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Abstract

Fundamentally for the extended disc region of a spiral galaxy, an alternative solution to

Laplace equation has been presented for a potential that is radially symmetric on the disc

plane. This potential, unlike newtonian one, is shown to be logarithmic in distance from the

centre, which allows for the rotation velocity to be constant along the disc radius. It is also

shown that this potential easily manifests into a relationship between inner mass of the galaxy

and terminal rotation velocity, which has been empirically observed and known as Baryonic

Tully-Fisher relations.

1 Introduction

The problem of the anomaly observed in spiral galaxy rotation curves is a longstanding one. While

prevalent scientific opinion weighs towards a Dark matter hypothesis that explains the ‘mass-

gap’ required to reconcile rotation curves with newtonian gravity, there hasn’t been any direct

observation of the postulated dark matter yet. On the other hand, there are theories that try to

modify newton’s gravity formulation to achieve the same reconciliation. But they are empirical

in nature and doesn’t explain how they emerge from a more fundamental understanding of the

spacetime.

In this work, we’ve gone back to the original nonrelativistic gravity formulations of Laplace

Equation. It is not necessary that newtonian gravity be the only low-energy solution of Laplace

Equation. In fact, we only derive Newton’s gravity as a solution only if we assume a spherical

symmetry. However, consideration of the intrinsic structure of most of the spiral galaxies, should

lead us more towards a cylindrically symmetric solution of Field equations.

We’ll see that with the assumptions of cylindrical symmetry, one can arrive at a gravitational

potential that yields a geodesic which allows flat tails of rotation curves. Also we’ll see that this

potential manifests into empirically observed Baryonic Tully-Fisher Relations among galactic mass

and the terminal ‘flat’ velocity.
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2 Modified gravity potential

We would start with the nonrelativistic potential function φ on the disc which would satisfy Laplace

equation,

42φ = ∂2xφ+ ∂2yφ+ ∂2zφ = 0 (1)

Here z is assumed to be the direction of central axis, as follows

Figure 1: Disc Structure and reference frame orien-
tation

Usually assuming φ to be spherically symmetric, one can derive Newtonian potential. However,

because of the intrinsic planar structure of the galaxies, it would be far more reasonable to assume

that ∂zφ would vanish within the width of the disc. Beyond the disc, φ would have a fast tail along

z-axis away from the disc, as below.

Figure 2: Distribution of potential along the z-
direction

Since ∂zφ = 0 in the disc, Eq. 1 would boil down to 2-D laplacian,

42φ = ∂2xφ+ ∂2yφ = 0 (2)

Now if we change the coordinates to cylindrical, we know the 2-D laplacian can be written as

42φ = ∂2rφ+ 1
r∂rφ+ 1

r2
∂2θφ.

But from cylindrical symmetry we know, ∂θφ = 0. That’ll yield the differential equation to

solve for φ,
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∂2rφ+
1

r
∂rφ = 0 (3)

Solving the equation for φ we get

φ = λ ln
r

r0
(4)

where λ, is a constant and r0 is a constant distance.

To derive the constants of motion λ, r0, we would need boundary conditions based on smoothness

of the geodesic. More specifically, if we assume that r0 is the effective radius of the galactic baryonic

mass, and within that radius the field continues to be spherically symmetric dominated by the bulge,

we would require the geodesic to have a well-defined 2nd derivative at r0 from both side.

We know that at a low energy limit, radial acceleration is

d2r

dt2
= ∂rφ (5)

At r0, from inside φ = GM
r where M is the baryonic mass of the galaxy (inside r0) and G is the

gravitational constant. Hence the inside limit for radial acceleration would be −GM
r20

. On the other

hand, same limit from the outside would be, λ
r0

. Hence continuity would dictate that λ = −GM
r0

.

This would yield the final form of the disc potential to be,

φ = −GM
r0

ln
r

r0
(6)

Finally we would investigate rotation curve required by the disc potential. As usual, we would

counterbalance the inward radial acceleration by outward centrifugal acceleration.

v2

r
=
GM

r0

1

r
(7)

where v is the rotation velocity of a star on the disc at a distance r from the centre.

This clearly produces a flat rotation curve outside of r0

v0 =
[GM
r0

] 1
2 (8)

Here v0 denotes the terminal velocity at the edges of the galaxy. It would be possible to establish

a relationship between terminal velocity and the baryonic mass in the galaxy if we assume ρ to be

the average density of matter across the galactic disc. Then total baryonic mass could be expressed

as M = πρr20, which when plugged into the expression for v0 yields,

M =
v40

πρG2
(9)

which is exactly the empirical Tully-Fisher relationship if one assumes ρ to be consistent across

galaxies.
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3 Conclusion

Through a very simple proof it has been shown that there exists a potential which is differentiable

everywhere (except galactic centre), that satisfy the Laplace equation. It has also been shown

that such potential can produce newtonian gravity within a certain radius, and flat rotation curves

outside of it. There are structural similarities between the results presented here and Modified New-

tonian Dynamics (MOND). However, unlike MOND, the potential presented here doesn’t attempt

to alter Newton’s laws of general dynamics. Rather it provides a GR based spacetime structure

from which flat rotation curves emerge naturally. Additionally the emergence of the flat rotation

curve is shown to be consistent with Tully-Fisher relationship which has been proven empirically.
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