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University of Alcalá, Departamento de F́ısica y Matemáticas,
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Abstract

This paper is a slightly modified, abridged version of the work [7]. It deals with some questions
made to the authors during the conference Analytic, Algebraic and Geometric Aspects of Differential
Equations, held in Bedlewo (Poland) during the second week of september, 2015.

We study analytic and formal solutions related to a singularly perturbed partial differential equation
and relate them by means of a multi-level Gevrey order asymptotic behaviour, with respect to the
perturbation parameter.
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1 Introduction

The main aim of the present work is to give answer to certain questions and fruitful mathematical
discussions held with some participants of the conference Analytic, Algebraic and Geometric
Aspects of Differential Equations (AAGADE), held in Bedlewo (Poland) during the second
week of september, 2015, where we presented the work [7]. For the sake of completeness and
clarity, we provide an sketch of the results in that work.

The main purpose in [7] is to study a family of singularly perturbed linear partial differential
equations of the form
(1)

(εr2(tk+1∂t)
s2 + a2)(ε

r1(tk+1∂t)
s1 + a1)∂

S
z X(t, z, ε) =

∑
(s,κ0,κ1)∈S

bκ0κ1(z, ε)ts(∂κ0t ∂
κ1
z X)(t, z, ε),

∗The author is partially supported by the project MTM2012-31439 of Ministerio de Ciencia e Innovacion,
Spain



2

for given initial conditions

(2) (∂jzX)(t, 0, ε) = φj(t, ε), 0 ≤ j ≤ S − 1,

where r1 stands for a nonnegative integer (i. e. it belongs to N = {0, 1, ...}), and r2, s1, s2 are
positive integers. We also fix a1, a2 ∈ C?. S consists of a finite subset of elements (s, κ0, κ1) ∈ N3.
We assume that S > κ0 for every (s, κ0, κ1) ∈ S, and also that bs,κ0,κ1(z, ε) belongs to the space
of holomorphic functions in a neighborhood of the origin in C2, O{z, ε}.

The initial data consist of holomorphic functions defined in a product of finite sectors with
vertex at the origin.

The case for complex perturbation parameter ε has also been studied when solving partial
differential equations; in particular, when dealing with solutions belonging to spaces of analytic
functions for singularly perturbed partial differential equations which exhibit several singularities
of different nature. On this direction, one can cite the work by M. Canalis-Durand, J. Mozo-
Fernández and R. Schäfke [2], S. Kamimoto [4], the second author [8, 9], and the first and
the second author and J. Sanz [5]. In this last work, the appearance of both, irregular and
fuchsian singularities in the problem causes that the Gevrey type concerning the asymptotic
representation of the formal solution varies with respect to a problem in which only one type of
such singularities appears.

The asymptotic behavior of the solution in the problem (1), (2) distinguish both singularly
perturbed irregular operators located at the head of the main equation, in the sense that different
Gevrey orders would appear relating asymptotically the analytic and the formal solution in
the perturbation parameter ε. The main purpose of this work is to exhibit this interesting
behaviour of the asymptotics related. For this reason, we do not consider an equation (1)
in which nonlinear terms have been taken into consideration. In our opinion, the relevant
asymptotic phenomenon coming from the problem would not change, but computations would
become tedious and unclear.

We construct actual holomorphic solutions X(t, z, ε) of (1), (2) which are represented by the
formal solution

(3) X̂(t, z, ε) =
∑
β≥0

Hβ(t, z)
εβ

β!
∈ E[[ε]],

where E is an adecquate complex Banach space. The solution is holomorphic in a domain of the
form T × U × E , where T and E are sectors of finite radius and vertex at the origin, and U is a
neighborhood of the origin. In the asymptotic representation several Gevrey orders will appear.

In these notes, we also present some improvements wih respect to the restrictions made
on the coefficients appearing in the equation, and the geometry in which the problem rests.
Moreover, we provide some details on the appearance of a higher number of operators appearing
at the head of the equation and the asymptotic dependence on this data.

2 Summary of the strategy followed and main results

In this section, we present the main results in [7] giving only some detail on the crucial points
for this notes. We refer to [7] for the complete details.

Let S ≥ 1 be an integer. We also consider a nonnegative integer r1 and positive integers
r2, s1, s2, k. Let r := r2

s2k
. We fix a1, a2 ∈ C? and a finite subset S of N3. For every (s, κ0, κ1) ∈ S,

let bκ0κ1(z, ε) be a holomorphic and bounded function in a product of discs centered at the origin.
The problem (1) is studied for ε in each of the elements in a good covering in C?.



3

Definition 1 Let (Ei)0≤i≤ν−1 be a finite family of open sectors such that Ei has its vertex at
the origin and common finite radius rEi := rE > 0 for every 0 ≤ i ≤ ν − 1. We say this family
conforms a good covering in C? if Ei ∩ Ei+1 6= ∅ for 0 ≤ i ≤ ν − 1 (we put Eν := E0) and
∪0≤i≤ν−1Ei = U \ {0} for some neighborhood of the origin U .

Definition 2 Let (Ei)0≤i≤ν−1 be a good covering in C?. For every 0 ≤ i ≤ ν − 1, we assume

Ei = {ε ∈ C? : |ε| < rE , θ1,Ei < arg(ε) < θ2,Ei},

for some rE > 0 and 0 ≤ θ1,Ei < θ2,Ei < 2π. We write dEi for the bisecting direction of Ei,
(θ1,Ei + θ2,Ei)/2. Let T be an open sector with vertex at 0 and finite radius, say rT > 0. We also
fix a family of open sectors

Sdi,θ,rrErT =

{
t ∈ C? : |t| ≤ rrErT , |di − arg(t)| < θ

2

}
,

with di ∈ [0, 2π) for 0 ≤ i ≤ ν − 1, and θ > π/k, under the following properties:

1. Assumption (A): one has arg (di) 6= π(2j+1)+arg(a2)
ks2

, for every j = 0, ..., ks2 − 1.

2. Assumption (B): one has s1r2 − s2r1 > s2 > 0 and | arg(di) − dEi,j | > δ2i, for j =
0, ..., ks1 − 1, where δ2i := s1r2−s2r1

2ks1s2
(θ2,Ei − θ1,Ei), and dEi,j = 1

ks1
(π(2j + 1) + arg(a1) +

s1r2−s2r1
s2

(
θ1,Ei+θ2,Ei

2

)
).

3. for every 0 ≤ i ≤ ν − 1, t ∈ T and ε ∈ Ei, one has εrt ∈ Sdi,θ,rrErT .

Under the previous settings, we say the family {(Sdi,θ,rrErT )0≤i≤ν−1, T } is associated to the good
covering (Ei)0≤i≤ν−1.

Assumption (A) in the previous definition is concerned with the existence of di ∈ [0, 2π) such
that the argument of every root of the polynomial τ 7→ (kτk)s2 + a2 has positive distance to di,
for every 0 ≤ i ≤ ν − 1.

The first part in Assumption (B) is motivated by the next
Assumption (C):

θ2,Ei − θ1,Ei <
2πs2

s1r2 − s2r1
,

which guarantees the existence of possible choices for directions di ∈ [0, 2π) compatible with
Assumption (B), in the sense that

di /∈
1

ks1

[
π(2j + 1) + arg(a1) +

s1r2 − s2r1
s2

arg(ε)

]
,

for every τ ∈ Sdi,θ,rrErT , j = 0, . . . , ks1 − 1, ε ∈ Ei and 0 ≤ i ≤ ν − 1.
The second part in Assumption (B) is related to the existence of di ∈ [0, 2π) such that the

argument of every root of the polynomial τ 7→ εr1−s1rk(kτk)s1 + a1 has positive distance to di,
for every 0 ≤ i ≤ ν − 1, independently of ε ∈ Ei.

We also make the further assumption that for every (s, κ0, κ1) ∈ S, one has S > κ0 ≥ 1,
S > κ1, and there exists an integer δκ0 ≥ k such that s = κ0(k + 1) + δκ0 , and that S >⌊
b
(
δκ0
k + κ0

)⌋
+ 1, for some b > 1.
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This last assumption allows to write the operators T s∂κ0T in such a way that the initial
problem is transformed into an auxiliary equation via a slightly modified formal Borel transform
(see [10] for the source of this idea and [6] for the properties held by this transformation).

Let (Ei)0≤i≤ν−1 be a good covering, and let {(Sdi,θ,rrErT )0≤i≤ν−1, T } be a family associated
to that good covering. For every 0 ≤ i ≤ ν − 1, we study the Cauchy problem

(4)

(εr2(tk+1∂t)
s2 + a2)(ε

r1(tk+1∂t)
s1 + a1)∂

S
z Xi(t, z, ε) =

∑
(s,κ0,κ1)∈S

bκ0κ1(z, ε)ts(∂κ0t ∂
κ1
z Xi)(t, z, ε),

for given initial conditions

(5) (∂jzX)(t, 0, ε) = φi,j(t, ε), 0 ≤ j ≤ S − 1,

where the functions φi,j are constructed as follows: for every 0 ≤ i ≤ ν−1 and all 0 ≤ j ≤ S−1,
let Wi,j(τ, ε) ∈ O((Sdi ∪D) × Ei), for some neighborhood of the origin D, and Sdi = {t ∈ C? :
|di − arg(t)| < θ/2}. Moreover, we make the assumption that

(6) |Wi,j(τ, ε)| ≤M0

∣∣∣ τ
εr

∣∣∣ 1

1 +
∣∣ τ
εr

∣∣2k exp

(
σ
∣∣∣ τ
εr

∣∣∣k) , (τ, ε) ∈ (Sdi ∪D)× Ei,

for some M0, σ > 0. Also, we assume Wi,j ≡ Wi+1,j in the domain (Sdi ∪D) × (Ei ∩ Ei+1), for

all 0 ≤ i ≤ ν − 1 and every 0 ≤ j ≤ S − 1. Let Ldi = [0,∞)e
√
−1di . For every 0 ≤ i ≤ ν − 1 and

all 0 ≤ j ≤ S − 1, we define

φi,j(t, ε)k

∫
Ldi

Wi,j(u, ε)e
−( u

εrt)
k du

u
,

for (t, ε) ∈ T × Ei. φi,j turns out to be a holomorphic function in T × Ei.
Under these settings, one is able to construct the solution of (4) with initial conditions (5).

We have Xi(t, z, ε) ∈ O(T ×D′ × Ei), for some neighborhood of the origin D′ in the form

(7) Xi(t, z, ε) =
∑
β≥0

Xi,β(t, ε)
zβ

β!
,

where

(8) Xi,β(t, ε) = k

∫
Ldi

Wi,β(u, ε)e−( u
εrt)

k du

u
.

The elements (Wi,β(τ, ε))β≥0 are constructed by a recurrence relation provided that the

formal power series Wi(τ, z, ε) =
∑

β≥0Wβ,i(τ, ε)
zβ

β! is a formal solution of

(9) ((kτk)s2 + a2)(ε
r1−s1rk(kτk)s1 + a1)∂

S
zWi(τ, z, ε)

=
∑

(s,κ0,κ1)∈S

bκ0κ1(z, ε)ε−r(s−κ0)

 τk

Γ
(
δκ0
k

) ∫ τk

0
(τk − s)

δκ0
k
−1(ks)κ0∂κ1z Wi(s

1/k, z, ε)
ds

s

+
∑

1≤p≤κ0−1
Aκ0,p

τk

Γ
(
δκ0+k(κ0−p)

k

) ∫ τk

0
(τk − s)

δκ0+k(κ0−p)
k

−1(ks)p∂κ1z Wi(s
1/k, z, ε)

ds

s

 ,
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Figure 1: Roots of the polynomials at the head of (9) and domain Ω(ε).

for given initial data

(10) (∂jzWi)(τ, 0, ε) = Wi,j(τ, ε), 0 ≤ j ≤ S − 1.

Here, Aκ0,p ∈ C. The previous equation is the result of applying formal Borel transform to
both sides in (4), bearing in mind its properties (see Proposition 3, [7]), and bearing in mind
Assumption (C) in order to rewrite the right-hand side of the main equation.

One can observe from equation (9) that a small denominator phenomenon appears when
calculating the coefficients Wi,β(τ, ε). The domain of definition depends on ε and has to avoid
the roots of the two polynomials at the head of the equation. This implies the domain of
definition of the funtion τ 7→ Wi,β(τ, ε) depends on ε ∈ Ei. Indeed, it is defined for τ ∈
Ω(ε) = Sdi ∪ (D \ Ω1(ε)), where Ω1(ε) turns out to be a finite collection of sets of the form
{τ ∈ C : |τ | > ρ(|ε|), | arg(τ) − di| < δ2}, where x ∈ (0, rE) 7→ ρ(x) is a monotone increasing
function with ρ(x)→ 0 when x→ 0 (see Figure 1).

A fixed point technique allow us to conclude the existence of M,Z0 > 0 such that

(11) |Wi,β(τ, ε)| ≤MZβ0 β!
∣∣∣ τ
εr

∣∣∣ 1

1 +
∣∣ τ
εr

∣∣2k exp

(
σrb(β)

∣∣∣ τ
εr

∣∣∣k) , (τ, ε) ∈ (Sdi ∪D)× Ei,

with rb(β) =
∑β

n=0 1/(n+ 1)b. The estimates in (11) yield (8) is well-defined for (t, ε) ∈ T × Ei.

Theorem 1 Under the assumptions made, there exist K,M > 0 (not depending on ε), such
that

sup
t∈T ,z∈D′

|Xi+1(t, z, ε)−Xi(t, z, ε)| ≤ K exp

(
− M

|ε|r̂i

)
,

for every ε ∈ Ei ∩ Ei+1, and some positive real number r̂i which depends on i.

Proof This result corresponds to Theorem 2 in [7]. We give some detail at certain steps of
the proof. There are three different situations when estimating the difference of two solutions
defined in consecutive elements in the good covering.

1. If there are no singular directions π(2j+1)+arg(a2)
ks2

for j = 0, ..., ks2 − 1 (we will refer to

such directions as singular directions of first kind) nor d̃ with |d̃i − arg(dEi,j)| ≤ δ2i for
j = 0, ..., ks1 (we will say these are singular directions of second kind) in between di and
di+1, then one can deform the path dγi+1 − dγi to a point by means of Cauchy theorem
so that the difference Xi+1 −Xi is null. In this case, one can reformulate the problem by
considering a new good covering combining Ei and Ei+1 in a unique sector.
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Figure 2: First case (left), second case (center) and third case (right) to be considered in
Theorem 1.

2. If there exists at least a singular direction of first kind but no singular directions of second
kind in between di and di+1, then the movable singularities depending on ε do not affect
the geometry of the problem, whereas the path can only be deformed taking into account
those singularities which do not depend on ε. In this case r̂i := r2/s2.

3. If there is at least a singular direction of second kind in between di and di+1, then the
movable singularities depend on ε, and tend to zero. As a consequence, this affects the
geometry of the problem, and the path deformation has to be made accordingly. In this
case, r̂i := r1/s1.

Regarding the situation in which only singular directions of first kind appear, one can deform
the integration path for the integrals along direction di and di+1 in (8).

For every ε ∈ Ei ∩ Ei+1 and t ∈ T one has

Xi+1,β(t, ε)−Xi,β(t, ε) = +k

∫
Lρ0/2,di+1

Wi+1,β(u, ε)e−( u
tεr )

k du

u

− k
∫
Lρ0/2,di

Wi,β(u, ε)e−( u
tεr )

k du

u
+

∫
C(ρ0/2,di,di+1)

Wi,i+1,β(u, ε)e−( u
tεr )

k du

u
.

Here, ρ0 > 0 such that ρ0 ∈ D′, Lρ0/2,di+1
:= [ρ02 ,+∞)e

√
−1di+1 , Lρ0/2,di := [ρ02 ,+∞)e

√
−1di and

C(ρ0/2, di, di+1) is an arc of circle with radius ρ0/2 connecting ρ0/2e
√
−1di+1 and ρ0/2e

√
−1di

with a well chosen orientation. Moreover, Wi,i+1,β denotes the function Wi,β in an open domain
which contains the closed path (Ldi+1

\Lρ0/2,di+1
)−C(ρ0/2, di, di+1)− (Ldi \Lρ0/2,di), in which

Wi,β and Wi+1,β coincide. This is a consequence of the construction of the initial data in our
problem.

In the third situation, an analogous argument can be followed. One has to substitute ρ0 by
the function ε 7→ ρ(|ε|).

The result follows from here after usual estimates.
2

The classical definition of Gevrey asymptotics on functions with values in complex Banach
space are considered to describe the asymptotic behaviour relating the analytic and the formal
solution of the mein problem under study.

Definition 3 Let (E, ‖·‖E) be a complex Banach space and E be an open and bounded sector
with vertex at 0. We also consider a positive real number α.
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We say that a function f : E → E, holomorphic on E, admits a formal power series f̂(ε) =∑
k≥0 akε

k ∈ E[[ε]] as its α−Gevrey asymptotic expansion if, for any closed proper subsector
W ⊆ E with vertex at the origin, there exist C,M > 0 such that∥∥∥∥∥f(ε)−

N−1∑
k=0

akε
k

∥∥∥∥∥
E

≤ CMNN !α|ε|N ,

for every N ≥ 1, and all ε ∈ W.

For the existence of a formal power series in ε and the asymptotic relation to the analytic
solutions, we make use of a novel version of Ramis-Sibuya theorem in two levels and Theorem 1,
in order to conclude with the main result in [7]. For a classical reference on this result, we
provide [3] as a reference.

Theorem 2 Under the previous assumptions, there exists a formal power series

(12) X̂(t, z, ε) =
∑
β≥0

Hβ(t, z)
εβ

β!
∈ E[[ε]],

where E stands for the Banach space of holomorphic and bounded functions on the set T ×D′
equipped with the supremum norm, which formally solves the equation
(13)

(εr2(tk+1∂t)
s2 + a2)(ε

r1(tk+1∂t)
s1 + a1)∂

S
z X̂(t, z, ε) =

∑
(s,κ0,κ1)∈S

bκ0κ1(z, ε)ts(∂κ0t ∂
κ1
z X̂)(t, z, ε).

Moreover, X̂ can be written in the form

(14) X̂(t, z, ε) = a(t, z, ε) + X̂1(t, z, ε) + X̂2(t, z, ε),

where a(t, z, ε) ∈ E{ε} is a convergent series on some neighborhood of ε = 0 and X̂1(t, z, ε),
X̂2(t, z, ε) are elements in E[[ε]]. Moreover, for every 0 ≤ i ≤ ν − 1, the E-valued function
ε 7→ Xi(t, z, ε) constructed in (7) is of the form

(15) Xi(t, z, ε) = a(t, z, ε) +X1
i (t, z, ε) +X2

i (t, z, ε),

where ε 7→ Xj
i (t, z, ε) is a E-valued function which admits X̂j

i (t, z, ε) as its r̂j-Gevrey asymptotic
expansion on Ei, for j = 1, 2.

Corollary 1 Observe that r1/s1 < r2/s2. If one assumes the existence of i0 ∈ {0, . . . , ν − 1}
such that Ei0 has opening larger than πs2/r2, such that every index in the set Iδ1,i,δ2 = {i0 −
δ1, ..., i0, ..., i0 + δ2} satisfies 2. in the proof of Theorem 1, for some δ1, δ2 ≥ 0 and also

Ei0 ⊆ Sπs1/r1 ⊆ ∪h∈Iδ1,i,δ2Eh,

where Sπs1/r1 stands for a sector with vertex at 0 and opening larger than πs1/r1, then the

decomposition in (14) and (15) is unique. In terms of [1], X̂(t, z, ε), as a formal power series
in ε, with coefficients in E is (r2/s2, r1, s1)−summable on Ei0, and its (r2/s2, r1, s1)−sum is the
function Xi0(t, z, ε) on Ei0.

A practical situation has been considered in [7].
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3 Some additional comments and further work

We focus our attention on Assumption (B), which is considered for geometric reasons, as we
pointed out before. We now provide an alternative approach to avoid the assumption s1r2 −
s2r1 > s2, following different strategies.

Case 1: Assumption (B.1) s1r2 − s2r1 < −s1.
Under Assumption (B.1), one can interchange the roles of the operators involved at the head

of the main equation in (4), namely εr2(tk+1∂t)
s2+a2 and εr1(tk+1∂t)

s1+a1. We consider r := r1
ks1

and put T := εrt. After this change of variable, one rewrites the equation obtained by means of
the idea in [10], as before. The operators T s∂κ0t can be rewritten so that the properties of formal
Borel transform applied at both sides of the transformed equation lead to an auxiliary problem
within the Borel plane. We omit all the details here because they follow analogous arguments
as in the former construction. After this procedure, one gets the next problem, instead of (9):

(16) (εr2−s2rk(kτk)s2 + a2)((kτ
k)s1 + a1)∂

S
zWi(τ, z, ε)

=
∑

(s,κ0,κ1)∈S

bκ0κ1(z, ε)ε−r(s−κ0)

 τk

Γ
(
δκ0
k

) ∫ τk

0
(τk − s)

δκ0
k
−1(ks)κ0∂κ1z Wi(s

1/k, z, ε)
ds

s

+
∑

1≤p≤κ0−1
Aκ0,p

τk

Γ
(
δκ0+k(κ0−p)

k

) ∫ τk

0
(τk − s)

δκ0+k(κ0−p)
k

−1(ks)p∂κ1z Wi(s
1/k, z, ε)

ds

s

 .
Regarding Assumption (B.1), parallel results to Lemma1 and Lemma 2 in [7] can be proved.

More precisely, Lemma 2 in [7] reads as follows:

Lemma 1 Let 0 ≤ i ≤ ν − 1 and ε ∈ Ei. Under Assumption (B.1), there exists a constant
C2 > 0, not depending on ε, such that∣∣∣∣ 1

εr2−s2rk(kτk)s2 + a2

∣∣∣∣ ≤ C2,

for every τ ∈ Ω(ε).

Indeed, this lemma holds under the less restrictive condition s1r2 − s2r1 < 0. By means of a
fixed point argument (analogous to that in Section 3 in [7]) we guarantee a formal solution of

(16) under initial conditions (10) in the form Wi(τ, z, ε) =
∑

β≥0Wβ,i(τ, ε)
zβ

β! , ans such that (11)
holds.

In Theorem 1, the situations to handle differ. Indeed, the singularities of first kind and
of second kind interchange their roles: singular directions π(2j+1)+arg(a1)

ks1
for j = 0, ..., ks1 − 1

become fixed singular directions not depending on ε ∈ Ei for any fixed i, i.e. of first kind; whilst
directions d̃i ∈ [0, 2π) with |d̃i − arg(dEi,j)| ≤ δ2i for j = 0, ..., ks2 turn into movable singular
directions with respect to ε ∈ Ei. If there exist a singular direction of first kind but no singular
directions of second kind in between di and di+1, we define r̂i := r1/s1. If there is at least a
singular direction of second kind in between di and di+1, then we put r̂i := r2/s2.

Then, Theorem 2 holds under Assumption (B.1) with the same enunciate.
Case 2: Assumption (B.2) s1r2 − s2r1 = 0.
It is worth mentioning this particular case because under Assumption (B.2), the geometry

of the problem changes. There is no longer a distinction between singularities depending on the



9

perurbation parameter and fixed singularities, only remaining the fixed ones. Indeed, r := r2
s2k

=
r1
s1k

. The same procedure leads to the auxiliary equation

(17) ((kτk)s2 + a2)((kτ
k)s1 + a1)∂

S
zWi(τ, z, ε)

=
∑

(s,κ0,κ1)∈S

bκ0κ1(z, ε)ε−r(s−κ0)

 τk

Γ
(
δκ0
k

) ∫ τk

0
(τk − s)

δκ0
k
−1(ks)κ0∂κ1z Wi(s

1/k, z, ε)
ds

s

+
∑

1≤p≤κ0−1
Aκ0,p

τk

Γ
(
δκ0+k(κ0−p)

k

) ∫ τk

0
(τk − s)

δκ0+k(κ0−p)
k

−1(ks)p∂κ1z Wi(s
1/k, z, ε)

ds

s

 ,
which can be solved by a fixed point theorem, leading to a unique Gevrey order appearing

in the asymptotic representation of the solution of (4). More precisely, one has

Theorem 3 There exists a formal power series X̂(t, z, ε) in the form of (12) which formally
solves (13). Moreover, for every 0 ≤ i ≤ ν − 1, the E-valued function ε 7→ Xi(t, z, ε) constructed
in (7) admits X̂(t, z, ε) as its r1/s1-Gevrey asymptotic expansion on Ei.

Corollary 1 is reduced to the existence of an index 0 ≤ i0 ≤ ν − 1 such that the opening of
the sector Ei0 is larger than πs1/r1. In this case, X̂, as a formal power series in ε with coefficients
in E is r1/s1-summable in Ei0 by Watson’s lemma.

Case 3: Assumption (B.3) 0 < s1r2 − s2r1 < s2.
As it has been pointed out, the condition s2 < s1r2− s2r1 in Assumption (B) is of geometric

nature. It is imposed to guarantee the existence of rays from the origin which do not cross
the movable singularities appearing at the head of the equation. One may substitute the good
covering by any other consisting of sectors with small enough openings.

Case 4: Assumption (B.4) −s1 < s1r2 − s2r1 < 0. Can be studied in the same way as Case
3.

Regarding the geometry of the problem involved, one can consider a more general problem
under study, which can be solved analogously. A first approach could be to study the equation

(εr2(tk+1∂t)
s2+a2)

m2(εr1(tk+1∂t)
s1+a1)

m1∂Sz X(t, z, ε) =
∑

(s,κ0,κ1)∈S

bκ0κ1(z, ε)ts(∂κ0t ∂
κ1
z X)(t, z, ε),

for any positive integers m1,m2.
This more general consideration does not change the configuration of the problem. Indeed,

one can follow the same arguments to arrive at the auxiliary equation (9) in which the head of
the equation has been substituted by

((kτk)s2 + a2)
m2(εr1−s1rk(kτk)s1 + a1)

m1∂SzWi(τ, z, ε).

It is straight to check that no additional assumptions have to be added, because the roots of
the polynomials ((kτk)s2 + a2)

m2 coincide for any positive integer m2. Also, the same holds for
the polynomial (εr1−s1rk(kτk)s1 +a1)

m1 for any positive integer m1. The direction di at positive
distance to the roots of both polynomials can be chosen independently of m1 nor m2. The
problem can be solved following the same arguments as in [7]. The main result can be rewritten
word by word.
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A more general approach to this one could be to consider more than two singularly perturbed
terms at the head of the equation. More precisely, one may consider the equation

(εrh(tk+1∂t)
sh + ah)mh(εrh−1(tk+1∂t)

sh−1 + ah−1)
m1 . . . (εr1(tk+1∂t)

s1 + a1)∂
S
z Xi(t, z, ε)

=
∑

(s,κ0,κ1)∈S

bκ0κ1(z, ε)ts(∂κ0t ∂
κ1
z Xi)(t, z, ε),

for some integer h ≥ 2, aj ∈ C?, and where rj stands for a nonnegative integer whilst sj ,mj

are positive integers for every j = 1, . . . , h. Under this situation, one chooses the indices
{h1, . . . , h`} ⊆ {1, . . . , h} such that rhµ/shµ coincide for every µ = 1, . . . , ` and rhµ/shµ > rp/sp
for every p ∈ {1, . . . , h} \ {h1, . . . , h`}. We write r/s := rhµ/shµ for any µ ∈ {1, . . . , `}.

An analogous procedure can be followed in this situation. We do not enter into details
for the sake of clarity, but it is worth mentioning that, under an appropriate geometry for
the problem, several Gevrey orders appear in the asymptotic study of the equation. More
precisely, the analytic solution can be split in several terms, in the shape of (15) and the formal
solution can be written in the form of a sum of the same number of terms as the formal one.
One of the terms in the analytic solution admits the corresponding one in the formal solution,
as its Gevrey asymptotic expansion of order r/s in each of the domains of definition of the
perturbation parameter. The asymptotic expansions have to be considered as in Theorem 2,
with coefficients of the formal power series, and functions with values in the Banach space E.
This term corresponds to the fixed singularity appearing in the auxiliary equation, in the Borel
plane. The roots to be avoided are all the roots of the polynomials (kτk)shµ + aµ = 0, for
µ = 1, . . . , `.

Regarding the remaining terms at the head of the equation, corresponding to (εrp(tk+1∂t)
sp+

ap)
mp , for p ∈ {1, . . . , h} \ {h1, . . . , h`}, one observes the phenomenon of movable singularties

described in Theorem 2 at each term. The geometry becomes more complicated and one has to
choose the direction di so that it avoids all singularities.

More precisely, Assumption (A) and Assumption (B) are substituted by the following ones.

Assumption (A): For every 0 ≤ i ≤ ν−1 and µ ∈ {1, . . . , `} one has arg(di) 6=
π(2j+1)+arg(ahµ )

kshµ
for every j = 0, . . . , kshµ − 1.

Assumption (B): For every p ∈ {1, . . . , h} \ {h1, . . . , h`} and µ = 1, . . . , `, one has sprhµ −
shµrp > sp > 0 and | arg(di) − dEi,j,p,µ | > δ2,i,p,µ for j = 0, . . . , ksp − 1, where δ2,i,p,µ :=
sprhµ−shµrp

2kshµsp
(θ2,Ei − θ1,Ei), and dEi,j,p,µ = 1

ksp
(π(2j + 1) + arg(ap) +

sprhµ−shµrp
shµ

(
θ1,Ei+θ2,Ei

2

)
).
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