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ABSTRACT. The notion of random close packings of a bulk static collection of ball bearings
or sand grains was introduced in the 1960’s by G.D. Scott and J.D. Bernal. There have been
numerous attempts to understand the packings. We give a short argument, following an
earlier paper on liquids by Bernal, which explains the packings in purely geometric terms.

In 1960 G.D. Scott and J.D. Bernal began a series of experiments, with others, on large
collections of static ball bearings and other ‘granular matter’ [1, 2] in part studying how the
material compacts when shaken repeatedly. They discovered a barrier: the system would not
compact beyond a rather sharp volume fraction they called ‘random close packing’ (RCP),
which they determined to be about 0.64.

Many attempts have been made since then to illuminate the phenomenon [3, 4, 5, 6, 7, &].
The experiments started soon after the first simulation to successfully exhibit the first order
phase transition of the hard sphere model of equilibrium statistical mechanics [9], to which
they refer and presumably used for intuition. In this paper we extend some of Bernal’s ideas
about liquids to show a close connection between random close packing at volume fraction
0.64 and the freezing of a hard sphere fluid at density 0.49 [10], a correspondence which we
show is useful in both directions. We start with a quick summary of the hard sphere model,
and then derive a connection with random close packing.

The hard sphere model of particles in thermal equilibrium uses point particles of mass
m constrained to be at least some fixed distance o apart, with no other interaction. Given

z € R® and s > 1 we introduce the constraint function G, s, of variables a,b,--- € R,
to have value 0 if any of the variables a,b,--- is further than s from z, or if any distinct
pair of z,a,b,... is closer than o; otherwise G, = 1. Fix (temperature) 7' > 0, (pres-

sure) P > 0, and the number N + 1 of particles, and define the (temperature/pressure)
relative probability density that N of the particles have position/momentum coordinates
(x1,p1), (X2, p2), -+, (xn, pn) given that the other has coordinates (z,p), to be

(1) exp [— 2mlkT <p'p+j§;Pj 'pjﬂ /0°° Gos(T1, -+ ,TN) exp [— %;2(47;83”“'

This is the hard sphere model. Notice that the density factors into a part dependent only
on the momentum coordinates, controlled by 7', and a part dependent only on the position
coordinates, controlled by P/kT.
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Simulation shows there is a unique infinite particle state for any pair (P, T") of pressure and
temperature except for a special value Po®/kT = C*, C* a dimensionless constant, where
there is coexistence of the high density phase which exists for Po®/kT > C* with density
> 0.54, and the low density phase which exists for Po? JET < C* with density < 0.49.
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FIGURE 1. Sketch of shear cell used by Nicolas et al from [3], using two
hinged vertical walls attached to a moving bottom, and pressure applied from
above.

The experiments in 1960 came in the midst of a long program of Bernal’s investigating
the nature of liquids, in particular their particle configurations; see [11] for a review. From
his 1959 paper [12], in which he concentrated on liquid argon, we take the assumption that
one can picture each argon atom in the liquid as a hard ball of some diameter o vibrating
at high frequency, with a relatively slow drift, and that it is useful to shift focus from the
instantaneous ball positions to that of the slowly moving vibrating balls, which we will call
‘clouds’. We add the assumption that the clouds are roughly spherical and have a volume
which depends only on (P, T), in particular that it is roughly the same size in the coexisting
liquid and solid states.

Thus one understands the microscopic origin of macroscopic properties of fluid argon to
derive from essentially static clouds made of rapidly vibrating hard balls. In particular these
give rise to internal pressure of the liquid, supporting for instance the bulk modulus, by
vibrating against neighboring clouds. Such clouds should be large enough to touch other
clouds, to provide the pressure. It is not a big leap for us to introduce clouds in the hard
sphere model to model static sand grains, supporting the bulk modulus by contact forces
rather than the vibration in the clouds.

In the crystalline state of the hard sphere model the size of the cloud must be such as to
touch the 12 neighbors, giving a volume fraction about 0.74. Since the ratio of the volume
fractions in the coexisting states for the underlying vibrating balls should be the same as
the corresponding ratio for the clouds:
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this yields a volume fraction for RCP about 0.67, which is within 4% of the current best
estimate of 0.646 [13, 11].

In summary, the clouds of vibrating balls in thermal equilibrium behave like well-mixed
static sand grains, with the hard sphere freezing point appearing as granular RCP at about
0.646. Indeed, one might well use the hard sphere model to predict the existence of RCP in
sand, which one might say is what Bernal and Scott were exploring.

We now shift direction to examine the granular experiments and see what they might say
about the hard sphere model.

In 1964 Scott found a way to drive ball packings well above the barrier of volume fraction
0.64, and this was very revealing [15]. He found that if he cyclically sheared a low volume
fraction collection in a box with moving side walls (a ‘shear cell’), as illustrated in Figure 1,
the system would first compact to volume fraction 0.64, and then slowly rearrange close to
a densest packing at volume fraction 0.74.

FIGURE 2. Hexagonal layers in growing granular crystallites, made from un-
published simulation data by Jin for [141]. HCP layers are blue and FCC layers
are red.

There were difficulties understanding how the rearrangement took place in time, since this
would require looking inside the packing, but this was recently done using laser sheets [13, 14]
and what was discovered is that in order for the packing to rearrange at volume fraction
0.64 it had to create small clusters of balls (crystalline nuclei), randomly in the middle of the
packing, which then grew. This is, of course, how a liquid freezes (homogeneously), so if one
considers the nucleating granular system at volume fraction 0.64 as akin to a supercooled



4 CHARLES RADIN

liquid about to freeze, its correspondence with the hard sphere system at density 0.49 suggests
that the phase in the hard sphere model at density above 0.54 is not just high density but
‘crystalline’. Furthermore, examination of the grain configurations from [13, 1] shows that
the high volume fraction granular configurations consist of random layers of hexagonal slabs;
they are not regularly layered as would be FCC or HCP. See Figure 2.

Such a random layering might still have orientational long range order from the direction
normal to the layers, but not full positional long range order as in a true crystal. The
correspondence with the hard sphere model suggests the same is true for the high density
phase in that model. (For a related question about hard colloids see [10].)

The evidence from the hard sphere model of a singularity in ball packings as a function
of volume fraction is remarkable. The recent evidence from [13, 11] that granular matter
crystallizes homogeneously is then suggestive that there is a simple connection to freezing in
the hard sphere model, so that there really exists only one such ball packing singularity.
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