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1. Introduction

The present article is devoted to the studies of the existence of stationary solutions
of the following system of integro-differential equations

∂um

∂t
= −Dm(−∆)smum +

∫

R2

Km(x− y)gm(u(y, t))dy + fm(x), (1.1)

1 ≤ m ≤ N , which appears in the cell population dynamics. The space variablex
here corresponds to the cell genotype, functionsum(x, t) describe the cell density
distributions for various groups of cells as functions of their genotype and time,

u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))
T .

The right side of the system of equations (1.1) describes theevolution of cell den-
sities by means of the cell proliferation, mutations and cell influx or efflux. The
anomalous diffusion terms with positive coefficientsDm correspond to the change
of genotype due to small random mutations, and the nonlocal production terms
describe large mutations. Functionsgm(u) stand for the rates of cell birth which
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depend onu (density dependent proliferation), and the kernelsKm(x − y) express
the proportions of newly born cells changing their genotypefrom y to x. Let us as-
sume that they depend on the distance between the genotypes.The functionsfm(x)
describe the influx or efflux of cells for different genotypes.

The operators(−∆)sm , 1 ≤ m ≤ N in system (1.1) describe a particular case of
anomalous diffusion actively treated in the context of various applications in plasma
physics and turbulence [7], [18], surface diffusion [14], [16], semiconductors [17]
and so on. Anomalous diffusion can be understood as a random process of particle
motion characterized by the probability density distribution of jump length. The
moments of this density distribution are finite in the case ofnormal diffusion, but
this is not the case for the anomalous diffusion. The asymptotic behavior at infinity
of the probability density function determines the valuesm, 1 ≤ m ≤ N of the
power of the negative Laplacian (see [15]). The operators(−∆)sm, 1 ≤ m ≤ N
are defined by virtue of the spectral calculus. Let us consider the case of0 <
sm < 1/2, 1 ≤ m ≤ N in the present article. A similar system in the case of the
standard Laplacian in the diffusion term was treated recently in [30]. Let us note
that the restriction on the powerssm, 1 ≤ m ≤ N here comes from the solvability
conditions of our problem.

We set here allDm = 1 and establish the existence of solutions of the system of
equations

−(−∆)smum +

∫

R2

Km(x− y)gm(u(y))dy + fm(x) = 0, 0 < sm <
1

2
, (1.2)

where1 ≤ m ≤ N . We treat the case when the linear part of this operator fails
to satisfy the Fredholm property. Consequently, the conventional methods of non-
linear analysis may not be applicable. Let us use the solvability conditions for the
operators without Fredholm property along with the method of contraction map-
pings.

Let us consider the problem

−∆u + V (x)u− au = f, (1.3)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant and the scalar
potential functionV (x) is either zero identically or converges to0 at infinity. For
a ≥ 0, the essential spectrum of the operatorA : E → F corresponding to the left
side of equation (1.3) contains the origin. Consequently, this operator fails to satisfy
the Fredholm property. Its image is not closed, ford > 1 the dimension of its kernel
and the codimension of its image are not finite. The present article is devoted to the
studies of certain properties of the operators of this kind.Note that elliptic equations
with non Fredholm operators were studied actively in recentyears. Approaches
in weighted Sobolev and Hölder spaces were developed in [2], [3], [4], [5],
[6]. The Schrödinger type operators without Fredholm property were treated with
the methods of the spectral and the scattering theory in [19], [25], [24]. The
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Laplace operator with drift from the point of view of non Fredholm operators was
studied in [27] and linearized Cahn-Hilliard equations in [22] and [28]. Nonlinear
non Fredholm elliptic equations were treated in [26] and [29]. The significant
applications to the theory of reaction-diffusion type problems were developed in
[9], [10]. The operators without Fredholm property arise also when studying wave
systems with an infinite number of localized traveling waves(see [1]). In particular,
whena = 0 the operatorA is Fredholm in some properly chosen weighted spaces
(see [2], [3], [4], [5], [6]). However, the case ofa 6= 0 is significantly different and
the method developed in these works cannot be used. Front propagation problems
with anomalous diffusion were treated largely in recent years (see e.g. [20], [21]).

Let us setKm(x) = εmKm(x), whereεm ≥ 0, such that

ε := max1≤m≤Nεm, s := max1≤m≤Nsm

with 0 < s <
1

2
and suppose that the assumption below is fulfilled.

Assumption 1. Let 1 ≤ m ≤ N and consider0 < sm <
1

2
. Let fm(x) : R2 → R

be nontrivial for somem. Letfm(x) ∈ L1(R2) ∩ L2(R2) and

(−∆)1−smfm(x) ∈ L2(R2).

We assume also thatKm(x) : R
2 → R, such thatKm(x) ∈ L1(R2) and

(−∆)1−smKm(x) ∈ L2(R2).

Moreover,

K2 :=

N∑

m=1

‖Km(x)‖
2
L1(R2) > 0

and

Q2 :=
N∑

m=1

‖(−∆)1−smKm(x)‖
2
L2(R2) > 0.

We choose here the space dimensiond = 2, which is related to the solvability
conditions for the linear Poisson type equation (4.1) givenin Lemma 6 below. For
the applications, the space dimension is not restricted tod = 2, because the space
variable here corresponds to the cell genotype but not to theusual physical space.

In d = 1 our system was studied in [33] with all0 < sm = s <
1

4
based on the

solvability conditions for the analog of (4.1) in one dimension. In d = 3 our system

was treated in [31] with all
1

4
< sm = s <

3

4
. As distinct from the situation in

lower dimensionsd = 1, 2, in R
3 we were able to apply the Sobolev inequality for
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the fractional negative Laplacian (see Lemma 2.2 of [12], also [13]). Let us use
the Sobolev spaces for the technical purposes with0 < s ≤ 1, namely

H2s(R2) := {φ(x) : R2 → R | φ(x) ∈ L2(R2), (−∆)sφ ∈ L2(R2)}

equipped with the norm

‖φ‖2H2s(R2) := ‖φ‖2L2(R2) + ‖(−∆)sφ‖2L2(R2). (1.4)

For a vector vector function

u(x) = (u1(x), u2(x), ..., uN(x))
T ,

throughout the article we will use the norm

‖u‖2H2(R2,RN ) := ‖u‖2L2(R2,RN ) +

N∑

m=1

‖∆um‖
2
L2(R2) (1.5)

with

‖u‖2L2(R2,RN ) :=
N∑

m=1

‖um‖
2
L2(R2).

By virtue of the standard Sobolev embedding in two dimensions, we have

‖φ‖L∞(R2) ≤ ce‖φ‖H2(R2), (1.6)

wherece > 0 is the constant of the embedding. When all the nonnegative parame-
tersεm = 0, we arrive at the linear Poisson type equations

(−∆)smum(x) = fm(x), 1 ≤ m ≤ N. (1.7)

By virtue of Lemma 6 below along with Assumption 1 each equation (1.7) admits
a unique solution

u0,m(x) ∈ H2sm(R2), 0 < sm <
1

2
, 1 ≤ m ≤ N,

such that no orthogonality conditions are required here. According to Lemma 6
below, when1

2
≤ sm < 1, a certain orthogonality condition (see formula (4.3)) is

needed to be able to solve equation (1.7) inH2sm(R2). Because

−∆u0,m(x) = (−∆)1−smfm(x) ∈ L2(R2), 1 ≤ m ≤ N

due to Assumption 1, we obtain for the unique solution of linear problem (1.7) that
eachu0,m(x) ∈ H2(R2), such that

u0(x) := (u0,1(x), u0,2(x), ..., u0,N(x))
T ∈ H2(R2,RN).
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Let us look for the resulting solution of nonlinear system ofequations (1.2) as

u(x) = u0(x) + up(x), (1.8)

with
up(x) := (up,1(x), up,2(x), ..., up,N(x))

T .

Evidently, we easily derive the perturbative system of equations

(−∆)smup,m(x) = εm

∫

R2

Km(x− y)gm(u0(y) + up(y))dy, 0 < sm <
1

2
, (1.9)

with 1 ≤ m ≤ N . We introduce a closed ball in the Sobolev space

Bρ := {u(x) ∈ H2(R2,RN) | ‖u‖H2(R2,RN ) ≤ ρ}, 0 < ρ ≤ 1. (1.10)

Let us look for the solution of system (1.9) as the fixed point of the auxiliary non-
linear problem

(−∆)smum(x) = εm

∫

R2

Km(x− y)gm(u0(y) + v(y))dy, 0 < sm <
1

2
, (1.11)

where1 ≤ m ≤ N in ball (1.10). For a given vector functionv(y) this is a system
of equations with respect tou(x). The left side of (1.11) contains the operators
without the Fredholm property

(−∆)sm : H2sm(R2) → L2(R2).

Its essential spectrum fills the nonnegative semi-axis[0,+∞). Therefore, such op-
erator has no bounded inverse. The similar situation appeared in works [26] and
[29] but as distinct from the present case, the problems studied there required or-
thogonality conditions. The fixed point technique was used in [23] to estimate
the perturbation to the standing solitary wave of the Nonlinear Schrödinger (NLS)
equation when either the external potential or the nonlinear term in the NLS were
perturbed but the Schrödinger operator involved in the nonlinear equation there pos-
sessed the Fredholm property (see Assumption 1 of [23], also[8]). Let us define
the closed ball in the space ofN dimensions as

I := {z ∈ R
N | |z| ≤ ce‖u0‖H2(R2,RN ) + ce} (1.12)

and the closed ballDM in the space ofC2(I,RN) vector functions given by

{g(z) := (g1(z), g2(z), ..., gN(z)) ∈ C2(I,RN) | ‖g‖C2(I,RN ) ≤ M}, (1.13)

with M > 0. Here the norms

‖g‖C2(I,RN ) :=
N∑

m=1

‖gm‖C2(I), (1.14)
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‖gm‖C2(I) := ‖gm‖C(I) +

N∑

n=1

∥∥∥∂gm
∂zn

∥∥∥
C(I)

+

N∑

n,l=1

∥∥∥ ∂2gm
∂zn∂zl

∥∥∥
C(I)

, (1.15)

where‖gm‖C(I) := maxz∈I |gm(z)|. We make the following technical assumption
on the nonlinear part of problem (1.2).

Assumption 2. Let 1 ≤ m ≤ N . Assume thatgm(z) : R
N → R, such that

gm(0) = 0 and∇gm(0) = 0. It is also assumed thatg(z) ∈ DM and it is not equal
to zero identically in the ballI.

Let us introduce the operatorTg, such thatu = Tgv, whereu is a solution of
problem (1.11). Our first main result is as follows.

Theorem 3. Let Assumptions 1 and 2 hold. Then for everyρ ∈ (0, 1] there exists
ε∗ > 0, such that system (1.11) defines the mapTg : Bρ → Bρ, which is a strict
contraction for all0 < ε < ε∗. The unique fixed pointup(x) of this mapTg is the
only solution of problem (1.9) inBρ.

Obviously, the resulting solutionu(x) of problem (1.2) will not vanish identi-
cally since the source termsfm(x) are nontrivial for some1 ≤ m ≤ N and all
gm(0) = 0 due to the one of our assumptions. Let us make use of the following
elementary lemma.

Lemma 4. For R ∈ (0,+∞) consider the function

ϕ(R) := αR2−4s +
1

R4s
, 0 < s <

1

2
, α > 0.

It attains the minimal value atR∗ :=

√
2s

α(1− 2s)
, which is given by

ϕ(R∗) =
(1− 2s)2s−1

(2s)2s
α2s.

Our second main proposition deals with the continuity of thefixed point of the
mapTg which existence was established in Theorem 3 above with respect to the
nonlinear vector functiong.

Theorem 5. Let j = 1, 2, the assumptions of Theorem 3 hold, such thatup,j(x)
is the unique fixed point of the mapTgj : Bρ → Bρ, which is a strict contraction for
all 0 < ε < ε∗j andδ := min(ε∗1, ε

∗
2). Then for all0 < ε < δ the estimate

‖up,1 − up,2‖H2(R2,RN ) ≤ C‖g1 − g2‖C2(I,RN ) (1.16)

holds, whereC > 0 is a constant.
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Let us proceed to the proof of our first main statement.

2. The existence of the perturbed solution

Proof of Theorem 3.Let us choose an arbitrary vector functionv(x) ∈ Bρ and
denote the terms involved in the integral expressions in theright side of problem
(1.11) as

Gm(x) := gm(u0(x) + v(x)), 1 ≤ m ≤ N.

Throughout the article we will use the standard Fourier transform

φ̂(p) :=
1

2π

∫

R2

φ(x)e−ipxdx. (2.1)

Clearly, we have the upper bound

‖φ̂(p)‖L∞(R2) ≤
1

2π
‖φ(x)‖L1(R2). (2.2)

We apply (2.1) to both sides of problem (1.11). This yields

ûm(p) = εm2π
K̂m(p)Ĝm(p)

|p|2sm
, 1 ≤ m ≤ N.

Then we express the norm as

‖um‖
2
L2(R2) = 4π2ε2m

∫

R2

|K̂m(p)|
2|Ĝm(p)|

2

|p|4sm
dp, 1 ≤ m ≤ N. (2.3)

As distinct from works [26] and [29] with the standard Laplacian in the diffusion
term, here we do not try to control the norms

∥∥∥∥∥
K̂m(p)

|p|2sm

∥∥∥∥∥
L∞(R2)

, 1 ≤ m ≤ N.

Instead, let us estimate the right side of (2.3) via the analog of bound (2.2) applied
to functionsKm andGm with R ∈ (0,+∞) as

4π2ε2m

[ ∫

|p|≤R

|K̂m(p)|
2|Ĝm(p)|

2

|p|4sm
dp+

∫

|p|>R

|K̂m(p)|
2|Ĝm(p)|

2

|p|4sm
dp

]
≤

≤ ε2m‖Km‖
2
L1(R2)

{
1

4π
‖Gm(x)‖

2
L1(R2)

R2−4sm

1− 2sm
+

1

R4sm
‖Gm(x)‖

2
L2(R2)

}
. (2.4)

Be means of norm definition (1.5) along with the triangle inequality and since
v(x) ∈ Bρ, we easily arrive at

‖u0 + v‖L2(R2,RN ) ≤ ‖u0‖H2(R2,RN ) + 1.
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Sobolev embedding (1.6) gives us

|u0 + v| ≤ ce(‖u0‖H2(R2,RN ) + 1).

Let the dot stand for the scalar product of two vectors inR
N . The representation

Gm(x) =

∫ 1

0

∇gm(t(u0(x) + v(x))).(u0(x) + v(x))dt, 1 ≤ m ≤ N,

where the ballI is defined in (1.12) implies

|Gm(x)| ≤ supz∈I |∇gm(z)||u0(x) + v(x)| ≤ M |u0(x) + v(x)|.

Therefore,

‖Gm(x)‖L2(R2) ≤ M‖u0 + v‖L2(R2,RN ) ≤ M(‖u0‖H2(R2,RN ) + 1).

Evidently, fort ∈ [0, 1] and1 ≤ m, j ≤ N , we have the representation

∂gm
∂zj

(t(u0(x) + v(x))) =

∫ t

0

∇
∂gm
∂zj

(τ(u0(x) + v(x))).(u0(x) + v(x))dτ.

This gives us
∣∣∣∂gm
∂zj

(t(u0(x) + v(x)))
∣∣∣ ≤ supz∈I

∣∣∣∇∂gm
∂zj

∣∣∣|u0(x) + v(x)| ≤

≤
N∑

n=1

∥∥∥ ∂2gm
∂zn∂zj

∥∥∥
C(I)

|u0(x) + v(x)|.

Thus,

|Gm(x)| ≤ |u0(x)+v(x)|
N∑

n,j=1

∥∥∥ ∂2gm
∂zn∂zj

∥∥∥
C(I)

|u0,j(x)+vj(x)| ≤ M |u0(x)+v(x)|2.

Therefore,

‖Gm(x)‖L1(R2) ≤ M‖u0 + v‖2L2(R2,RN ) ≤ M(‖u0‖H2(R2,RN ) + 1)2. (2.5)

This allows us to derive the estimate from above for the rightside of (2.4) as

ε2mM
2‖Km‖

2
L1(R2)(‖u0‖H2(R2,RN ) + 1)2

{
(‖u0‖H2(R2,RN ) + 1)2R2−4sm

4π(1− 2sm)
+

1

R4sm

}
,

whereR ∈ (0,+∞). Lemma 4 yields the minimal value of the expression above.
Hence,

‖um‖
2
L2(R2) ≤ εm

2‖Km‖
2
L1(R2)(‖u0‖H2(R2,RN ) + 1)2+4sm

M2

(1− 2sm)(8πsm)2sm
.
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We introduce
1

(8πS)2S
:= max1≤m≤N

1

(8πsm)2sm
,

with 0 < S <
1

2
. Hence

‖u‖2L2(R2,RN ) ≤ ε2K2(‖u0‖H2(R2,RN ) + 1)2+4s M2

(1− 2s)(8πS)2S
. (2.6)

Evidently, (1.11) gives us

−∆um(x) = εm(−∆)1−sm

∫

R2

Km(x− y)Gm(y)dy, 1 ≤ m ≤ N,

with 0 < sm <
1

2
. By virtue of the analog of estimate (2.2) applied to functionGm

along with (2.5) we arrive at

‖∆um‖
2
L2(R2) ≤ ε2m‖Gm‖

2
L1(R2)‖(−∆)1−smKm‖

2
L2(R2) ≤

≤ ε2M2(‖u0‖H2(R2,RN ) + 1)4‖(−∆)1−smKm‖
2
L2(R2).

Therefore,
N∑

m=1

‖∆um|
2
L2(R2) ≤ ε2M2(‖u0‖H2(R2,RN ) + 1)4Q2. (2.7)

Thus, by means of the definition of the norm (1.5) along with estimates (2.6) and
(2.7) we obtain the upper bound for‖u‖H2(R2,RN ) as

εM(‖u0‖H2(R2,RN ) + 1)2

[
K2(‖u0‖H2(R2,RN ) + 1)4s−2

(1− 2s)(8πS)2S
+Q2

] 1

2

≤ ρ (2.8)

for all ε > 0 small enough. Therefore,u(x) ∈ Bρ as well. If for somev(x) ∈ Bρ

there exist two solutionsu1,2(x) ∈ Bρ of problem (1.11), their differencew(x) :=
u1(x)− u2(x) ∈ L2(R2,RN) satisfies

(−∆)smwm(x) = 0, 0 < sm <
1

2
, 1 ≤ m ≤ N.

Since the operator(−∆)sm considered on the wholeR2 does not have any nontrivial
square integrable zero modes,w(x) = 0 a.e. onR2. Hence, system (1.11) defines a
mapTg : Bρ → Bρ for all ε > 0 sufficiently small.

Our aim is to prove that this map is a strict contraction. We choose arbitrarily
v1,2(x) ∈ Bρ. The argument above yieldsu1,2 := Tgv1,2 ∈ Bρ as well. By virtue of
(1.11) we have for1 ≤ m ≤ N

(−∆)smu1,m(x) = εm

∫

R2

Km(x− y)gm(u0(y) + v1(y))dy, (2.9)
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(−∆)smu2,m(x) = εm

∫

R2

Km(x− y)gm(u0(y) + v2(y))dy, (2.10)

where all0 < sm <
1

2
. Let us define

G1,m(x) := gm(u0(x) + v1(x)), G2,m(x) := gm(u0(x) + v2(x)), 1 ≤ m ≤ N

and apply the standard Fourier transform (2.1) to both sidesof problems (2.9) and
(2.10). This gives us

û1,m(p) = εm2π
K̂m(p)Ĝ1,m(p)

|p|2sm
, û2,m(p) = εm2π

K̂m(p)Ĝ2,m(p)

|p|2sm
.

Evidently,

‖u1,m − u2,m‖
2
L2(R2) = ε2m4π

2

∫

R2

|K̂m(p)|
2|Ĝ1,m(p)− Ĝ2,m(p)|

2

|p|4sm
dp.

Clearly, it can be bounded from above via estimate (2.2) byε2‖Km‖
2
L1(R2)×

×

{
‖G1,m(x)−G2,m(x)‖

2
L1(R2)

4π

R2−4sm

1− 2sm
+

‖G1,m(x)−G2,m(x)‖
2
L2(R2)

R4sm

}
,

whereR ∈ (0,+∞). Let us make use of the representation for1 ≤ m ≤ N

G1,m(x)−G2,m(x) =

∫ 1

0

∇gm(u0(x) + tv1(x) + (1− t)v2(x)).(v1(x)− v2(x))dt.

Evidently, fort ∈ [0, 1]

‖v2(x) + t(v1(x)− v2(x))‖H2(R2,RN ) ≤ t‖v1(x)‖H2(R2,RN )+

+(1− t)‖v2(x)‖H2(R2,RN ) ≤ ρ,

which yields thatv2(x) + t(v1(x)− v2(x)) ∈ Bρ. Thus,

|G1,m(x)−G2,m(x)| ≤ supz∈I |∇gm(z)||v1(x)− v2(x)| ≤ M |v1(x)− v2(x)|.

This gives us

‖G1,m(x)−G2,m(x)‖L2(R2) ≤ M‖v1 − v2‖L2(R2,RN ) ≤ M‖v1 − v2‖H2(R2,RN ).

Let us express
∂gm
∂zj

(u0(x) + tv1(x) + (1− t)v2(x)) for 1 ≤ m, j ≤ N as

∫ 1

0

∇
∂gm
∂zj

(τ [u0(x) + tv1(x) + (1− t)v2(x)]).[u0(x) + tv1(x) + (1− t)v2(x)]dτ.
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Hence fort ∈ [0, 1]

∣∣∣∂gm
∂zj

(u0(x) + tv1(x) + (1− t)v2(x))
∣∣∣ ≤

≤

N∑

n=1

∥∥∥∥∥
∂2gm
∂zn∂zj

∥∥∥∥∥
C(I)

(|u0(x)|+ t|v1(x)| + (1− t)|v2(x)|).

Thus we derive the estimate from above forG1,m(x)−G2,m(x) in the absolute value
as

M |v1(x)− v2(x)|
(
|u0(x)|+

1

2
|v1(x)| +

1

2
|v2(x)|

)
.

By virtue of the Schwarz inequality we obtain at the upper bound for the norm
‖G1,m(x)−G2,m(x)‖L1(R2) as

M‖v1 − v2‖L2(R2,RN )

(
‖u0‖L2(R2,RN ) +

1

2
‖v1‖L2(R2,RN ) +

1

2
‖v2‖L2(R2,RN )

)
≤

≤ M‖v1 − v2‖H2(R2,RN )(‖u0‖H2(R2,RN ) + 1). (2.11)

Hence we obtain the estimate from above for the norm‖u1,m(x) − u2,m(x)‖
2
L2(R2)

given by

ε2‖Km‖
2
L1(R2)M

2‖v1 − v2‖
2
H2(R2,RN )

{ 1

4π
(‖u0‖H2(R2,RN ) + 1)2

R2−4sm

1− 2sm
+

1

R4sm

}
.

Let us minimize the expression above overR ∈ (0,+∞) by virtue of Lemma 4.
Thus, we arrive at‖u1,m(x)− u2,m(x)‖

2
L2(R2) ≤

≤ ε2‖Km‖
2
L1(R2)M

2‖v1 − v2‖
2
H2(R2,RN )

(‖u0‖H2(R2,RN ) + 1)4sm

(1− 2sm)(8πsm)2sm
,

such that‖u1(x)− u2(x)‖
2
L2(R2,RN ) ≤

≤ ε2K2M2‖v1 − v2‖
2
H2(R2,RN )

(‖u0‖H2(R2,RN ) + 1)4s

1− 2s

1

(8πS)2S
. (2.12)

Formulas (2.9) and (2.10) with1 ≤ m ≤ N give us

(−∆)(u1,m(x)− u2,m(x)) = εm(−∆)1−sm

∫

R2

Km(x− y)[G1,m(y)−G2,m(y)]dy.

By means of inequalities (2.2) and (2.11) we derive

‖∆(u1,m(x)− u2,m(x))‖
2
L2(R2) ≤ ε2‖G1,m −G2,m‖

2
L1(R2)‖(−∆)1−smKm‖

2
L2(R2) ≤

≤ ε2M2‖v1 − v2‖
2
H2(R2,RN )(‖u0‖H2(R2,RN ) + 1)2‖(−∆)1−smKm‖

2
L2(R2).

11



Therefore,
∑N

m=1 ‖∆(u1,m(x)− u2,m(x))‖
2
L2(R2) ≤

≤ ε2M2‖v1 − v2‖
2
H2(R2,RN )(‖u0‖H2(R2,RN ) + 1)2Q2. (2.13)

Estimates (2.12) and (2.13) imply that the norm‖u1−u2‖H2(R2,RN ) can be bounded
from above by the expressionεM(‖u0‖H2(R2,RN ) + 1)×

×

{
K2(‖u0‖H2(R2,RN ) + 1)4s−2

(1− 2s)(8πS)2S
+ Q2

} 1

2

‖v1 − v2‖H2(R2,RN ). (2.14)

This implies that the mapTg : Bρ → Bρ defined by problem (1.11) is a strict
contraction for all values ofε > 0 sufficiently small. Its unique fixed pointup(x) is
the only solution of system (1.9) in the ballBρ. The resultingu(x) ∈ H2(R2,RN)
given by (1.8) is a solution of problem (1.2). Note that by virtue of (2.8)up(x)
converges to zero in theH2(R2,RN) norm asε → 0.

Let us turn our attention to the proof of the second main proposition of our
article.

3. The continuity of the fixed point of the mapTg

Proof of Theorem 5.Evidently, for all0 < ε < δ we have

up,1 = Tg1up,1, up,2 = Tg2up,2.

Thus,
up,1 − up,2 = Tg1up,1 − Tg1up,2 + Tg1up,2 − Tg2up,2.

Obviously,

‖up,1−up,2‖H2(R2,RN ) ≤ ‖Tg1up,1−Tg1up,2‖H2(R2,RN )+‖Tg1up,2−Tg2up,2‖H2(R2,RN ).

Estimate (2.14) gives us

‖Tg1up,1 − Tg1up,2‖H2(R2,RN ) ≤ εσ‖up,1 − up,2‖H2(R2,RN ),

whereεσ < 1 because the mapTg1 : Bρ → Bρ under the given assumptions is a
strict contraction. Here and further down we use the positive constant

σ := M(‖u0‖H2(R2,RN ) + 1)

{
K2(‖u0‖H2(R2,RN ) + 1)4s−2

(1− 2s)(8πS)2S
+Q2

} 1

2

.

Hence, we arrive at

(1− εσ)‖up,1 − up,2‖H2(R2,RN ) ≤ ‖Tg1up,2 − Tg2up,2‖H2(R2,RN ). (3.1)

12



Evidently, for our fixed pointTg2up,2 = up,2. We designateξ(x) := Tg1up,2. For
1 ≤ m ≤ N , we obtain

(−∆)smξm(x) = εm

∫

R2

Km(x− y)g1,m(u0(y) + up,2(y))dy, (3.2)

(−∆)smup,2,m(x) = εm

∫

R2

Km(x− y)g2,m(u0(y) + up,2(y))dy, (3.3)

with all 0 < sm <
1

2
. We denote here

G1,2,m(x) := g1,m(u0(x) + up,2(x)), G2,2,m(x) := g2,m(u0(x) + up,2(x)).

Let us apply the standard Fourier transform (2.1) to both sides of formulas (3.2) and
(3.3). This gives us

ξ̂m(p) = εm2π
K̂m(p)Ĝ1,2,m(p)

|p|2sm
, ûp,2,m(p) = εm2π

K̂m(p)Ĝ2,2,m(p)

|p|2sm
.

Clearly,

‖ξm(x)− up,2,m(x)‖
2
L2(R2) = ε2m4π

2

∫

R2

|K̂m(p)|
2|Ĝ1,2,m(p)− Ĝ2,2,m(p)|

2

|p|4sm
dp.

Obviously, it can be estimated from above via (2.2) by

ε2‖Km‖
2
L1(R2)

{
‖G1,2,m −G2,2,m‖

2
L1(R2)

4π

R2−4sm

1− 2sm
+

‖G1,2,m −G2,2,m‖
2
L2(R2)

R4sm

}
,

whereR ∈ (0,+∞). Let us use the identity

G1,2,m(x)−G2,2,m(x) =

∫ 1

0

∇[g1,m−g2,m](t(u0(x)+up,2(x))).(u0(x)+up,2(x))dt.

Hence

|G1,2,m(x)−G2,2,m(x)| ≤ ‖g1,m − g2,m‖C2(I)|u0(x) + up,2(x)|.

This yields

‖G1,2,m −G2,2,m‖L2(R2) ≤ ‖g1,m − g2,m‖C2(I)‖u0 + up,2‖L2(R2,RN ) ≤

≤ ‖g1,m − g2,m‖C2(I)(‖u0‖H2(R2,RN ) + 1).

We apply another useful representation formula for1 ≤ j ≤ N and t ∈ [0, 1],
namely

∂

∂zj
(g1,m − g2,m)(t(u0(x) + up,2(x))) =

13



=

∫ t

0

∇
[ ∂

∂zj
(g1,m − g2,m)

]
(τ(u0(x) + up,2(x))).(u0(x) + up,2(x))dτ.

Hence, we arrive at

∣∣∣ ∂

∂zj
(g1,m − g2,m)(t(u0(x) + up,2(x)))

∣∣∣ ≤

≤

N∑

n=1

∥∥∥∥∥
∂2(g1,m − g2,m)

∂zn∂zj

∥∥∥∥∥
C(I)

|u0(x) + up,2(x)|.

Therefore,

|G1,2,m(x)−G2,2,m(x)| ≤ ‖g1,m − g2,m‖C2(I)|u0(x) + up,2(x)|
2,

such that

‖G1,2,m −G2,2,m‖L1(R2) ≤ ‖g1,m − g2,m‖C2(I)‖u0 + up,2‖
2
L2(R2,RN ) ≤

≤ ‖g1,m − g2,m‖C2(I)(‖u0‖H2(R2,RN ) + 1)2. (3.4)

This allows us to obtain the estimate from above for the norm‖ξm − up,2,m‖
2
L2(R2)

asε2‖Km‖
2
L1(R2)×

×(‖u0‖H2(R2,RN ) + 1)2‖g1,m − g2,m‖
2
C2(I)

[
(‖u0‖H2(R2,RN ) + 1)2R2−4sm

4π(1− 2sm)
+

1

R4sm

]
.

This expression can be easily minimized overR ∈ (0,+∞) due to Lemma 4. We
derive the upper bound‖ξm(x)− up,2,m(x)‖

2
L2(R2) ≤

≤ ε2‖Km‖
2
L1(R2)(‖u0‖H2(R2,RN ) + 1)2+4sm

‖g1,m − g2,m‖
2
C2(I)

(1− 2sm)(8πsm)2sm
,

such that

‖ξ(x)− up,2(x)‖
2
L2(R2,RN ) ≤ ε2K2(‖u0‖H2(R2,RN ) + 1)2+4s

‖g1 − g2‖
2
C2(I,RN )

(1− 2s)(8πS)2S
.

Equalities (3.2) and (3.3) with1 ≤ m ≤ N give us

−∆ξm(x) = εm(−∆)1−sm

∫

R2

Km(x− y)G1,2,m(y)dy,

−∆up,2,m(x) = εm(−∆)1−sm

∫

R2

Km(x− y)G2,2,m(y)dy.
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Therefore, by virtue of (2.2) and (3.4) the norm‖∆(ξm(x) − up,2,m(x))‖
2
L2(R2) can

be bounded from above by

ε2‖G1,2,m −G2,2,m‖
2
L1(R2)‖(−∆)1−smKm‖

2
L2(R2) ≤

≤ ε2‖g1,m − g2,m‖
2
C2(I)(‖u0‖H2(R2,RN ) + 1)4‖(−∆)1−smKm‖

2
L2(R2).

Therefore,

N∑

m=1

‖∆(ξm(x)− up,2,m(x))‖
2
L2(R2) ≤ ε2‖g1 − g2‖

2
C2(I,RN )(‖u0‖H2(R2,RN ) + 1)4Q2.

Hence, we obtain‖ξ(x)− up,2(x)‖H2(R2,RN ) ≤

≤ ε‖g1 − g2‖C2(I,RN )(‖u0‖H2(R2,RN ) + 1)2

[
K2(‖u0‖H2(R2,RN ) + 1)4s−2

(1− 2s)(8πS)2S
+Q2

] 1

2

.

By means of inequality (3.1), the norm‖up,1−up,2‖H2(R2,RN ) can be estimated from
above by

ε

1− εσ
(‖u0‖H2(R2,RN )+1)2

[
K2(‖u0‖H2(R2,RN ) + 1)4s−2

(1− 2s)(8πS)2S
+Q2

] 1

2

‖g1−g2‖C2(I,RN ),

which completes the proof of our theorem.

4. Auxiliary results

Let us state here the solvability conditions for the linear Poisson type equation
with a square integrable right side

(−∆)sφ = f(x), x ∈ R
2, 0 < s < 1. (4.1)

The inner product can be designated as

(f(x), g(x))L2(R2) :=

∫

R2

f(x)ḡ(x)dx, (4.2)

with a slight abuse of notations when the functions involvedin (4.2) are not square
integrable, like for instance the one involved in orthogonality condition (4.3) of
Lemma 6 below. Indeed, iff(x) ∈ L1(R2) andg(x) ∈ L∞(R2), then the integral in
the right side of (4.2) is well defined. We have the following technical proposition,
which can be easily established by applying the standard Fourier transform (2.1)
to both sides of problem (4.1) (see the part b) of the first theorem of [34] and for

s =
1

2
the part 2) of Lemma 3.1 of [32]).
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Lemma 6. Letf(x) : R2 → R andf(x) ∈ L2(R2).
1) When0 < s < 1

2
and additionallyf(x) ∈ L1(R2), equation (4.1) possesses

a unique solutionφ(x) ∈ H2s(R2).

2) When1
2
≤ s < 1 and in addition|x|f(x) ∈ L1(R2), problem (4.1) has a

unique solutionφ(x) ∈ H2s(R2) if and only if the orthogonality relation

(f(x), 1)L2(R2) = 0 (4.3)

holds.

Let us note that for the lower values of the power of the negative Laplacian

0 < s <
1

2
under the conditions stated above no orthogonality relations are required

to solve the linear Poisson type problem (4.1) inH2s(R2).
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