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1. Introduction

The present work deals with the studies of the existenceatibsiary solutions of
the following system of integro-differential equationsRf, d = 4,5

Ou,,

= DAt [ e = pan(uly Oy + fuo), (@)

wherel < m < N appearing in the cell population dynamics. Our method will
work in the range of the powers of the negative Laplaciansrghy

3 d

The space variable in our problem is correspondent to the cell genotype, func-
tionsu,,(x,t) describe the cell density distributions for various groaopsells as
functions of their genotype and time,

u(z,t) = (uy(x,t), ug(z,t), ..., un(z, 1))’
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The right side of the system of equations (1.1) describegvbtition of cell den-
sities by means of the cell proliferation, mutations and icglux or efflux. The
anomalous diffusion terms with positive coefficierits, correspond to the change
of genotype due to small random mutations, and the integoalyztion terms de-
scribe large mutations. Functiong (u) denote the rates of cell birth which depend
onu (density dependent proliferation), and the kerr€}s(x — y) express the pro-
portions of newly born cells changing their genotype froito . We assume that
they depend on the distance between the genotypes. Théius£t, (z) stand for
the influx or efflux of cells for different genotypes.

The operator§—A)*», 1 < m < N in problem (1.1) describe a particular case
of the anomalous diffusion actively treated in the contexvarious applications
in plasma physics and turbulence [7], [21], surface ditfudil4], [19], semicon-
ductors [20] and so on. The anomalous diffusion can be utaEtsas a random
process of the particle motion characterized by the praéibadensity distribution
of jump length. The moments of this density distributionfamnge in the case of the
normal diffusion, but this is not the case for the anomalatission. The asymp-
totic behavior at the infinity of the probability density fttiron determines the value
sm, 1 < m < N of the power of the negative Laplacian (see [18]). The opesat
(=A)*m 1 <m < N are defined by means of the spectral calculus. We consider

d . .
the case oé — =<8, <1,1<m< N in the present work. A similar system

with the standard Laplacians in the diffusion terms wasistlidecently in [29].
We note that the restriction on the powers, 1 < m < N here is due to the
solvability conditions of our problem.

Let us set here alb,, = 1 and show the existence of solutions of the system of

: 3 d
equations for§ 1 < Sy < 1

At [ Koo = Dgnll)dy+ fule) =0, (02)

with 1 < m < N, d = 4,5. We treat the case when the linear part of this operator

does not satisfy the Fredholm property. As a consequene&afiventional meth-

ods of nonlinear analysis may not be applicable. We use tlvalsibty conditions

for the non Fredholm operators along with the method of @mtitvn mappings.
Consider the equation

—Au+ V(x)u —au = f, (1.3)

whereu € £ = H*(RY) andf € FF = L*(R%), d € N, a is a constant and the
scalar potential functioly () is either zero identically or convergesat infinity.
Fora > 0, the essential spectrum of the operator & — F' corresponding to
the left side of problem (1.3) contains the origin. As a copusmce, such operator
does not satisfy the Fredholm property. Its image is notedp$ord > 1 the di-
mension of its kernel and the codimension of its image ardinid¢. The present
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work deals with the studies of certain properties of the afmes of this kind. Note
that elliptic problems with non Fredholm operators weral&d actively in recent
years. Approaches in weighted Sobolev and Holder spacesdeseloped in [2],
[3], [4], [5], [6]. The Schrodinger type operators withduedholm property were
treated with the methods of the spectral and the scattehniegry in [22], [26],
[32]. Nonlinear non Fredholm elliptic problems were studie [27] and [28].
The significant applications to the theory of reactiontsfon type equations were
developed in [9], [10]. The non Fredholm operators arise alken consider-
ing wave systems with an infinite number of localized trawghvaves (see [1]).
In particular, wheru = 0 the operatorA is Fredholm in some properly chosen
weighted spaces (see [2], [3], [4], [5], [6]). However, these ofa # 0 is sig-
nificantly different and the approach developed in theselastcannot be applied.
Fredholm structures, topological invariants and theidiappons were discussed in
[11]. Front propagation equations with anomalous diffasie@re studied largely in
recent years (see e.g. [23], [24]). The article [15] is deddb the establishing
of the imbedding theorems and the studies of the spectrunteftain pseudodif-
ferential operator. The form boundedness criterion forrétativistic Schrodinger
operator was established in [16]. A new type of integral ¢éiqua related to the
co-area formula was considered in [17].

We setK,,(z) = &, H,,(z), wheres,, > 0, such that

€ 1= MaX<m<NEm, S := MaAX<m<NSm (14)

3 d .
with 371 < s < 1 and assume the following.

. 3 d
Assumption 1.1. Let1 < m < N and§ 1 < 8y, < 1, whered = 4,5. Let

fm(z) : R? — R be nontrivial for a certainn. Let
fu(x) € LMRY),  (=A)77" f,,(z) € LA(RY).
We assume also théf,,(r) : RY — R, such that

Hpn(z) € LNRY), (=A)2mH,,(z) € L*(RY).

Furthermore,
N
H = Y || Hoa(@) ey > 0
m=1
and
N
3 6
Q* =Y (=) Hp () oy > 0.
m=1



Let us choose here the space dimensibnas4, 5, which is related to the solv-
ability conditions for the linear Poisson type equatiorl4tated in Lemma 4.1
below. For the applications, the space dimensions aremdelil tod = 4, 5, since
the space variable here corresponds to the cell genotyp®sobt the usual phys-

ical space. Ind = 1 our problem was treated in [31] with &l < s, = s < —
based on the solvability conditions for the analog of (44}l real line. In two

dimensions our system was considered in [33] With s,,, < 27 1<m< N.In

d = 3 our problem was studied in [30] with a;]FLI < S =58 < Z As distinct from

the situations in the lower dimensiotds= 1,2, inR¢, d = 3,4,5 we are able to
apply the Sobolev inequality for the fractional negativglagian (see Lemma 2.2
of [12], also [13]), namely

3

3, d
[ fon ()] < ol (A2 fn(@) |2y, 5 =7 <sm <1 (1.5)

with d = 4,5 and1 < m < N. By means of the Assumption 1.1 above along with
the standard interpolation argument, we obtain that

2d
Ld=6+4sm (R)

fm(z) € L*(RY), d=4,5, 1<m<N (1.6)

as well. We use the Sobolev spaces for the technical purpates < s < 1,
namely

H*(RY) := {(z) : R* = R | 8(z) € L*(RY), (~A)'6 € L*RY}, d=4,5
equipped with the norm
191132y = N0 Z2@ay + 1 (=) Gl T2 pa)- (1.7)
For a vector vector function
u(@) = (ur(@), uz(2), ..., un(2))",

throughout the work we will use the norm

3
2

N
”u”?r{?’(Rd,RN) = HuH%Q(Rd,RN) + Z 1(=4) um”%m@d)a (1.8)
m=1

whered = 4,5 and
N

||u||%2(]Rd,RN) = Z ||um||%2(Rd)'

m=1

Let us recall the Sobolev embeddingRd, d = 4,5, namely
1Pl oo ey < cell @] 3 (ray, (1.9)
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wherec, > 0 is the constant of the embedding. When all the nonnegatiranpa:
terse,, vanish, we obtain the linear Poisson type equations

(=AY "t (2) = fm(z), 1<m<N. (1.10)

By means of Lemma 4.1 below under the given conditions eachl@m (1.10)
possesses a unique solution

3 d
Ugm () € H*™(RY), §_Z<Sm<1’ 1<m< N,

and no orthogonality relations for the right side of (1.11@ mecessary here. Clearly,
(—A)2ugm(z) = (A2 f,(z) € LX(RY), 1<m<N

due to Assumption 1.1. We obtain that each linear equatidi®jladmits a unique
solutionug,,,,(z) € H3(R?). Thus

up(z) = (uo 1 (), uga(x), ..., uon ()" € H3(RE,RY).
Let us look for the resulting solution of nonlinear systeneqtiations (1.2) as
u(x) = up(x) 4+ upy(x) (1.11)
with

up(7) = (Up1(2), p2(2), ., Uy, (7))

Apparently, we easily derive the perturbative system obtigus

(=A) "ty () = €m » Hon (2 = y)gm(uo(y) + up(y))dy, (1.12)

3 d . .
wherel < m < N, 71 < 8, < 1 and introduce a closed ball in our Sobolev
space

B, = {u(z) € H*R.R") | [Jul|gsger~y < p}, 0<p <1 (1.13)

Let us look for the solution of system (1.12) as the fixed poihthe auxiliary
nonlinear problem

(=A) " um(z) = e » Hy(z = y)gm(uo(y) +ov(y))dy, 1<m <N, (1.14)

3 d . . . .
with 21 < sy, < linball (1.13). For a given vector functiar(y) this is a sys-

tem of equations with respecttdz). The left side of (1.14) contains the operators
which do not satisfy the Fredholm property

(=A™ . H*m(RY) — L*(RY). (1.15)
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The essential spectrum of (1.15) fills the nonnegative seasi{0, +o0c). There-
fore, such operator does not have a bounded inverse. Thiasgituation appeared
in works [27] and [28] but as distinct from the present cake, groblems stud-
ied there required orthogonality conditions. The fixed pégathnique was used
in [25] to estimate the perturbation to the standing sofiteave of the Nonlinear
Schrodinger (NLS) equation when either the external gatkor the nonlinear term
in the NLS were perturbed but the Schrodinger operatorluagbin the nonlinear
equation there had the Fredholm property (see Assumptiériasy, also [8]). Let
us introduce the closed ball in the space\oflimensions as

I:={z e R ||z] < celluo|lgsragny + ¢}, d=4,5 (1.16)
and the closed balD,, in the space of?(I, RY) vector functions given by
{9(2) = (91(2), 92(2), .-, gn(2)) € CH(LRY) [ |gllczmy < MY, (1.17)

with M > 0. Here the norms

N

l9llc2 my = Z gmllc2(), (1.18)

m=1

N
c(I) + 7;1::1 ’

where|| g, |lc) == maxer|gn(2)|. We make the following technical assumption
on the nonlinear part of system (1.2).

lallex = lamllewn + 3|22
n=1 n

, (1.19)
c(I)

Pgm
62n82’l

Assumption 1.2. Let1 < m < N. Assume thay,,(z) : RY — R, such that
gm(0) = 0 andVg,,(0) = 0. It is also assumed that(z) € D,, and it does not
vanish identically in the ball.

We introduce the operatdi,, such that. = T,v, whereu is a solution of system
(1.14). Our first main proposition is as follows.

Theorem 1.3. Let Assumptions 1.1 and 1.2 hold. Then system (1.14) defiges t
map7, : B, — B,, which is a strict contraction for all

p
(lluol] prs e mvy + 1)2

D<e<
Vi

s

H(|Juo|| g ) +1)8—5‘2d<\5d\> “ P

NI

(d — 45)(27)S 13 (1.20)

with e, s andS defined in (1.4) and (2.6). The unique fixed pai(tr) of this map
T, is the only solution of problem (1.12) is,.
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Apparently, the resulting solutiom(x) of system (1.2) given by (1.11) will not
be equal to zero identically because the influx/efflux tefip&e) are nontrivial for
a certainl < m < N and allg,,(0) vanish as assumed. We will make use of the
following elementary lemma.

Lemma 1.4.LetR € (0,+o00) andd = 4, 5. Consider the function

p(R) == aR"™" +

3
Ris’ 5—1<S<1, a > 0.

It achieves the minimal value ak&* :

4s C L
<M> , Which is given by

4s

I e ’ d
GO =

Our second main statement is devoted to the continuity ottimsulative so-
lution of system (1.2) given by formula (1.11) with respexthe nonlinear vector
function g. We will use the following positive technical expression

g = M(HUOHHS(Rd,RN) + I)X

s

HQ(HUQHHS(RdRN)—Fl)%72d |Sd| ¢ 2 %
X : + . 1.21
{ (d — 4s)(2m)* 48 @ (1-21)

Theorem 1.5. Letj = 1,2, the assumptions of Theorem 1.3 including inequality
(1.20) hold, so that,, ;(x) is the unique fixed point of the mdp, : B, — B,,
which is a strict contraction for alt which satisfy (1.20) and the resulting solution
of system (1.2) with(z) = g;(z) is

u;(x) = up(x) + up (). (1.22)

Then for all the values of satisfying inequality (1.20) the estimate

co
|ur — uo | g3 (ra mry < ﬁ(HUOHHS(Rd,RN) + Dllgr — 2llc2rmyy  (1.23)

- M(1-
is valid.
We turn our attention to the proof of our first main propositio

2. The existence of the perturbed solution



Proof of Theorem 1.3Me choose arbitrarily a vector functief) € B, and denote
the terms involved in the integral expressions in the rigie sf system (1.14) as

Gm(x) == gm(uo(z) +v(z)), 1<m<N.
Let us use the standard Fourier transform throughout thdegnhamely

- 1
o(p) == 2n)F Jua

o(x)e P dr, d=4,5. (2.1)
Evidently, we have the estimate from above

16()] o ety < T )dl|¢( Mz a)- (2.2)

Let us apply (2.1) to both sides of system (1.14). This givees u

4 Hn(p)Gin(p)

Uy (p) = em(27) e 1<m<N, d=4,5.

)

Thus we have the expression for the norm as

Hy(p) ]2 Gon (p) 2
A e S = G )

m |p‘4sm

with d = 4,5. As distinct from articles [27] and [28] with the standardplace
operator in the diffusion term, here we do not try to conth@ horms

H,,(p)
|p|?sm

1<m<N.

)

L= (R4)

Instead, we estimate the right side of (2.3) using the analagequality (2.2) ap-
plied to functionsH,,, andG,,, with R € (0, +c0) as

B,0(0) P1Gn0)]? 7,0(0) P1Gnp)?
S LIy g AT TR
Ip|<R |p|4sm Ip|>R |p| 4

|Sd| Ri—4sm HG ( )HLz Rd)
siwmamﬁ el O =g+ @4

Here and throughout the article? denotes the unit sphere in odrdimensional
space centered at the origin afff| its Lebesgue measure. By virtue of norm
definition (1.8) along with the triangle inequality and ugthe fact thawv(z) € B,,
we easily obtain

luo + vl z2@a rvy < [[uollps@aryy +1,  d=4,5.
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Sobolev embedding (1.9) implies that
|U0 + U| S Ce(HuOHH?’(Rd,RN) + ].)

Let the dot denote the scalar product of two vector®ih Evidently,

() = /O T (t(uo(2) + 0(2))) (0 (x) + v()dt, 1< m < N,
Using the balll defined in (1.16) we easily derive
|Gr(2)] < SURe|Vgm(2)||uo(2) + v(z)] < Mluo(x) + v(z)].
Hence,
|G (@) || L2y < Mug + 0| 2ra rvy < M(||uol s @a zvy + 1)

Apparently, fort € [0,1] and1 < m,j < N, we can express

o) /va;; (&) + v(@))-(wo() + v())dr.
This yields
% 1o ) + ()| < U1 [T () + ()] <
8Zj N <! azj " B

<3, o)+ o

Thus,

oo t0a(@) + (@) < Muo(z) +o(2)[?,

N 82g
< m
Gae)] < o)+ 3 |55
such that
|G ()| 21 ety < Ml|uo + 0 F2a vy < M([[uol s @a vy +1)°. (2.5)
This enables us to obtain the upper bound for the right sid2.4j as

Em M| Hop | 7 oy (1ol 119 e ey + 1)* %

X |Sd|(||u0||H3(]Rd7RN) + 1)2Rd—4sm . 1
(27m)d(d — 4sm) Rism
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with R € (0, +00). Lemma 1.4 gives us the minimal value of the expression above

Therefore, um||%2(Rd) <

4dsm
1S9\ ¢ d
48 (d — 4s,,) (27 )4sm”

8sm.
< e MP|| |71 ay (00| s ra vy + 1)*F 4 (

Let us define

48 4sm
Ex A [S9) “ 1
( 45 (27-()45 = maxlngN 48m (271')48"”’ (26)

d
whereg 1 < S < 1. Thus

45

s d (]9 " 1
el 22y < &M H (o]l e vy + 1) 4 —— ( 5] @S (2.7)

Clearly, (1.14) yields

(~A) 2 (@) = e (~A) 2" | Hy(z —y)Gruly)dy, 1<m <N,
Rd

3 d :
where— — 1 < s, < 1. By means of the analog of upper bound (2.2) applied to
functionG,,, along with (2.5) we arrive at

3 3_ g
H<_A>2um”%2(Rd) < 8$nHGm”%1(Rd)”(_A)2 HmH%Q(Rd) <
3,
< 52M2(”U0HH3(Rd,RN) +1)Y[(-A)z Hm”%m@d)-
Hence,

N
3
D =) 2wl gay < M ([fuoll mogga zv) + 1)'Q. (2.8)
m=1

Therefore, by virtue of the definition of the norm (1.8) alamigh inequalities (2.7)
and (2.8) we derive the estimate from above for the npfy,s g gy as

eM ([[uoll s e vy + 1)%x

45

H2(|Juo|| g ma vy + 1) 72d |59\ e
(d — 4s)(2m)*S 45

1
2

<p (2.9)
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for all values ofs which satisfy (1.20), such thatiz) € B, as well. Suppose for a
certainu(z) € B, there exist two solutions, »(z) € B, of system (1.14). Clearly,
their differencew(z) := u;(x) — us(z) € L*(RY, RY) satisfies
3 d
(—A)’mw,,(z) =0, 577 <5m< 1, 1<m<N.

Because each operatorA)*~ considered on the wholR¢ does not possess any
nontrivial square integrable zero modesy) vanishes identically iiR?. Therefore,
problem (1.14) defines a mdj : B, — B, for all ¢ satisfying inequality (1.20).

Our goal is to demonstrate that this map is a strict contactLet us choose
arbitrarily v, »(x) € B,. According to the argument abowg, := T,v,, € B, as
well if £ satisfies (1.20). Evidently, by means of (1.14) we obtainifer m < N

(AP u1n(@) =2 [ Hole = ganlinl) + o)y, @10)

(=A) " ug () = em | Hm(x —y)gm(uo(y) + va(y))dy (2.11)

R4

. 3 d .
with all 271 < s, < 1. We introduce

Gim(z) == gm(uo(x) +v1(2)), Gom(z) = gm(uo(x) +v2(x)), 1<m<N
and apply the standard Fourier transform (2.1) to both sifleystems (2.10) and
(2.11). This yields

Urm(p) = em(27)

Apparently,

o [ Hu(0)|Grim(p) — Gom(p)]

Re |p[*sm

2
dp.  (2.12)

[[wt,m — UQ,MH%Q(HW) = 5371(277)

Obviously, the right side of (2.12) can be estimated fromvabasing inequality
(2.2) as

77 21 A A 2
hont] [ Um0 NCinls) = Gan0IE
Ip|<R

[p|*om

2
dp

ﬁ[m 2 é\ m - @ m
+/|| R| (p>| ‘ 1, (p> 2, (p)‘ < €2HHm”il(Rd)X
p|>

|p‘4sm

" ||G1,m($) — GQ,m(fE)H%l(]Rd) |Sd|Rd743m n ||G1,m(x) - GQ,m(x)H%Q(Rd)
(2m)d d— 4s,, Risn
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with R € (0, +00). Evidently, we have the identity far< m < N

Gim(2) — Gom(z / Vgm(uo(x) + tvi(z) 4+ (1 = t)va(x)).(v1(z) — va(z))dl.
Apparently, fort € [0, 1]
[v2(2) + t(vi(z) — v2(2)) || 3 e ryy < tl|v1(2) || s e mvy +

+(1 = D)flv2(2) | g3 @erry < p,
which implies that,(z) + t(vi(z) — v2(z)) € B,. Hence,

|G1m(2) = Gom(7)] < SUREVgm(2)[or(2) = va(2)] < Mlvy(2) — va(2)],

so that

1G1m(2) = Gom (@) || L2may < M||lv1 — va| 2 aryy < M|lor — va| s me my.-

Clearly, we can expres%g—m(uo(x) +tv(x) + (1 — t)va(z)) for1 <m,j < N as

L/V%? (2) + tor(2) + (1 — t)oa(@)]).[uo (@) + v (@) + (1 — t)ua(a)]dr.
Therefore, fort € [0, 1]
aag—zj(uo(x) +to1(2) + (1= Oos()| <
< Z zg,z (Juo(z)] + tor ()] + (1 — £)|va()]).
n0%j c(I)

Hence, we obtain the upper bound 16y ,,,(z) — G2,,(z) in the absolute value
given by

Mon(z) — waf@)] (Juo(w)] + 5 ()] + 5loa(a)]):

By means of the Schwarz inequality we derive the estimata fibove for the norm
|G () = Gon(@) || 11 (ra) @S

1 1
Mljv, — UQHLQ(RdRN) (HuOHLQ(RdRN) + éH'Ul”LQ(Rd’RN) + §|’U2|’L2(Rd,RN)) <

< Mllvr = va | s ra vy (||| 3 e vy + 1) (2.13)
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Therefore, we arrive at the upper bound for the ndjrm,,,(z) — u27m(x)||%2(Rd

)
given by

(ol + DS | 1y

1 Ho s M2 o1 = vl o { (2m)%(d — 4sp) feten

We minimize the expression above ovek (0, +occ0) by means of our Lemma 1.4,
such that

1, (%) = 2 (@) |72ty < € 1 Humll 7 ety M ([0 = 2l o vy X

4dsm

(o] e (B !
0|l 3(R,RN) Is,. ) (d— 45,

Thus,
w1 (2) = uo(2) |72 (e gy < E2H2M?|[01 — va[3ga g gy X

48
8s d S\ ¢
ol + 0¥ g <|45|> | &

By means of formulas (2.10) and (2.11) with< m < N we have

Njw

(=) (1, (@) = o, (@) = Em(=2)2 7" [ Hy(w=)[Grm(y) = Gan(y)]dy.

R4

3
2

Upper bounds (2.2) and (2.13) give [lis-A) (u () — tam (@) |72y <

< &[G — Gl e | (=) 27 Hoy |2 ) <
< 52M2||Ul - UQ||12'{3(Rd,RN)(||u0||H3(Rd,RN) + 1)2||(—A)%_SmHm||i2(Rd)-
Hence "0y [[(=2A)2 (urm(2) — tzm(2)) |22y <
< e2M?|joy — U2H?{S(Rd,RN)(HuOHH?’(Rd,RN) +1)%Q% (2.15)

Inequalities (2.14) and (2.15) yield that the nojfmy — || 3ga gy Can be esti-
mated from above by the expressial (||uo|| g3 @e ry) + 1) X

45

a 3
|> + Qz} l|lvr — UzHHS(Rd,RN). (2.16)

H2(||uo|| s vy + 1) 2d (|94
X 15
(d—4s)(2m) 45

It can be easily verified that for all values ©katisfying (1.20) the constant in the
right side of (2.16) is less than one, such that the map B, — B, defined by
system (1.14) is a strict contraction. Its unique fixed pajit:) is the only solution
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of problem (1.12) in the balB,. The cumulativeu(z) € H*(R? RY) given by
(1.11) is a solution of system (1.2). Evidently, by mean2208)u,(x) tends to zero
in the H3(R4, RY) norm ass — 0. |

We proceed to the proof of the second main statement of tluteart
3. The continuity of the resulting solution
Proof of Theorem 1.50bviously, for all the values of satisfying (1.20)
Up1 = Ty up1, Upo = Tg,upo,

so that
Up1 — Upo = Tgyup1 — Ty upo + Toupo — Ty upo.

Hence,
[tp1—tp 2|l gswe ey < [Ty upa—Tgupell ms@awny+ | Tgup2 =Ty, upe s re gy
Upper bound (2.16) yields

1Ty, up1 — Tgyup ol ms@eryy < €0lupt — up ol gs @2z

with o defined in (1.21). We haver < 1 since the mafd),, : B, — B, is a strict
contraction under our assumptions. Therefore,

(1 —¢eo)llupy — up,2”H3(Rd,RN) < HTglupQ - ngup,2”H3(Rd,RN)- (3.1)

Apparently, for the fixed poinfj,u,» = u,2. Let us denot&(z) := T}, u, .. For
1 <m < N, we arrive at

(A" En(x) = em [ Hp(z —y)g1m(uo(y) + upa(y))dy, (3.2)

R4
(8 (@) = [ Halo = Do) + maly)dy,  G3)
R
. 3 d .
with all 371 < s, < 1. Let us introduce

Gram(®) = gm(uo(z) + upa(2)),  Gaom() = gom(uo(x) + up2(7)).

We apply the standard Fourier transform (2.1) to both siddsrmulas (3.2) and
(3.3). This yields




such that|¢,, (z) — up,Q,m(:L‘)H%Q(Rd) =

0 [ Hun(@)2G1om(D) — Gaom(D)]

Rl |p‘4sm

=2 (27) de. (3.4)

Let us obtain the upper bound on the right side of (3.4) ust®) @@s

2 (2m)" / | How(0)*|Cr.20m(0) — G2 (D)
" pl<R |p|*sm

2
dp+

2
dp] < 82”HWLH%1(]Rd)X

" B 1G12m — G2,2,m”%1(Rd)Rd_4sm N 1G12.m — G2,2,mH%2(Rd)
(2m)d d—4s,y, Rism

with R € (0, +o0). Obviously, we can represent

G12.m (%) = Gapm(T) = /01 V1g1,m = g2,m) (L (uo(2) +up2(2))). (uo(2) +up2(2))dL,
such that
|G12m (%) = Goom ()] < [l91,m — g2.m o2y [uo(z) + up ()]
This implies
1G12.m — Goomll L2ty < [|91m — G2mllc2@y ||t + Up 2l L2@a mry <

< lg1,m — g2.mllc2 @) ([|uol| g3 mry +1).

Let us make use of another representation formula withj < N andt € [0, 1],

namely

0

5, (91m = g2 (Huo(@) + upa(2))) =

-/ v [ 010 = 920) (0(0) ) ) + ()

Therefore,

I

(91,m = G2.m) ((u0(x) + up2(7)))| <

J

Q

82 (gl,m - gZ,m)
8zn82j

WE

|uo(2) + upa(2)].

3
Il
—
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Hence,
1G12m(%) = Gapm ()] < lg1m — Gomllc2(n|uo(@) + upa()|?,
so that
1G12.m = Gaomllpr@e) < 191m — g2mllc2 o + upall 72 @a gy <

< Nlgrm — g2.mllc2cn (|uoll s @agry + 1) (3.5)
This enables us to derive the upper bound for the np¢m — up727m||%2(Rd) as
2| Hnll7 1 gy (o]l 113 ma vy + 1)

XHng - 927m||02(1) (||u0||H3(Rd7RN) + 1) (27r)d(d— 1s ) + Todom

Let us minimize this expression ov&re (0, +o00) using Lemma 1.4. We arrive at
the estimate from aboyi,, () — up,2.m(2)[|72ga) <

2r)isn(d — 4sp)

dsim
1S9\ dllgrm — 92,mH202(1)
4s,,

8sm
< [ Hunl| 71 gy ([0l s vy + 1) (

(z) — up72($)||i2(Rd,RN) <

45
dllgs — g2l (159
8s C2(IRN)
< e HP(|[uol s vy + 1)* 4 (d—4s)(2m)®5 \ 45 ]

Formulas (3.2) and (3.3) with< m < N yield

(~8)360(0) = 2n(=A)F*" [ Holo = )Gran()dy

up,Q,m(x) - gm(_A)%_sm Hm(x - y)GQ,Q,m(y)dy'

R4

By means of (2.2) and (3.5) the nomi—A)2 (§m(2) — tip2.m(#))[[ 22z CaN be
estimated from above by

(=4)

3
e¥1Gram — GoomllTamay | (=) 27" Hiy |72 zay <

3_ g,
< 52”91 m 92m||202(1)(||uo||H3(Rd,RN) + 1)4||(—A)2 Hm”%,?(]Rd)'
3
Thus, Z 1(=2)2 (6 () — tp2.m(2)) |22 gty <

< e?llgr — 92||202(1,RN)(||U0||H3(Rd,RN) +1)'Q”
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Hence, we arrive até(x) — up,Q(x)||H3(Rd7RN) <ellgr — gg||CQ(LRN) X

4S8 1
H?(||uol| gs@azyy + 1) 72d (159 \ * P :
(d — 45)(2m)45 45 '

X (HUOHH?’(Rd,RN) -+ 1)2

By virtue of (3.1), the normju,, 1 — u, || ys®eryy can be bounded from above by

3

1_ EJ(HUOHHS(Rd’RN) —+ 1)2><

s

y HQ(HUQ”HS(Rd7RN) + 1)7§72d |Sd| ¢ 4 Q2
(d — 4s)(2m)*S 45

We use formulas (1.21) and (1.22) to complete the proof otloewrem. [ |

2
|91 —92”02(1,RN)-

4. Auxiliary results

Let us formulate the solvability conditions for the linearigson type equation
with a square integrable right side

(-A)Y’u=f(z), z€R? d=45 0<s<l. (4.1)

This proposition was established in the one of the previotides (see the part d)
of Theorem 1.1 of [32]) by applying the standard Fourier $farm (2.1) to both
sides of problem (4.1).

Lemma 4.1. Let0 < s < 1, f(z) : RY - R, d = 4,5 and f(z) € L*(R%) N
L*(R%). Then problem (4.1) possesses a unique solutian € H?*(R?).

Note that in the lemma above we establish the solvabilityqufagion (4.1) in
H?*(RY), d = 4,5 for all values of the power of the negative Laplaciar s < 1
and no orthogonality conditions are imposed on the rigte $id).
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