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Abstract. We consider skew-product maps over circle rotations x 7→ x+α (mod 1) with factors
that take values in SL(2,R). This includes maps of almost Mathieu type. In numerical exper-
iments, with α the inverse golden mean, Fibonacci iterates of maps from the almost Mathieu
family exhibit asymptotic scaling behavior that is reminiscent of critical phase transitions. In
a restricted setup that is characterized by a symmetry, we prove that critical behavior indeed
occurs and is universal in an open neighborhood of the almost Mathieu family. This behavior
is governed by a periodic orbit of a renormalization transformation. An extension of this trans-
formation is shown to have a second periodic orbit as well, and we present some evidence that
this orbit attracts supercritical almost Mathieu maps.

1. Introduction
We consider the asymptotic behavior of skew products

A∗q(x)
def

= A(x+ (q − 1)α) · · ·A(x+ 2α)A(x+ α)A(x) , (1.1)

as q → ∞ along certain subsequences, where A is a real analytic function from the circle
T = R/Z to the group SL(2,R). Here, α is a given irrational number and x 7→ x + α is
considered modulo 1. Our main results concern the inverse golden mean α =

√
5/2− 1/2,

but we expect analogous results to hold for arbitrary quadratic irrationals.
The products (1.1) arise when iterating a map G on T×R2 of the form

G(x, y) =
(

x+ α,A(x)y
)

, x ∈ T , y ∈ R2 . (1.2)

Such maps will be called skew-product maps. We will use the notation G = (α,A) and refer
to A as the factor of G. In this notation, the q-th iterate of G is Gq = (qα,A∗q), with A∗q

given by (1.1). We note that the map G is invertible, with inverse G−1 =
(

−α,A( .−α)−1
)

.
The q-th iterate of G−1 will be denoted by G−q.

Two dynamical quantities associated with such a skew-product map G are its Lya-
punov exponent L(G) and its fibered rotation number ̺(G). They are defined by

L(G) = lim
q→∞

1

q
log

∥

∥A∗q(x)
∥

∥ , ̺(G) = lim
q→∞

1

2πq
arg Gq(x, ϑ) , (1.3)

where arg(x, ϑ) = ϑ. Here, G denotes a lift of the map (x, y) 7→
(

x+ α, ‖A(x)y‖−1A(x)y
)

from T × S to T × R, where S denotes the unit circle ‖y‖ = 1 in R2. Assuming that
A : T → SL(2,R) is continuous and α irrational, the limit for ̺(G) does not depend on x
or ϑ, and convergence is uniform. Furthermore, it is independent modulo 1 of the choice
of the lift G. Under the same assumptions, the limit for L(G) exists and is a.e. constant
in x. For proofs of these and related facts we refer to [12,13,16,39].
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A skew-product map G is said to be of Schrödinger type if its factor is of the form

A(x) = A((E, s), x) =

[

E − λv(x) −1
1 0

]

, λ = es . (1.4)

A bi-infinite orbit n 7→ (xn, yn) for such a map G has the property that yn =
[

un

un−1

]

for

some sequence n 7→ un of real numbers. If x0 = 0, then this sequence u is a solution of the
equation Hα

λ u = Eu, where Hα
λ is the Schrödinger operator given by the equation

(Hα
λ u)n = un+1 + un−1 + λv(nα)un , n ∈ Z . (1.5)

The choice of potential v(x) = 2 cos(2π(x+ ξ)) defines the family of operators Hα
λ that are

knows as almost Mathieu (AM) operators. They describe the motion of an electron on Z2

under the influence of a magnetic flux 2πα per unit cell, if one restricts to wave functions
φ(n,m) = une

−2πimξun. The full Hamiltonian for this system is known as the Hofstadter
Hamiltonian [1,5]. These operators have been studied extensively over the past 20 years.
Two reviews can be found in [24,38].

Some of the most interesting phenomena in physics arise from the fact that asymp-
totic quantities can depend in a nontrivial way on model parameters. In the AM family,
the main parameters (besides α) are the coupling constant λ and the energy E. The
asymptotic quantities include the Lyapunov exponent L and the fibered rotation number
̺. Among the many known properties are the following [30,43,24,47,38]. Here, we suppress
the dependence on the parameter ξ, since it is trivial, as was mentioned after (1.3).

Assume that α is irrational. Then the spectrum Σα
λ of the operator Hα

λ on ℓ2(Z) is a
Cantor set of measure 2 − 2min{λ, 1/λ}. For all energies in the spectrum, the Lyapunov
exponent of the corresponding AM map G is given by L(G) = max{0, log λ}. The fibered
rotation number ̺ is a continuous decreasing function of the energy E, and it is constant
on each spectral gap

(

a connected component of R\Σα
λ

)

. As was described first in [10,13],
this resonance phenomenon has an interesting arithmetic aspect: each gap can be labeled
canonically by an integer k, known as the Hall conductance. On the gap with index k,
the fibered rotation number is constant and satisfies 1 − 2̺(G) ≡ kα (mod 1). The left
hand side of this congruence can also be identified with the integrated density of states
[12,16,26,39] for the Hamiltonian Hα

λ .

Regions where asymptotic quantities depend analytically on model parameters are
also called phases. By varying the parameters, it is possible to induce phase transitions.
A common phenomenon observed in such transitions is universality: within a large class
of systems, the type of singularity is independent of the system being considered, down
to precise values of observable quantities. The theory of critical phenomena aims to ex-
plain situations where the singularities involve power laws. Power law behavior represents
asymptotic scale invariance, and the quantities that describe such universal scaling are
known as critical exponents.

Similar phenomena have been observed in comparatively simple systems. Some exam-
ples will be mentioned below. Based on numerical observations and partial results [51,52],
we conjecture that skew-product maps exhibit such universal scaling as well.
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To be more specific, we consider the inverse golden mean α∗ =
√
5/2 − 1/2. Denote

by pk/qk the k-th continued fraction approximant for α∗. That is, pk is the k-th Fibonacci
number, and qk = pk+1.

Conjecture 1.1. There exists a “large” classA of real analytic functions A : T → SL(2,R),
which includes the AM factors for ξ = α∗/2, for which the following holds. Let ̺ be a
rational number in [0, 1/2 ]. Then for every real analytic two-parameter family β 7→ A(β, .)
of functions in A that satisfies a certain transversality condition, there exists a parameter
value β∗ where the map (α∗, A(β∗, .)) has fibered rotation number ̺, as well as three
matrices L,C,M ∈ GL(2,R), such that the limits

B∗(β, x) = lim
n→∞

L−nA∗pℓn
(

β∗ + CM−nβ ,αℓn
∗ x

)

Ln ,

A∗(β, x) = lim
n→∞

L−nA∗qℓn
(

β∗ + CM−nβ,αℓn
∗ x

)

Ln ,
(1.6)

exist for all x ∈ R and are independent of the given family. Here ℓ is some positive integer
that depends only on ̺. Furthermore, L is conjugate to some fixed matrix Lℓ ∈ GL(2,R),
and M is conjugate to some fixed diagonal matrix diag(µ1, µ2).

This conjecture has motivated the work presented in this paper as well as our earlier
work in [51,52,54]. The integers ℓ that appear in (1.6) can be obtained by considering the
map on the torus T2 given by the matrix

[

1 1
1 0

]

. Every point (0, ̺) with ̺ rational lies on a
periodic orbit for this map. The number ℓ = ℓ(̺) is the shortest such period. For a class A
that includes the AM factors, one finds that ℓ must be a multiple of 3, due to a symmetry
of this family. For more details we refer to [52].

We believe that Conjecture 1.1 holds for any irrational α∗ that has a periodic continued
fraction expansion. (For general quadratic irrationals, the same should apply after finitely
many steps of the transformation R defined below.) An extended version could include α
as a parameter. Based on renormalization arguments, we expect a similar scaling in the
difference α− α∗. But we have not investigated this situation.

An important aspect of Conjecture 1.1 is universality: near its critical point β∗, the
behavior of a family can be described accurately in terms of just two parameters. The
limits in (1.6), as well as the conjugacy class of the matrices L and M are independent of
the family. Universality of this type plays an important role in the description of critical
phenomena in condensed matter physics, where it is impossible to know a system precisely.

The points β∗ represent phase transitions for the chosen family. In the AM family
parametrized by β = (E, s), it is known that the system described by the Hamiltonian
Hα

λ undergoes a transition from a conducting phase (a.c. spectrum) for λ = es < 1 to an
insulation phase (p.p. spectrum) for λ = es > 1. For proofs and references we refer to [33].
So in this case, we expect that s∗ = 0 at each critical point β∗ = (E∗, s∗). Furthermore,
our numerical computations suggest that the scaling M is diagonal.

The “phase portrait” for λ = 1, obtained by plotting the spectrum Hα
1 as a set-valued

function of α, is known as the Hofstadter butterfly [5]. A detailed topological description
of the Hofstadter butterfly can be found in [35]. One of its striking features, aside from
the gap labeling, is a local self-similarity property: successive magnifications about certain
points seem to yield an asymptotic limit set [31,49,51,52,53].
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Cases where the expected phase transitions have been studied from the point of view
of critical phenomena cover the rotation numbers ̺ = 1/2 , 3/8 , 2/6 , 1/4 , 1/6 , 1/8 , 0. The values
̺ = 1/2 and ̺ = 0 correspond to the energies E∗ = ∓2.5975 . . . at the bottom and top
of the spectrum, respectively. The value ̺ = 1/4 corresponds to E∗ = 0, for symmetry
reasons. These three cases have been considered in [51,52]. In particular, rough numerical
computations indicate that the Hofstadter butterfly is asymptotically invariant under a
scaling about the point (α∗, E∗), and that the scaling factor in the energy direction is
given by the constant µ1.

A framework that has been extremely successful in describing critical phenomena is
renormalization. In the area of dynamical systems, this includes period-doubling cascades
for interval maps [7,8,18,21,22,25,32] or area-preserving maps [17,37,42], critical circle map-
pings [15,19,20,36], and the breakup of invariant tori in area-preserving maps [9,11,46,50],
to name just a few.

In the problem at hand, we expect renormalization to work as follows. The functions
Bn and An whose limits are being considered in (1.6) are the factors associated with two
skew-product maps Fn and Gn that depend on a parameter β. In the renormalization
framework, the sequence of pairs Pn = (Fn, Gn) lie on an orbit of a transformation R

that acts on a space of pairs. The accumulation property (1.6) describes convergence
(modulo re-parametrization) Pn → P∗ to a fixed point P∗ of Rℓ. The fixed point P∗ and
the observed accumulation rates are universal, due to the fact that they reflect properties
of the transformation R. In particular, we expect R

ℓ to be hyperbolic at P∗, with a
two-dimensional local unstable manifold. This manifold is given by the family of pairs
β 7→ P∗(β) whose factors are limit functions B∗ and A∗ in (1.6). The transversality
condition mentioned in Conjecture 1.1 requires that the given family be transversal to
the stable manifold of Rℓ. And β∗ is the value of the parameter β where a given family
intersects the stable manifold.

Our goal here is to verify this renormalization picture in a setup that is restricted
but includes most of the essential aspects. After finding an appropriate transformation
R, the first step in any renormalization group (RG) analysis is to prove the existence of a
small invariant set, such as a periodic orbit. For the type of skew-product maps considered
here, a fixed point of R3 was obtained in [50] for ̺ ∈ {1/2 , 0}. A theorem concerning the
existence of a fixed point of R6 associated with ̺ = 1/4 was announced in [52]. A proof of
this theorem will be given in Section 4.

Constructing a fixed point P∗ for R
ℓ is a local analysis (near an approximate fixed

point). By contrast, proving that the AM family and others are attracted to the unstable
manifold of Rℓ at P∗ is a global analysis and much harder. A simplified version of this
problem was considered in [54], in a situation where the Hofstadter Hamiltonian reduces
to skew-product maps with factors that take values in the circle R ∪ {∞}. Here we prove
convergence (1.6) with SL(2,R) factors, including the AM factors, but only in a restricted
one-parameter setup.

Before describing our main results, we would like to mention a peculiarity of these
skew-product maps. High accuracy computations suggest [52] that the eigenvalue µ1 asso-
ciated with ̺ ∈ {1/2 , 0} is a zero of the polynomial P6(z) = z4−196z3−58z2−4z+1. And
the eigenvalue µ1 associated with ̺ = 1/4 is a zero of P3(z) = z4 − 30z3 − 24z2 − 10z − 1.
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In both cases, the product of the two real roots of Pℓ is (−α)−ℓ. Furthermore, the value
of µ2 appears to be α−ℓ. In fact, computations that were carried out in the context of
the present paper suggest that the eigenvalues of DR

ℓ(P∗) can all be written down in
algebraic form. It is unusual that universal constants associated with critical phenomena
are algebraically related to basic system parameters, such as the flux parameter α here.
Known exceptions are statistical mechanics models in 2 dimensions, where the large scale
asymptotic is governed by a conformal symmetry. The class of skew-product maps that
includes the AM maps seems to be governed by symmetries as well, but it is not clear how
the symmetries of the Hofstadter model [23,27,28] generate the algebraic eigenvalues that
are observed here.

2. Main results
As is common in the renormalization of maps that include a circle rotation, we first gener-
alize the notion of periodicity by considering commuting pairs of maps. Consider the map
F = (1,1) on R × R2, defined by F (x, y) = (x + 1, y). A skew-product map G = (α,A)
with a factor A : R → SL(2,R) represents a map on on the cylinder T × R2 if and only
if G commutes with F . A more general skew-product map F = (1, B) on R ×R2 can be
viewed as defining a cylinder TF ×R2 embedded in R ×R2, by identifying points on the
orbit of F . If G commutes with F , then G defines a map on this cylinder TF ×R2.

Consider now pairs (F,G) of maps F = (1, B) and G = (α,A) on R × R2 that
commute. Here, α can be an arbitrary irrational number between 0 and 1. Then the
renormalized pair is defined by the equation

R((F,G)) =
(

F̌ , Ǧ
)

, F̌ = Λ−1GΛ , Ǧ = Λ−1FG−cΛ , (2.1)

where c is the integer part of α−1, and where Λ(x, y) =
(

αx,L1y
)

. Here, L1 is a suitable
nonsingular 2× 2 matrix that can chosen to depend on the pair (F,G). By construction,
the first component of F̌ is again 1, while the first component of Ǧ is α̌ = α−1 − c. We
note that α 7→ α̌ is the Gauss map that appears in the continued fraction expansion of α.

In what follows, α is assumed to be the inverse golden mean. Its continued fraction
expansion is α = 1/(1 + 1/(1 + . . .)), so α is a fixed point of the Gauss map, and c = 1 in
the equation (2.1). As mentioned earlier, we expect to find a period of R that is a multiple
of 3. This leads us to consider orbits of the third iterate of R, which is of the form

R
3(P ) =

(

Λ−1
3 G2F−1Λ3 ,Λ3FG

−1FG−2Λ3

)

, P = (F,G) , (2.2)

with Λ3(x, y) =
(

α3x, L3y
)

for some suitable nonsingular 2× 2 matrix L3.
What plays an important role in our analysis are symmetry properties. A 2×2 matrix

Σ will be called a reflection, if Σ2 = 1 and det(Σ) = −1. An invertible map H on R×R2

is said to be reversible with respect to Σ, if

H−1 = SHS , S(x, y) = (−x,Σy) . (2.3)

For a skew-product map H = (γ, C), reversibility with respect to Σ is equivalent to the
property

C◦(x)
−1 = ΣC◦(−x)Σ , C◦(x)

def

= C
(

x− γ
2

)

. (2.4)
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The matrix-valued function C◦ defined by (2.4) will be referred to as the symmetric factor
of H, even if H is not reversible. A pair P = (F,G) will be called reversible if both F and
G are reversible with respect to the same reflection Σ. Since the matrix Σ depends on a
choice of coordinates, we will specify it only when necessary.

The following result was announced in [51]. A proof will be given in Subsection 4.3.

Theorem 2.1. Let α be the inverse golden mean. Then R
6 has a reversible fixed point

P⋆ = (F⋆, G⋆) with F⋆ = (1, B⋆) and G⋆ = (α,A⋆) commuting. The factors B⋆ and A⋆

are non-constant entire functions with values in SL(2,R). The scaling L6 at P⋆ has real
eigenvalues V and V−1 whose sum is 2α−3, up to an error less that 10−429,

To be more precise, the scaling matrix L6 mentioned in this theorem is the product
of the matrix L3(P⋆) appearing in the transformation P⋆ 7→ P = R

3(P⋆), and the matrix
L3(P ) appearing in the transformation P 7→ P⋆ = R

3(P ). The exact form of L6 depends
on the chosen coordinates.

As a by-product of our (computer-assisted) proof of this theorem, we have accurate
bounds on the various quantities involved, as well as other numerical data. These data
include approximate values for the two expanding eigenvalue µ1 and µ2 of DR

6(P⋆).

As will be described in Section 4, the AM family for ξ = α/2 is reversible, due to the fact
that x 7→ E − λ cos

(

2πx) is an even function. By choosing the y-scaling L3 appropriately,
reversibility (for a fixed Σ) is preserved under renormalization. So we expect Conjecture 1.1
to hold within a class of reversible pairs. The fixed point P⋆ described in Theorem 2.1 is
associated with the fibered rotation number ̺ = 1/4 . In the AM family, this corresponds
to the energy E∗ = 0.

Our main goal in this paper is to prove Conjecture 1.1 in a simplified setting where
the analysis can be restricted to one-parameter families. This lead us to consider maps
that are anti-reversible. To be more precise, define −(γ, C) = (γ,−C). Using the same
notation as in (2.3), we say that H is anti-reversible with respect to Σ, if H−1 = −SHS.
A pair (F,G) is said to be anti-reversible, if F is reversible and G anti-reversible with
respect to the same reflection Σ

If we choose ξ = α/2 − 1/4 , then the AM map G is anti-reversible, but only for E = 0,
due to the fact that x 7→ E − λ sin

(

2πx) is an odd function precisely when E = 0. So
the idea is to restrict our analysis to anti-reversible pairs. By choosing the y-scaling L3

appropriately, anti-reversibility (for a fixed Σ) is preserved under renormalization. So we
expect Conjecture 1.1 to hold for one-parameter families in this restricted class, except
that the RG transformation has only a single expanding direction.

Based on Theorem 2.1, we expect to find a fundamental period 6 in this case. Some-
what unexpectedly, we find a period 3.

Theorem 2.2. Let α be the inverse golden mean. Then R
3 has an anti-reversible fixed

point P⋆ = (F⋆, G⋆) with F⋆ = (1, B⋆) and G⋆ = (α,A⋆) commuting. The factors B∗ and
A∗ are non-constant entire functions with values in SL(2,R). The scaling L3 at P∗ is an
orthogonal reflection in R2 about some line (that depends on the choice of coordinates).
An extension of R3 to pairs that need not commute is hyperbolic, with a single expanding
direction with eigenvalue µ2 ≥ α−3.
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A proof of this theorem will be given in Subsection 5.1.

Remark 1. In the anti-reversible case, our RG transformations R
3 and R3 include an

extra step (B,A) 7→ (−B,−A). We will ignore this step here, e.g. by identifying pairs of
factors up to a sign.

For the pair P∗ and the eigenvalue µ2 described in Theorem 2.2 we also have the
following. Here, and in the remaining part of this paper, α always denotes the inverse
golden mean, unless specified otherwise.

Theorem 2.3. Consider the AM factors (1.4) with ξ = α/2 −1/4 and energy E = 0. Denote
by pn the n-th Fibonacci number and let qn = pn+1. Then there exists an open disk D ⊂ C

centered at the origin, such that the limits

B∗(s, x) = lim
n→∞

L−1
3 A∗p3n

(

µ−3n
2 s, α3nx

)

L3 ,

A∗(s, x) = lim
n→∞

L−1
3 A∗q3n

(

µ−3n
2 s, α3nx

)

L3 ,
(2.5)

exist for all s ∈ D and all x ∈ C. Here, L3 is some orthogonal reflection in the plane.
The functions (s, x) 7→ A∗(s, x) and (s, x) 7→ B∗(s, x) are analytic on D × C, and the
convergence in (2.5) is uniform on compact subsets of this domain. The family of pairs
s 7→ P∗(s) associated with the limit factors (2.5) is a parametrization of the local unstable
manifold of R3 at P∗. Furthermore, the same holds for any real-analytic family P in
some open neighborhood (in a suitable topology) of the AM family, after an initial affine
re-parametrization s 7→ s∗ + cs with c 6= 0.

A proof of this theorem will be given in Subsection 5.2. To be more precise, our
proof of Theorems 2.1, 2.2, and 2.3 is computer-assisted. This means that some estimates
have been verified (rigorously) with the aid of a computer. The main steps and ideas are
described in Section 8. For details we refer to the source code of our programs [55].

The main part of our analysis is carried out in a space Fρ of pairs of maps F = (1, B)
and G = (α,A) whose symmetric factors A◦ and B◦ are analytic in a bounded domain
|x| < ρ

F
and |x| < ρ

G
, respectively. The “suitable topology” mentioned in Theorem 2.3

only compares factors on this bounded domain; so in particular, the factors need not be
periodic. Entire analyticity of A∗ and B∗ is obtained a-posteriori from the fact that the
transformation R

3 is analyticity-improving. (And it is not hard to see that these factors
are of finite exponential type.)

To be more specific, we consider the fixed point problem for R3 instead of R3, where

R3(P ) =
(

Λ−1
3 GF−1GΛ3 ,Λ3G

−1FG−1FG−1Λ3

)

. (2.6)

This makes no difference for commuting pairs. But for non-commuting pairs, which
need to be included in our analysis, the transformation R

3 does not in general preserve
(anti)reversibility, while R3 does. After constructing a fixed point (F∗, G∗) for the trans-
formation R3, we can use (2.5) to conclude that F∗ and G∗ commute. Our extension of
R3 to nearly-commuting pairs also includes a “commutator correction” which makes this
transformation contracting in the direction of non-commuting perturbations.
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Hyperbolicity of R3 is proved via estimates on the derivative DR3 on some cylinder
C ′

1 centered at P∗. In order to prove Theorem 2.3, we show that some RG iterate of the
anti-reversible AM family defines a curve that is properly aligned with a cylinder C ′

0 ⊂ C ′
1.

This constitutes the global part of our analysis. What remains is again a purely local
problem.

One of the claims in Theorem 2.3 is that the parameter value s∗ for which the AM pair
is attracted to the fixed point P∗ is zero. This is specific to the AM family and has to be
proved separately. Similarly, our guess that µ2 = α−3 is based on special properties of the
AM family. A proof is again outside the scope of renormalization.

In our proof that s∗ = 0, we use the fact that the Lyapunov exponent of the AM map
G for a spectral energy is L(G) = max{0, log λ}. The general idea is that q 7→ Gq tends
to infinity if L(G) is positive. An argument along these lines shows that s∗ ≤ 0. Proving
that s∗ ≥ 0 turns out to be significantly harder.

A useful tool in our proof of Theorem 2.3 is a Lyapunov exponent for pairs P = (F,G).
This exponent L(P ) is defined in such a way that it agrees with L(G), if F = (1,1) and
G = (α,A), with α the inverse golden mean. It also has the property that

L
(

R(P )
)

= α−1L(P ) . (2.7)

This shows e.g. that L(P∗) = 0. The equation (2.7) also suggests that µ2 = α−3. Unfor-
tunately, we can only prove that µ2 ≥ α−3.

The problem of proving µ2 ≤ α−3 is related to the question of whether L takes a
positive value on the local unstable manifold of R3 at P∗. Our pursuit of this question has
led to some interesting observations that we shall now describe.

Given that L(P ) is an asymptotic quantity, it is necessary to consider the unstable
manifold Wu globally, at least on the side where we expect L(P ) to be positive. Based on
numerical experiments, our conjecture is that Wu gets attracted to a “supercritical” fixed
point P⋄. In fact, all AM pairs with λ > 1 and E = 0 appear to be get attracted to this
fixed point.

To be more specific, we have to describe an extension of R3 to pairs of skew-product
maps whose factors need not have determinant 1. Let H = (γ, C). If det(C) is the constant
function x 7→ 1, then the inverse H−1 of H agrees with the quasi-inverse

H† =
(

−α,C†( .− α)
)

, where C† =
[

d −b
−c a

]

if C =
[

a b
c d

]

. (2.8)

Thus, we can extend the domain of R3 by replacing the inverse maps in our definition
(2.6) by their quasi-inverses. But we assume that the determinants are nonnegative. In
our proof of Theorems 2.1 and 2.2, we use such an extension of R3 for pairs whose factors
have determinants close to x 7→ 1. The extended transformation R3 includes (as its last
step) a normalization that divides each factors by the square root of its determinant. So
any fixed point of R3 or R2

3 has factors that take values in SL(2,R).
In what follows, we allow factors that (are nonzero but) can have arbitrary nonnegative

constant determinants. But our RG transformation now includes a normalization step that
divides each factor by its norm. This is useful in cases where the norms would otherwise
tend to infinity under iteration of R3. For such an extension we find the following.
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Theorem 2.4. There exists entire functions b⋄ and a⋄ of order 1, with x 7→ b⋄(x − 1/2)
even and x 7→ a⋄(x− α/2) odd, such that the pair P⋄ = ((1, B⋄), (α,A⋄)) with

B⋄(x) = b⋄(x)
[

0 0
0 1

]

, A⋄(x) = a⋄(x)
[

1 0
0 0

]

, (2.9)

is a fixed point of R3 with L3 =
[

0 1
1 0

]

. The zeros of b⋄ are all simple and define a non-
periodic bi-infinite sequence of real numbers whose gaps take exactly three distinct values:
1/2 , α

−1, and α−1 + 1/2 . The zeros of a⋄ have an analogous property, except that the gaps
only take two distinct values: 1/2 and α−1 − 1/2 .

Numerically, we find that P⋄ attracts supercritical AM pairs, as well as pairs P(s)
with s > 0 on the unstable manifold of P∗. Our computations covered several values of
λ between 1 + 2−32 and 2, both for ξ = α/2 − 1/4 and ξ = α/2 . To be more precise, the
y-scaling has to include a rotation; otherwise the limit can be a rotated version of P⋄. We
would expect similar behavior for other energies in the spectrum of Hα

λ , as well as for other
quadratic irrationals α that have a periodic continued fraction expansion.

For the inverse golden mean, it should be possible to prove that the (anti)reversible
AM pair with λ sufficiently large is attracted to P⋄ under iteration of R3, but such an
analysis would go beyond the scope of this paper. A strong-coupling fixed point for an
approximate renormalization scheme has been constructed in [34].

What we will prove here is the following.

Theorem 2.5. Let P0 be an anti-reversible AM pair with coupling constant λ > 1. Con-
sider the set of accumulation points of the sequence n 7→ R

3n(P0) in the space Fρ men-
tioned earlier. This set K∗ is compact and invariant under R3. Let P = ((1, B), (α,A))
be any pair in K∗. Then A and B extend to entire functions, with b◦ = tr(B◦) even
and a◦ = tr(A◦) odd. Neither B nor A are constant, and B is symmetric. Furthermore,
B(x) = 0 wherever b⋄(x) = 0, and A(x) = 0 wherever a⋄(x) = 0.

A proof of Theorems 2.4 and 2.5 will be given in Section 7.

We have not investigated the asymptotic behavior of subcritical pairs, like the AM pairs
for λ < 1. Results on almost-reducibility [44] suggest that such pairs converge to some R-
invariant set that consists of pairs whose factors are constant. The action ofR on pairs with
constant factors is trivial. In particular, it is easy to find periodic orbits for any rational
fibered rotation number ̺. Whether or not AM pairs with non-small positive coupling
constant λ < 1 and rational fibered rotation number ̺ converge to such a “subcritical”
fixed point (of Rℓ for some ℓ) is a global question and not easy to answer.

3. The RG transformation for anti-reversible pairs

The main goal in this section is to properly formulate the fixed point problem considered
in Theorem 2.2. Our RG analysis of anti-reversible pairs will be continued in Section 5,
after having covered the reversible case in Section 4.
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3.1. Some basic facts and identities

Let P = (F,G) be a pair of skew-product maps F = (1, B) and G = (α,A) whose factors
B and A take values in GL(2,R) and have positive determinants. Then the renormalized
pair P̃ = R3(P ) is given by

P̃ =
(

F̃ , G̃
)

, F̃ = Λ−1
3 F̂Λ3 , F̃ = Λ−1

3 F̂Λ3 , (3.1)

where
F̂ = GF †G , Ĝ = G†FG†FG† . (3.2)

Here, F † and G† denote the quasi-inverses of F and G, respectively, as defined in (2.8).
The first component of F̂ is 2α− 1 = α3. So after scaling by α3, the first component of F̃
is again 1. Similarly, the first component of Ĝ is 2− 3α = α4. So after scaling by α3, the
first component of G̃ is again α. The symmetric factor B̂ of F̂ is given by

B̂◦(x) = A◦

(

α−1
2 + x

)

B◦(x)
†A◦

(

1−α
2 + x

)

, (3.3)

and for the symmetric factor Â of Ĝ we obtain

Â◦(x) = A◦

(

(1− α) + x
)†
B◦

(

1−α
2 + x

)

A◦(x)
†B◦

(

α−1
2 + x

)

A◦

(

(α− 1) + x
)†
. (3.4)

The symmetric factors associated with P̃ = R3(P ) are now obtained via scaling:

B̃◦(x) = L−1
3 B̂◦

(

α3x
)

L3 , Ã◦(x) = L−1
3 Â◦

(

α3x
)

L3 . (3.5)

Notice that such a relation is obvious for the regular factors. But it holds for the symmetric
factors as well, as a short computation shows. Our choice for the y-scaling matrices L3

will be described in Subsection 3.2.
Next, let us consider some consequences of (anti)reversibility. To this end, and for

reference later on, define

J =
[

0 1
−1 0

]

, S =
[

1 0
0 −1

]

, M = 2−1/2
[

1 1
1 −1

]

. (3.6)

With the exception of Section 4, (anti)reversibility in this paper is defined with respect to
the reflection Σ = iJ . Notice that conjugacy by iJ keeps real matrices real.

Assume now that F = (1, B) is reversible and G = (α,A) anti-reversible, both with
respect to Σ = iJ . A short computation shows that this condition is equivalent to

B◦(x)
⊤ = B◦(−x) , A◦(x)

⊤ = −A◦(−x) . (3.7)

Here, C⊤ denotes the transpose of a matrix C.
What makes skew-products over irrational rotations difficult to deal with is that prod-

ucts A∗q(x) with large q can vary vastly in size, as a function of x. If the Lyapunov exponent
L = L(G) is positive, then A∗q(x) grows asymptotically like eqL for typical values of x.
Particularly large factors can obtained via the identity

(−1)mA∗2m
◦ (iy) = U(iy)∗U(iy) , (3.8)
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where U(x) = A◦((m− 1/2)α+ x) · · ·A◦(α/2 + x), and where U∗ = U
⊤

denotes the adjoint
of U . So in particular, (−1)mA∗2m

◦ (iy) is a positive matrix for y ∈ R. This fact will be
used in several of our proofs.

On the other hand, products with many factors can be of order 1 in size. Consider
the case where det(A) = 1. Using that A◦(−x) = −J−1A◦(x)

−1J , we have

(−1)mA
∗(2m+1)
◦ (x) = V (x)A◦(x)J

−1V (−x)−1J , (3.9)

where V (x) = A◦((m− 1)α+ x) · · ·A◦(α+ x). If A◦(0) = −J , then this implies that

(−1)mA
∗(2m+1)
◦ (0) = −J . (3.10)

This applies e.g. to the AM map with ξ = α/2 − 1/4 and E = 0. And it is independent of
the value of λ. So for λ > 1, sub-products that appear in Aq that are of the form (3.10)
are much smaller than sub-products of the form (3.8) for y = 0. This is the mechanism
that produces the zeros described in Theorem 2.5.

In the remaining part of this paper, we consider the AM maps with respect to the
basis defined by the column vectors of the matrix M given in (3.6). In this representation,
the symmetric factor of the anti-reversible AM map is given by

A◦ =

[

t◦ t◦ + 1
t◦ − 1 t◦

]

, t◦(x) = λ sin(2πx) . (3.11)

3.2. Scaling and normalization

As mentioned earlier, we choose L3 to be a reflection matrix. In the coordinates considered
here,

L3 = L(ϑ)
def

=

[

cos(ϑ+ π/4) − sin(ϑ+ π/4)
− sin(ϑ+ π/4) − cos(ϑ+ π/4)

]

. (3.12)

Notice that L(ϑ) = L(0)e−ϑJ , where e−ϑJ is a rotation by ϑ. Notice also that L2
3 = 1. So

L3 drops out in a fixed point equation for R
2
3. But if P = (F,G) is a fixed point of R2

3,
then a conjugacy by any rotation yields another fixed point.

The goal is to get uniqueness by choosing ϑ = ϑ(P ) in such a way that P̃ = R3(P )
satisfies a suitable normalization condition. With a y-scaling L3 of the form (3.12), the
symmetric factor of F̃ = Λ−1

3 F̂Λ3 is given by

B̃◦(0) = eϑJ
[

a u
v d

]

e−ϑJ ,
[

a u
v d

]

def

= −L(0)B̂◦(0)L(0) , (3.13)

where B̂◦ is as described in (3.3). The negative sign on the right hand side of this equation is
due to the step (B,A) 7→ (−B,−A) mentioned in Remark 1. As a normalization condition,
we impose that the two entries on the main diagonal of B̃◦(0) agree. A straightforward
computation shows that this determines c = cos(2ϑ) and s = sin(2ϑ) as follows:

s =
a− d

q
, c = −u+ v

q
, q =

√

(u+ v)2 + (a− d)2 . (3.14)
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As tedious as such computations may be, explicit expressions like (3.14) are needed in
a computer-assisted proof that is by nature highly constructive. In order to get explicit
expressions for the derivative DR3(P )Ṗ , it is convenient to consider a family of pairs P
that depend differentiably on a parameter. Then the quantities a, u, v, d defined by (3.13)
depend differentiably on the parameter as well. Using the “dot notation” for derivatives
with respect to the parameter, the derivatives of s and c are given by

ṡ =
c

q

[

c
(

ȧ− ḋ
)

+ s(u̇+ v̇)
]

, ċ = −s

q

[

c
(

ȧ− ḋ
)

+ s(u̇+ v̇)
]

. (3.15)

At this point we have defined the “basic” version of our RG transformation R3 for
skew-product pairs P = (F,G). We are not assuming that F = (1, B) and G = (α,A)
commute, nor that A and B have determinant 1. But the transformation does not behave
as desired for non-commuting pairs or for factors that have determinants 6= 1. Denote this
basic version by R3. Our extended version of R3 is defined as

R3 = N ◦ R3 ◦ C , (3.16)

where C is a “commutator correction” that will be defined later, and where N performs a
re-normalization of determinants.

To normalize determinants, we simply choose

N
(

(γ, C)
)

=
(

γ,N (C)
)

, N (C) = [det(C)]−1/2C . (3.17)

If the determinant of C is close to 1, then (3.17) is well-defined and N (C) has determinant
1. We note that, if H = (γ, C) is (anti)reversible, then det(C) is an even function, so
N(H) is still (anti)reversible. For a pair P = (F,G) we define N component-wise.

For estimates of derivatives DR3(P )Ṗ , we use that the derivative of N at C =
[

a u
v d

]

is given by

DN (C)Ċ = det(C)−1/2Ċ − 1
2 det(C)

−3/2
[

aḋ+ dȧ− uv̇ − vu̇
]

C . (3.18)

3.3. Commutators

The linearization of the basic transformation R3 at the fixed point P∗ can have non-
contracting directions that are associated with non-commuting perturbations of P∗. For-
mally, one can see that DR3(P∗) must have an eigenvalue −1. And numerically, another
eigenvalue is the number V = 8.3524100320 . . . that appears in Theorem 2.1. The goal is
to eliminate these two eigenvalues. This will be done in the next section.

First we need some generalities. Consider the commutator Θ = FG(GF )−1 for a
pair P = (F,G). A straightforward computation shows that the commutator for the
renormalized pair P̃ =

(

F̃ , G̃
)

is given by

Θ̃ = (GΛ3)
−1Θ−1(GΛ3) . (3.19)



Scaling and universality for skew products 13

If we write Θ = (0, C) and Θ̃ =
(

0, C̃), then

C̃(x) = L(ϑ)−1A
(

α3x
)−1

C
(

α3x+ α
)−1

A
(

α3x
)

L(ϑ) . (3.20)

Consider the change of variables x = 1+α
2 + z and define

C(P, z) = C
(

1+α
2 + z

)

, A(P, z) = A0

(

1
2 + α3z

)

L(ϑP ) . (3.21)

Then the equation (3.20) becomes

C
(

P̃ , z
)

= A(P, z)−1C
(

P, α3z
)−1A(P, z) . (3.22)

From this equation one can see that the eigenvalues of Θ 7→ Θ̃ at Θ = I are determined by
the behavior of C(P, z) near z = 0.

Thus, consider C(P ) = C(P, 0) = C
(

1+α
2

)

. An explicit computation shows that

C(P ) = XY −1 , X = B0

(

α
2

)

A0

(

− 1
2

)

, Y = A0

(

1
2

)

B0

(

−α
2

)

. (3.23)

Assume now that G is anti-reversible with respect to Σ = iJ . Then JXJ = Y −1. So X,
Y , and XY −1 are of the form

X =
[

a b
c d

]

, Y = −
[

a c
b d

]

, XY −1 =
[

−1 + b(b− c) −a(b− c)
d(b− c) −1− c(b− c)

]

, (3.24)

with ad−bc = 1. If XY −1 is the identity matrix, then X = Y = J . So in our applications,
the matrix elements a and d are close to zero.

3.4. Commutator corrections

The commutator correction map C is the first step in our RG transformation (3.16). The
goal is for P ′ = C(P ) to satisfy C(P ′) = 1. We define C as a composition of three maps.
To simplify notation, each of these maps will be denoted by P 7→ P ′.

Step 1. Here we replace the symmetric factor A◦ of G by

A′
◦ = RA◦R , R =

[

ρ r
r ρ

]

, ρ2 = 1 + r2 , (3.25)

while keeping B′
◦ = B◦. The goal is to choose r in such a way that tr(X ′) = 0. Notice that

R is reversible, in the sense that J−1RJ = R−1. Since G is anti-reversible, this guarantees
that the map G′ is anti-reversible as well. Write

A◦

(

− 1
2

)

=

[

tA + sA uA

vA tA − sA

]

, B◦

(

α
2

)

=

[

tB + sB uB

vB tB − sB

]

, (3.26)

and define
ε = tr(X◦) ,

τ = 4tAtB + (uA + vA)(uB + vB) ,

σ = (uA + vA)2tB + 2tA(uB + vB) .

(3.27)
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A tedious but trivial computation shows that tr(X ′) = 0, if we choose

r =
−ε

√

1
2

(

σ2 − 2ετ
)

+ 1
2

√

(

σ2 − 2ετ
)2 − 4

(

τ2 − σ2
)

ε2

. (3.28)

And for the derivative with respect to a parameter, we obtain

ṙ = − ε̇+ r(ρσ̇ + rτ̇)

ϕ
, ϕ = σρ+ r

(

2τ + rσρ−1
)

. (3.29)

Step 2. Assume now that tr(X) = 0. The second correction P 7→ P ′ is defined via a
transformation

A′
◦ = KA◦K , B′

◦ = K−1B◦K−1 , K =

[

κ1/2 0
0 κ−1/2

]

, (3.30)

and the goal is to have

X ′ =
[

s w
−w −s

]

if X =
[

s b
c −s

]

. (3.31)

Recall that X ≈ J in our applications, so that s ≈ 0, b ≈ 1, and c ≈ −1. Clearly
X ′ = K−1XK is of the desired form, if we choose

κ =
√

−b/c . (3.32)

Then w =
√
−bc. The derivative with respect to a parameter is trivial, so we will not give

it here.

Step 3. Assume now that X =
[

s w
−w −s

]

. The third correction P 7→ P ′ is of the form

A′
◦ = RA◦R , B′

◦ = R−1B◦R
−1 , R =

[

ρ r
r ρ

]

, (3.33)

with ρ2 = 1 + r2. The goal is to determine r in such a way that X ′ = R−1XR is equal to
J . An explicit computation show that this is achieved with

r =
−s

√

2
(

w2 − s2
)

+ 2w
√
w2 − s2

. (3.34)

For the derivative with respect to a parameter, we find that

ṙ = −
1
2 ṡ+ r(ẇρ+ ṡr)

ψ
, ψ = wρ+ r

(

2s+ wρ−1r
)

. (3.35)
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3.5. The fixed point problem

Consider now the transformation R3 defined by (3.16). Our first goal is to prove that R3

has a fixed point P∗ that has potentially the properties described in Theorem 2.2. As is
common in many computer-assisted proofs, we associate with the given transformation R3

a quasi-Newton map M that we hope to be a contraction near some approximate fixed
point P̄ . Picking an approximate inverse I−M of I−DR3

(

P̄
)

, we define

M(p) = R3

(

P̄ + (I−M)p
)

− P̄ +Mp . (3.36)

Here, the sum of map-pairs is defined component-wise, and c1(γ, C1)+ c2(γ, C2) is defined
as (γ, c1C1 + c2C2). Notice that, if p is a fixed point of M, then P = P̄ + (I −M)p is a
fixed point of R3.

The following function spaces have already been used in [50]. Given ρ > 0, denote by
Gρ the space of all real analytic functions g on (−ρ, ρ) that have a finite norm

‖g‖ρ =
∞
∑

n=0

|gn|ρn , g(x) =
∞
∑

n=0

gnx
n . (3.37)

Notice that every function g ∈ Gρ extends analytically to the complex disk |x| < ρ.
Furthermore, Gρ is a Banach algebra under the pointwise product of functions.

The space of matrix functions

C◦ =

[

t◦ + s◦ u◦
v◦ t◦ − s◦

]

, (3.38)

with t◦, u◦, v◦, and s◦ belonging to Gρ will be denoted by G4
ρ . The norm of C◦ ∈ G4

ρ is
defined as ‖C◦‖ρ = ‖t◦‖ρ + ‖u◦‖ρ + ‖v◦‖ρ + ‖s◦‖ρ.

Given a pair ρ = (ρF, ρG) of positive real numbers, we define Fρ to be the vector space
of all pairs P = (B◦, A◦) in G4

ρF
× G4

ρG
, equipped with the norm ‖P‖ρ = ‖B◦‖ρF

+ ‖A◦‖ρG
.

The subspace of pairs P ∈ Fρ that satisfy the (anti)reversibility conditions (3.7) will be
denoted by F r

ρ .
For simplicity, and when no confusion can arise, we will identify a skew-product map

H = (γ, C) with its symmetric factor C◦. Referring to the representation (3.38), we note
that H is reversible with respect to iJ , if and only if the functions t◦ and s◦ are even,
while v◦(−x) = u◦(x). Or C◦ is anti-reversible, precisely if t◦ and s◦ are odd, while
v◦(x) = −u◦(−x).

In our applications, we always choose ̺F ≤ ̺G. Under these conditions, (3.3) and
(3.4) show that R3 is well-defined on Fρ if

1
2 < ρG ≤ ρF < α−3ρG − 1

2α
−1 . (3.39)

To be more precise, the conditions needed in the normalization step N and for the com-
mutator correction C (all of which represent ad-hoc choices) also require some mild non-
degeneracy properties. We note that the domain conditions for the transformation R are



16 H. Koch April 28, 2021

more restrictive than the conditions (3.39) for R3. But both are satisfied with comfortable
margins in the case ρF = 2 and ρG = 11/8 considered below.

For reference later on, we note that the transformation R3 is compact, due to the
analyticity-improving property of R3. To be more precise the transformation (B◦, A◦) 7→
(

B̃◦, Ã◦

)

defined by the equations (3.3), (3.4), and (3.5) maps bounded sets in Fρ to
bounded sets in Fρ′ , for some choice of ρ′

F
> ρF and ρ′

G
> ρG. And the inclusion map from

Fρ′ into Fρ is compact.

Lemma 3.1. Let ρ = (2, 11/8). Then there exist a pair P̄ in F r
ρ , a bounded linear operator

M on F r
ρ , and positive constants ε,K, δ satisfying ε+Kδ < δ, such that the transformation

M defined by (3.36) is analytic in Bδ and satisfies

‖M(0)‖ρ ≤ ε , ‖DM(p)‖ρ ≤ K , p ∈ Bδ , (3.40)

where Bδ denotes the open ball of radius δ in F r
ρ , centered at the origin. Every pair

p ∈ Bδ has the following properties. The matrix components of P = P̄ + (I −M)p are
non-constant and satisfy the bound

∥

∥P − P̄
∥

∥

ρ
< 10−450. Furthermore, the angle ϑ = ϑ(P )

satisfies sin(2ϑ) = −0.01760801 . . .

Our proof of this lemma is computer-assisted and will be described in Section 8. These
estimates will be used in Subsection 5.1 to give a proof of Theorem 2.2.

Remark 2. The angle ϑ mentioned in Lemma 3.1 depends on the choice of coordinates.
So it seems to say something about the AM model, but it is not clear what. In this
context, we note that the change of coordinates M which yields AM factors of the form
(3.11) achieves nothing useful in the case ξ = α/2 − 1/4 considered here. It was chosen since
it diagonalizes the y-scaling in the reversible case ξ = α/2 .

4. The RG transformation for reversible pairs
The goal here is to reduce the proof of Theorem 2.1 to technical estimates similar to those
in Lemma 3.1. An extra step is necessary to prove that the pair P⋆ commutes.

4.1. Scaling and normalization

We work in a basis where the AM factor A◦ for ξ = α/2 and E = 0 takes the form (3.11),
with the sine replaced by a cosine. The corresponding AM map G is reversible with respect
to Σ = S, with S as defined in (3.6). So throughout this section, we restrict to pairs that
are reversible with respect to Σ = S. Referring to (3.38), reversibility of H = (γ, C) is
equivalent to the functions t◦, u◦, v◦ being even and s◦ odd.

The matrix L3 that enters the definition Λ3(x, y) =
(

α3x, L3y
)

of the scaling used for

R
3 and R3 is taken to be of the form

L3 = Seσ3S =
[

eσ3 0
0 −e−σ3

]

, (4.1)

with σ3 = σ3(P ) depending on the pair P being renormalized. Notice that L3 commutes
with S, so conjugacy by Λ3 preserves reversibility.
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Instead of R6, we first consider the transformation

R6 = R
2
2 ◦ C , R3 = N ◦ R3 , (4.2)

where R3 is the “basic” RG transformation P 7→ P̃ defined by the equations (3.1) and
(3.2). The transformation N re-normalizes determinants, as described after (3.17). The
transformation C is a commutator correction that will be described below.

With a y-scaling L3 of the form (4.1), the symmetric factor of F̃ = Λ−1
3 F̂Λ3 is given

by

B̃◦(0) = Λ−1
3 B̂◦(0)Λ3 =

[

a −e−2σ3u
−e2σ3v d

]

,

[

a u
v d

]

def

= B̂◦(0) , (4.3)

where B̂◦ is as described in (3.3). We determine σ3 = σ3(P ) is such a way that the
off-diagonal elements of B̃◦(0) are equal in modulus. In other words, e−2σ3 |u| = e2σ3 |v|.
Unless uv = 0, which does not occur in the cases considered, this trivially determines the
scaling exponent σ3(P ).

4.2. Commutator correction

Unlike in the anti-reversible case, the largest eigenvalue of R2
3(P⋆) in the non-commuting

direction appears to be 1. Our goal here is to eliminate this eigenvalue. One reason is
that an eigenvalue 1 makes a quasi-Newton map ill-defined. Another reason is that the
correction will be needed to prove that the pair P⋆ is in fact commuting.

The commutator for P = (F,G) at x = 1+α
2 is again given by the equation (3.23). By

reversibility, we have SXS = Y −1. So X, Y , and XY −1 are of the form

X =
[

a b
c d

]

, Y =
[

d b
c a

]

, XY −1 = 1+ (a− d)
[

a −b
c −d

]

, (4.4)

with ad− bc = 1. In particular tr
(

XY −1
)

= 1+ (a− d)2. So reversibility implies that the
trace of the commutator does not change to first order. This motivate the following.

Consider a commutator correction C : P 7→ P ′ of the form

A′
◦ = RA◦R , B′

◦ = R−1B0R
−1 , R =

[

ρ r
r ρ

]

, (4.5)

with ρ2 = 1 + r2. Then C(P ′) = X ′Y ′−1
, with X ′ = R−1XR and Y ′ = RY R−1. Ideally,

we can find r in such away that X ′ = Y ′, or equivalently, that

Y = R−2XR2 . (4.6)

As it tuns out, this can be achieved not only to first order, but exactly, by choosing

r =
q

2

(

2

(1− q2)1/2 + 1− q2

)1/2

, q = −a− d

c− b
. (4.7)

This completes the definition (4.2) of the transformationR6. For estimates of the derivative
DR6(P )Ṗ we use that

ṙ =
q̇

2
· ρ

1− q2
, q̇ =

(

ȧ− ḋ
)

− q
(

ċ− ḃ
)

c− b
. (4.8)
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4.3. Proof of Theorem 2.1

In this subsection we give a proof of Theorem 2.1 based on estimates that have been verified
with the aid of a computer. We start by solving the fixed point equation for R6. To this
end, we use again a quasi-Newton map of the type (3.36), namely

M(p) = R6

(

P̄ + (I−M)p
)

− P̄ +Mp , (4.9)

where P̄ is an approximate fixed point of R6, and where I−M is an approximation for the
inverse of I−DR3

(

P̄
)

. The relevant functions spaces are the spaces Gρ and Fρ defined in
Subsection 2.5. But F r

ρ now denotes the subspace of Fρ of pairs that are reversible with
respect to S.

Lemma 4.1. Let ρ = (3, 2). Then there exist a pair P̄ in F r
ρ , a bounded linear operatorM

on F r
ρ , and positive constants ε,K, δ satisfying ε+Kδ < δ, such that the transformation

M defined by (4.9) is analytic in Bδ and satisfies

‖M(0)‖ρ ≤ ε , ‖DM(p)‖ρ ≤ K , p ∈ Bδ , (4.10)

where Bδ denotes the open ball of radius δ in F r
ρ , centered at the origin. Every pair

p ∈ Bδ has the following properties. The matrix components of P = P̄ + (I −M)p are
non-constant and satisfy the bound

∥

∥P − P̄
∥

∥

ρ
< 10−439. Furthermore, the six-step scaling

factor V = eσ6(P ) satisfies the bound described in Theorem 2.1.

Our proof of this lemma is computer-assisted and will be described in Section 8.
By the contraction mapping theorem, Lemma 4.1 guarantees the existence of a fixed

point p⋆ ∈ Bδ for M and thus a fixed point P⋆ = P̄ + (I −M)p⋆ for R6. The symmetric
factors for F∗ and G∗ are analytic in the disks |x| < ρF and |x| < ρG, respectively. A trivial
computation, using the expressions (3.3) and (3.4) for the symmetric factors of F̂ = GF †G
and Ĝ = G†FG†FG†, respectively, shows that radii of the domains of analyticity increase
with each iteration of R3 by a factor larger than 1. The factor approaches α−3 as the
number of iterations increases. This shows that B⋆ and A⋆ extend to entire functions.

What remains to be proved is that the components F⋆ and G⋆ of the pair P⋆ com-
mute. To this end, consider the commutator factor C(P, z) defined by (3.21). It admits a
representation (3.22), with

A(P, z) = A0

(

1
2 + α3z

)

Seσ3(P )S . (4.11)

Let P3 = R3(P ) and P6 = R3(P3). Applying the identity (3.22) twice, we obtain

C(P6, z) = A2(P, z)
−1C

(

P, α6z
)

A2(P, z) , (4.12)

where
A2(P, z) = A

(

P, α3z
)

A(P3, z) . (4.13)

Let C(P ) = C(P, 0).
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Consider now the pair P = C(P⋆). Then C(P ) is the identity matrix. This follows
from our definition of the commutator correction C. Given that P⋆ is a fixed point of
R6 = R

2
3 ◦ C and thus P6 = P⋆, we see from (4.12) that C(P∗) is the identity matrix as

well. This implies in particular that P = P⋆, so that P⋆ is a fixed point of R2
3.

In the case P = P⋆, the equation (4.12) is a linear fixed point equation for the function
z 7→ C(P⋆, z). We already know that C(P⋆, z) is the identity matrix for z = 0. Whether or
not the same holds for z 6= 0 depends on the eigenvalues of the matrix A2(P⋆) = A2(P⋆, 0).

Lemma 4.2. The eigenvalues of A2(P⋆) are ν = 2.8900536382 . . . and ν−1.

Our proof of this lemma is computer-assisted, as will be described in Section 8. It
also verifies that the origin z = 0 belongs to the domain of analyticity of the function that
appear in (4.12). But this could easily be checked by hand as well.

We note that ν appears to satisfy the equation ν + ν−1 = 2α−1. If this is the case,
and if the scaling factor V in Theorem 2.1 satisfies V + V−1 = 2α−3, then ν2 = V.

In some open neighborhood of the origin in C, we have either C(P⋆, z) = 1 for all z,
or else

C(P∗, z) = 1+ zn
[

Cn + O(1)
]

, (4.14)

for some nonzero matrix Cn and some integer n ≥ 1. Substituting this expression for
C(P∗, z) into (4.12) yields the identity

Cn = α6nA2(P⋆)
−1CnA2(P⋆) . (4.15)

The eigenvalues of Cn 7→ α6nA2(P⋆)
−1CnA2(P⋆) are α

6n and α6nν±2. They are all less than
1, so the equation (4.15) cannot have a solution Cn 6= 0. This shows that the commutator
of F⋆ and G⋆ is constant and equal to the identity in some open neighborhood of x = 1+α

2 .
Given that B⋆ and A⋆ are entire analytic, this implies that F⋆ and G⋆ commute.

At this point, the proof of Theorem 2.1 is reduced to the task of verifying the bounds
in Lemmas 4.1 and 4.2.

5. Hyperbolicity
Here we consider again the anti-reversible case and the AM maps (3.11).

5.1. Proof of Theorem 2.2

Our goal here is to prove Theorem 2.2, with the exception of the inequality µ2 ≥ α−3,
based on estimates that can be (and have been) verified with the aid of a computer. The
inequality µ2 ≥ α−3 will be proved in Section 6.

By the contraction mapping theorem, Lemma 3.1 guarantees the existence of a fixed
point p∗ ∈ Bδ for M and thus a fixed point P∗ = P̄ + (I −M)p∗ for R3. For the same
reasons as in the reversible case, the factors B⋆ and A⋆ associated with P⋆ extend to entire
functions.

In order to prove hyperbolicity and related properties, we consider the transformation
T defined by

T(p) = L−1
[

R
2
3

(

P∗ + Lp
)

− P∗

]

, (5.1)
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where L is a suitable linear isomorphism of F r
ρ . Clearly p∗ = 0 is a fixed point of T. We

expect the derivative DT(0) to have an eigenvalue α−6 and no other spectrum outside the
open unit disk. Thus, we consider a decomposition F r

ρ = U ⊕W, where U is a convenient
one-dimensional subspace of F r

ρ . We will refer to U and W as the vertical and horizontal
subspaces, respectively. Now the isomorphism L is chosen in such a way that the expected
expanding direction of DT(0) is roughly vertical. Writing an element q ∈ F r

ρ as q =
[

u
w

]

,
with u ∈ U and w ∈ W, we obtain a representation

DT(p)q =

[

Muu(p) Muw(p)
Mwu(p) Mww(p)

] [

u
w

]

, q =

[

u
w

]

. (5.2)

By choosing L properly, the operators Muw(p) : W → U and Mwu(p) : U → W can be
made small for all p near p∗ = 0. And Muu(p) should be close to α−6 ≃ 18. In order to
simplify notation, we identify U with R by choosing a unit vector u0 ∈ U and identifying
the vector tu0 with the coefficient t.

Specific estimates are obtained in terms of an enclosure

N−
uu ≤Muu(p) ≤ N+

uu (5.3)

and upper bounds

‖Muw(p)‖ ≤ Nuw , ‖Mwu(p)‖ ≤ Nwu , ‖Mww(p)‖ ≤ Nww , (5.4)

that hold for all pairs p in a suitable cylinder C1. Here, and in what follows, ‖.‖ denotes
the norm in Fρ. To be more precise, we determine two cylinders C0 and C1, such that

C0 ⊂ C1 , Cj = [−hj , hj ]× {w ∈ W : ‖w‖ < r} , (5.5)

with 0 < r < h0 < h1. Notice that both cylinders are centered at p∗ = 0. The goal is
to show that T maps C0 into C1 and C1 \ C0 into the complement of C0. To this end, it
suffices to prove that

N+
uuh0 +Nuwr < h1 , Nwuh0 +Nwwr < r ,

N−
uuh0 −Nuwr > h0 .

(5.6)

Here, we have used that T(p+ q)− T(p) =
∫ 1

0
DT(p+ sq)q ds whenever p and p+ q both

belong to C1.

Lemma 5.1. There exists a linear isomorphism L of F r
ρ , as well as positive real numbers

r < h0 < h1, N
−
uu < N+

uu, Nuw, Nwu, Nww that satisfy (5.6), such that the derivative of the
transformation T defined by (5.1) satisfies the bounds (5.3) and (5.4) for every p ∈ C1. So
T maps C0 into C1 and C1 \ C0 to the complement of C0, with room to spare for taking
interiors and/or closures. Let

a± = N±
uu ±Nuw , b = Nwu +Nww , c = N−

uu −Nuw −Nwu −Nww . (5.7)
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Then a+ < 19, b < 1
4 , and c > 17.

Our proof of this lemma is computer-assisted, as will be described in Section 8.
One of the consequences of the “uniform hyperbolicity” described in Lemma 5.1 is the

following.

Corollary 5.2. Let p ∈ C0. Then either Tn(p) belongs to C1 \C0 for some n > 0, or else
T
n(p) → 0 as n→ ∞.

Proof. Let p ∈ C0. Since the orbit of p can exit C0 only via the set C1 \C0, it suffices to
consider the case where pn = R

n(p) belongs to C0 for all n ≥ 0.
Write pn =

[

un

wn

]

with un ∈ U and wn ∈ W. From (5.3) and (5.4) we see that

|un+1| ≥ N−
uu|un| −Nuw‖wn‖ , ‖wn+1‖ ≤ Nwu|un|+Nww‖wn‖ , (5.8)

for all n ≥ 0. Assume for contradiction that |um| − ‖wm‖ > 0 for some m ≥ 0. Then

|um+1| − ‖wm+1‖ ≥ N−
uu|um| −Nuw‖wm‖ −Nwu|um| −Nww‖wm‖ > c‖wm‖ , (5.9)

with c > 0 as defined in (5.7). So we have |un| − ‖wn‖ > 0 for all n ≥ m. Combining this
with the first inequality in (5.8), we find that

|un+1| > a|un| , (5.10)

for all n ≥ m, with a = a− as defined in (5.7). Given that a > 1, this leads to a
contradiction. So we must have |un| ≤ ‖wn‖ for all n ≥ 0. By the second inequality in
(5.8), this implies that

‖wn+1‖ ≤ Nwu|un|+Nww‖wn‖ ≤ b‖wn‖ , (5.11)

for all n ≥ 0, with b as defined in (5.7). Given that b < 1, we find that wn → 0 as n→ ∞.
But |un| ≤ ‖wn‖ for all n ≥ 0, so un → ∞ as well. Thus, pn → 0 as claimed. QED

The bounds a− > 17 and b < 1/4 from Lemma 5.1 yield information about the spec-
trum of DT(0), using e.g. the theorem below. We note that the operator DT(0) is compact,
for the reasons described before Lemma 3.1.

Theorem 5.3. ([45]) Let A be a compact linear operator on a real Banach space R×W .
For u ∈ R and w ∈ W write A(u + w) = u′ + w′ with u′ ∈ R and w′ ∈ W . Assume that
there exist positive real numbers b < a such that ‖w′‖ ≤ bmax{|u|, ‖w‖}, and such that
|u′| ≥ a|u| whenever |u| ≥ ‖w‖. Then A has a simple eigenvalue of modulus ≥ a and no
other eigenvalue of modulus > b.

Here, in the real setting, a non-real number ξ + iη is said to be an eigenvalue of A if
there exists nonzero vectors x and y such that Ax = ξx− ηy and Ay = ξy + ηx.

As a consequence of Lemma 5.1 and Theorem 5.3 we have the following.

Corollary 5.4. The derivative DT(p∗) at p∗ = 0 has a real eigenvalue λ ≥ a− and no
other spectrum outside the disk |z| ≤ b. The local unstable manifold of T at the fixed point
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p∗ = 0 is the graph of a real analytic function p∗ from an open neighborhood of the origin
in U to W. Furthermore, p∗ extends to a real analytic function on an open neighborhood
of [−h0, h0], taking values in {w ∈ W : ‖w‖ < r}.

The existence and real analyticity of the local unstable manifold near p∗ = 0 follows
from standard theorems on invariant manifolds. Its extension is obtained by iterating T

and using Corollary 5.2.
Clearly Corollary 5.4 translates trivially to an analogous result for the transformation

R
2
3. In fact, an analogous result holds for R3 as well, since P∗ is a fixed point of R3. Our

reason for considering the second iterate of R3 in this section is that it was easier to find
a good isomorphism L in this case.

5.2. Proof of Theorem 2.3, Part I

Our goal here is to prove Theorem 2.3, based on on estimates that can be (and have been)
verified with the aid of a computer. A transversality condition that is needed, and the
claim that s∗ = 0, will be proved in Section 6.

Here we consider the unstable manifold of R3 at P∗ to be a curve in the cylinder
C ′

0 = P∗ + LC0 rather than a graph. A possible parametrization of this curve is given by
P∗(t) = P∗ + L(tu0 + p∗(t)), with t ranging in [−h0, h0]. Here u0 ∈ U is the unit vector
mentioned earlier. The projection of P∗ onto LU is a strictly increasing function; and as t
increases from −h0 to h0, the curve P connects the bottom of C ′

0 to the top.
Given a real number c > 0, consider the extension of R3 to one-parameter families of

pairs s 7→ P(s), defined by the equation

Fc(P)(s) = R3(P(cs)) . (5.12)

Lemma 5.5. Consider the AM family P for λ = es. Then there exist real numbers σ, ε > 0
and an integer m > 0, such that the following holds. Consider the curve P0 = F

2m
α3 (P).

Then P0(s) lies in the interior of C ′
0 for −σ < s < σ. As s is increased from −σ − ε to

σ + ε, the curve P0 enters the cylinder C ′
0 through the bottom (corresponding to u = −h0

for C0) at s = −σ and leaves it through the top (corresponding to u = −h0 for C0), at
s = σ. An analogous statement holds if P is replaced by Fα3(P).

Our (computer-assisted) proof of this lemma implements the transformation Fα3 on
a space of curves s 7→ P(s) in Fρ that are analytic in a disk |s| < δ of radius δ = 2−96.
In this space, we determine bounds on the curve P0 = F

2m
α3 (P) for m = 66 that imply the

claims of Theorem 2.3 via strict inequalities. For further details we refer to Section 8.

Some immediate consequences of Lemma 5.5 are the following. There exists an in-
creasing sequence n 7→ s−n and a decreasing sequence n 7→ s+n , with s

−
n < s+n for all n, such

that the curve Pn = F
2n
1 (P0) enters the bottom of the cylinder C ′

0 at the parameter value
s−n and leaves the top of the cylinder for the first time at a parameter value s+n .

Pick a parameter value s∞ that belongs to [s−n , s
+
n ] for every n. Then the orbit

n 7→ R
2n
3 (P0(s∞)) converges to P∗ by Corollary 5.2. If n is sufficiently large, then the

pair Pn(s∞) is close enough to P∗ for perturbative arguments to apply. In particular, if Pn
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intersects the local stable manifold transversally, then we can use the graph transform [6]
to characterize convergence.

The graph transform F associated with R
2
3 takes the form F(P) = R

2
3 ◦ P ◦ R. Here,

R = R(P) is a real analytic function defined near s∞. Its dependence on P is real analytic
and can be chosen in such a way that F has an attracting fixed point. By construction,
this fixed point is the (canonically parametrized) local unstable manifold of R3 at P∗. If P
is any curve in the domain of F, then the sequence k 7→ F

k(P) converges to the fixed point
of F, and k 7→ R

(

F
k(P)

)

converges to the function s 7→ µ−1
2 s. In fact, R can be chosen

affine, at the expense of possibly weakening the rate of convergence.

Assume now that s∞ must have the value 0, and that the curves Pn, for n sufficiently
large, are transversal to the local stable manifold of R3 at P∗. These properties will be
proved in Section 6.

In this case, the re-parametrization function R can be chosen linear. Since convergence
of k 7→ R

(

F
k(Pn)

)

to the function s 7→ µ−2
2 s is exponential, we can in fact choose the fixed

re-parametrization s 7→ µ−2
2 s at each step. This show that, if P is the AM family with

parameter λ = es, then the sequence n 7→ F
n
µ−2

2

(P0) converges to P∗, modulo a one-time

linear re-parametrization. Here, we assume that the local unstable manifold P∗ has been
parametrized in such a way that it is a fixed point of Fµ−2

2

.

The same holds if P is replaced by Fα3(P). So the above arguments can be repeated
for the graph transform associated with R3. We note that the pairs P∗(t) are limits of
renormalized AM pairs, so they are commuting.

Since transversality to the local stable manifold is stable under small perturbations,
we can repeat the same arguments for a sufficiently small perturbation of the AM curve.
The only difference is that a one-time affine re-parametrization is needed.

6. The Lyapunov exponent
The Lyapunov exponent will be used to establish a connection between observable quan-
tities and local properties of R3 near the fixed point P∗.

6.1. The critical coupling

Let G = (α,A) be the anti-reversible AM map with coupling constant λ = es. Let λ∗ be a
value of the parameter λ for which the pair P = (F,G) with F = (1,1) gets attracted to
P∗ under the iteration of R2

3. The goal here is to show that λ∗ = 1.
First, we claim that λ∗ ≤ 1. To see why, consider λ > 1. Then the Lyapunov exponent

L(G) = log λ is positive. Thus, by Proposition 6.4 in Subsection 6.2, the sequence of
functions n 7→ ‖A∗qn(αn.)‖ cannot stay bounded on [−1, 1] as n→ ∞. So we cannot have
R

n(P ) → P∗ as n→ ∞ along multiples of 3.
Our next goal is to exclude the possibility λ∗ < 1. The following is Theorem 3.4 in

[40]. It applies to the AM map G = (α,A), for any irrational α whose continued fraction
denominators qn satisfy limn q

−1
n log qn+1 = 0.

Theorem 6.1. ([40]) Let 0 < λ < 1 and assume that E belongs to the spectrum of Hα
λ .

There exists constants a, b, c > 0 such that for all q > 0,

‖A∗q(z)‖ ≤ bqa , | Im z| ≤ c . (6.1)
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An analogous result for Diophantine α was probably proved earlier. Corollary 4.5 in
[44] comes close, but it considers only the real domain.

In what follows, if G = (α,A) is an arbitrary skew-product map, we will write Aα∗q

instead of A∗q for the product (1.1), in order to emphasize the dependence on α.
Let G be an anti-reversible AM map for energy zero and α the inverse golden mean.

Consider the corresponding pair P = (F,G) with F = (1,1), and its RG iterates Pn = R
2n
3 .

We choose here even powers of R3, so that the reflections L(0) that are part of the scaling
L3 = L(0)e−ϑJ cancel. And for the fixed point P∗, the rotations cancel as well, since
L(0)e−ϑJL(0) = e−ϑJ . Thus, in order to simplify notation, consider R3 with L3 = 1.
Then we can perform an initial rotation A 7→ eϑJAe−ϑJ in such a way that Pn → P∗ with
L3 = 1 fixed. Then Pn = (Fn, Gn) with Fn = (1, Bn) and Gn = (α,An), where

An(x) = Aα∗q6n
(

α6nx
)

, Bn(x) = Aα∗q6n−1

(

α6nx
)

. (6.2)

As described earlier, the factors A∗ and B∗ of the fixed point P∗ are entire, due to the
analyticity-improving property of R3. For the same reason, we have convergence An → A∗

and Bn → B∗, uniformly on compact subsets of C.
Let now u and v be fixed but arbitrary nonnegative integers, not both zero. Then

Aα∗u
n ( .+ v)B1∗v

n → Aα∗u
∗ ( .+ v)B1∗v

∗ , (6.3)

uniformly on compact subsets of C.

Proposition 6.2. Assume that λ∗ < 1. Then x 7→ Aα∗u
∞ (x + v)B1∗v

∞ (x) is a polynomial
whose degree cannot be larger than the constant a in Theorem 6.1.

Proof. Let M be some fixed 2× 2 matrix and define

fn = tr
(

MAα∗u
n ( .+ v)B1∗v

n

)

, f∗ = tr
(

MAα∗u
∗ ( .+ v)B1∗v

∗

)

. (6.4)

By Theorem 6.1 we have a bound

|fn(z)| ≤ 2b(uq6n−1 + vq6n)
a ≤ C(αu+ v)aα−6na , | Im z| ≤ cα−6n , (6.5)

for some fixed constant C > 0. Now restrict to a disk |z| ≤ r of radius r > 0. If n is
sufficiently large, then

∂kz fn(z) =
k!

2πi

∫

Γn

fn(ζ)

(ζ − z)k+1
dζ , (6.6)

where Γn is the path along the two circles in C/
(

α−6nZ
)

at Im ζ = ±cα−6n. Using the
bound (6.5) and the fact that |Γn| = 2α−6n, we have

∣

∣∂kz fn(z)
∣

∣ ≤ k!

2π
2α−6n

(

cα−6n − r
)−k−1

C(αu+ v)aα−6na

≤ Ck(αu+ v)aα6n(k−a) ,

(6.7)
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for some constant Ck > 0. Thus, if k > a, then the derivative ∂kz f∗(z) = limn ∂
k
z fn(z)

vanishes on the disk |z| < r.
This shows that f∗ is a polynomial of degree ⌊a⌋ or less. Since M was arbitrary, we

conclude that x 7→ Aα∗u
∞ (x+ v)B1∗v

∞ (x) is a polynomial of degree ⌊a⌋ or less. QED

Theorem 6.3. λ∗ = 1.

Proof. We have already established that λ∗ ≤ 1. Assume for contradiction that λ∗ < 1. In
what follows, x and y denote real numbers. Given anym > 0, denote by dm the polynomial
degree of A∗m

∗ , meaning the maximal degree of any of the components of A∗m
∗ . Clearly,

x 7→ Aα∗m
∗ (ωx+ z) has degree dm as well, for any complex numbers ω 6= 0 and z.

Consider now the identity (3.8), which holds whenever (α,A) is anti-reversible. By
taking the trace of (−1)mA∗2m

◦ (iy), we obtain the square of the Hilbert-Schmidt norm of
U(iy) = A◦((m − 1/2)α + iy) · · ·A◦(α/2 + iy). Applying this to A = A∗, we see that the

function y 7→ A∗2m
∗ (iy) must have degree 2dm. Iterating this argument shows that A∗2j

∗

has degree 2jd1. But the degree of A∗2jm
∗ cannot exceed a, by Proposition 6.2. Thus, we

must have d1 = 0.
An analogous argument shows that B∗ has degree 0 as well. But we know that neither

A∗ nor B∗ are constant. So λ∗ ≥ 1. QED

6.2. A Lyapunov exponent for pairs

Let α be an irrational number between 0 and 1. To a pair P = (F,G) with F = (1, B)
and G = (α,A), we associate a renormalized pair as in (2.1) by setting

R(P ) =
(

Λ−1GΛ,Λ−1FG−cΛ
)

. (6.8)

For simplicity, we restrict here to the trivial scaling Λ = Λ(P ), given by Λ(x, y) = (αx, y).
Consider now the iterates Pn = R

n(P ). The components of Pn are of the form Fn = (1, Bn)
and Gn = (αn, An). After choosing a suitable norm for the factors An, a Lyapunov-type
exponent for pairs can be defined by setting

ℓ(P ) = lim sup
n→∞

q−1
n log ‖An‖ . (6.9)

where qn is the n-th continued fraction denominator for α.
Consider first the case where F = (1,1). Then the functions An are scaled versions

of Aqn . To be more precise, An(x) = A∗qn(ᾱnx), where ᾱn = α0α1 · · ·αn−1. Taking the
sup-norm in (6.9) on a domain |x| < ε, we have ℓ(P ) = ℓε(G), where

ℓǫ(G) = lim sup
n→∞

q−1
n log sup

|x|≤ǫ

‖A∗qn(ᾱnx)‖ . (6.10)

Here, and in what what follows, we assume that A is a continuous 1-periodic function on
R, taking values in SL(2,R). Notice that ℓǫ(G) ≤ L(G) by Furman’s theorem [29].
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Proposition 6.4. Let α ∈ R \Q be of finite type, in the sense that the sequence n 7→ αn

is bounded away from zero. Then the lim sup in (6.10) exists as a limit, and ℓǫ(G) agrees
with the Lyapunov exponent L(G).

Proof. We may assume that L(G) > 0. Then, by Oseledets’ theorem [41], we have

lim
q

1

q
log

‖A∗q(x0)v0‖
‖v0‖

= L(G) , (6.11)

for almost every x0 ∈ R, and for all vectors v0 outside some one-dimensional subspace of
R2 that can depend on x0. Now fix such an x0 and v0.

Using the three-gap theorem [3,2,4], we can find an integer k > 0 and sequences
n 7→ tn and n 7→ sn of positive integers, such that

qn ≤ tn ≤ qn+k , |x0 + tnα− sn| ≤ ǫᾱn . (6.12)

Setting xn = x0 + tnα− sn and vn = A∗tn(x0)v0, we have

1

qn
log

‖A∗qn(xn)vn‖
‖vn‖

=

(

1 +
tn
qn

)

1

qn + tn
log

‖A∗(qn+tn)(x)v0‖
‖v0‖

− tn
qn

1

tn
log

‖A∗tn(x)v0‖
‖v0‖

.

(6.13)

Notice that 1 ≤ tn/qn ≤ C for some fixed constant C. Thus, the right hand side of (6.13)
converges to L(G) as n→ ∞. QED

In what follows, we assume that α is the inverse golden mean. Then c = 1 in the
equation (6.8), and αn = α for all n. In addition, we restrict to pairs in the set F ′

ρ defined
below, where ρ = (ρF , ρG) is assumed to satisfy

1
2α

−2 < ρ
G
, 1

2α+ αρ
G
≤ ρ

F
≤ α−1ρ

G
. (6.14)

Definition 6.5. Define F ′
ρ to be the set of pairs P = (F,G) in F r

ρ with the property that
the maps F and G commute, and that their factors have determinant 1.

The condition (6.14) guarantees that R defines a dynamical system on F ′
ρ. This

condition is satisfied e.g. for the values ρ = (2, 11/8) and ρ = (3, 2) that are used in
Lemma 3.1 and Lemma 4.1, respectively.

Using that q−1
n =

(

1 + α2
)

αn +O
(

α3n
)

, we can rewrite (6.9) as

ℓ(P ) = lim sup
n→∞

Ln(P ) , (6.15)

where
Ln(P ) =

(

1 + α2
)

αn log ‖An,◦‖ρ
G
, An,◦(x) = A∗qn

◦

(

αnx
)

. (6.16)

Here, we have used that scaling and “symmetrizing” commute, as mentioned after (3.5).
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Remark 3. If we restrict n in (6.16) to multiples of 3 and replace R
3 by R3, then the

weaker domain condition (3.39) is sufficient. In addition, the restriction to commuting
pairs can be omitted in this case. We will not do this here, simply to avoid complicating
notation.

Our main reason for considering a Lyapunov exponent based on the functionals Ln is
that it transforms conveniently under renormalization:

Ln

(

R(P )) = α−1Ln−1(P ) , n = 1, 2, . . . (6.17)

So we have ℓ
(

R(P )) = α−1ℓ(P ). Clearly, ℓ vanishes on any periodic orbit of R.

Proposition 6.6. Let G = (α,A) be an anti-reversible AM map with α the inverse golden
mean. Then the limit lim

n→∞
Ln(P ) exists and is equal to L(G).

Proof. Let r = ρG. Consider the sup norm in (6.10) for small ǫ > 0. Since the evaluation
map g 7→ g(x) is continuous on Gr for |x| ≤ r, this norm is bounded from above by
C‖An,◦‖r for some fixed constant C > 0. So we have lim inf

n→∞
Ln(P ) ≥ L(G).

Next, consider the AM map Gδ with factor Aδ(x) = A(x+ iδ). Using the (well known)
fact that log

∥

∥A∗q(x+ iδ)
∥

∥ is a convex function of δ, we have

L(P ) ≤ lim sup
n→∞

q−1
n sup

|x|≤ǫ

log
∥

∥A∗qn
◦

(

αnx± iδ
)
∥

∥ ≤ ℓǫ(Gδ) = L(Gδ) , (6.18)

for ǫ > 0 sufficiently large (depending only on r) and every δ > 0. The “±” in the equation
(6.18) includes a maximum over the two signs. But by anti-reversibility, the supremum
over |x| ≤ ǫ does not depend on the sign.

Now we can use the fact [48] that L(Gδ) = max
{

0, log λ+ 2πδ
}

. Thus, taking δ → 0
in (6.18) yields lim sup

n→∞
Ln(P ) ≤ L(G). This proves the claim in Proposition 6.6. QED

For more general pairs in F ′
ρ, the lim sup in (6.15) may not be a limit. An easy way

to cure this problem is to define a slightly different Lyapunov-type exponent as follows:

L(P ) = lim sup
n→∞

1

1 + α2

[

Ln(P ) + α2Ln−1(P )
]

. (6.19)

Theorem 6.7. Assume that P ∈ F ′
ρ for some choice of ρ = (ρ

F
, ρ

G
) that satisfies (6.14).

Then the sequence n 7→ Ln(P ) + α2Ln−1(P ) is decreasing. As a consequence, the lim sup
in (6.19) is achieved as a limit, and L is upper semi-continuous on F ′

ρ. Furthermore, the
value of L(P ) does not depend on the choice of ρ.

Proof. For n ≥ 0 define

bn = bn(ρ) = log ‖Bn,◦‖ρ
F
, an = an(ρ) = log ‖An,◦‖ρ

G
. (6.20)
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Assume now that n ≥ 1. Then the domain conditions (6.14) guarantee that

bn ≤ an−1 , an ≤ bn−1 + an−1 . (6.21)

Using that 1 + α = α−1, this yields the bound

Ln(P ) + α2Ln−1(P ) =
(

1 + α2
)[

αnan + αn+1an−1

]

≤
(

1 + α2
)[

αnbn−1 + αnan−1 + αn+1an−1

]

≤
(

1 + α2
)[

αnan−2 + αn(1 + α)an−1

]

= α2Ln−2(P ) + Ln−1(P ) ,

(6.22)

for n ≥ 2. This shows that the sequence n 7→ Ln(P ) + α2Ln−1(P ) is decreasing and thus
has a limit. Since each Lk is continuous, the limit is upper semi-continuous.

Next consider another domain parameter ̺ satisfying (6.14). Let us write Ln(̺)
instead of Ln(P ) when the domain parameter is ̺, and Ln(ρ) when the domain parameter
is ρ. Using that R is analyticity-improving, there exists k > 0 and a constant ck > 0 such
that

‖Bn+k‖̺
F
≤ eck‖Bn‖qn−2

ρ
F

‖An‖qn−1

ρ
G

, ‖An+k‖̺
F
≤ eck‖Bn‖qn−1

ρ
F

‖An‖qnρ
G
, (6.23)

for every n ≥ 0. Taking logarithms and using the identity

[

qk−2 qk−1

qk−1 qk

] [

α
1

]

=

[

0 1
1 1

]k [
α
1

]

= α−k

[

α
1

]

, (6.24)

we find that
α2Ln+k−1(̺) + Ln+k(̺) ≤ Ckα

n + α2Ln−1(ρ) + Ln(ρ) , (6.25)

with Ck =
(

1 + α2
)2
αkck. An analogous inequality holds if ̺ and ρ are exchanged. This

shows that L(P ) is independent of the choice of ρ. QED

Using upper semicontinuity and (6.17), together with the fact that the pair P∗ com-
mutes, we immediately obtain the following.

Corollary 6.8. Consider a pair P ∈ F ′
ρ. Then L(R(P )) = α−1L(P ). So in particular,

L(P∗) = 0. Furthermore, if R3n(P ) → P∗ as n→ ∞, then L(P ) = 0.

6.3. Transversal intersection

At this point we can complete the proof of 2.3. We already know from Subsection 6.1 that
s∗ = 1. What remains to be proved is that some RG iterate of the AM family intersects
the local stable manifold Ws of R3 transversally, and that µ2 ≥ α−3.

To this end, consider the splitting Fρ =Wu⊕W s, whereWu is the unstable subspace
for the operator DR3(P∗) and W

s the stable subspace. Then P∗ +W s is tangent to Ws

at P∗. And Ws is the graph of a real analytic function from W s to P∗ +Wu. To be more
precise, this holds locally, near P∗. So we restrict our analysis to a suitable open ball B
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in Fρ that is centered at P∗. Using that Ws is a graph, we can define the height of a pair
P ∈ B relative to Ws in the direction of Wu.

Consider the AM family s 7→ P(s) associated with the factor (3.11) for λ = es. Define
Pn = F

n
1 (P), where F1 denotes the pointwise version of R3 defined by (5.12). Notice that

R3 may be replaced by R
3, since the AM pairs commute. Recall that Lyapunov exponent

of P(s) is max{0, s}. So by (2.7), the Lyapunov exponent of Pn(s) is α−3ns. And recall
from Subsection 6.1 that 0 is the unique value of s for which P(s) is attracted to P∗ under
the iteration of R3. If n is sufficiently large, so that the pair Pn(0) lies on Ws in B, then
the pairs Pn(s) for s > 0 cannot lie on Ws. Here, we have Corollary 6.8. In what follows,
k denotes some (large) value of n for which this holds.

Now choose t > 0 such that P∗(t) belongs to B. Let Σ0 be a codimension 1 subspace
of Fρ that passes through P∗(t) and is transversal to the unstable manifold P∗. We may
assume also that Σ0 does not intersect Ws. For n = 1, 2, . . ., define Σn to be the inverse
image of Σn−1 under R3, restricted to B. If B has been chosen sufficiently small, then
the λ-Lemma [14] guarantees the following. The sets Σn are real analytic manifolds.
Furthermore, the sequence n 7→ Σn accumulates at the stable manifold Ws of R3 at P∗

asymptotically like µ−n
2 . To be more precise, if Q is any (real analytic) curve in B that

crosses Ws transversally at the point Q(0), then near this point, and for sufficiently large
k, the curve Q intersects Σn for a unique parameter value sn. Furthermore, the sequence
n 7→ µn

2 sn converges to a nonzero constant.
Consider now the curve Q = Pk. Denote by h(s) the height of Q(s) above Ws in the

direction of Wu. By analyticity, we have h(s) = asm + O
(

sm+1
)

for some m ≥ 1, with
a 6= 0. Thus, for sufficiently large n, the curve Q intersects Σn at some parameter value
sn > 0. We may choose the smallest such value. By construction, the point R3n(Q(sn)) lies
on Σ0. So we must have µn

2 s
m
n ≥ b for sufficiently large n, where b is some positive constant.

Using that the Lyapunov exponent is bounded on B, and that R3n(Q(sn)) has Lyapunov
exponent α−3(n+k)sn, we also have α−3nsn ≤ c for some c > 0. Thus, µ2 ≥ α−3m. We
know from Lemma 5.1 that µ2 ≤

√
19. And for m ≥ 2 we have α−3m > 17. So we must

have m = 1. This implies that Q = F
k
1(P) intersects Ws transversally, and that µ2 ≥ α−3.

This completes the proof of Theorem 2.3.

Remark 4. The parameter values sn depend on the value of k defining the curve Q = Pk.
Writing sn = sk,n we obtain R

3(k+n)(P(sk,n)) → P∗(t) in the limit k → ∞. If we assume
that µ2 = α−3, then this implies that P∗(t) has a positive Lyapunov exponent.

7. Supercritical maps
The main goal in this section is to prove Theorems 2.4 and 2.5.

7.1. Limiting zeros

Here we consider the factor-normalization that was mentioned before Theorem 2.4. Recall
from (3.16) that R3 = N ◦ R3 ◦ C, where C is a commutator correction, and where N

normalizes determinants to 1. The factor-normalization of a pair P = ((1, B), (α,A)) is
component-wise, N(P ) = ((1,M(B), (α,N (A)), with M and N of the form

M(B) =M(B)−1B , N (A) = N(A)−1A . (7.1)
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Up to now we have used M(B) = det(B)1/2 and N(A) = det(A)1/2.
Here, we are interested only in pairs that commute and whose factors have constant

nonnegative determinants. So we omit the commutator correction C and choose for M
and N the norms in Fρ. Other choices would work equally well, as long as they guarantee
that the orbits of R3 remain bounded without tending to zero. In order to simplify the
description, we also choose a trivial y-scaling L3 = 1.

Let K0 be a set of pairs P ∈ Fρ whose norm is bounded by some fixed constant,
and that satisfy L(P ) ≥ ε for some fixed ε > 0. Recall that the transformation R

3 is
compact, as described before Lemma 3.1. Here, and in what follows, we assume that the
domain parameter ρ satisfies the condition (3.39). Consequently, the sets Kn = R

3n(K0)
for n > 0 all have compact closures. Denote by K∗ the set of all accumulation points
from the sequence n 7→ Kn. This set is compact and invariant under R3. By taking K0

invariant under conjugacies by a rotation, the limit set K∗ has the same property. Notice
that the pairs in K∗ belong to Fρ, so their factors are analytic.

Let P ∈ K0 and define Pn = R
n
3 (P ) for n ≥ 0. By (3.3), (3.4), and (3.5), the

symmetric factors associated with the pairs Pn are related via

NnBn,◦(x) = An−1,◦

(

α3
(

x− α−1

2

))

Bn−1,◦

(

α3x
)†
An−1,◦

(

α3
(

x+ α−1

2

))

, (7.2)

and

MnAn,◦(x) = An−1,◦

(

α3
(

x+ α−1
))†

Bn−1,◦

(

α3
(

x+ α−1

2

))

×
×An−1,◦

(

α3x
)†
Bn−1,◦

(

α3
(

x− α−1

2

))

An−1,◦

(

α3
(

x− α−1
))†

.
(7.3)

Here, Mn and Nn are the normalization factors that appear in the definition of Pn =
R3(Pn−1). Assume now that K0 is a set of pairs P = (F,G) with F = (1,1) and G =
(α,A), and with the property that A◦(0) = −J . The latter condition is satisfied e.g. for
the anti-reversible AM family. In this case, (3.10) implies that

An,◦(0) = ±εnJ , εn = O
(

α−3n
)

. (7.4)

Here, εn is a product of n factors N−1
m or M−1

m for m = 1, 2, . . . , n. The given estimate
on εn uses the fact that, under the iteration of R3, the norms grow at least as quickly as
the Lyapunov exponents. Thus, as n→ ∞, the values at x = 0 of the factors An,◦ tend to
zero, uniformly in our sequence n 7→ Kn.

There are many other values of x where An,◦(x) tends to zero. An example is x = α−1.
At this value of x, the last factor in (7.3) is of size O

(

α−3n
)

for large n. Thus, as n→ ∞,
the values at x = α−1 of the factors An,◦ tend to zero as well. The search for such zeros
can be made more systematic as follows.

Let P = ((1, B), (α,A)) be a pair in K∗, and let P̃ =
((

1, B̃
)

,
(

α, Ã
))

be the image
of P under the transformation R3. Denote by A and B be the set of zeros of A◦ and B◦,
respectively. Then (7.2) shows that the set of zeros of B̃◦ includes the set

B̃ =

[

α−3B
⋃

m=±1

(

α−3A+ m
2 α

−1
)

]

, (7.5)
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and (7.3) shows that the set of zeros of Ã◦ includes

Ã =

[

⋃

m=±1

(

α−3B + m
2 α

−1
)

⋃

m=0,±1

(

α−3A+mα−1
)

]

. (7.6)

This defines a transformation that maps a pair of sets of complex numbers P = (B,A) to a
pair P̃ =

(

B̃, Ã
)

. Consider iterates P1,P2, . . . under this transformation P 7→ P̃, starting
with a pair P0 = (B0,A0).

Notice that the imaginary parts of non-real points in B0 or A0 expand by a factor
α−3 under the transformation P 7→ P̃. Thus, the limit sets (lim sup or lim inf) B∗ and A∗

are always subsets of R.
In the case at hand, A0 includes 0, since A◦(0) = 0 for all pairs in K. So consider

B0 = {} and A0 = {0}. Then A1 includes 0 as well, due to the map x 7→ α−3x that
appears in (7.6) for m = 0. So it is clear that Bn+1 ⊃ Bn and An+1 ⊃ An for all n. Thus,
Bn ր B∞ and An ր A∞ for a pair of sets P∞ = (B∞,A∞).

A zero that appears for the AM family but that is not included in the above set A∞

is x = 1/2 . And x = −1/2 appears as well, due to anti-reversibility. To see how these
zeros occur, denote by Cn(x) the product of the last two factors in (7.3). An explicit
computation shows that

Cn(x) = A
∗q3n−2

0

(

α3nx+ q3n−1

2 α
)

. (7.7)

Using that qkα − qk−1 = (−1)kαk+1, one finds that Cn(σ/2) = J for σ = (−1)3n−1. This
implies that the factor A◦ for an anti-reversible AM pair P ∈ K∗ has a zero at x = ±1/2 .
The same holds for other anti-reversible pairs P = ((1,1), (α,A)) with A of Schrödinger
type (1.4).

To see how the zeros at ±1/2 propagate under iteration of P 7→ P̃, consider B0 = {}
and A0 = {−1/2 , 1/2

}

. Then A1 includes ±1/2 as well, since ±1/2 is a fixed point of the map
x 7→ α−3 ∓ α−1 that appear in (7.6). Again we have Bn ր B∞ and An ր A∞ for a pair
of sets P∞ = (B∞,A∞).

7.2. The supercritical fixed point

The recursion relations (7.5) and (7.6) can be obtained more easily from pairs of commuting
skew-product maps with factors that take values in GL(1,R) instead of GL(2,R). A map
g : (x, y) 7→ (x + α, a(x)y) of this type will again be written as g = (α, a). Given a pair
p = (f, g) of such maps f = (−1, b) and g = (α, a), the renormalized pair R(p) is given by

R(p) =
(

λ−1gλ ,λ−1fgcλ
)

, λ(x, y) = (−αx, y) , (7.8)

with the same positive integer c as in (2.1). The analogue of anti-reversibility here is the
requirement that b◦ be even and a◦ odd. The analogue of a Schrödinger pair is a pair
p = (f, g) with components f = (−1, 1) and g = (α, a), where a is periodic with period 1.

Let us restrict now to the case where α is the inverse golden mean. Then c = 1 at
every RG step. If p is anti-reversible, then the relation between the zeros for p = (f, g)
and the zeros for p̃ = R3(p) is trivially given by (7.5) and (7.6).
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Consider again skew product maps with factors in GL(2,R). Let P0 be an anti-
reversible AM pair with λ > 1. Consider the pairs Pn = R

n
3 (P0) for n ≥ 1 and the

associated symmetric factors Bn,◦ and An,◦. These factor can be obtained iteratively via
(7.2) and (7.3). The following are numerical observations.

Observation 5. As n increases, the factors Bn,◦ and An,◦ approach symmetric matrices
with constant null spaces.

In other words, if we start with K0 = {P}, then the limit set K∗ appears to consist
of pairs whose symmetric factors are of the form

B◦(x) = b◦(x)WW⊤ , A◦(x) = a◦(x)V V
⊤ , (7.9)

where W and V are constant unit vectors in R2. Notice that b◦ = tr(B◦) has to be even
and a◦ = tr(A◦) odd. This follows from the (anti)reversibility property (7.9). The part
of Observation 5 that we cannot prove is that A◦ is symmetric, and that V and W are
constant. It is possible to give some formal arguments, but we will not do this here. If V
and W are assumed to be constant, then the fact that F has to commute with both G and
G† implies that W = V †.

Observation 6. The sequence of pairs n 7→ Pn converges to a fixed point of R3.

To be more precise, if we use the trivial y-scaling L2 = 1, as we we have done so far
in this section, then convergence is to a period 2 of R3. The traces b◦ and a◦ reproduce
after one step of R3, but the directions V and W = V † only repeat after two steps. Using
instead L3 = L(ϑ) of the form (3.12), with ϑ = ϑ(P ) chosen appropriately, the sequence
n 7→ Pn converges numerically to a fixed point of R3, with the properties described in
Theorem 2.4.

Proof of Theorem 2.4. We give only a sketch here, since the proof follows closely the
steps used in [54].

First, notice that the fixed point equation for a pair of the form described in Theo-
rem 2.4 reduces to a fixed point equation for the functions b⋄ and a⋄. This is essentially
the fixed point equation for the third power R3 of the operator R defined by (7.8), with
c = 1, except for a constant re-normalization of the factors b and a.

For simplicity, let us re-define b⋄ and a⋄ to be the symmetric factors of the desired
fixed point. Then we have good guess where their zeros are: starting with B0 = {} and
A0 = {−1/2 , 0, 1/2}, an iteration of the map P 7→ P̃ yields a limit pair P∞ = (B∞,A∞)
that should be the set of zeros associated with the symmetric factors of the fixed point.

For the actual construction, it is more convenient to start with B0 = {} and A0 = 1
2Z.

This corresponds to starting with the pair P whose symmetric factors are

B◦(x) =
[

0 0
0 1

]

, A◦(x) = 2 sin(2πx)
[

1 0
0 0

]

, (7.10)

and then iterating R
3 with L3 =

[

0 1
1 0

]

. Notice that the symmetric factor A◦ in this
equation is the limit as λ → ∞ of the anti-symmetric AM factor (in its standard form),
after dividing it by λ.
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The symmetric factors that are being generated by iterating the map (B◦, A◦) 7→
(

B̂◦, Â◦

)

defined by (3.3) and (3.4) have their zeros modulo 1/2 on the orbit of the point
x = 0 under the translation x 7→ x+α on the circle T/2 = R/(2Z). Thus, by the three-gap
theorem [3,2,4], the gaps between adjacent zeros on T/2 take at most 3 distinct values. To
be more specific, there are exactly three distinct gaps, except when the orbit has length
q3n, at which point the largest gap gets closed. So after n iterations, the resulting factor
B̂◦ has q3n−1 zeros on T/2 with 3 distinct gaps, while the factor Â◦ has q3n zeros on T/2
with 2 distinct gaps.

The same applies to the iteration (B◦, A◦) 7→
(

B̃◦, Ã◦

)

, except that the circle gets
enlarged by a factor α−3 at each step. Furthermore, the zeros that lie within some fixed
positive angle of the origin reproduce after each step [54]. This yields the limiting sequences
of zeros described in Theorem 2.4.

The symmetric factors that are being generated during this iteration have a Weier-
strass representation as products, determined (up to a constant factor) by their zeros.
Here, we use the fact that b◦ is even and a◦ odd, so it is possible to work with products
of order 1/2 . By controlling the zero sets Bn and An, one finds uniform convergence on
compact sets to a pair of limit functions b⋄ and a⋄. For details we refer to [54], where
RG fixed points have been constructed for skew-products with meromorphic factors.

The gap sizes listed in (2.9) were obtained by iterating the map P 7→ P̃ a few times,
starting with the sets B0 = {} and A0 = {−1/2 , 0, 1/2}. QED

The following will be used in the proof of Theorem 2.5 below.

Proposition 7.1. Let B0 = {}. Let X = {0} or X = {−1/2 , 1/2} or X = {−1/2 , 0, 1/2}.
Assume that X ⊂ A1 whenever X ⊂ A0. Then A0 = X lead to the same limit pair P∞ as
A0 = X +Z.

Proof. For n ≥ 0 define Tn = R/
(

α3nZ
)

. Consider first the case A0 = X + Z. By
construction, the points in Bn constitute |X| orbits of length q3n−1 for the translation
x 7→ x+ α3n+1 on the circle Tn, and the points in An constitute |X| orbits of length q3n.
Furthermore, the orbits are symmetric with respect to x 7→ −x.

Consider now A0 = X instead of A0 = X +Z. Then we must get the same orbits on
Tn, simply by counting points. For m > 0, denote by a(n,m) and b(n,m) the number of
points in An and Bn, respectively, that lie within a distance m from the origin in Tn.

Next, construct Bn and An as subsets of R instead of Tn. Now the number of points
in Bn or An that lie within a distance m of the origin can be smaller than b(n,m) or
a(n,m), respectively. However, this does not happen if n is sufficiently large. The reason
is that map P 7→ P̃ is “expanding” by a factor α−3. To be more precise, let c > α3.
Then for m larger than some constant that only depends on c, the points in B̃n ∩ [−m,m]
and Ãn ∩ [−m,m] are determined via P 7→ P̃ from the points in Bn ∩ [−cm, cm] and
An ∩ [−cm, cm], if n is sufficiently large. This shows that A0 = X leads to the same limit
pair P∞ as A0 = X +Z. QED

Notice that lim infn Bn = lim supn Bn and lim infn An = lim supn An in the above.

Proof of Theorem 2.5. Consider the choice M(B) = ‖B◦‖ and N(A) = ‖A◦‖ in the
definition (7.1) of our factor-normalization. Let P ∈ K∗. Given that P belongs to Fρ
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and lies in the range of Rn
3 for every n, the factors B and A extend analytically to all of

C. Furthermore, b◦ = tr(B◦) is even and a◦ = tr(A◦) odd, due to the anti-reversibility
property (7.9).

By construction, the symmetric factors B◦ and A◦ have norm 1 and determinant 0.
From (3.9) we see that B◦(iy) or −B◦(iy) is the limit of real positive matrices, for every
y ∈ R satisfying |y| < ρF . Here, we have used that m = q3n−1/2 is an integer whose parity
is independent of n. Since B(x) is a symmetric matrix for imaginary x, it is symmetric for
all x.

The claim in Theorem 2.5 concerning the zeros of B and A follows from our discussion
in the previous subsection, together with the characterization of the set of zeros for the
functions b⋄ and a⋄ given in the proof of Theorem 2.4, as well as Proposition 7.1. QED

Remark 7. If one assumes that some point P on the unstable manifold of R3 at P∗

converges to P⋄ under iteration of R3, then it is possible to show that µ2 = α−3. The
reason is that the asymptotic behavior under renormalization becomes trivial in this case.

8. Computer estimates
What remains to be done is to verify the estimates in Lemmas 3.1, 4.1, 4.2, 5.1, and 5.5.
This is carried out with the aid of a computer. This part of the proof is written in the
programming language Ada [56] and can be found in [55]. The following is meant to be a
rough guide for the reader who wishes to check the correctness of our programs.

8.1. Enclosures and data types

Bounds on a vector x in a space X , also referred to as enclosures for x, are given here by
sets X ⊂ X that include x and are representable as data on a computer. Data of type
Ball are pairs B = (B.C, B.R), where B.C and B.R are representable numbers, with B.R ≥ 0.
In a Banach algebra X with unit 1, the enclosure associated with a Ball B is the ball
BX = {x ∈ X : ‖x − (B.C)1‖ ≤ B.R}. Our other enclosures are closed convex subsets of X
that admit a canonical decomposition

S =
∑

n

xnB(n)X , (8.1)

where each xn is a representable element in X , and where each B(n) is a Ball with center
0 or 1. Notice that a Ball can have radius zero.

Consider now a disk D = {z ∈ C : |z| < ρ} with representable radius ρ > 0. An
analytic function g : D → X admits a Taylor series representation g(z) =

∑∞
n=0 gnz

n with
coefficients gn ∈ X . Denote by G the space of all such functions that have a finite norm
‖g‖ =

∑∞
n=0 ‖gn‖ρn. Assume that X carries a type of enclosures named Scalar. To each

such enclosure SX ⊂ X we can associate a set SG ⊂ G by replacing each ball B(n)X in the
decomposition (8.1) of S = SX by the ball B(n)G .

Given an integer D > 0, our enclosures for functions in G are specified by data of type
Taylor1. A Taylor1 is in essence a pair P=(P.F,P.C), where P.F ≤ D is a nonnegative
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integer, and where P.C is an array(0 .. D) of Scalar. The corresponding enclosure
is the set

PG =

m−1
∑

n=0

P.C(n)XPn +

D
∑

n=m

P.C(n)GPn , Pn(z) = zn , (8.2)

where m = P.F. Notice that the first sum in (8.2) is a polynomial, while each term in
the second sum is in general a non-polynomial. This allows for efficient estimates in the
problem considered here. For precise definitions we refer to the Ada package Taylors1.

Quadruples of Taylor1 define a type TMat2 that is used for enclosures of 2 × 2 ma-
trices A with entries in G. By including another component α ∈ Z

[

1
2

√
5 − 1

2

]

we obtain
enclosures for skew-product maps G = (α,A). The corresponding data type is named
Skew. Enclosures on pairs P = (F,G) are described by data of type Skew2. For details we
refer to the child package Taylors1.Skews2.

In most of our packages, the type Scalar is generic, meaning unspecified, except
for a list of available operations. When instantiated with Scalar => Ball, the packages
Taylors1 and Taylors1.Skews2 define enclosures for the spaces Gρ, G4

ρ , and Fρ described
in Subsection 3.5.

A particular instantiation of Taylors1, with Scalar => Ball, is named S T in the
package FamRG. The resulting type Taylor1 is named TScalar. A second instantiation of
Taylors1, with Scalar => TScalar, is named named T T. The type of Taylor1 defined
by T T describes analytic functions from a disk |s| < δ to Gρ. Now it suffices to instantiate
the child package T T.Skews2, to obtain Skew2-type enclosures on analytic curves in the
space Fρ. This covers all major data types used in our programs.

8.2. Bounds and procedures

After having defined enclosures for (elements in) the various spaces that are needed in our
analysis, we need to implement bounds on maps between these space. In this context, a
bound on a map f : X → Y is a function F that assigns to a set X ⊂ X of a given type
(Xtype) a set Y ⊂ Y of a given type (Ytype), in such a way that y = f(x) belongs to Y
whenever x ∈ X. In Ada, such a bound F can be implemented by defining an appropriate
procedure F(X: in Xtype; Y: out Ytype). In practice, the domain of F is restricted. If
X does not belong to the domain of F, the F raises an Exception which causes the program
to abort.

Our type Ball is defined in the package MPFR.Floats.Balls, using centers B.C of type
MPFloat and radii B.R of type LLFloat. Data of type MPFloat are high-precision floating
point numbers, and the elementary operations for this type are implemented by using the
open source MPFR library [59]. Data of type LLFloat are standard extended floating-
point numbers [58] of the type commonly supported by hardware. Both types support
controlled rounding. Bounds on the basic operations for this type Ball are defined and
implemented in MPFR.Floats.Balls.

Using the definition (8.2) of a Taylor1-type enclosure, it is clearly possible to imple-
ment a bound Prod on the map (f, g) 7→ f ∗ g from G × G to G. This and other basic
bounds that include the type Taylor1 are defined in package Taylors1. Basic bounds
that involve the types Skew and Skew2 are defined in the package Taylors1.Skew2. This
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includes a bound Normalize on the map N defined by (3.17). It also includes a bound Inv

on the map G 7→ G† and a bound Prod GFG on the product (F,G) 7→ GFG. Combining
the two yields bounds on the products that appear in the definition of the operator R3.

Bounds on problem-specific maps such as R3 are mostly defined in child packages
of Taylors1.Skew2. Among the exceptions are the bounds named Equalize on the
normalization transformations defined in Subsections 3.2 and 4.1. The package Tay-

lors1.Skew2.RG3r implements bounds on operations such as R6 that are used only for
reversible pairs, while Taylors1.Skew2.RG3a implements bounds that are specific to anti-
reversible pairs. This includes procedures named Commutize that provide bounds on the
commutator-correction map C. A bound on the derivative of C is named DCommmutize.
The same naming convention is used for other derivative bounds.

Up to this level, the same bounds can be used for pairs and for families of pairs. To
choose one or the other, is suffices to instantiate the package Taylors1 and its children
with the desired type of Scalar. But for derivative bounds on maps such as M, we need
to be able to enumerate the degrees of freedom, so it matters whether Scalar encloses a
number or a Taylor series.

8.3. Linear operators and modes

In the packages MapR, FamRG, and their children, degrees of freedom are associated with
a type Mode. To simplify the discussion, consider first the space Gρ. In this case, a
“coefficient mode” cn represents a monomial Pn of degree n, and an “error mode” en
represents the unit ball in the subspace of all functions g = ePn with e ∈ Gρ. So Taylor1-
type enclosure (8.2) in Gρ is a finite linear combination of modes for Gρ. A proper collection
of normalized modes {h1, h2, . . . , hm} defines an analogue of a finite basis for Gρ. Due to
our choice of norm in Gρ, the operator norm of a bounded linear T : Gρ → Gρ is simply
‖T‖ = maxn ‖Thn‖. Given that each mode hn admits a representation of type Taylor1,
a bound on ‖T‖ is easily obtained from a bound on T .

This generalizes readily to the space F r
ρ . The corresponding type CMode is defined in

the package MapRG. For a “basis” of such modes we use the type CModes. In MapRG we also
instantiate two generic packages Linear and Linear.Contr that implement bounds on a
quasi-Newton map (and its derivative) of the type (3.36) in terms of bounds on the given
map (and its derivative). Using these facilities, the child package MapRG.RG3a implements
a bound DContrNorm on the norm of DM, where M is the transformation defined by (3.36).
This procedure is used to verify the bound on the operator norm of DM(p) in Lemma 3.1.

The operator M that enters the definition (3.36) is a “matrix” on a subspace spanned
by finitely many coefficient modes, and on the complementary subspace it is the zero
operator. This matrix is included in [55] as a data file Contr3aMat.132. The matrix
M that is used in the definition (4.9) is included in [55] as a file Contr3rMat.134. The
operator L that enters the definition (5.1) is a “matrix” L on a subspace spanned by finitely
many coefficient modes, and on the complementary subspace it is the identity operator.
This matrix L is included in the file Iso.132.28. A bound on its inverse is obtained and
saved by running the program Invert Iso.

The child package MapRG.RG3r is an analogue of MapRG.RG3a, but for reversible pairs.
The package FamRG and its children define an analogue of the MapRG hierarchy, but for

analytic curves s 7→ P(s). The modes for this space are named DModes. However, these
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modes are not needed in our current proof. (An earlier version implemented the graph
transform method that is described in Subsection 5.2.) The child package FamRG.RG3a

implements the bounds that are used in our proof of Lemma 5.5. This includes a bound
Plain FamRG3 on the transformation Fc defined in (5.12), for the special value c = α3.

8.4. Organizing the bounds

Our proof of Lemma 5.5 is organized in the main program Iter AM Fam Sin6. Starting
with an enclosure for the anti-reversible AM family for λ near 1, it does little more than
iterating the above-mentioned bound Plain FamRG3. The bounds are in essence numerical
computations, but, as should be clear by now, they include rigorous estimates of truncation
errors and rounding errors.

The same is true for our proof of the remaining lemmas. The approximate solutions
P̄ referred to in Lemmas 3.1 and 4.1 have been computed numerically beforehand. First
we used a numerical versions of Iter AM Fam Sin6 (or Iter AM Fam Cos6 in the reversible
case) to obtain rough approximate fixed points for R

2
3. Then the approximations were

improved via the procedures IterContr in the packages MapRG.RG3a and MapRG.RG3r,
respectively. (Numerical versions of our programs are obtained simply by using for Scalar
the type Rep instead of Ball.) The results are in the data files approx-Fix3a.trunc and
approx-Fix6r.trunc in [55].

The main programs that are used to verify the estimates in Lemmas 3.1, 4.1, and
5.1 are Check RG3a Fixpt, Check RG6r Fixpt, and CheckNorms DRGN3. They do little
more than instantiating the required packages with the appropriate parameters, reading
data files if needed, and then handing the task over to the proper procedure(s) in the
instantiated packages.

Our programs were run successfully on a standard desktop machine, using a public
version of the gcc/gnat compiler [57]. Instructions on how to compile and run these
programs can be found in the file README that is included with the source code in [55].
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Henri Poincaré 33, 797–815 (1997).

[30] A.Y. Gordon, S. Jitomirskaya, Y. Last, B. Simon, Duality and singular continuous spectrum

in the almost Mathieu equation, Acta Math. 178, 169–183 (1997).
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