = {=A0 — Ay + Uy} +{=A, — A, + U(y)}> (1.11)

here is defined by means of the spectral calculus. The sumedir¢le negative
Laplacian and the Schrodinger type operator involved ith ierms in the right
side of (1.11) has the physical meaning of the cumulativeilbanmen of a freed
dimensional particle and a three dimensional particle iexdernal potential. The
particles do not interact. As above, the operator

on L?(R43) is self-adjoint and is unitarily equivalentteA, —A,. Hence, operator
(1.11) has only the essential spectrum

Uess(LU) = [0, 00)7

and no nontrviall?(R?+3) eigenfunctions. Thus, operator (1.11) is non Fredholm.
By means of the spectral theorem

ezkx ezkx

Ly——m,(y) = [(K* + ¢*)™ + (K* + ¢°)]

(2m)’? (2r)




Let us consider another useful generalized Fourier tramsfoith the standard
Fourier harmonics and the perturbed plane waves, namely

ezkx

(27)

<Z:>(k,<J) = (é(x,y), gnq(y)> , keRY qeR’. (1.12)
L2(Rd+3)

(1.12) is a unitary transform ob?(R?*3). We have the following statement.

Theorem 1.4.Let the potential functiof/ (y) satisfy Assumption 1.1 andz, y) €
LYR43)N LA (RT3, d € N. Then equation (1.10) has a unique solutign, y) €
LQ(RdJr?;)_

The final result of the article deals with the issue of the @bilty in the sense
of sequences for our problem (1.10). The correspondingesemuof approximate
equationswitm ¢ N, x ¢ R, dec N, ycR3 0< s, <sy<1isgivenby

(=80 = 8y + U} +

A — Ay + U(y)}un = dn(z,y). (1.13)
The right sides of (1.13) tend to the right side of (1.10L#R%*3) asn — oco.

Theorem 1.5. Let the potential functio/(y) satisfy Assumption 1.1, € N and
bn(z,y) € LY(RY3) N L2(R¥*3) d € N, so thatp, (z,y) — ¢(x,y) in LY(RI+3)
asn — oo ande, (z,y) — é(x,y) in L2(R¥3) asn — oo. Then equations (1.10)
and (1.13) admit unique solutiongz,y) € L?*(R*"3) andu,(z,y) € L*(RI*3)
respectively, so that,,(z,y) — u(z,y) in L?(R*"3) asn — oc.

Note that for the statements of the theorems above we doquitesany orthog-
onality conditions for the right sides of our equations. Wegeed to the proofs of
our results.

2. Solvability in the sense of sequences with two potentials

Proof of Theorem 1.2.et us first establish the uniqueness of solutions for eqgoati
(1.2). Suppose it admits two solutions(x,y), uz(z,y) € L*(R®). Then their
differencew(z,y) := ui(z,y) — us(x,y) € L*(RC) solves the problem

HU, yvw = 0.

Since operator (1.3) has no nontrivial square integrable gedes in the whole
space as discussed abovgy, i) vanishes ifR®.

Let us apply the generalized Fourier transform (1.8) to lsadles of problem
(1.2). This yields

u(k’Q) o {kQ _|_q2}31 + {k2 + q2}32x{¢k2+q2§1}+ (214)
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N f(k,q) y
(2 + @F + (k2 + 7y {viEra1 ]
with k, ¢ € R3. Here and further dowg 4 will denote for the characteristic function
of a setA. Evidently, the second term in the right side of (2.14) carbbended

. k
from above in the absolute value (k.9 € L*(R%) due to the one of our as-

sumptions. By means of Corollary 2.2 of [23] (see also [22]Jler the stated
conditions fork, ¢ € R? we havepy(z), n,(y) € L>(R?) and

1 1 ! .
1— [(V) (271)%’ ||77q(y)||L°°(R3) < 1= ](U) (QW)%' (2.15)

k() || Loo m3y <

This enables us to estimate the first term in the right sid df4) from above in
the absolute value by by

1 1 1 1l X g}
@1 —1(V) 1= 1(0) 2 4 g2
Hence, R
f(k,q) -
2+ 3+ (12 + @ Vet L2Re)
1 1 1 |5
— <0

S AP 1= 1) 1= 1(0) Il =55,

by virtue of the conditions of our theorem. Hef# | denotes the Lebesgue measure
of the unit sphere in the space of six dimensions. Therefor¢he unique solution
of equation (1.2) we have(z,y) € L*(R®). u

Let us turn our attention to the solvability in the sense afussces for our
equation in the case of two scalar potentials.

Proof of Theorem 1.3Problems (1.2) and (1.9) possess unique square integrable
solutionsu(z, y), u,(x, y) respectively inRS, wheren € N via the result of Theo-

rem 1.2 above. Let us apply the generalized Fourier trams(tr8) to both sides of
equations (1.2) and (1.9). This yields

u(k,q) = {2+ 2} + {k2 + g2}’ tn(k, q)

_ Falk, 0)
{kQ +q2}51 + {k2+q2}82

with 0 < s, < s5 < 1 andn € N. Thus,u,(k, ¢) — u(k, ¢) can be written as

Fulk,q) — f(k, q) .
(21 P+ (k2 + @y { Vi)

(2.16)
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{k2 +q2}sl _|_{k~2 _|_q2}32 {\/k2+q2>1}'
Clearly, the second term in (2.16) can be trivially boundedtabove in the abso-
2

lute value by . Hence,

fulk, @) = F(k.q)
(2 1+ @+ {12 1 g2y { V1]

<

L2(RS)

< ”fn<x7y) - f(x7y>HL2(R6)
- 2
as assumed. The first term in (2.16) can be estimated fromeabahe absolute
value by means of inequalities (2.15) by

X! ire<
RN Lo y) — Fla )l P

—0, n—o0

@rpE1—I1(V)1—I(U) VLK @2y
so that B .
{k* + @} + {k* + q2}82x{\/’“2+q2§1} L2(RS) -
1 1 1 56|
< - 1(R6 -_—
S @r)E1—1(V)1-I(U) | fo(z,y) — f(2,9)le ®)\/ 5 1s, —0, n—o0

via our assumptions. Therefore,(z,y) — u(x,y) in L*(R%) asn — oo, which
completes the proof of our theorem. [ |

The final section of the article deals with the situation wkies free negative
Laplacian is added to the three dimensional Schrodingeradpr.

3. Solvability in the sense of sequences with Laplacian andsangle potential

Proof of Theorem 1.4To demonstrate the uniqueness of solutions for our equation
let us suppose that (1.10) admits two solutiapse, i), us(x,y) € L?(R*+3). Then
their differencew(x, y) := ui(z,y) — us(x,y) € L*(RI+3) satisfies the equation

LUU} =0.

Since operator (1.11) considered in the whole space doelsavetany nontrivial
square integrable zero modes as discussed abgvey) vanishes ifR4+3.

We apply the generalized Fourier transform (1.12) to botlesiof equation
(1.10). This yields

~

x . o(k,q)
R PN T N R (547
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~

(k. q)
(k2 + @2} + {k2 + q2}szx{\/k2+q2>l}

with k € R?, ¢ € R®. Clearly, the second term in the right side of (3.17) can be

+

: o(k
bounded from above in the abosolute valu | (2’ a) € L*(R*™) due to the one
of our assumptions. Using (2.15), we easily derive

1 1
(2m)5 1= 1(U)

60k, q)| < 162, 9) 121

Thus, the first term in the right side of (3.17) can be easilyreged from above in
the abosolute value by

S S P VI et
(2m) 5 1= IO) T e 4 g2

Hence, B

¢(k,q) v -
R R Ve P

QR N S Y T
= mE L) eI G T

which is finite due to the given conditions. Helig!+3| stands for the Lebesgue
measure of the unit sphere in the space ef 3 dimensions. Therefore,(z,y) €
L*(R4+3), which completes the proof of our theorem. u

We conclude the article with demonstrating the solvabilitghe sense of se-
quences for our problem when the free negative Laplaciadde@to a three di-
mensional Schrodinger operator.

Proof of Theorem 1.59=quations (1.10) and (1.13) have unique square integrable i
R+3 solutionsu(z, y) andu,(x, y) respectively fom € N via Theorem 1.4 above.
We apply the generalized Fourier transform (1.12) to badksbf problems (1.10)
and (1.13). This gives us

é(kv Q> Py én(lﬁ Q)

w(k,q) = i (k, q) =
U( ’q) {k2+q2}31+{]€2+q2}32’ un( ’Q) {k2+q2}sl+{k2+q2}32

with 0 < s, < s, < 1 andn € N. Let us express,, (k, ¢) — u(k, q) as

~

(Z:)n(kv(n _(b(kv(p 4
(21 P+ (k2 + @y Vi)

(3.18)



én(ku(n — é(ku(p Y
(k2 + @} + {k2 + @2} {\/k2+q2>1}-
Obviously, the second term in (3.18) can be trivially estiafrom above in the

|<Z;n(k7 Q> B (ﬁ(kv Q>|

absolute value by )

+

. Thus,

~

oulk, ) — 6(k, q)

<
{k?2+q2}81+{k2+q2}szx{\/k2+q2>l}

L2(Rd+3)

1
< §||¢n(x7y) - ¢(x7y)”L2(Rd+3) —0, n—oo

as assumed. Let us obtain the upper bound in the the absallute for the first
term in (3.18) using (2.15). Itis given by

1 1 N -
(27‘(‘)% 1—1(U) |on(z,y) — (b(x,y)HLl(RdJrs){{k%—;Q}sll}.

Therefore,
dsn(ku Q> - (ﬁ(ku Q>

<
{k2_|_q2}81+{k2+q2}32x{\/k2+q2§1}

L2 (Rd+3)

<l ey - by B s N N
S EI=I0) (2, y t )o@y g 0 n oo

by means of our assumptions. This gives us that, y) — u(x,y) in L*(R%*3) as
n — 00. |
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