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Abstract: We study the solvability of certain linear nonhomogenedlistie prob-
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their right sides implies the existence and the convergenég' of the solutions.
The equations contain first order differential operatorghwair without Fredholm
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establish that the drift term involved in these problems/les the regularization
of solutions.
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1. Introduction
Let us consider the equation
A+ V(x)u—au = f, (1.1)

whereu € E = H'(RY) andf € F = L*([R?), d € N, a is a constant, and the
function V(x) tends to0 at infinity. The operator/—A + V(x) can be defined
via the spectral calculus under the appropriate technimadlitions on the scalar
potentialV (z) (see Assumption 3 of [21]). & > 0, then the essential spectrum
of the operatord : £ — F, which corresponds to the left side of problem (1.1)
contains the origin. As a consequence, this operator ddesatiefy the Fredholm
property. Its image is not closed, fdr > 1 the dimension of its kernel and the
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codimension of its image are not finite. In the present ateé will study some
properties of such operators. Note that elliptic probleorgt&ining non-Fredholm
operators were treated extensively in recent years (s€e [, [17], [18], [19],
also [3]) along with their potential applications to thedhgof reaction-diffusion
equations (see [7], [8]). In the particular case whevanishes, the operatot
satisfies the Fredholm property in some properly chosenheiigspaces (see [1],
[2], [3], [5], [6]). However, the case where# 0 is considerably different and the
method developed in these works cannot be used.

One of the important issues about problems with non-Fredlogerators con-
cerns their solvability. We will study it in the following #&ng. Let f,, be a sequence
of functions in the image of the operatdr such thatf,, — fin L?(R¢) asn — cc.
Denote byu,, a sequence of functions froht!(R¢) such that

Au, = fn, n € N.

Since the operatad does not satisfy the Fredholm property, the sequenaaay
not be convergent. Let us call a sequengesuch thatdw,, — f a solution in the
sense of sequences of problelm = f (see [12]). If this sequence converges to
a functionu in the norm of the spacé&, thenu, is a solution of this equation.
Solution in the sense of sequences is equivalent in thisederthe usual solution.
However, in the case of non-Fredholm operators this coeverg may not hold
or it can occur in some weaker sense. In this case, the solutithe sense of
sequences may not imply the existence of the usual solutiahis article we will
find sufficient conditions of equivalence of solutions in femse of sequences and
the usual solutions. In the other words, the conditions guseces/,, under which
the corresponding sequenagsare strongly convergent.

In the first part of the work we consider the equation with th& term

——u— b_x —au = f(x), z€R, (1.2)

wherea > 0 andb € R, b # 0 are constants and the right side is square integrable.
2

The operator / —% can be defined via the spectral calculus and is extensively
used, for example in the studies of the superdiffusion atate® equations (see
[20] and the references therein). Superdiffusion can berttes] as a random pro-
cess of particle motion characterized by the probabilitysity distribution of jump
length. The moments of this density distribution are finitdhe case of normal
diffusion, but this is not the case for superdiffusion. Agtotic behavior at infinity

of the probability density function determines the valuéhef power of the Laplace
operator (see [11]). The problem with drift in the contextlodé Darcy’s law de-
scribing the fluid motion in the porous medium was considéneflL8]. The drift
term is significant when studying the emergence and projmemgeatt patterns arising

in the theory of speciation (see [14]). Nonlinear propagaphenomena for the
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reaction-diffusion type problems involving the drift temas investigated in [4].
Weak solutions of the Dirichlet and Neumann problems wiift drere considered
in [10]. Evidently, the operator involved in the left side(@f2)

[ d2 d
L,y =\/——— —b——a: HYR L*(R 1.3
a, b d:L’z d.T a ( ) — ( ) ( )

is non-selfadjoint. By virtue of the standard Fourier tfans

" 1 o0 4
= — x)e Prdx, eR 1.4
fo)= o= [ 1@ p (1.4
it can be easily obtained that the essential spectrum ofgheatorL, , is given by

Ao, v(p) == |p| —a—1ibp, peR.

Clearly, whena > 0 the operatorL, , is Fredholm, since its essential spectrum
does not contain the origin. But when= 0 the operatot., , fails to satisfy the
Fredholm property because the origin belongs to its esdesptectrum.

Note that in the absence of the drift term we are dealing wWithgelf-adjoint

Operator
d2
—W—CL: H1<R)—>L2(R), a>0,
X

which is non Fredholm (see [21]). We write down the corresiiog sequence of
approximate equations with € N as

d? At
\/—@um—b;—x — AUy, = f(z), 2z €R, (1.5)

with the right sides convergent to the right side of (1.2].#R) asm — oo. The
inner product of two functions

@) g = [ f@gai, (1.6

with a slight abuse of notations when these functions aresquare integrable. In-
deed, iff(z) € L'(R) andg(z) is bounded, then obviously the integral considered
above makes sense, like for instance in the case of fundtiwaklved in the orthog-
onality relations (1.8) and (1.9) of Theorems 1.1 and 1.2WweFor our equations
on the finite interval := [0, 27| with periodic boundary conditions, we will use the
inner product analogous to (1.6), replacing the real lindga Wi In the first part of
the present work we will consider the spa@é(R) equipped with the norm
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When dealing with the norni/! (1) later on, we will replaceR with I in formula
(1.7). Our first main statement is as follows.

Theorem 1.1.Let f(z) : R — Rand f(z) € L*(R).
a) If a > 0, then problem (1.2) has a unique solutiofx) € H'(R).

b) Suppose that = 0 andzf(z) € L*(R). Then equation (1.2) admits a unique
solutionu(x) € H*(R) if and only if the orthogonality relation

(f(2),1)2m) =0 (1.8)
holds.

Obviously, the expression in the left side of (1.8) makessdyy means of the
trivial argument analogous to the proof of Fact 1 of [16]. Lstturn our attention
to establishing the solvability in the sense of sequenaesubproblem on the real
line.

Theorem 1.2. Letm € N, f,(z) : R — R and f,,(z) € L?*(R). Furthermore,
fm(z) = f(z)in L*(R) asm — oc.
a) If a > 0, then problems (1.2) and (1.5) admit unique solutiofg) € H'(R)
andu,,(z) € H'(R) respectively, such that,,(z) — u(z) in HY(R) asm — cc.
b) Suppose that = 0, zf,,(z) € L'(R), andzf,,(z) — zf(z) in L'(R) as
m — oo. Moreover,

(fm(2), )2y =0, meN (1.9)
holds. Then equations (1.2) and (1.5) possess unique aotut{z) € H'(R) and
u,(z) € H'(R) respectively, such that,, (x) — u(x) in H(R) asm — oo.

Note that in the parts a) of Theorems 1.1 and 1.2 above thegwtiality re-
lations are not needed, as distinct from the case withouifiateim treated in the
parts c) of Theorem 1 and 2 of [21]. Therefore, the introduchf the drift term
provides the regularization for the solutions of our equati In the parts b) of
Theorems 1.1 and 1.2 of the present work only a single orthalgy condition is
required, analogously to the cases a) of Theorems 1 and 21¢f [2

In the second part of the article we consider our problem erfitiite interval
with periodic boundary conditions, i.é.:= [0, 27|, namely

[ d? d
—ﬁu—bé—au:f(x), xel, (1.10)

wherea > 0 andb € R, b # 0 are constants and the right side of (1.10) is bounded
and periodic. Evidently,

||f||L1(I) S 27T||f||Loo([) < o0, ||f||L2(I) S V 27T||f||Loo(]) < Q0. (111)
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Hencef(z) € L'(I) N L*(I) as well. Let us use the Fourier transform

1 2 .
fn = E/o f(x)e "™ dx, n€Z, (1.12)

such that

flz) = Z fn\/—2—ﬂ_-

n=—oo

Apparently, the non-selfadjoint operator involved in te& Eide of (1.10)

R d? d . 1 2
‘Ca,b-— \/—ﬁ—b%—a H(I)-}L([) (113)

is Fredholm. By virtue of (1.12), it can be easily verifiedttttee spectrum oL, ,
is given by

Ao, p(n) == |n| —a—ibn, neZ
and the corresponding eigenfunctions are the Fourier haius962—, n € Z. The

™

eigenvalues of the operatdy, , are simple, as distinct from the case without the
drift term, when the eigenvalues corresponding:te2 0 are double-degenerate.
The appropriate function space héié(I) is

{u(z): I = R|u(x),d(x) € L*(I), u(0)=u(27), u'(0)=1u'(2m)}.
For the technical purposes, let us use the following auyilkk@nstrained subspace
Hy(I) = {u(z) € H'(I) | (u(),1)12() = 0}, (1.14)

which is a Hilbert spaces as well (see e.g. Chapter 2.1 of [Bjidently, fora > 0,
the kernel of the operatat, , is trivial. Whena vanishes, let us consider

Lov: HY(I)— L*(I).

Obviously, this operator has the trivial kernel as well. ustwrite down the corre-
sponding sequence of the approximate equationswithN, namely

[ d? A,
~ gt~ b% — Uy, = fu(x), x €I, (1.15)

where the right sides are bounded, periodic and tend to g side of (1.10) in
L*>(I) asm — oo. The goal of Theorems 1.3 and 1.4 below is to demonstrate
the formal similarity of the results on the finite intervaltkviperiodic boundary
conditions to the ones obtained for the whole real line sibnain Theorems 1.1
and 1.2 above.



Theorem 1.3.Let f(z) : I — R, such thatf(0) = f(2x) and f(x) € L>(I).
a) If a > 0, then problem (1.10) possesses a unique solutian € H*(I).

b) If « = 0, then equation (1.10) has a unique solutiof) € H}(I) if and only if
the orthogonality relation

(f(z), D2y =0 (1.16)
holds.

Our final main statement deals with the solvability in thesseof sequences for
our problem on the finite intervdl

Theorem 1.4.Letm € N, f,,(x) : I — R, such thatf,,(0) = f,.(27). Moreover,
fm(z) € L*°(I) and f,,(z) — f(z)in L>(I) asm — oo.

a) If a > 0, then problems (1.10) and (1.15) admit unique solutiefxy € H'(I)
andu,,(z) € H'(I) respectively, such that,,(z) — u(z) in H'(I) asm — cc.

b) Suppose that = 0 and

(fm(z), )2y =0, meN. (1.17)

Then equations (1.10) and (1.15) have unique solutidn$ € H}(I) andu,,(z) €
H}(I) respectively, such that,,(z) — u(x) in H}(I) asm — oc.

Note that in the cases a) of Theorems 1.3 and 1.4 above thegorihlity con-
ditions are not needed. When there is no drift term in our Bos, the situation is
more singular (see formulas (3.1) and (3.7) below with ng, ng € N).

2. The whole real line case

Proof of Theorem 1.1.First of all, let us establish that it would be sufficient to
solve our problem i ?(R). Indeed, ifu(z) is a square integrable solution of (1.2),
directly from this equation under the given conditions wevarat

as well. Using the standard Fourier transform (1.4), weioktig| — ibp)u(p)

L*(R). Thus, /

HY(R) as well.

To prove the uniqueness of solutions of (1.2), we suppodeuttia), us(x) €
H'(R) solve (1.2). Then their difference(x) := u;(z) — us(z) € H'(R) satisfies
the homogeneous equation

€
p*|i(p)|*dp < oo, such that% € L*(R). Thereforeu(z) €
Xz



Because the operatdr, , defined in (1.3) does not have any nontrivial zero modes
in H(R), the functionw(z) = 0 onRR.

Let us apply the standard Fourier transform (1.4) to botbssaf problem (1.2).
This implies

. f
u(p) = —— (2.1)
Hence, R
T [f(p)I?
||u||L2(]R) - /OO (‘p| _ CL)2 + bngdp (22)

First we treat the case a) of our theorem. (2.2) yields

1
[l 2y < 5||f||%2(R) <0

via the one of our assumptions. Here and throughout thdediavill stand for a
finite, positive constant.
Let us turn our attention to the casewf= 0. From (2.1), we easily write

~

f(p) f(p)

o — i X o iop X (2.3)
|p‘ {lpl<1y T ‘p| {lp|>1}-

u(p) =

Here and belowy 4 will stand for the characteristic function of a s€tC R. Clearly,
the second term in the right side of (2.3) can be bounded flmowein the absolute

7
Vit

We express

€ L*(R) sincef(z) is square integrable due to our assumption.

P df(s)
0 +/O Wd

Thus, the first term in the right side of (2.3) can be written as

value by ———

7 df(s)
f(O fp 4s) g
Ip| — X{\P\ 13+ Ip| — o ibp X{|pl<1}- (2.4)

Using definition (1.4) of the standard Fourier transform,easily derive

df( )

\/—lef(x)llm)

Hence, the second term in (2.4) can be estimated from abdbe iabsolute value
by

1 lzf (@)l w)
V2or 1+ 02

X{pi<1y € L*(R).



~

Evidently, the first term in (2.4) belongs 1 (R) if and only if f(0) = 0, which is
equivalent to orthogonality condition (1.8). [ |

We proceed to proving the solvability in the sense of segefar our equation
on the real line.

Proof of Theorem 1.2.et us first suppose that problems (1.2) and (1.5) have unique
solutionsu(z) € HY(R) andu,,(z) € H'(R), m € N respectively, such that

U (z) — u(z) in L2(R) asm — oo. This will yield thatu,,(x) also tends ta(x)

in H(R) asm — co. Indeed, from (1.2) and (1.5) we easily derive

d(ty, —u)

H e — ) = < = Flzzcey + allin = ulloe)

L*(R)

The right side of the inequality above converges to zena as oo via our assump-
tions. Using the standard Fourier transform (1.4), we paditain

/ p2|ﬁm(p) — ﬁ(p)|2dp — 0, m — oo.

[e.e]

d . .
Hence,% — -in L*(R) asm — oo, such thatu,,(z) — u(z) in H'(R) as
m — oo as well.

Let us apply the standard Fourier transform (1.4) to botkssif (1.5), which

yields

_ )
p| —a—ibp’

~

Um(p) m e N. (2.5)

First we consider the case a) of our theorem. By virtue of @u¢ @) of Theorem
1.1, problems (1.2) and (1.5) possess unique solutiénsc H'(R) andu,,(z) €
HY(R), m € N respectively. By means of (2.5) along with (2.1), we arrite a

o[ ) — fO)P
i = oy = [ T

Thus,
1
|t — ul[L2m) < ngm = flle2@) — 0, m — o0

due to the one of our assumptions. This yields that in the whs®a > 0 we have
um(z) — u(x) in H*(R) asm — oo via the argument above.

We conclude the proof of our theorem by considering the sdaonavhen the
parameter, vanishes. By virtue of the result of the part a) of Lemma 3.3185],
under the given conditions

(f(2), )2 =0 (2.6)



holds. Then by means of the part b) of Theorem 1.1, equatio8%#nd (1.5) admit
unique solutions:(z) € H'(R) andu,,(x) € H'(R), m € N respectively when
a = 0. Formulas (2.5) and (2.1) yield

_ o) = F ) In(p) = f(p) -

: X{|p|<1} + X 1}-
p| — ibp {Ip[<1} 7| {lp[>1}

U (p) — u(p) ol — by

Evidently, the second term in the right side of (2.7) can hieneded from above in
the L?(R) norm by

”fm fHLQ(R) —)0, m — o0

1 b2

due to our assumption. By means of orthogonality relati@) @nd (1.9), we have

J/C\(O) =0, fm(o) =0, meN.

S [Pdf(s) S [P dfn(s)
)—/O st, fm(p)—/o 7. ds, m e N. (2.8)

Therefore, it remains to estimate the norm of the term

Hence

fO dfms(s — 38)]d8
p| — ibp X{lpl<1}-
By virtue of the definition of the standard Fourier transfdim), we easily arrive
at
dfm af
ale) O < g 0) - af @)l
such that

dms dAs
fO fm(s) )]dS

ds ds

Ip| —

< Nzfm(@) —2f (@)
- (110

X{lp|<1} —0

asm — oo via the one of our assumptions. Thus,(z) — u(z) in L*(R) as
m — oo. By means of the argument above we obtain thatr) — u(x) in H'(R)
asm — oo in the case b) of our theorem as well. [ |

L2(R)

3. The problem on the finite interval

Proof of Theorem 1.3First of all, let us show that it would be sufficient to solve
our equation inZ?(7). Indeed, ifu(z) is a square integrable solution of (1.10),



periodic on/ along with its first derivative, directly from our problem der the
stated assumptions we obtain

(1.12) yields(|n| — ibn)u,, € I*. Hence, Z n?|u,|* < oo, such that;i—z c L*(I).
Thereforeu(z) € H*(I) as well.

To demonstrate the uniqueness of solutions of (1.10), leonsider the case
of a > 0. Whena = 0, we are able to exploit the similar ideas in the constrained
subspacé}(I). We suppose that, (), us(z) € H'(I) satisfy (1.10). Then their
differencew(z) := u;(x) — us(z) € H'(I) solves the homogeneous problem

Because the operatdr, , defined in (1.13) does not possess any nontrikia(/)
zero modes, the function(x) vanishes or.
Let us apply the Fourier transform (1.12) to both sides of¢ign (1.10). Thus

Jn

- In| —a —ibn’

n € 7, (3.1)

Unp

such that

2 _ N |fn|2
”u”L2(I) - Z (|n| — a)2 T b2n2- (32)

n=—oo

Let us first treat the case a) of the theorem. By means of (@&pbtain

1
[ull72y < 5||f||i2(1) <0

due to the one of our assumptions (see (1.11)). By virtue ®fatigument above,
u(x) € HY(I) as well.

We conclude the proof of our theorem by considering the sdnavhena van-
ishes, such that from (3.1)

Jn

- In| —ibn’

nez. (3.3)

Un

Apparently, the right side of (3.3) belongsitaif and only if

fo=0, (3.4)
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such that

1 | ful? 1
2 _ n 2
lullz2y = mne%?ﬁo 2 < m”fHLQ(I) < 00,

via the one of our assumptions and (1.11). The argument ahelds thatu(x) €
H}(I) as well. Clearly, (3.4) is equivalent to orthogonality tila (1.16). [ |

We turn our attention establishing the solvability in these of sequences for
our equation on the intervdlwith periodic boundary conditions.

Proof of Theorem 1.4Jsing the given conditions, we derive

[£(0) = f2m) < [F(0) = fn(O)] + [fm(2m) — F2m)| < 2[[fn = fllLoery = O
asm — oo. Thus,f(0) = f(27). By virtue of (1.11) forf,,(x), f(x) bounded on
our intervall, we havef,,(z), f(x) € L*(I) N L*(I), m € N. (1.11) also yields

[ fon () = f(@) 21y < 2 fonl2) = f(@)l[ ooy = 0, m =00 (3.5)
Hence,f,.(z) — f(z)in L'(I) asm — oo. Similarly, (1.11) gives us
(@) = f@)lz2y < V27| fin(2) = f(@)|pory = 0, m =00, (3.6)

Thus, f.(x) — f(z)in L?(I) asm — oo as well. Let us apply the Fourier
transform (1.12) to both sides of (1.15). We arrive at

fm,n

=—"=" — meN, nelZ. (3.7)
In| —a —ibn

um,n
Let us first treat the case a) of the theorem. By means of theapaf Theorem
1.3, equations (1.10) and (1.15) admit unique solutigas € H'(I) andu,,(z) €
HY(I), m € Nrespectively. (3.7) along with (3.1) and (3.6) imply that

S |fm,n _fn‘Q 1
||um - UH%Q(I) = Z (|n| _ a)2 + h2n2 < EHfm - f”%Q(I) — 0, m— o0.

Hence,u,,(z) — u(z) in L*(I) asm — oo. We will prove thatu,,(x) tends to
u(x) in HY(I) asm — oo. Indeed, by virtue of (1.10) and (1.15)

bd(um —u)

H —ﬁ(um—u - . < | fm = fllezay + allum — wl|L2(n.

LA(I)

The right side of this estimate tends to zeraras> oo via (3.6). Using the Fourier
transform (1.12), we obtain

o0
Z N2 U — Un|? — 0,  m — 00.

n=—oo
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Ay, du . .
Thus,dL — d—u in L?(I) asm — oo, such thatu,,(z) — u(z) in HY(I) as
X X
m — oo as well.

Finally, we turn our attention to the case when the parameter0. By virtue
of (1.17) along with (3.5), we derive

(f(@), Dzl = [(f(2) = fin(). Dizn) < [ fn = fllrgy =0, m — oo,

such that the limiting orthogonality relation

(f(2), )2y =0 (3.8)

holds. By means of the part b) of Theorem 1.3 above problemi®)&and (1.15)
have unique solutions(x) € H}(I) andu,,(z) € H}(I), m € N respectively
whena vanishes. Formulas (3.1) and (3.7) give us

umn—un:M, meN, neZ. (3.9)
’ |n| — ibn

Orthogonality conditions (3.8) and (1.17) yield
f0:07 fm,0:07 meN

We estimate the norm

(I+0)n* = V1412

n=—o00, n#0

o0 _ 2 _
”um i UHLQ(I) _ J Z |fm,n fn| < Hfm fHLQ(I) N 07 m — 0o

due to (3.6). Thusy,,(z) — u(x) in L*(I) asm — oco. Thereforeu,, (z) — u(xr)
in H}(I) asm — oc as well via the argument analogous to the one above in the
proof of the case a) of our theorem. [ |
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