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Abstract

We study a family of nonlinear initial value partial differential equations in the complex domain under
the action of two asymmetric time variables. Different Gevrey bounds and multisummability results are
obtain depending on each element of the family, providing a more complete picture on the asymptotic
behavior of the solutions of PDEs in the complex domain in several complex variables.

The main results lean on a fixed point argument in certain Banach space in the Borel plane, together
with a Borel summability procedure and the action of different Ramis-Sibuya type theorems.

Key words: asymptotic expansion, Borel-Laplace transform, Fourier transform, initial value problem, for-

mal power series, nonlinear integro-differential equation, nonlinear partial differential equation, singular

perturbation. 2010 MSC: 35C10, 35C20.

1 Introduction

This work is framed into the study of multisummable formal solutions of certain family of PDEs.
Multisummability of formal solutions of functional equations is observed in recent studies made
by some research groups in different directions, and a growing interest has been observed in the
scientific community. The present work belongs to these trends of studies, for which we provide
a brief overview.

Borel-Laplace summability procedures have been recently applied to solve partial differential
equations. In the seminal work [19], the authors obtain positive results on the linear complex
heat equation with constant coefficients. This construction was extended to more general linear
PDEs by W. Balser in [3], under the assumption of adequate extension of the initial data to
an infinite sector. More recently, M. Hibino [9] has made some advances in the study of linear
first order PDEs. Subsequently, several authors have studied complex heat like equations with
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variable coefficients (see [5, 6, 21]). The second author [22], both authors [13] and the two
authors and J. Sanz [17] have also contributed in this theory.

Recently, multisummability of formal solutions of PDEs has also been put forward in different
works. W. Balser [4] described a multisummability phenomenon in certain PDEs with constant
coefficients. S. Ouchi [23] constructed multisummable formal solutions of nonlinear PDEs, com-
ing from perturbation of ordinary differential equations. H. Tahara and H. Yamazawa [24] have
made progresses on general linear PDEs with non constant coefficients under entire initial data.
In [20], G. Lysik constructs summable formal solutions of the one dimensional Burgers equation
by means of the Cole-Hopf transform. O. Costin and S. Tanveer [8] construct summable formal
power series in time variable to 3D Navier Stokes equations. The authors have obtained results
in this direction [14, 15].

A recent overview on summability and multisummability techniques under different points
of view is displayed in [18].

The purpose of the present work is to study the solutions of a family of singularly perturbed
partial differential equations from the asymptotic point of view. More precisely, we consider a
problem of the form

(1)
Q(∂z)∂t2u(t1, t2, z, ε) = (P1(∂z, ε)u(t1, t2, z, ε))(P2(∂z, ε)u(t1, t2, z, ε)) + P (t1, t2, ε, ∂t1 , ∂t2 , ∂z)

+ f(t1, t2, z, ε),

under initial conditions u(t1, 0, z, ε) ≡ u(0, t2, z, ε) ≡ 0, and where Q(X) ∈ C[X]. The elements
which conform the nonlinear part P1, P2 are polynomials in their second variable with coefficients
being holomorphic functions defined on some neighborhood of the origin, sayD(0, ε0), continuous
up to their boundary.

Here, D(0, ε0) stands for the open disc in the complex plane centered at 0, and with positive
radius ε0 > 0. We write D(0, ε0) for its closure.

Moreover, P stands for some polynomial of six variables, with complex coefficients, and the
forcing term f(t1, t2, z, ε) is a holomorphic and bounded function in D(0, ρ)2 ×Hβ′ ×D(0, ε0),
for some ρ > 0, and where Hβ′ stands for the horizontal strip

Hβ′ := {z ∈ C : |Im(z)| < β′},

for some β′ > 0.

The precise configuration of the elements involved in the problem is stated and described in
Section 2.2.

This paper provides a step beyond in the study of the asymptotic behavior of the solutions
of a subfamily of singularly perturbed partial differential equations of the form (1). We first
recall some previous advances made in this respect, which motivate the present framework.

In [13], we studied under the asymptotic point of view the solutions of certain family of
PDEs of the form

Q(∂z)∂tu(t, z, ε) = (P1(∂z, ε)u(t, z, ε))(P2(∂z, ε)u(t, z, ε)) + P (t, ε, ∂t, ∂z)u(t, z, ε) + f(t, z, ε),

where the elements involved in the problem depend only on one time variable t. Our next aim
was to check whether the asymptotic properties of the solutions in this equation can be extended
to functions of more number of time variables, as stated in (1).
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It is worth mentioning that, in the previous work [13], the linear part of the equation, ruled
by P (t, ε, ∂t, ∂z)u(t, z, ε) was assumed to be more general than in the present configuration,
admitting an additional term of the form c0(t, z, ε)R(∂z)u(t, z, ε), where c0(t, z, ε) is given by a
certain holomorphic function defined on a product D(0, ρ)×Hβ′ ×D(0, ε0).

We decided not to incorporate this term in the present study for the sake of simplicity.
However, the results can be written with no additional theoretical difficulties by adding the
analog of such terms into the equation. As a matter of fact, the decision of not considering this
term in the present work is due to emphasize other fact: an outstanding phenomena occurred
when dealing with two complex variables, arriving at substantially and qualitatively different
asymptotic properties of the solutions attained.

In [12], we described a study of a family of equations of the shape (1) which showed a
symmetric behaviour with respect to the asymptotic properties of the analytic solutions with
respect to both time variables, as initially expected from the generalization of the one-time
variable case. More precisely, we proved the following result: given a good covering of C?,
{Ep1,p2}0≤p1≤ς1−1

0≤p2≤ς2−1
(see Definition 3) involving sectors of opening larger than π/k2, there exist

sectors with vertex at the origin in C and finite radius, say T1 and T2, such that a family of
solutions {up1,p2(t1, t2, z, ε)}0≤p1≤ς1−1

0≤p2≤ς2−1
of (1) is constructed. The function up1,p2(t1, t2, z, ε) turns

out to be holomorphic in T1 × T2 ×Hβ′ × Ep1,p2 , for every 0 ≤ p1 ≤ ς1 − 1 and 0 ≤ p2 ≤ ς2 − 1.
In addition to this, we obtain in this previous work that the difference of two consecutive (in
the sense that they are related to consecutive sectors in the good covering) solutions up1,p2 and
up′1,p′2 , of (1) can be classified into two categories:

1. Those pairs ((p1, p2), (p′1, p
′
2)) ∈ Uk1 such that

sup
(t1,t2,z)∈T1×T2×Hβ′

|up1,p2(t1, t2, z, ε)− up′1,p′2(t1, t2, z, ε)| ≤ Kpe
− Mp

|ε|k1 , ε ∈ Ep1,p2 ∩ Ep′1,p′2 ;

2. and those pairs ((p1, p2), (p′1, p
′
2)) ∈ Uk2 such that

sup
(t1,t2,z)∈T1×T2×Hβ′

|up1,p2(t1, t2, z, ε)− up′1,p′2(t1, t2, z, ε)| ≤ Kpe
− Mp

|ε|k2 , ε ∈ Ep1,p2 ∩ Ep′1,p′2 .

Here, k1 and k2 are different positive integers involved in the definition of the polynomials
appearing in the main equation, and Kp,Mp are positive constants.

The application of a two-level Ramis-Sibuya type result entails the existence of a formal
power series û(t1, t2, z, ε) ∈ F[[ε]], where F stands for the Banach space of holomorphic and
bounded functions in the domain T1 × T2 ×Hβ′ , with the supremum norm. Such formal power
series is a formal solution of (1) and can be split in the form

û(t1, t2, z, ε) = a(t1, t2, z, ε) + û1(t1, t2, z, ε) + û2(t1, t2, z, ε),

where a(t1, t2, z, ε) belongs to F{ε}, and û1, û2 ∈ F[[ε]]. Moreover, for all p1 ∈ {0, . . . , ς1 − 1}
and p2 ∈ {0, . . . , ς2 − 1}, the function up1,p2(t1, t2, z, ε) can be split analogously:

up1,p2(t1, t2, z, ε) = a(t1, t2, z, ε) + u1
p1,p2

(t1, t2, z, ε) + u2
p1,p2

(t1, t2, z, ε),

where ε 7→ ujp1,p2(t1, t2, z, ε) is an F-valued function which admits ûj(t1, t2, z, ε) as its kj-Gevrey
asymptotic expansion on Ep1,p2 , for j = 1, 2, seeing ûj as a formal power series in ε, with
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coefficients in F. In addition to this, and under the assumption that k1 < k2, a multisummability
result is also attained. Under the assumption that

{((p0
1, p

0
2), (p1

1, p
1
2)), ((p1

1, p
1
2), (p2

1, p
2
2)), . . . , ((p2y−1

1 , p2y−1
2 ), (p2y

1 , p
2y
2 ))} ⊆ Uk2

for some y ∈ N := {1, 2, . . .}, and

Epy1 ,py2 ⊆ Sπ/k1
⊆

⋃
0≤j≤2y

E
pj1,p

j
2
,

for some sector Sπ/k1
with opening larger than π/k1, then it holds that û(t1m, t2, z, ε) is indeed

(k2, k1)−summable on Epy1 ,py2 , being its (k2, k1)-sum given by upy1 ,p
y
2

on Epy1 ,py2 .
The role played by k1 and k2 in the previous framework is completely symmetric. The

assumption k1 < k2 is innocuous, reaching symmetric results in the case that k2 < k1. In that
study, the principal part of any of the equations in the family studied is factorisable as a product
of two operators involving a single time variable, yielding a multisummability phenomena in the
perturbation parameter ε.

On the other hand, in the present study, the sign of k1−k2 is crucial at the time of studying
the asymptotic behavior of the analytic solution. In fact, a negative sign provides less information
on the asymptotic behavior, which entails only Gevrey estimates whilst the positive one furnishes
more precise information, namely multisummability. Here is where the strength of the present
results holds. More precisely, we find a family of analytic solutions {up1,p2(t1, t2, z, ε)}0≤p1≤ς1−1

0≤p2≤ς2−1

of the main problem under study, which are holomorphic in T1×T2×Hβ′×Ep1,p2 , and such that
one of the following hold:

1. In case k2 > k1, a formal power series û(t1, t2, z, ε) ∈ F[[ε]], formal solution of (1), exists
such that for every (p1, p2) ∈ {0, . . . , ς1−1}×{0, . . . , ς2−1}, the function up1,p2(t1, t2, z, ε)
admits û(t1, t2, z, ε) as its asymptotic expansion of Gevrey order 1/k1 in Ep1,p2 (see Theo-
rem 2).

2. In case that k1 > k2, a formal power series û(t1, t2, z, ε) ∈ F[[ε]] exists, being formal
solution of (1), and such that û(t1, t2, z, ε) shows analogous properties as those described
in the family of equations in [12], i.e. multisummability of the formal solution with Gevrey
levels k1 and k2 (see Theorem 3).

The present study is based on the following approach: after establishing the main problem
under study:

(2)

(
Q(∂z)∂t2 + ε∆1td1

1 ∂
δD1
t1

ε∆̃2td̃2
2 ∂

δ̃D2
t2

RD1,D2(∂z) + ε∆̃3td̃3
2 ∂

δ̃D3
t2

RD3(∂z)

)
u(t, z, ε)

= (P1(∂z, ε)u(t, z, ε))(P2(∂z, ε)u(t, z, ε)) +
∑

0≤lj≤Dj−1

j=1,2

ε∆l1,l2 t
dl1
1 t

d̃l2
2 ∂

δl1
t1
∂
δ̃l2
t2
Rl1,l2(∂z)u(t, z, ε)

+ f(t, z, ε),

where k1, k2 ≥ 1, D1, D2 ≥ 2, ∆1, d1, δD1 , ∆̃2, d̃2, δ̃D2 , ∆̃3, d̃3, δ̃D3 are integer numbers, and for
all 0 ≤ l1 ≤ D1 − 1 and 0 ≤ l2 ≤ D2 − 1, we take nonnegative integers dl1 , d̃l2 , δl1 , d̃l2 , and
∆l1,l2 , under the assumptions (5)-(7). Moreover, Q,RD1,D2 , RD3 and Rl1,l2 are polynomials with
complex coefficients, for all 0 ≤ l1 ≤ D1−1 and 0 ≤ l2 ≤ D2−1. The polynomials P1, P2 present
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coefficients which are holomorphic functions with respect the perturbation parameter on some
neighborhood of the origin, under assumptions (8)-(10). The forcing term f(t1, t2, z, ε) is given
by some holomorphic and bounded function on a neighborhood of the origin with respect to
both variables and the perturbation parameter ε, and some horizontal strip with respect to z
variable.

We search for analytic solutions of (2) given as a Laplace and Fourier transform of certain
function to be determined:

(3) u(t1, t2, z, ε) =
k1k2

(2π)1/2

∫ ∞
−∞

∫
Ld1

∫
Ld2

ωdk(u1, u2,m, ε)e
−
(
u1
εt1

)k1−
(
u2
εt2

)k2 du2

u2

du1

u1
,

where Lγj = R+e
iγj , for some appropriate direction γj ∈ R, for j = 1, 2. The problem of finding

such a function is equivalent (in view of Lemma 1) to solve an auxiliary convolution equation
in the Borel plane. More precisely, there is a one-to-one correspondence between functions
u(t1, t2, z, ε) of the form (3), which solve (2), and functions ω(τ1, τ2,m, ε) admitting Laplace
transform with respect to the first two variables along directions d1 and d2 resp., and Fourier
transform with respect to m variable, which turn out to be solutions of a convolution equation
(see 23).

For every fixed value of the perturbation parameter ε, (τ1, τ2,m) 7→ ωdk(τ1, τ2,m, ε) is ob-
tained as the fixed point of the contractive operatorHε (see (33) for its definition) acting on some
Banach space of functions owing exponential decay at infinity on the Fourier variable, and defined
on some neighborhood of the origin for (τ1, τ2) in C2, which can be prolonged to some neighbor-
hood of the origin together with an infinite sector of bisecting direction d1 times an infinite sec-
tor with bisecting direction d2; under certain concrete monomial exponential growth at infinity.
More precisely, ωdk(τ1, τ2,m, ε) is a continuous function in (D(0, ρ)∪Sd1)×Sd2×R×D(0, ε0)\{0},
and holomorphic with respect to (τ1, τ2) in (D(0, ρ) ∪ Sd1)× Sd2 , and on D(0, ε0) \ {0} with re-
spect to the perturbation parameter. In addition to this, there exist constants $,µ, β, ν1, ν2 > 0
such that

|ωdk(τ1, τ2,m, ε)| ≤ $(1 + |m|)−µ
∣∣ τ1
ε

∣∣
1 +

∣∣ τ1
ε

∣∣2k1

∣∣ τ2
ε

∣∣
1 +

∣∣ τ2
ε

∣∣2k2
exp

(
−β|m|+ ν1

∣∣∣τ1

ε

∣∣∣k1

+ ν2

∣∣∣τ2

ε

∣∣∣k2
)
,

for every (τ1, τ2,m, ε) ∈ (D(0, ρ)∪Sd1)×Sd2×R×D(0, ε0)\{0}. Laplace and Fourier transforms
make sense in order to get (3). At this point, we are able to construct a family of solutions
{up1,p2(t1, t2, z, ε)}0≤p1≤ς1−1

0≤p2≤ς2−1
of (2), where up1,p2(t1, t2, z, ε) is a holomorphic function defined in

T1 × T2 ×Hβ′ × Ep1,p2 , with T1 and T2 being finite sectors in C? with vertex at the origin, and
where {Ep1,p2}0≤p1≤ς1−1

0≤p2≤ς2−1
conforms a good covering at 0 (see Definition 3).

The distinction of k1 < k2 and k2 < k1 provide Gevrey asymptotics or multisummability
results in Theorem 2, resp. Theorem 3. It is worth mentioning that these results lean on the
application of a cohomological criteria known as Ramis-Sibuya Theorem; resp. a multilevel
version of such result.

The fact that a different behavior can be observed with respect to the variables in time
is due to the domain of definition of ωdk with respect to such variables: a neighborhood of
the origin for (τ1, τ2) ∈ C2 which can only be prolonged up to a neighborhood of the origin
together with an infinite sector with respect to the first variable; whereas it can not be defined
on any neighborhood of the origin with respect to the second time variable, but it does on
some infinite sector. This causes the impossibility of application of a deformation path at the
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time of estimating the difference of two consecutive solutions in order to apply the multilevel
version Ramis-Sibuya Theorem. With respect to the study of the main problem in [12], the
main difficulty at this point comes due to the fact that Case 1 in Theorem 1 of [12] is no longer
available.

We also find it necessary to justify the fact that ωdk can not be defined with respect to (τ1, τ2)
in sets of the form

(4) S1 × (S2 ∪D(0, ρ2)),

for some infinite sectors S1 and S2, and for some ρ2 > 0. In order to solve the main equation, one
needs to divide by Pm(τ1, τ2) (see (24) for its definition). However, as stated in Section 3.1.1, the
roots of such polynomial lie on sets of the form (4), for any ρ2 > 0. Therefore, a small divisor
phenomena is observed , which does not allow a summability procedure. This occurrence has
already been noticed in another context in previous works: in the framework of q−difference-
differential equations [16]; in the context of multilevel Gevrey solutions of PDEs in the complex
domain in [15], etc.

The layout of the paper is as follows.

After recalling the definition and the action of Fourier transform in the first part of Section 2,
we describe the main problem under study in Section 2.2, and reduce it to the research of a
solution of an auxiliary convolution equation. Such solution is obtained following a fixed point
argument in appropriate Banach spaces (see Section 3.2), whose main properties are provided
in Section 3.1.

Section 3.1.1 is devoted to motivate the domain of definition of the solution, in contrast to
that studied in [12].

The first main result of our work is Theorem 1, where the existence of a family of analytic
solutions of the main problem is obtained. In Section 5.1 we recall the Borel summability
procedure and two cohomological criteria: Ramis-Sibuya Theorem, and a multilevel version of
Ramis-Sibuya Theorem. We conclude the present work with the existence of a formal solution
to the problem, and two asymptotic results which connect the formal and the analytic solutions:
Theorem 2 states a result on Gevrey asymtotics in a subfamily of equations; Theorem 3 states
a multisummability result in another different subfamily of equations under study.

2 Layout of the main and auxiliary problems

This section is devoted to describe the main problem under study. We first recall some facts on
the action of Fourier transform on certain Banach spaces of functions.

2.1 Fourier transform on exponentially decreasing function spaces

In order to transform the main problem under study into an auxiliary one, easier to handle,
we first describe the action of Fourier transform in certain Banach spaces of rapidly decreasing
functions.

Definition 1 Let β, µ ∈ R. E(β,µ) stands for the vector space of continuous functions h : R→ C
such that

‖h(m)‖(β,µ) = sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)|

is finite. E(β,µ) turns out to be a Banach space when endowed with the norm ‖.‖(β,µ).
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The following result is stated without proof, which can be found in [13], Proposition 7.

Proposition 1 Let f ∈ E(β,µ) with β > 0, µ > 1. The inverse Fourier transform of f

F−1(f)(x) =
1

(2π)1/2

∫ +∞

−∞
f(m) exp(ixm)dm, x ∈ R,

can be extended to an analytic function on the strip

Hβ := {z ∈ C/|Im(z)| < β}.

Let φ(m) = imf(m) ∈ E(β,µ−1). Then, it holds that ∂zF−1(f)(z) = F−1(φ)(z), for z ∈ Hβ.

Let g ∈ E(β,µ) and put ψ(m) = 1
(2π)1/2 f ∗ g(m), the convolution product of f and g, for all

m ∈ R. ψ belongs to E(β,µ). Moreover, we have F−1(f)(z)F−1(g)(z) = F−1(ψ)(z), for z ∈ Hβ.

2.2 Layout of the main problem

Let k1, k2 ≥ 1 and D1, D2 ≥ 2 be integer numbers. We also consider non negative integer
numbers d1, d̃j ,∆1, ∆̃j , δD1 , δ̃Dj , for j ∈ {2, 3}. For all 0 ≤ l1 ≤ D1 − 1 and 0 ≤ l2 ≤ D2 − 1,

let dl1 , d̃l2 , δl1 , d̃l2 ,∆l1,l2 be non negative integers. We assume the previous elements satisfy the
next identities:

(5)
2

k2
< δ̃D2 ≤ δ̃D3

and δl1 < δl1+1, δ̃l2 < δ̃l2+1 for all 0 ≤ l1 ≤ D1 − 1 and 0 ≤ l2 ≤ D2 − 1,

(6) ∆1 + ∆̃2 − d1 − d̃2 − 1 + δD1 + δ̃D2 = 0 ∆̃3 − d̃3 + δ̃D3 − 1 = 0

d1 = δD1(k1 + 1), k2 + 1 + d̃j = δ̃Dj (k2 + 1) (j = 2, 3)

Moreover, for every 0 ≤ l1 ≤ D1 − 1 and 0 ≤ l2 ≤ D2 − 1, we assume

(7) dl1 > δl1(k1 + 1), d̃l2 > (δ̃l2 − 1)(k2 + 1),

∆l1,l2 > δD1k1 + (δ̃D2 − 1)k2.

Let Q(X), RD1,D2 , RD3 ∈ C[X], and for 0 ≤ l1 ≤ D1 − 1 and 0 ≤ l2 ≤ D2 − 1 we take
Rl1,l2(X) ∈ C[X]. We consider polynomials P1, P2 with coefficients belonging to O(D(0, ε0)),
such that

(8) deg(Q) ≥ deg(Rl1,l2),

for 0 ≤ l1 ≤ D1 − 1 and 0 ≤ l2 ≤ D2 − 1. Moreover, we choose these polynomials satisfying

(9) deg(Q) ≥ deg(Pj), j = 1, 2 Q(im) 6= 0, m ∈ R,

deg(Q) = deg(RD3) = deg(RD1,D2).

More precisely, we assume there exist sectorial annulus ED3,Q and ED1,D2,D3 such that

(10)
RD3(im)

Q(im)
∈ ED3,Q,

RD1,D2(im)

Q(im)
∈ ED1,D2,D3 ,
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for every m ∈ R. In other words, there exist real numbers 0 < rj < Rj and αj < βj , for j = 1, 2,
such that

(11) ED3,Q := {x ∈ C : r1 < |x| < R1, arg(x) ∈ (α1, β1)},
ED1,D2,Q := {x ∈ C : r2 < |x| < R2, arg(x) ∈ (α2, β2)}.

Throughout the whole work, we denote the pairs of variables in bold letters: t := (t1, t2),
T := (T1, T2), τ := (τ1, τ2), etc.

We consider the following nonlinear initial value problem

(12)

(
Q(∂z)∂t2 + ε∆1td1

1 ∂
δD1
t1

ε∆̃2td̃2
2 ∂

δ̃D2
t2

RD1,D2(∂z) + ε∆̃3td̃3
2 ∂

δ̃D3
t2

RD3(∂z)

)
u(t, z, ε)

= (P1(∂z, ε)u(t, z, ε))(P2(∂z, ε)u(t, z, ε)) +
∑

0≤lj≤Dj−1

j=1,2

ε∆l1,l2 t
dl1
1 t

d̃l2
2 ∂

δl1
t1
∂
δ̃l2
t2
Rl1,l2(∂z)u(t, z, ε)

+ f(t, z, ε)

with null initial data u(t1, 0, z, ε) ≡ u(0, t2, z, ε) ≡ 0.

The forcing term f(t, z, ε) is constructed as follows. For n1, n2 ≥ 1, let m 7→ Fn1,n2(m, ε) be
a family of functions belonging to the Banach space E(β,µ) for some β > 0, µ > max(deg(P1) +
1, deg(P2) + 1) and which depend holomorphically on ε ∈ D(0, ε0). We assume there exist
constants K0, T0 > 0 such that

(13) ‖Fn1,n2(m, ε)‖(β,µ) ≤ K0(
1

T0
)n1+n2 ,

for all n1, n2 ≥ 1, and ε ∈ D(0, ε0). We deduce that

F(T , z, ε) =
∑

n1,n2≥1

F−1(m 7→ Fn1,n2(m, ε))(z)Tn1
1 Tn2

2

represents a bounded and holomorphic function on D(0, T0/2)2 × Hβ′ × D(0, ε0) for any 0 <
β′ < β. We define

(14) f(t, z, ε) = F(εt1, εt2, z, ε).

Observe the function f is holomorphic and bounded on D(0, ρ)2 ×Hβ′ ×D(0, ε0) where ρε0 <
T0/2.

We search for solutions of the main problem (12), which are time scaled and expressed as a
Fourier transform with respect to z variable, in the form

u(t, z, ε) = U(εt1, εt2, z, ε) =
1

(2π)1/2

∫ ∞
−∞

U(εt1, εt2,m, ε) exp(izm)dm.

The symbol U(T ,m, ε) satisfies the next equation.
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(15)

(
Q(im)ε∂T2 + ε∆1+∆̃2−d1−d̃2T d1

1 T d̃2
2 εδD1

+δ̃D2∂
δD1
T1

∂
δ̃D2
T2

RD1,D2(im)

+ε∆̃3−d̃3T d̃3
2 εδ̃D3∂

δ̃D3
T2

RD3(im)

)
U(T ,m, ε)

=
1

(2π)1/2

∫ ∞
−∞

(P1(i(m−m1), ε)U(T ,m−m1, ε))(P2(im1, ε)U(T ,m1, ε))dm1

+
∑

0≤lj≤Dj−1

j=1,2

ε∆l1,l2
−dl1−d̃l2+δl1+δ̃l2T

dl1
1 T

d̃l2
2 ∂

δl1
T1
∂
δ̃l2
T2
Rl1,l2(im)U(T ,m, ε)

+ F(z 7→ F(T , z, ε))(m)

Our goal is to provide solutions of (15) in the form of a Laplace transform. Namely, we
search for solutions of the form

(16) U(T ,m, ε) = k1k2

∫
Lγ1

∫
Lγ2

ωdk(u1, u2,m, ε)e
−(

u1
T1

)k1−(
u2
T2

)k2 du2

u2

du1

u1
,

where Lγj = R+e
iγj , for some appropriate direction γj ∈ R, for j = 1, 2, which depend on Tj .

The function ωdk(τ ,m, ε) is constructed in the incoming sections as the fixed point of a map
defined in certain Banach spaces, studied in the forthcoming sections. For j = 1, 2, let Sdj be
infinite sectors with vertex at the origin and bisecting direction dj , such that Lγj ⊆ Sdj . We fix
a positive real number ρ > 0.

In the present section, we depart from a function ωdk(τ ,m, ε) continuous on (D(0, ρ)∪Sd1)×
Sd2 × R×D(0, ε0) \ {0}, holomorphic with respect to (τ , ε) in (D(0, ρ) ∪ Sd1)× Sd2 ×D(0, ε0),
and such that

(17) |ωdk(τ ,m, ε)| ≤ $d(1 + |m|)−µe−β|m|
| τ1ε |

1 + | τ1ε |2k1

| τ2ε |
1 + | τ2ε |2k2

exp(ν1|
τ1

ε
|k1 + ν2|

τ2

ε
|k2)

for all τ ∈ (D(0, ρ) ∪ Sd1)× Sd2 , every m ∈ R and ε ∈ D(0, ε0) \ {0}.
In order to construct the solution, we present a refined form of the problem. For that purpose,

we need some preliminary results. We make use of the following relations, which can be found
in [24], p. 40:

(18) T
δD1

(k1+1)

1 ∂
δD1
T1

= (T k1+1
1 ∂T1)δD1 +

∑
1≤p1≤δD1

−1

AδD1
,p1T

k1(δD1
−p1)

1 (T k1+1
1 ∂T1)p1

= (T k1+1
1 ∂T1)δD1 +AδD1

(T1, ∂T1)

(19) T
δ̃Dj (k2+1)

2 ∂
δ̃Dj
T2

= (T k2+1
2 ∂T2)

δ̃Dj +
∑

1≤pj≤δ̃Dj−1

Ãδ̃Dj ,pj
T
k2(δ̃Dj−pj)
2 (T k2+1

2 ∂T2)pj

= (T k2+1
2 ∂T2)

δ̃Dj + Ãδ̃Dj
(T2, ∂T2)

for some real numbers AδD1
,p1 , p1 = 1, . . . , δD1 − 1 and Ãδ̃Dj ,pj

, pj = 1, . . . , δ̃Dj − 1, for j = 2, 3.

We write AD1 (resp. ÃDj , for j = 2, 3,) in the place of AδD1
(resp. Ãδ̃Dj

) for the sake of

simplicity.
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We divide by ε and multiply by T k2+1
2 at both sides of (15). Under the assumptions displayed

in (6) one may apply (18) and (19) in order to rewrite equation (15). This step is important
to exhibit the equations as an expression where some operators algebraically well-behaved with
respect to Laplace transform appear. The resulting equation is as follows:

(20)(
Q(im)T k2+1

2 ∂T2 + (T k1+1
1 ∂T1)δD1 (T k2+1

2 ∂T2)δ̃D2RD1,D2(im) + (T k2+1
2 ∂T2)δ̃D3RD3(im)

)
U(T ,m, ε)

=
[
−(T k1+1

1 ∂T1)δD1 ÃD2(T2, ∂T2)RD1,D2(im)− (T k2+1
2 ∂T2)δ̃D2AD1(T1, ∂T1)RD1,D2(im)

−AD1(T1, ∂T1)ÃD2(T2, ∂T2)RD1,D2(im)− ÃD3(T2, ∂T2)RD3(im)
]
U(T ,m, ε)

+
T k2+1

2 ε−1

(2π)1/2

∫ ∞
−∞

(P1(i(m−m1), ε)U(T ,m−m1, ε))(P2(im1, ε)U(T ,m1, ε))dm1

+
∑

0≤lj≤Dj−1

j=1,2

ε∆l1,l2
−dl1−d̃l2+δl1+δ̃l2−1T

dl1
1 T

d̃l2
2 ∂

δl1
T1
∂
δ̃l2
T2
Rl1,l2(im)U(T ,m, ε)

+ T k2+1
2 ε−1F(z 7→ F(T , z, ε))(m).

The following result allows to establish a one-to-one correspondence between solutions of
equation (20), and an auxiliary equation in the Borel plane, (23). The last equation will be
presented afterwards, in this same section.

Lemma 1 Let U(T ,m, ε) be the function constructed in (16). Then, the following statements
hold:

T
kj+1
j ∂TjU(T ,m, ε) = k1k2

∫
Lγ1

∫
Lγ2

(kju
kj
j )ωdk(u,m, ε)e

−
(
u1
T1

)k1−
(
u2
T2

)k2 du2

u2

du1

u1
, j = 1, 2.

Tm1
1 U(T ,m, ε) = k1k2

∫
Lγ1

∫
Lγ2

 uk1
1

Γ
(
m1
k1

) ∫ u
k1
1

0
(uk1

1 − s1)
m1
k1
−1
ωdk(s

1/k1

1 , u2,m, ε)
ds1

s1


× e−

(
u1
T1

)k1−
(
u2
T2

)k2 du2

u2

du1

u1
, m1 ∈ N.

Tm2
2 U(T ,m, ε) = k1k2

∫
Lγ1

∫
Lγ2

 uk2
2

Γ
(
m2
k2

) ∫ u
k2
2

0
(uk2

2 − s2)
m2
k2
−1
ωdk(u1, s

1/k2

2 ,m, ε)
ds2

s2


× e−

(
u1
T1

)k1−
(
u2
T2

)k2 du2

u2

du1

u1
, m2 ∈ N.

∫ ∞
−∞

U(T ,m−m1, ε)U(T ,m1, ε)dm1

= k1k2

∫
Lγ1

∫
Lγ2

(
uk1

1 u
k2
2

∫ ∞
−∞

∫ u
k1
1

0

∫ u
k2
2

0
ωdk((uk1

1 − s1)
1
k1 , (uk2

2 − s2)
1
k2 ,m−m1, ε)

ωdk(s
1
k1
1 , s

1
k2
2 ,m1, ε)

1

(uk1
1 − s1)s1

1

(uk2
2 − s2)s2

ds1ds2

)
e
−
(
u1
T1

)k1−
(
u2
T2

)k2 du2

u2

du1

u1



11

Proof
The first statement is a direct application of the derivation under the integral symbol. The

second and third statements are equivalent, so we only give details for the second one.
In order to give proof for the second statement, we first apply Fubini theorem at the inner

and outer integrals. That expression can be rewritten in the next form:

A :=

∫
Lk1γ1

k1k2

∫
Lγ2

∫
L
s
1/k1
1 ,γ1

uk1−1
1

Γ
(
m1
k1

)(uk1
1 − s1)

m1
k1
−1
e
−
(
u1
T1

)k1 du1

u1


× ωdk(s

1/k1

1 , u2,m, ε)e
−
(
u2
T2

)k2 du2

u2

ds1

s1
,

where Lk1γ1 := {reik1γ1 : r ≥ 0} and L
s
1/k1
1 ,γ1

= {reiγ1 : r ≥ |s1|1/k1}. We proceed by applying

two consecutive deformation paths at the inner integral in the previous expression: first, we
apply h1 = uk1

1 , and then h1 − s1 = h11. We arrive at

A = k1k2

∫
Lk1γ1

1

Γ
(
m1
k1

)hm1
k1
−1

11 e
− h11

T
k1
1 dh11

×
∫
Lk1γ1

∫
Lγ2

ωdk(s
1/k1

1 , u2,m, ε)e
− s1

T
k1
1

−
(
u2
T2

)k2

du2

u2

ds1

s1

The deformation path ũ1 = s
1/k1

1 followed by h12 = h11

T
k1
1

yields

A = U(T ,m, ε)
1

Γ
(
m1
k1

)Tm1
1

∫
Lk1γ1

−k1arg(T1)
h
m1
k1
−1

12 e−h12dh12.

A deformation path and the definition of Gamma function allow us to conclude that A =
U(T ,m, ε).

The proof of the third formula follows the same lines of arguments, involving Fubini theorem
and it is omitted for the sake of brevity. 2

Remark: Lemma 1 provides the equivalence of existence of solutions of different equation
(20) and (23), related by Laplace transformation.

We define the operators
(21)

AδD1
ωk(τ ,m, ε) =

∑
1≤p1≤δD1

−1

AδD1
,p1τ

k1
1

Γ(δD1 − p1)

∫ τ
k1
1

0
(τk1

1 − s1)δD1
−p1−1k1s

p1
1 ωk(s

1/k1

1 , τ2,m, ε)
ds1

s1
,

Ãδ̃Djωk(τ ,m, ε) =
∑

1≤pj≤δ̃Dj−1

Ãδ̃Dj ,pj
τk2

2

Γ(δ̃Dj − pj)

∫ τ
k2
2

0
(τk2

2 − s2)
δ̃Dj−pj−1

k2s
pj
2 ωk(τ1, s

1/k2

2 ,m, ε)
ds2

s2
,

for j = 2, 3. Observe that they turn out to be the mk1 (resp. mk2) Borel transform of the
operator AD1(T1, ∂T1) (resp. ÃDj (T2, ∂T2), for j = 2, 3) (see Section 5.1 for more details on
this).
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In view of the assumption,described in (7), we define the natural numbers dl1,k1 and dl2,k2

by

(22) dl1 = δl1(k1 + 1) + dl1,k1 , d̃l2 = (δ̃l2 − 1)(k2 + 1) + dl2,k2 ,

for all 0 ≤ l1 ≤ D1 − 1 and 0 ≤ l2 ≤ D2 − 1.
Taking into account Lemma 1, we see that U(T ,m, ε) satisfies (20), iff ωdk(τ ,m, ε) is a solution

of the next equation.

(23)
(
Q(im) +RD1,D2(im)(k1τ

k1
1 )δD1 (k2τ

k2
2 )δ̃D2

−1 +RD3(im)(k2τ
k2
2 )δ̃D3

−1
)
ω(τ ,m, ε)

= −(k1τ
k1
1 )δD1

ÃD2(τ2)

k2τ
k2
2

RD1,D2(im)ω(τ ,m, ε)− (k2τ
k2
2 )δ̃D2

−1AD1(τ1)RD1,D2(im)ω(τ ,m, ε)

−AD1(τ1)
ÃD2(τ2)

k2τ
k2
2

RD1,D2(im)ω(τ ,m, ε)− ÃD3(τ2)

k2τ
k2
2

RD3(im)ω(τ ,m, ε)

+
ε−1

(2π)
1
2

τk1
1

k2Γ
(

1 + 1
k2

) ∫ τ
k2
2

0
(τk2

2 − s2)
1
k2

∫ ∞
−∞

∫ τ
k1
1

0

∫ s2

0
P1(i(m−m1), ε)

× ω((τk1
1 − s1)

1
k1 , (s2 − x2)

1
k2 ,m−m1, ε)P2(im1, ε)ω(s

1
k1
1 , x

1
k2
2 ,m1, ε)

dx2ds1dm1ds2

(τk1
1 − s1)s1(s2 − x2)x2

+
∑

0≤lj≤Dj−1

j=1,2

ε∆l1,l2
−dl1−d̃l2+δl1+δ̃l2−1Rl1,l2(im)

τk1
1

k2Γ
(
dl1,k1
k1

)
Γ
(
dl2,k2
k2

)
×
∫ τ

k2
2

0

∫ τ
k1
1

0
(τk1

1 − s1)
dl1,k1
k1
−1

(τk2
2 − s2)

dl2,k2
k2
−1
k
δl1
1 s

δl1
1 k

δ̃l2
2 s

δ̃l2
2 ω(s

1
k1
1 , s

1
k2
2 ,m, ε)

ds1

s1

ds2

s2

+
ε−1

k2Γ
(

1 + 1
k2

) ∫ τ
k2
2

0
(τk2

2 − s2)
1
k2 ψk(τ1, s

1
k2
2 ,m, ε)

ds2

s2
,

where ψk is the formal mk1-Borel transform with respect to T1 and the formal mk2-Borel trans-
form with respect to T2 of F (T ,m, ε), i.e.

ψk(τ ,m, ε) =
∑

n1,n2≥1

Fn1,n2(m, ε)
τn1

1

Γ(n1
k1

)

τn2
2

Γ(n2
k2

)
.

Observe that ψk is an entire function with respect to τ . Moreover, regarding the construction
of ψk and (13), one has

‖ψk(τ ,m, ε)‖(ν,β,µ,k,ε) ≤
∑

n1,n2≥1

‖Fn1,n2(m, ε)‖(β,µ)

× ( sup
τ∈(D̄(0,ρ)∪Sd1 )×Sd2 )

1 + | τ1ε |
2k1

| τ1ε |
1 + | τ2ε |

2k2

| τ2ε |
exp(−ν1|

τ1

ε
|k1 − ν2|

τ2

ε
|k2)
|τ1|n1 |τ2|n2

Γ(n1
k1

)Γ(n2
k2

)
)

for all ε ∈ D(0, ε0)\{0}, any unbounded sectors Sd1 and Sd2 centered at 0 and bisecting directions
d1 ∈ R and d2 ∈ R, respectively, for some ν = (ν1, ν2) ∈ (0,+∞)2.

Remark: According to classical estimates and Stirling formula, we observe that ψk(τ ,m, ε) ∈
Fd(ν,β,µ,k,ε). See Definition 2.
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We write

(24) Pm(τ ) = Q(im) +RD1,D2(im)(k1τ
k1
1 )δD1 (k2τ

k2
2 )δ̃D2

−1 +RD3(im)(k2τ
k2
2 )δ̃D3

−1.

3 Construction of the solution for a convolution equation

The main aim in this section is to provide with a solution of (23) which belongs to certain
Banach space of functions satisfying bounds in the form (17). Such function is obtained as a
fixed point of an operator acting on Banach spaces, introduced and studied in the incoming
section.

3.1 Banach spaces of exponencial growth

We consider the open disc D(0, ρ) for some ρ > 0. Let Sdj be open unbounded sectors with
bisecting directions dj ∈ R, for j = 1, 2, and let E be an open sector with finite radius rE , all
with vertex at 0 in C.

The following norm is inspired from that considered by the authors in [12]. It is an adecquate
modification of that described in [13], adapted to the framework of two complex time variables.

Definition 2 Let ν1, ν2, β, µ > 0 and ρ > 0 be positive real numbers. Let k1, k2 ≥ 1 be integer
numbers and let ε ∈ E. We put ν = (ν1, ν2), k = (k1, k2), d = (d1, d2), and denote Fd(ν,β,µ,k,ε)
the vector space of continuous functions (τ ,m) 7→ h(τ ,m) on the set (D̄(0, ρ) ∪ Sd1)× Sd2 ×R,
which are holomorphic with respect to τ on (D(0, ρ) ∪ Sd1)× Sd2 and such that

(25) ||h(τ ,m)||(ν,β,µ,k,ε)

= sup
τ∈(D̄(0,ρ)∪Sd1 )×Sd2

m∈R

(1 + |m|)µ
1 + | τ1ε |

2k1

| τ1ε |
1 + | τ2ε |

2k2

| τ2ε |
exp(β|m| − ν1|

τ1

ε
|k1 − ν2|

τ2

ε
|k2)|h(τ,m)|

is finite. The normed space (Fd(ν,β,µ,k,ε), ||.||(ν,β,µ,k,ε)) is a Banach space.

We fix ε ∈ E , µ, β,> 0 in the whole subsection. We also choose ν = (ν1, ν2) ∈ (0,∞)2,
d = (d1, d2) ∈ R2, and k = (k1, k2) ∈ N2.

We first state some technical results. The first one follows directly from the definition of the
norm of the Banach space.

Lemma 2 Let (τ ,m) 7→ a(τ ,m) be a bounded continuous function on (D̄(0, ρ)∪Sd1)×Sd2×R,
holomorphic with respect to τ on (D(0, ρ) ∪ Sd1)× Sd2. Then,

||a(τ ,m)h(τ ,m)||(ν,β,µ,k,ε) ≤

(
sup

τ∈(D̄(0,ρ)∪Sd1 )×Sd2 ,m∈R
|a(τ ,m)|

)
||h(τ ,m)||(ν,β,µ,k,ε)

for all h(τ ,m) ∈ Fd(ν,β,µ,k,ε).

Lemma 3 Let σ = (σ1, σ2) ∈ (0,∞)2, and assume that aσ,k is a holomorphic function of
(D(0, ρ) ∪ Sd1)× Sd2, continuous up to (D(0, ρ) ∪ Sd1)× Sd2, such that

|aσ,k(τ )| ≤ 1

(1 + |τ1|k1)σ1(1 + |τ2|k2)σ2
,

for every τ ∈ (D(0, ρ) ∪ Sd1)× Sd2. We take 0 ≤ σ̃j ≤ σj for j = 1, 2. Assume that one of the
following hold:



14

• σ3 ≥ 0 and σ3 + σ4 ≤ σ2 − σ̃2,

• σ3 = ξ
k2
− 1 and σ3 + 1

k2
≤ σ2 − σ̃2,

where ξ > 1. Then, there exists C1 > 0, depending on k, ν2, σ̃j , σ`, j = 1, 2, ` = 1, . . . , 4, such
that∥∥∥∥∥aσ,k(τ )τ σ̃1k1

1 τ σ̃2k2
2

∫ τ
k2
2

0
(τk2

2 − s2)σ3sσ4
2 f(τ1, s

1
k2
2 ,m)ds2

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C1|ε|k2(1+σ3+σ4−σ2+σ̃2) ‖f(τ ,m)‖(ν,β,µ,k,ε) ,

for every f ∈ Fd(ν,β,µ,k,ε).

Proof There exists C1.1 > 0 only depending on σ1, σ2, k1, k2 such that

|aσ,k(τ )τ σ̃1k1
1 τ σ̃2k2

2 | ≤ C1.1

(1 + |τ2|k2)σ2−σ̃2
,

for every τ ∈ (D(0, ρ) ∪ Sd1)× Sd2 . We apply the definition of the norm of Fd(ν,β,µ,k,ε) to arrive
at ∥∥∥∥∥aσ,k(τ )τ σ̃1k1

1 τ σ̃2k2
2

∫ τ
k2
2

0
(τk2

2 − s2)σ3sσ4
2 f(τ1, s

1
k2
2 ,m)ds2

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C1.1 ‖f(τ ,m)‖(ν,β,µ,k,ε) sup
τ2∈Sd2

1 +
∣∣ τ2
ε

∣∣2k2∣∣ τ2
ε

∣∣ exp

(
−ν2

∣∣∣τ2

ε

∣∣∣k2
)

1

(1 + |τ2|k2)σ2−σ̃2

×
∫ |τ2|k2

0
(|τ2|k2 − h)σ3hσ4

h
1
k2

|ε|

1 + h2

|ε|2k2

exp

(
ν2

h

|ε|k2

)
dh.

The proof concludes with the steps providing a bound for C2(ε) in the proof of Proposition 2
in [13]. 2

An analogous result holds by interchanging the role of the time variables.

Lemma 4 Under the same hypotheses as in Lemma 3, assume that

• σ3 ≥ 0 and σ3 + σ4 ≤ σ1 − σ̃1,

• σ3 = ξ
k1
− 1 and σ3 + 1

k1
≤ σ1 − σ̃1,

where ξ > 1. Then, there exists C1 > 0, depending on k, ν1, σ̃j , σ`, for j = 1, 2 and ` = 1 . . . , 4,
such that∥∥∥∥∥aσ,k(τ )τ σ̃1k1

1 τ σ̃2k2
2

∫ τ
k1
1

0
(τk1

1 − s1)σ3sσ4
1 f(s

1
k1
1 , τ2,m)ds1

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C1|ε|k1(1+σ3+σ4−σ1+σ̃1) ‖f(τ ,m)‖(ν,β,µ,k,ε) ,

for every f ∈ Fd(ν,β,µ,k,ε).
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Grouping the integral operators in Lemma 3 and Lemma 4 the following result is attained.

Lemma 5 Let σ ∈ (0,∞)2. Assume that aσ,k is given as in Lemma 3. Let 0 ≤ σ̃j ≤ σj for
j = 1, 2, and σ31, σ32, σ41, σ42 be real numbers such that

• σ3j ≥ 0 and σ3j + σ4j ≤ σj − σ̃j,

• σ3j =
ξj
kj
− 1 and σ3j + 1

kj
≤ σj − σ̃j,

for j = 1, 2 and where ξj > 1. Then, there exists C1 > 0 depending on k,ν, σj , σ̃j , σ3j , σ4j for
j = 1, 2, such that∥∥∥∥∥aσ,k(τ )τ σ̃1k1

1 τ σ̃2k2
2

∫ τ
k1
1

0

∫ τ
k2
2

0
(τk1

1 − s1)σ31sσ41
1 (τk2

2 − s2)σ32sσ42
2 f(s

1
k1
1 , s

1
k2
2 ,m)ds2ds1

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C2
1 |ε|k1(1+σ31+σ41−σ1+σ̃1)+k2(1+σ32+σ42−σ2+σ̃2) ‖f(τ ,m)‖(ν,β,µ,k,ε) ,

for every f ∈ Fd(ν,β,µ,k,ε).

The proof of Proposition 1 in [13] can be adapted with minor modifications to the Banach
spaces under study.

Lemma 6 Let γ2 > 0. Assume that 1/k2 ≤ γ2 ≤ 1. Then, there exists C2 > 0 (depending on
ν,k, γ2) such that∥∥∥∥∥

∫ τ
k2
2

0
(τk2

2 − s2)γ2f(τ1, s
1
k2
2 ,m)

ds2

s2

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C2|ε|k2γ2 ‖f(τ ,m)‖(ν,β,µ,k,ε) ,

for every f(τ ,m) ∈ Fd(ν,β,µ,k,ε).

The symmetric statement of Lemma 6, obtained by interchanging the role of τ2 and τ1 is
derived straightforward from Lemma 6. We finally state the following auxiliary lemma.

Lemma 7 Let σ and aσ,k be as in Lemma 3. Assume that P1, P2, R ∈ C[X] such that

deg(R) ≥ deg(P1), deg(R) ≥ deg(P2), R(im) 6= 0

for every m ∈ R. Assume that µ > max{deg(P1)+1, deg(P2)+1}. We take σ̃j ≤ σj for j = 1, 2.
Then, there exists a constant C3 > 0 (depending on Q1, Q2, R, µ,k,ν) such that∥∥∥∥∥aσ,k(τ )

R(im)
τ σ̃1k1

1 τ σ̃2k2
2

∫ τ
k2
2

0
(τk2

2 − s2)
1
k2

∫ ∞
−∞

∫ τ
k1
1

0

∫ s2

0
P1(i(m−m1))

f((τk1
1 − s1)

1
k1 , (sk1

2 − x2)
1
k2 ,m−m1)P2(im1)g(s

1
k1
1 , x

1
k2
2 ,m1)

dx2ds1dm1ds2

(τk1
1 − s1)s1(s2 − x2)x2

∥∥∥∥∥
≤ C3|ε| ‖f(τ ,m)‖(ν,β,µ,k,ε) ‖g(τ ,m)‖(ν,β,µ,k,ε) ,

for every f(τ ,m), g(τ ,m) ∈ F d(ν,β,µ,k,ε).
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Proof We follow analogous estimates as in the proof of Proposition 3 in [13] to arrive at∥∥∥∥∥aσ,k(τ )

R(im)
τ σ̃1k1

1 τ σ̃2k2
2

∫ τ
k2
2

0
(τk2

2 − s2)
1
k2

∫ ∞
−∞

∫ τ
k1
1

0

∫ s2

0
P1(i(m−m1))

×f((τk1
1 − s1)

1
k1 , (sk1

2 − x2)
1
k2 ,m−m1)P2(im1)g(s

1
k1
1 , x

1
k2
2 ,m1)

dx2ds1dm1ds2

(τk1
1 − s1)s1(s2 − x2)x2

∥∥∥∥∥
≤

 sup
τ1∈(D(0,ρ1)∪Sd1 )

|τ1|σ̃1k1

(1 + |τ1|k1)σ1

1 +
∣∣ τ1
ε

∣∣2k1∣∣ τ1
ε

∣∣ ∫ |τ1|k1

0

(|τ1|k1−h1)
1
k1

|ε|

1 + (|τ1|k1−h1)2

|ε|2k1

h

1
k1
1
|ε|

1 +
h2

1

|ε|2k1

dh1

(|τ1|k1 − h1)h1


×

(
sup
τ2∈Sd2

|τ2|σ̃2k2

(1 + |τ2|k2)σ2

1 +
∣∣ τ2
ε

∣∣2k2∣∣ τ2
ε

∣∣ exp

(
−ν2

∣∣∣τ2

ε

∣∣∣k2
)∫ |τ2|k2

0
(|τ2|k2 − h2)

1
k2

∫ |s2|
0

(h2−x2)
1
k2

|ε|

1 + (h2−x2)2

|ε|2k2

exp

(
ν2

h2

|ε|k2

) x

1
k2
2
|ε|

1 +
x2

2

|ε|2k2

dx2dh2

(h2 − x2)x2

 ‖f(τ ,m)‖(ν,β,µ,k,ε) ‖g(τ ,m)‖(ν,β,µ,k,ε) .

On the one hand, the expression |τ2|σ̃2k2/(1 + |τ2|k2)σ2 is bounded. Moreover,

A2 := sup
τ2∈Sd2

1 +
∣∣ τ2
ε

∣∣2k2∣∣ τ2
ε

∣∣ exp

(
−ν2

∣∣∣τ2

ε

∣∣∣k2
)∫ |τ2|k2

0
(|τ2|k2 − h2)

1
k2

∫ |s2|
0

(h2−x2)
1
k2

|ε|

1 + (h2−x2)2

|ε|2k2

exp

(
ν2

h2

|ε|k2

) x

1
k2
2
|ε|

1 +
x2

2

|ε|2k2

dx2dh2

(h2 − x2)x2

can be estimated following the same steps as in the study of upper bounds for C3.2 in formula
(35) of [13]. We get the existence of C2.1 > 0 such that A2 ≤ C3.2|ε|. It only rests to prove that
A1 is upper bounded, where

A1 := sup
τ1∈(D(0,ρ)∪Sd1 )

|τ1|σ̃1k1

(1 + |τ1|k1)σ1

1 +
∣∣ τ1
ε

∣∣2k1∣∣ τ1
ε

∣∣ ∫ |τ1|k1

0

(|τ1|k1−h1)
1
k1

|ε|

1 + (|τ1|k1−h1)2

|ε|2k1

h

1
k1
1
|ε|

1 +
h2

1

|ε|2k1

dh1

(|τ1|k1 − h1)h1

= sup
τ1∈(D(0,ρ)∪Sd1 )

Ã1.

We distinguish two cases. First, we assume that |τ1| ≥ C, for some C > 0. Then, it holds that

|τ1|σ̃1k1

(1 + |τ1|k1)σ1

is upper bounded, and by putting x = |τ1/ε| one can estimate Ã1 from above by

sup
x≥C̃

1 + x2

x1/k1

∫ ∞
0

dh

(1 + (x− h)2)(1 + h2)
.
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for some C̃ > 0. We apply Corollary 4.9 in [7] to conclude that

Ã1 ≤ sup
x≥C̃

1 + x2

x1/k1

j1
x2 + 1

,

for some j1 > 0. The previous expression is upper bounded by a positive constant. Second, in
the case that |τ1| < C, we have (1 + |τ1|k1)σ1 ≥ 1. We put x = (|τ1|/|ε|)k1 to get that

sup
τ1∈(D(0,ρ)∪Sd1 ),|τ1|≤C

Ã1 ≤ sup
x≥0

x
1 + x2

x1/k1

∫ x

0

(x− h1)
1
k1

1 + (x− h1)2

h
1
k1
1

1 + h2
1

dh1

h1(x− h1)
.

A partial fraction decomposition yields

∫ x

0

(x− h1)
1
k1

1 + (x− h1)2

h
1
k1
1

1 + h2
1

dh1

h1(x− h1)
≤ jk

x
1− 2

k1 (x2 + 4)
, x ≥ 0,

for some jk > 0, valid for k ≥ 2. This concludes the existence of a positive upper bound for A1,
and the proof follows from this point. 2

3.1.1 Domain of existence for the solution

The purpose of this section is twofold. On the one hand, we motivate the fact that any actual
holomorphic solution ω(τ ,m, ε) of (23) is not well defined on sets of the form Sd1×(Sd2∪D(0, ρ2)),
for d1, d2 ∈ R and any choice of ρ2 > 0.This is due to a small divisor phenomenon observed,
which does not allow to proceed with a summability procedure. On the second hand, we aim to
display geometric conditions on the natural domains in which the solution is defined.

In order to motivate that the natural domains of definition of a solution cannot be of the
form Sd1 × (Sd2 ∪ D(0, ρ2)), for d1, d2 ∈ R and ρ2 > 0, let ρ2 > 0. We rewrite the equation
Pm(τ ) = 0 (see (24) for the definition of Pm) in the form

(26) τ
k2(δ̃2−1)
2 =

−Q(im)

RD1,D2(im)k
δD1
1 k

δ̃D2−1

2 τ
k1δD1
1 +RD3(im)k

δ̃D3
−1

2 τ
k2(δ̃D3

−δ̃D2
)

2

.

We put T2 = τ
k2(δ̃D2

−1)

2 , and write (26) in the form Ψ(T2) = T2, where

(27) Ψ(T2) := −Q(im)

RD1,D2(im)k
δD1
1 k

δ̃D2−1

2 τ
k1δD1
1 +RD3(im)k

δ̃D3
−1

2 T

δ̃D3
−δ̃D2

δ̃D2
−1

2

−1

.

Lemma 8 Let d1, d2 ∈ R. Under the assumption that
δ̃D3
−δ̃D2

δ̃D2
−1
∈ N \ {0}, there exists τ1 ∈ Sd1

such that the following statements hold:

1. Ψ is a map from E := D(0,
(ρ2

2

)k2(δ̃D2
−1)

) into itself.

2. Ψ : E → E is a shrinking map.
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Proof Let τ1 ∈ Sd1 with large enough modulus in such a way that

(28)

∣∣∣∣∣∣∣∣RD1,D2(im)k
δD1
1 k

δ̃D2−1

2 +RD3(im)k
δ̃D3
−1

2

T

δ̃D3
−δ̃D2

δ̃D2
−1

2

τ
k1δD1
1

∣∣∣∣∣∣∣∣ ≥ |RD3(im)|,

for every m ∈ R and all T2 ∈ Ŝd2 ∪D(0, ρ̂2). Here, Ŝd2 stand for the infinite sector defined by

Ŝd2 := {T2 ∈ C? : τ
k2(δ̃D2

−1)

2 ∈ Sd2}, and ρ̂2 = ρ
k2(δ̃2−1)
2 . The assumption (10) on the geometry

of the problem and (28) yield

|Ψ(T2)| ≤ |Q(im)|
|τ1|k1δD1

∣∣∣∣∣∣∣∣RD1,D2(im)k
δD1
1 k

δ̃D2−1

2 +RD3(im)k
δ̃D3
−1

2

T

δ̃D3
−δ̃D2

δ̃D2
−1

2

τ
k1δD1
1

∣∣∣∣∣∣∣∣
−1

≤ |Q(im)|
|τ1|k2δD1 |RD3(im)|

≤
(ρ2

2

)k2(δ̃D2
−1)

,

for large enough |τ1|. As a result, we get the fist statement in the result. We have

|Ψ′(z)| ≤
|RD3(im)|kδ̃D3

−1

2
δ̃D3
−δ̃D2

δ̃D2
−1

(ρ2

2

)k2(δ̃D2
−1)

δ̃D3
−δ̃D2

δ̃D2
−1
−1
|Q(im)|

(|τ1|k1δD1 |RD3(im)|)2

≤ kδ̃D3
−1

2

δ̃D3 − δ̃D2

δ̃D2 − 1

(ρ2

2

)k2(δ̃D3
−2δ̃D2

+1)
∣∣∣∣ Q(im)

RD3(im)

∣∣∣∣ 1

|τ1|2k1δD1
≤ 1

2
,

for every z ∈ D(0,
(ρ2

2

)k2(δ̃D2
−1)

), m ∈ R, and large enough |τ1|. We get that

|Ψ(T2)−Ψ(T ′2)| ≤ sup
z∈[T2,T ′2]

|Ψ′(z)||T2 − T ′2| ≤
1

2
|T2 − T ′2|,

for every T2, T
′
2 ∈ D(0,

(ρ2

2

)k2(δ̃D2
−1)

. The application of the mean value theorem entails the
second statement of the result. 2

As a consequence of Lemma 8, we deduce that Ψ has a unique fixed point in E, hence, there
exists a unique solution of Ψ(T2) = T2 for T2 ∈ E, say T0. The solutions of (26) are the solutions

of τ
k2(δ̃D2

−1

2 = T0. As a matter of fact, the k2(δ̃D2 − 1) roots of T0 belong the disc D(0, ρ2

2 ).

Remark: Observe that, in the case that δ̃D2 = δ̃D3 , the equation Ψ(T2) = T2 can be solved
directly in terms of τ1. In this case, the k2(δ̃D2 − 1) roots of Pm(τ ) = 0 lay on D(0, ρ2

2 ), and we
can not define ω(τ ,m, ε) in any set of the form Sd1 × (Sd2 ∪D(0, ρ2)).

In the next paragraphs we display geometric conditions on the problem, which allow us to
attain lower estimates on Pm(τ ), defined in (24). On the way, the choice of directions d1 and d2

is made accordingly with the geometry of the problem.
We write

Pm(τ )

Q(im)
= 1 + τ

k2(δ̃D2
−1)

2

(
RD1,D2(im)

Q(im)
k
δD1
1 k

δ̃D2
−1

2 τ
k1δD1
1 +

RD3(im)

Q(im)
k
δ̃D3
−1

2 τ
k2(δ̃D3

−δ̃D2
)

2

)
.

We distinguish different cases.
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1. In case that τ1 ∈ D(0, ρ1), for some small enough ρ1 > 0.

1.1. If τ2 ∈ D(0, ρ2), for small enough ρ2 > 0. Regarding (10), there exist r1
D1,D2,Q

, r1
D3,Q

>
0 such that

τ
k2(δ̃D2

−1)

2

(
RD1,D2(im)

Q(im)
k
δD1
1 k

δ̃D2
−1

2 τ
k1δD1
1 +

RD3(im)

Q(im)
k
δ̃D3
−1

2 τ
k2(δ̃D3

−δ̃D2
)

2

)
≤ ρk2(δ̃D2

−1)

2

(
r1
D1,D2,Qk

δD1
1 k

δ̃D2
−1

2 ρ
k1δD1
1 + r1

D3,Qk
δ̃D3
−1

2 ρ
k2(δ̃D3

−δ̃D2
)

2

)
≤ 1

4

for every m ∈ R, every τ1 ∈ D(0, ρ1), and τ2 ∈ D(0, ρ2). We conclude that

(29)

∣∣∣∣Pm(τ )

Q(im)

∣∣∣∣ ≥ C1,

for some positive constant C1, common for all m ∈ R, τ1 ∈ D(0, ρ1), and τ2 ∈ D(0, ρ2).

1.2. Assume that τ2 ∈ Sd2 , with |τ2| ≥ ρ0, for some fixed ρ0 > 0. We write

RD1,D2(im)

Q(im)
k
δD1
1 k

δ̃D2
−1

2 τ
k1δD1
1 +

RD3(im)

Q(im)
k
δ̃D3
−1

2 τ
k2(δ̃D3

−δ̃D2
)

2

=
RD3(im)

Q(im)
k
δ̃D3
−1

2 τ
k2(δ̃D3

−δ̃D2
)

2 (1 +A(m, τ )),

where

A(m, τ ) :=
RD1,D2(im)

RD3(im)

k
δD1
1 k

δ̃D2
−1

2 τ
k1δD1
1

k
δ̃D3
−1

1 τ
k2(δ̃D3

−δ̃D2
)

2

.

From the assumptions made in (10), we get that

|A(m, τ )| ≤ r1
D1,D2,D3

k
δD1
1 k

δ̃D2
−1

2

k
δ̃D3
−1

2

ρ
k1δD1
1

ρ
k2(δ̃D3

−δ̃D2
0

,

for some r1
D1,D2,D3

> 0. Taking small enough ρ1 > 0, we can write

1 +A(m, τ ) = ρm,τ e
iθm,τ ,

with ρm,τ close to 1 and θm,τ close to 0, uniformly for every m ∈ R and all τ2 ∈ Sd2 , with
|τ2| > ρ0 and τ1 ∈ D(0, ρ1).

Therefore, we have

Pm(τ )

Q(im)
= 1 + k

δ̃D3
−1

2

RD3(im)

Q(im)
τ
k2(δ̃D3

−1)

2 ρm,τ e
iθm,τ .

Let τ2,k be the roots satisfying

τ
k2(δ̃D3

−1)

2,k =
−1

k
δ̃D3
−1

2 ρm,τ

Q(im)

RD3(im)
e−iθm,τ ,
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for k = 0, . . . , k2(δ̃D3 − 1) − 1. We select the sector Sd2 in such a way that if τ2 ∈ Sd2 , then it
can be expressed as τ2 = ρeiθτ2,k for some fixed k, some θ close to 0, θ 6= 0, and any ρ > 0. We
get

Pm(τ )

Q(im)
= 1− ρk2(δ̃D3

−1)eiθk2(δ̃D3
−1) = ρk2(δ̃D3

−1)

(
−eiθk2(δ̃D3

−1) +
1

ρk2(δ̃D3
−1)

)
.

Now, there exists C1 > 0 such that∣∣∣∣∣−eiθk2(δ̃D3
−1) +

1

ρk2(δ̃D3
−1)

∣∣∣∣∣ ≥ C1

for every ρ ≥ 0. By construction, we also have ρk2(δ̃D3
−1) = |τ2|k2(δ̃D3

−1)/|τ2,k|k2(δ̃D3
−1). We

deduce the existence of C2 > 0 such that ρk2(δ̃D3
−1) ≥ C2|τ2|k2(δ̃D3

−1).
As a result, we see that

(30)

∣∣∣∣Pm(τ )

Q(im)

∣∣∣∣ ≥ C1C2|τ2|k2(δ̃D3
−1),

for every τ2 ∈ Sd2 with |τ2| ≥ ρ0 and τ1 ∈ D(0, ρ1), for some small enough ρ1 > 0.

2. Assume that τ1 ∈ Sd1 with |τ1| ≥ ρ1 for some fixed ρ1 > 0, and τ2 ∈ Sd2 .

We select Sd1 in such a way that for τ1 ∈ Sd1 one can write

τ1 = ξ1e
iθ1τ

k2(δ̃d3
−δ̃D2

)

k1δD1
2

(
RD3(im)

RD1,D2(im)

) 1
k1δD1

,

(here, we have chosen any particular 1/k1δD1 root), for some ξ1 > 0 and θ1 close to 0, when
τ2 ∈ Sd2 . Since |τ1| ≥ ρ1, we have that ξ1 > ν1 > 0 for some fixed ν1 > 0.

Remark: This factorization is a particular case of a so-called blow up in the desingular-
ization procedure. We refer to the excellent textbook of Y. Ilyashenko and S. Yakovenko [11],
Chapter 1, Section 8, for an introduction to the geometric aspects.

We write

Pm(τ )

Q(im)
= 1 + τ

k2(δ̃D3
−1)

2 ξ
k1δD1
1

RD3(im)

Q(im)

kδD1
1 k

δ̃D2
−1

2 eiθ1k1δD1 +
k
δ̃D3
−1

2

ξ
k1δD1
1

 .

Again, taking into account (10) one can select a sector Sd2 which additionally satisfies∣∣∣∣∣∣ 1

τ
k2(δ̃D3

−1)

2 ξ
k1δD1
1

+
RD3(im)

Q(im)
(k
δD1
1 k

δ̃D2
−1

2 eiθ1k1δD1 +
k
δ̃D3
−1

2

ξ
k1δD1
1

)

∣∣∣∣∣∣ ≥ C > 0,

for some C > 0, valid for every τ2 ∈ Sd2 , and ξ1 > ν1 > 0. As a result, we get

(31)

∣∣∣∣Pm(τ )

Q(im)

∣∣∣∣ ≥ C|ξ1|k1δD1 |τ2|k2(δ̃D3
−1)

= C|τ1|k1δD1 |τ2|k2(δ̃D2
−1)

∣∣∣∣RD1,D2(im)

RD3(im)

∣∣∣∣ ≥ C̃|τ1|k1δD1 |τ2|k2(δ̃D2
−1),

for some C̃ > 0 and all m ∈ R.
As a summary, we have achieved the following result.
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Proposition 2 There exist d1, d2 ∈ R and ρ1 > 0 such that for every m ∈ R and all τ1 ∈
D(0, ρ1) ∪ Sd1, τ2 ∈ Sd2 one has

(32)

∣∣∣∣Pm(τ )

Q(im)

∣∣∣∣ ≥ C(1 + |τ1|k1)δD1f(τ ),

for some C > 0, and where f(τ ) is defined by

f(τ ) =

{
(1 + |τ2|k2)δ̃D3

−1 if |τ1| ≤ ρ1

(1 + |τ2|k2)δ̃D2
−1 if |τ1| > ρ1.

Remark: Without loss of generality, we may assume that ρ1 ≤ ρ, where ρ > 0 is the radius
of the disc of holomorphy with respect to the first time variable appearing in Section 2.2.

3.2 Fixed point of a convolution operator in Banach spaces

The main purpose of this section is to obtain the existence of a fixed point on certain operator
defined in a Banach space. It will allow us to construct the analytic solution of the main problem
under study, (12).

For every ε ∈ D(0, ε0) \ {0}, we consider the operator Hε defined by

(33) Hε(ω(τ ,m))

=
−(k1τ

k1
1 )δD1

Pm(τ )

ÃD2(τ2)

k2τ
k2
2

RD1,D2(im)ω(τ ,m)− (k2τ
k2
2 )δ̃D2

−1

Pm(τ )
AD1(τ1)RD1,D2(im)ω(τ ,m)

− 1

Pm(τ )
AD1(τ1)

ÃD2(τ2)

k2τ
k2
2

RD1,D2(im)ω(τ ,m)− 1

Pm(τ )

ÃD3(τ2)

k2τ
k2
2

RD3(im)ω(τ ,m)

+
1

Pm(τ )

ε−1

(2π)
1
2

τk1
1

k2Γ
(

1 + 1
k2

) ∫ τ
k2
2

0
(τk2

2 − s2)
1
k2

∫ ∞
−∞

∫ τ
k1
1

0

∫ s2

0
P1(i(m−m1), ε)

× ω((τk1
1 − s1)

1
k1 , (s2 − x2)

1
k2 ,m−m1)P2(im1, ε)ω(s

1
k1
1 , x

1
k2
2 ,m1)

dx2ds1dm1ds2

(τk1
1 − s1)s1(s2 − x2)x2

+
1

Pm(τ )

∑
0≤lj≤Dj−1

j=1,2

ε∆l1,l2
−dl1−d̃l2+δl1+δ̃l2−1Rl1,l2(im)

τk1
1

k2Γ
(
dl1,k1
k1

)
Γ
(
dl2,k2
k2

)
×
∫ τ

k2
2

0

∫ τ
k1
1

0
(τk1

1 − s1)
dl1,k1
k1
−1

(τk2
2 − s2)

dl2,k2
k2
−1
k
δl1
1 s

δl1
1 k

δ̃l2
2 s

δ̃l2
2 ω(s

1
k1
1 , s

1
k2
2 ,m)

ds1

s1

ds2

s2

+
ε−1

k2Pm(τ )Γ
(

1 + 1
k2

) ∫ τ
k2
2

0
(τk2

2 − s2)
1
k2 ψk(τ1, s

1
k2
2 ,m, ε)

ds2

s2
.

Proposition 3 Assume that the hypotheses (5)-(10) hold. There exist $, ξ,R > 0 such that if

‖ψk(τ ,m)‖(ν,β,µ,k,ε) ≤ ξ, max{R1, R2} ≤ R,

, where R1, R2 are the geometric conditions determined in (11), for all ε ∈ D(0, ε0) \ {0}. Then,
the operator Hε defined in (33) admits a unique fixed point ωdk(τ ,m, ε) ∈ Fd(ν,β,µ,k,ε) such that∥∥ωdk(τ ,m, ε)

∥∥
(ν,β,µ,k,ε)

≤ $, for all ε ∈ D(0, ε0) \ {0}.
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Proof Take d1, d2 ∈ R and ρ1 > 0 determined in Proposition 2. First, we apply Lemma 2 and
Lemma 3 to get that

(34)

∥∥∥∥∥τ
k1δD1
1 RD1,D2(im)

Pm(τ )

∫ τ
k2
2

0
(τk2

2 − s2)δD2
−p2−1sp2−1

2 ω(τ1, s
1
k2
2 ,m)ds2

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C1

C
sup
m∈R

∣∣∣∣RD1,D2(im)

Q(im)

∣∣∣∣ ‖ω(τ ,m)‖(ν,β,µ,k,ε) ,

for every 1 ≤ p2 ≤ δ̃D2 − 1.
In view of Lemma 2 and Lemma 4 we have

(35)

∥∥∥∥∥τk2(δ̃D2
−1)

2

RD1,D2(im)

Pm(τ )
τk1

1

∫ τ
k1
1

0
(τk1

1 − s1)δD1
−p1−1sp1−1

1 ω(s
1
k1
1 , τ2,m)ds1

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C1

C
sup
τ2∈Sd2

|τ2|k2(δ̃D2
−1)

(1 + |τ2|k2)δ̃D2
−1

sup
m∈R

1

|Q(im)|
‖ω(τ ,m)‖(ν,β,µ,k,ε) ,

for every 1 ≤ p1 ≤ δD1 − 1.
Moreover, from Lemma 2 and Lemma 5 we have

(36)

∥∥∥∥∥τk1
1

RD1,D2(im)

Pm(τ )

∫ τ
k2
2

0

∫ τ
k1
1

0
(τk2

2 − s2)δ̃D2
−p2−1sp2−1

2 (τk1
1 − s1)δD1

−p1−1sp1−1
1

×ω(s
1
k1
1 , s

1
k2
2 ,m)ds1ds2

∥∥∥∥
(ν,β,µ,k,ε)

≤ C1

C
sup
m∈R

∣∣∣∣RD1,D2(im)

Q(im)

∣∣∣∣ ‖ω(τ ,m)‖(ν,β,µ,k,ε) ,

for every 1 ≤ p1 ≤ δD1 − 1 and 1 ≤ p2 ≤ δ̃D2 − 1.
We apply Lemma 2 and Lemma 3 to get

(37)

∥∥∥∥∥ 1

Pm(τ )

∫ τ
k2
2

0
(τk2

2 − s2)δD3
−p3−1sp3−1

2 ω(τ1, s
1
k2
2 ,m)ds2

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C1

C
sup
m∈R

∣∣∣∣ 1

Q(im)

∣∣∣∣ ‖ω(τ ,m)‖(ν,β,µ,k,ε) ,

for every 1 ≤ p3 ≤ δ̃D3 − 1.
Regarding Lemma 2 and Lemma 7, we deduce that

(38)

∥∥∥∥∥ ε−1

Pm(τ )
τk1

1

∫ τ
k2
2

0
(τk2

2 − s2)
1
k2

∫ ∞
−∞

∫ τ
k1
1

0

∫ s2

0
P1(i(m−m1), ε)

×ω((τk1
1 − s1)

1
k1 , (s2 − x2)

1
k2 ,m−m1)P2(im1, ε)ω(s

1
k1
1 , x

1
k2
2 ,m1)

dx2ds1dm1ds2

(τk1
1 − s1)s1(s2 − x2)x2

∥∥∥∥∥
≤ |ε| C3

maxm∈R|Q(im)|
‖ω(τ ,m)‖2(ν,β,µ,k,ε)
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We apply Lemma 2 and Lemma 5 to get

(39)

∥∥∥∥∥Rl1,l2(im)

Pm(τ )
τk1

1

∫ τ
k2
2

0

∫ τ
k1
1

0
(τk1

1 − s1)
dl1,k1
k1
−1

(τk2
2 − s2)

dl2,k2
k2
−1
s
δl1−1

1 s
δ̃l2−1

2

×ω(s
1
k1
1 , s

1
k2
2 ,m)ds1ds2

∥∥∥∥
(ν,β,µ,k,ε)

≤ C1

C
sup
m∈R

∣∣∣∣Rl1,l2(im)

Q(im)

∣∣∣∣ ‖ω(τ ,m)‖(ν,β,µ,k,ε)

for every 0 ≤ lj ≤ Dj − 1, for j = 1, 2.
Finally, the application of Lemma 2 and Lemma 6 yield

(40)∥∥∥∥∥ 1

Pm(τ )

∫ τ
k2
2

0
(τk2

2 − s2)
1
k2 ψk(τ1, s

1
k2
2 ,m, ε)

ds2

s2

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C1

C
sup
m∈R

1

|Q(im)|
|ε| ‖ψk(τ ,m)‖(ν,β,µ,k,ε)

Take small enough $, ξ, ε0 > 0 and assume that

sup
m∈R

∣∣∣∣RD1,D2(im)

Q(im)

∣∣∣∣ ≤ R and sup
m∈R

∣∣∣∣RD3(im)

Q(im)

∣∣∣∣ ≤ R,
in such a way that

(41) k
δD1
1

C1R

C

∑
1≤p2≤δ̃D2

−1

|Aδ̃D2
,p2
|

Γ(δ̃D2 − p2)
$ + k

δ̃D2
−1

2

C1R

C

∑
1≤p1≤δD1

−1

|AδD1
,p1 |

Γ(δD1 − p1)
$

C1R

C

∑
1≤p1≤δD1

−1

∑
1≤p2≤δ̃D2

−1

|AδD1
,p1 |

Γ(δD1 − p1)

|Aδ̃D2
,p2
|

Γ(δ̃D2 − p2)
$

C1R

C

∑
1≤p3≤δ̃D3

−1

|Aδ̃D3
,p3
|

Γ(δ̃D3 − p3)
$ + C3 sup

m∈R

1

|Q(im)|
1

(2π)
1
2

1

k2Γ(1 + 1
k2

)
$2

+
C1

C

∑
0≤lj≤Dj−1

j=1,2

ε
∆l1,l2

−δD1
k1−δ̃D2

k2+k2−1

0 sup
m∈R

∣∣∣∣Rl1,l2(im)

Q(im)

∣∣∣∣ k
δl1
1 k

δ̃l2−1

2

Γ
(
dl1,k1
k1

)
Γ
(
dl2,k2
k1

)$
+

C1

Ck2Γ
(

1 + 1
k2

) sup
m∈R

1

|Q(im)|
ξ ≤ $.

Taking into account (34-40) and (41), we get that Hε(D(0, $)) ⊆ D(0, $). Here, D(0, $)
stands for the closed disc of radius $ centered at the origin in the Banach space Fd(ν,β,µ,k,ε).

Now, let ω1, ω2 ∈ Fd(ν,β,µ,k,ε), with ‖ωj(τ ,m)‖(ν,β,µ,k,ε) ≤ $. We now prove that

(42) ‖Hε(ω1)−Hε(ω2)‖(ν,β,µ,k,ε) ≤
1

2
‖ω1 − ω2‖(ν,β,µ,k,ε) .

At this point, the classical contractive mapping theorem acting on the complete metric space
D(0, $) ⊆ Fd(ν,β,µ,k,ε) guarantees the existence of a fixed point for Hε. Let us check (42).

Analogous estimates as in the first part of the proof yield
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(43)∥∥∥∥∥τ
k1δD1
1 RD1,D2(im)

Pm(τ )

∫ τ
k2
2

0
(τk2

2 − s2)δD2
−p2−1sp2−1

2 (ω1(τ1, s
1
k2
2 ,m)− ω2(τ1, s

1
k2
2 ,m))ds2

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C1

C
sup
m∈R

∣∣∣∣RD1,D2(im)

Q(im)

∣∣∣∣ ‖ω1(τ ,m)− ω2(τ ,m)‖(ν,β,µ,k,ε) ,

for every 1 ≤ p2 ≤ δ̃D2 − 1. Also Lemma 2 and Lemma 4 yield

(44)∥∥∥∥∥τk2(δ̃D2
−1)

2

RD1,D2(im)

Pm(τ )
τk1

1

∫ τ
k1
1

0
(τk1

1 − s1)δD1
−p1−1sp1−1

1 (ω1(s
1
k1
1 , τ2,m)− ω2(s

1
k1
1 , τ2,m))ds1

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C1

C
sup
τ2∈Sd2

|τ2|k2(δ̃D2
−1)

(1 + |τ2|k2)δ̃D2
−1

sup
m∈R

1

|Q(im)|
‖ω1(τ ,m)− ω2(τ ,m)‖(ν,β,µ,k,ε) ,

for every 1 ≤ p1 ≤ δD1 − 1. Lemma 2 and Lemma 5 guarantee that

(45)

∥∥∥∥∥τk1
1

RD1,D2(im)

Pm(τ )

∫ τ
k2
2

0

∫ τ
k1
1

0
(τk2

2 − s2)δ̃D2
−p2−1sp2−1

2 (τk1
1 − s1)δD1

−p1−1sp1−1
1

×(ω1(s
1
k1
1 , s

1
k2
2 ,m)− ω1(s

1
k1
1 , s

1
k2
2 ,m))ds1ds2

∥∥∥∥
(ν,β,µ,k,ε)

≤ C2
1

C
sup
m∈R

∣∣∣∣RD1,D2(im)

Q(im)

∣∣∣∣ ‖w(τ ,m)‖(ν,β,µ,k,ε) ,

for every 1 ≤ p1 ≤ δD1 − 1 and 1 ≤ p2 ≤ δ̃D2 − 1.
We apply Lemma 2 and Lemma 3 to get

(46)

∥∥∥∥∥ 1

Pm(τ )

∫ τ
k2
2

0
(τk2

2 − s2)δ̃D3
−p3−1sp3−1

2 (ω1(τ1, s
1
k2
2 ,m)− ω2(τ1, s

1
k2
2 ,m))ds2

∥∥∥∥∥
(ν,β,µ,k,ε)

≤ C1

C
sup
m∈R

∣∣∣∣ 1

Q(im)

∣∣∣∣ ‖ω1(τ ,m)− ω2(τ ,m)‖(ν,β,µ,k,ε) ,

for every 1 ≤ p3 ≤ δ̃D3 − 1.
In order to study the convolution operator, we need to give some details on the procedure.

Put

W1 := ω1((τ1 − s1)1/k1 , (s2 − x2)1/k2 ,m−m1)− ω2((τ1 − s1)1/k1 , (s2 − x2)1/k2 ,m−m1),

and W2 := ω1(s
1/k1

1 , x
1/k2

2 ,m1)− ω2(s
1/k1

1 , x
1/k2

2 ,m1). Then, taking into account that

(47) P1(i(m−m1), ε)ω1((τ1 − s1)1/k1 , (s2 − x2)1/k2 ,m−m1)P2(im1, ε)ω1(s
1/k1

1 , x
1/k2

2 ,m1)

− P1(i(m−m1), ε)ω2((τ1 − s1)1/k1 , (s2 − x2)1/k2 ,m−m1)P2(im1, ε)ω2(s
1/k1

1 , x
1/k2

2 ,m1)

= P1(i(m−m1), ε)W1P2(im1, ε)ω1(s
1/k1

1 , x
1/k2

2 ,m1)

+ P1(i(m−m1), ε)ω2((τ1 − s1)1/k1 , (s2 − x2)1/k2 ,m−m1)P2(im1, ε)W2,
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and due to Lemma 2 and Lemma 7, we proceed with analogous estimates as in (38) to get that

(48)

∥∥∥∥∥ ε−1

Pm(τ )
τk1

1

∫ τ
k2
2

0
(τk2

2 − s2)
1
k2

∫ ∞
−∞

∫ τ
k1
1

0

∫ s2

0
P1(i(m−m1), ε)

× (ω1((τk1
1 − s1)

1
k1 , (s2 − x2)

1
k2 ,m−m1)− ω2((τk1

1 − s1)
1
k1 , (s2 − x2)

1
k2 ,m−m1))

×P2(im1, ε)(ω1(s
1
k1
1 , x

1
k2
2 ,m1)− ω2(s

1
k1
1 , x

1
k2
2 ,m1))

dx2ds1dm1ds2

(τk1
1 − s1)s1(s2 − x2)x2

∥∥∥∥∥
≤ |ε| C3

maxm∈R|Q(im)|

(
‖ω1(τ ,m)‖(ν,β,µ,k,ε) + ‖ω2(τ ,m)‖(ν,β,µ,k,ε)

)
‖ω1(τ ,m)− ω2(τ ,m)‖(ν,β,µ,k,ε)

Finally, we apply Lemma 2 and Lemma 5 to get

(49)

∥∥∥∥∥Rl1,l2(im)

Pm(τ )
τk1

1

∫ τ
k2
2

0

∫ τ
k1
1

0
(τk1

1 − s1)
dl1,k1
k1
−1

(τk2
2 − s2)

dl2,k2
k2
−1
s
δl1−1

1 s
δ̃l2−1

2

×(ω1(s
1
k1
1 , s

1
k2
2 ,m)− ω2(s

1
k1
1 , s

1
k2
2 ,m))ds1ds2

∥∥∥∥
(ν,β,µ,k,ε)

≤ C1

C
sup
m∈R

∣∣∣∣Rl1,l2(im)

Q(im)

∣∣∣∣ ‖ω1(τ ,m)− ω2(τ ,m)‖(ν,β,µ,k,ε)

for every 1 ≤ lj ≤ Dj − 1, for j = 1, 2.
We choose small enough $, ε0 > 0 and assume that

sup
m∈R

∣∣∣∣RD1,D2(im)

Q(im)

∣∣∣∣ ≤ R and sup
m∈R

∣∣∣∣RD3(im)

Q(im)

∣∣∣∣ ≤ R,
to satisfy

k
δD1
1

C1R

C

∑
1≤p2≤δ̃D2

−1

|Aδ̃D2
,p2
|

Γ(δ̃D2 − p2)
+ k

δ̃D2
−1

2

C1R

C

∑
1≤p1≤δD1

−1

|AδD1
,p1 |

Γ(δD1 − p1)

C1R

C

∑
1≤p1≤δD1

−1

∑
1≤p2≤δ̃D2

−1

|AδD1
,p1 |

Γ(δD1 − p1)

|Aδ̃D2
,p2
|

Γ(δ̃D2 − p2)

C1R

C

∑
1≤p3≤δ̃D3

−1

|Aδ̃D3
,p3
|

Γ(δ̃D3 − p3)
+ 2C3 sup

m∈R

1

|Q(im)|
1

(2π)
1
2

1

k2Γ(1 + 1
k2

)
$

+
C1

C

∑
0≤lj≤Dj−1

j=1,2

ε
∆l1,l2

−δD1
k1−δ̃D2

k2+k2−1

0 sup
m∈R

∣∣∣∣Rl1,l2(im)

Q(im)

∣∣∣∣ k
δl1
1 k

δ̃l2−1

2

Γ
(
dl1,k1
k1

)
Γ
(
dl2,k2
k1

)
≤ 1

2
.

Then, (42) holds, and the proof is complete. 2

The following is a direct consequence of the previous result.
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Corollary 1 The function ωdk(τ ,m, ε), obtained in Proposition 3 is a continuous function in
(D(0, ρ)∪Sd1)×Sd2×R×D(0, ε0)\{0}, and holomorphic with respect to τ in the set (D(0, ρ)∪
Sd1)×Sd2 and on D(0, ε0) \ {0} with respect to the perturbation parameter ε. Moreover, it turns
out to be a solution of (23), which satisfies there exists $ > 0 such that

(50) |ωdk(τ ,m, ε)| ≤ $(1 + |m|)−µ
| τ1ε |

1 + | τ1ε |2k1

| τ2ε |
1 + | τ2ε |2k2

exp(−β|m|+ ν1|
τ1

ε
|k1 + ν2|

τ2

ε
|k2),

for every (τ ,m, ε) ∈ (D(0, ρ) ∪ Sd1)× Sd2 × R×D(0, ε0) \ {0}.

4 Family of analytic solutions of the main problem

In this section, we consider the main problem under study, namely (12), under the conditions
(5)-(7) on the parameters involved, and also on the geometry of the problem, (8)-(10). In order
to construct the analytic solution of the problem, we recall the definition of a good covering in
C?.

Definition 3 Let ς1, ς2 ≥ 2 be integer numbers. Let {Ep1,p2}0≤p1≤ς1−1
0≤p2≤ς2−1

be a finite family of open

sectors with vertex at 0, and radius ε0. In addition to this, we assume the opening of every
sector is chosen to be slightly larger than π/k2 in the case that k1 < k2, and slightly larger than
π/k1 in case k2 < k1.

We assume that the intersection of three different sectors in the good covering is empty, and
∪0≤p1≤ς1−1

0≤p2≤ς2−1
Ep1,p2 = U \ {0}, for some neighborhood of 0, U ∈ C. Such set of sectors is called a

good covering in C∗.

Definition 4 Let ς1, ς2 ≥ 2 and {Ep1,p2}0≤p1≤ς1−1
0≤p2≤ς2−1

be a good covering in C∗. Let Tj be open

bounded sectors centered at 0 with radius rTj for j ∈ {1, 2}, and consider two families of sectors
as follows: let

Sdp1 ,θ1,ε0rT1 = {T1 ∈ C∗/|T1| < ε0rT1 , |dp1 − arg(T1)| < θ1/2},

Sd̃p2 ,θ2,ε0rT2
= {T2 ∈ C∗/|T2| < ε0rT2 , |dp2 − arg(T2)| < θ2/2},

with opening θj > π/kj, and where dp1 , d̃p2 ∈ R, for all 0 ≤ p1 ≤ ς1 − 1 and 0 ≤ p2 ≤ ς2 − 1 is
the couple of directions d1, d2 ∈ R mentioned in Proposition 2, whenever Ep1,p2 is the domain of
definition of the perturbation parameter ε.

In addition to that, the sectors Sdp1 ,θ1,ε0rT1 and Sd̃p2 ,θ2,ε0rT2
are such that for all 0 ≤ p1 ≤

ς1 − 1, 0 ≤ p2 ≤ ς2 − 1, t ∈ T1 × T2, and ε ∈ Ep1,p2, one has

εt1 ∈ Sdp1 ,θ1,ε0rT1 and εt2 ∈ Sd̃p2 ,θ2,ε0rT2 .

We say that the family {(Sdp1 ,θ1,ε0rT1 )0≤p1≤ς1−1, (Sd̃p2 ,θ2,ε0rT2
)0≤p2≤ς2−1, T1 ×T2} is associated to

the good covering {Ep1,p2}0≤p1≤ς1−1
0≤p2≤ς2−1

.

Let ς1, ς2 ≥ 2 and {Ep1,p2}0≤p1≤ς1−1
0≤p2≤ς2−1

be a good covering in C∗. We assume the family

{(Sdp1 ,θ1,ε0rT1 )0≤p1≤ς1−1, (Sd̃p2 ,θ2,ε0rT2
)0≤p2≤ς2−1, T1 × T2} is associated to the previous good cov-

ering.
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The existence of a solution ωdk(τ ,m, ε) of the auxiliary problem (23) turns out to provide an
actual solution of the main problem via Laplace and Fourier transform, in view of the constraints
satisfied by ωdk(τ ,m, ε), see (50). More precisely, for every 0 ≤ p1 ≤ ς1 and 0 ≤ p2 ≤ ς2 − 1, the
function

(51)

up1,p2(t, z, ε) =
k1k2

(2π)1/2

∫ +∞

−∞

∫
Lγp1

∫
Lγp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u1
εt1

)k1−(
u2
εt2

)k2
eizm

du2

u2

du1

u1
dm,

is holomorphic on the domain (T1 ∩D(0, h′))× (T2 ∪D(0, h′))×Hβ′ ×Ep1,p2 , for any 0 < β′ < β
and some h′ > 0.

The first main result of the present work is devoted to the construction of a family of actual
holomorphic solutions to the equation (12) for null initial data. Each of the elements in the family
of solutions is associated to an element of a good covering with respect to the complex parameter
ε. The strategy leans on the control of the difference of two solutions defined in domains with
nonempty intersection with respect to the perturbation parameter ε. The construction of each
analytic solution in terms of two Laplace transforms in different time variables requires to
distinguish different cases, depending on the coincidence of the integration paths or not.

Theorem 1 Let the hypotheses of Proposition 3 hold. Then, for every element Ep1,p2 in the
good covering in C?, there exists a solution up1,p2(t, z, ε) of the main problem under study (12)
defined and holomorphic on (T1 ∩D(0, h′))× (T2 ∪D(0, h′))×Hβ′ × Ep1,p2, for any 0 < β′ < β
and some h′ > 0.

Moreover, for every two different multiindices (p1, p2), (p′1, p
′
2) ∈ {0, . . . , ς1−1}×{0, . . . , ς2−

1}, one of the following situations hold:

• Case 1: Ep1,p2 ∩ Ep′1,p′2 = ∅.

• Case 2: Ep1,p2 ∩ Ep′1,p′2 6= ∅. The path Lγp2 coincides with Lγp′2
but Lγp1 does not coincide

with Lγp′1
. Then, it holds that

(52) sup
t∈(T1∩D(0,h′′))×(T2∩D(0,h′′)),z∈Hβ′

|up1,p2(t, z, ε)− up′1,p′2(t, z, ε)| ≤ Kpe
− Mp

|ε|k1 ,

for every ε ∈ Ep1,p2 ∩ Ep′1,p′2. In that case, we say that ((p1, p2), (p′1, p
′
2)) belongs to the

subset Uk1 of {0, . . . , ς1 − 1} × {0, . . . , ς2 − 1}.

• Case 3: Ep1,p2 ∩ Ep′1,p′2 6= ∅. Neither, the path Lγp2 coincides with Lγp′2
, nor Lγp1 coincides

with Lγp′1
. Then, it holds that

(53)

sup
t∈(T1∩D(0,h′′))×(T2∩D(0,h′′)),z∈Hβ′

|up1,p2(t, z, ε)− up′1,p′2(t, z, ε)| ≤ Kp max

{
e
− Mp

|ε|k1 , e
− Mp

|ε|k2

}
,

for every ε ∈ Ep1,p2 ∩ Ep′1,p′2.

Proof The existence of the solution up1,p2(t, z, ε), for every 0 ≤ p1 ≤ ς1 and 0 ≤ p2 ≤ ς2 − 1 is
guaranteed from the construction described previously.
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We now give proof for the second statement of the result, namely, the existence of an exponen-
tial decay to 0, with respect to the perturbation parameter, of the difference of two consecutive
solutions in the good covering, uniformly with respect to (t, z).

The proof is close to that of Theorem 1 in [12], but for the sake of clarity, we give a complete
description.

Case 2: Assume that the path Lγp2 coincides with Lγp′2
, and Lγp1 does not coincide with

Lγp′1
. Then, using that u1 7→ ω

dp1 ,d̃p2
k (u1, u2,m, ε) exp(−( u1

εt1
)k1)/u1 is holomorphic on D(0, ρ)

for all (m, ε) ∈ R× (D(0, ε0) \ {0}), and every u2 ∈ Lγp2 , one can deform one of the integration
paths and write

I =

∫
Lγp1

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−
(
u1
εt1

)k1 du1

u1
−
∫
Lγ
p′1

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−
(
u1
εt1

)k1 du1

u1

in the form∫
Lρ1/2,γp1

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u1
εt1

)k1 du1

u1

−
∫
Lρ1/2,γp′1

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u1
εt1

)k1 du1

u1

+

∫
Cρ1/2,γp′1

,γp1

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u1
εt1

)k1 du1

u1
.

where Lρ1/2,γp1
= [ρ1/2,+∞)eiγp1 , Lρ1/2,γp′1

= [ρ1/2,+∞)e
iγp′1 and Cρ1/2,γp′1

,γp1
is an arc of circle

connecting (ρ1/2)e
iγp′1 and (ρ1/2)eiγp1 with the adequate orientation. The positive real number

ρ1 is determined in Proposition 2.

We get the existence of constants Cp1,p′1
,Mp1,p′1

> 0 such that

|I| ≤ Cp1,p′1
$dp1 ,d̃p2

(1 + |m|)−µe−β|m|
|u2
ε |

1 + |u2
ε |2k2

exp(ν2|
u2

ε
|k2)e

−
M
p1,p
′
1

|ε|k1 ,

for t1 ∈ T1 ∩D(0, h′) and ε ∈ Ep1,p2 ∩ Ep′1,p′2 and u2 ∈ Lγp2 . We have

(54) |up1,p2(t, z, ε)− up′1,p′2(t, z, ε)|

≤ k1k2

(2π)1/2
Cp1,p′1

(∫ ∞
−∞

(1 + |m|)−µe−β|m|e−m|Im(z)|dm

)
×
∫
Lγp2

|u2
ε |

1 + |u2
ε |2k2

exp(ν2|
u2

ε
|k2) exp(−

(
u2

εt2

)k2

)

∣∣∣∣du2

u2

∣∣∣∣ e−
M
p1,p
′
1

|ε|k1 .

The last integral is estimated via the reparametrization u2 = reγp2
√
−1 and the change of variable

r = |ε|s by ∫ ∞
0

1

1 + s2
e−δ2s

k2
ds,

for some δ2 > 0, whenever t2 ∈ T2 ∩D(0, h′).
The estimates given in the enunciate of Case 2 follows from here.
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Figure 1: Path deformation in Case 2

Case 3: Assume that neither Lγp1 coincides with Lγp′1
, nor Lγp2 coincides with Lγp′2

.

Owing to the fact that u1 7→ ω
dp1 ,d̃p2
k (u1, u2,m, ε) exp(−( u1

εt1
)k1)/u1 is holomorphic on D(0, ρ)

for all (m, ε) ∈ R × (D(0, ε0) \ {0}), and every u2 ∈ Lγp2 we deform the integration paths with
respect to the first time variable and write

up1,p2(t, z, ε)− up′1,p′2(t, z, ε) = J1 − J2 + J3,

where

J1 =
k1k2

(2π)1/2

∫
Lγp1 ,1

∫
Lγp2

∫ ∞
−∞

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u1
εt1

)k1−(
u2
εt2

)k2
eizmdm

du2

u2

du1

u1
.

J2 =
k1k2

(2π)1/2

∫
Lγ
p′1
,1

∫
Lγ
p′2

∫ ∞
−∞

ω
dp′1

,d̃p′2
k (u1, u2,m, ε)e

−(
u1
εt1

)k1−(
u2
εt2

)k2
eizmdm

du2

u2

du1

u1
.

J3 =
k1k2

(2π)1/2

∫ ρ1
2
eiθ

0

(∫ ∞
−∞

(∫
Lγp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2

−
∫
Lγ
p′2

ω
dp′1

,d̃p′2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2

 eizmdm

 e
−(

u1
εt1

)k1 du1

u1
,

where ρ1

2 e
iθ is such that θ is an argument between γp1 and γp′1 . The path Lγp1 ,1 (resp. Lγp′1

,1)

consists of the concatenation of the arc of circle connecting ρ1

2 e
iθ with ρ1

2 e
iγp1 (resp. with ρ1

2 e
iγp′1 )

and the half line [ρ1

2 e
iγp1 ,∞) (resp. [ρ1

2 e
iγp′1 ,∞)).

We first give estimates for |J1|. We have∣∣∣∣∣
∫
Lγp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2

∣∣∣∣∣ ≤ $dp1 ,d̃p2
(1 + |m|)−µe−β|m|

|u1
ε |

1 + |u1
ε |2k1

exp(ν1|
u1

ε
|k1)

×
∫
Lγp2

( |u2
ε |

1 + |u2
ε |2k2

exp(ν2

∣∣∣u2

ε

∣∣∣k2
)
|e−

(
u2
εt2

)k2

|
∣∣∣∣du2

u2

∣∣∣∣
≤ $dp1 ,d̃p2

Cp2(1 + |m|)−µe−β|m|
|u1
ε |

1 + |u1
ε |2k1

exp(ν1|
u1

ε
|k1),
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Figure 2: Path deformation in Case 3

for some Cp2 > 0, and t2 ∈ T2 ∩ D(0, h′). Using the parametrization u2 = reγp2
√
−1 and the

change of variable r = |ε|s. Using analogous estimations as in the Case 1, we arrive at

|J1| ≤ Cp,1e
−
Mp,1

|ε|k1 ,

for some Cp,1,Mp,1 > 0, for all ε ∈ Ep1,p2 ∩Ep′1,p′2 , where t1 ∈ T1 ∩D(0, h′) and t2 ∈ T2 ∩D(0, h′),
z ∈ Hβ′ .

Analogous calculations yield to

|J2| ≤ Cp,2e
−
Mp,2

|ε|k1 ,

for some Cp,2,Mp,2 > 0, for all ε ∈ Ep1,p2 ∩Ep′1,p′2 , where t1 ∈ T1 ∩D(0, h′) and t2 ∈ T2 ∩D(0, h′),
z ∈ Hβ′ .

In order to give upper bounds for |J3|, we consider∣∣∣∣∣∣
∫
Lγp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2
−
∫
Lγ
p′2

ω
dp′1

,d̃p′2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2

∣∣∣∣∣∣ .
Since u1 belongs to the disc D(0, ρ1), we know that the function

u2 7→ ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 1

u2

is holomorphic on the disc D(0, ρ). In this framework, one is able to deform the integration path
in order to write the difference as the next sum
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∫
Lρ1/2,γp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2

−
∫
Lρ1/2,γp′2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2

+

∫
Cρ1/2,γp′2

,γp2

ω
dp1 ,d̃p2
k (u1, u2,m, ε)e

−(
u2
εt2

)k2 du2

u2
.

We get the previous expression is upper estimated by

$dp1 ,d̃p2
Cp2,p′2

(1 + |m|)−µe−β|m|
|u1
ε |

1 + |u1
ε |2k1

exp(ν1|
u1

ε
|k1) exp

(
−
Mp2,p′2

|ε|k2

)
,

for ε ∈ Ep1,p2 ∩ Ep′1,p′2 , t2 ∈ T2 ∩D(0, h′), u1 ∈ [0, ρ1/2e
iθ]. We finally get

|J3| ≤
k1k2

(2π)1/2
Cp2,p′2

$dp1 ,d̃p2

(∫ ∞
−∞

(1 + |m|)−µe−β|m|e−m|Im(z)|dm

)
×

(∫ ρ1/2eiθ

0

|u1
ε |

1 + |u1
ε |2k1

exp(ν1|
u1

ε
|k1)|e−

(
u1
εt1

)k1

|
∣∣∣∣du1

u1

∣∣∣∣
)

exp

(
−
Mp2,p′2

|ε|k2

)
.

We conclude that

|J3| ≤ Kp,3e
−
Mp,3

|ε|k2 ,

uniformly for (t1, t2) ∈ (T1 ∩D(0, h′′)) × (T2 ∩D(0, h′′)) for some h′′ > 0, and z ∈ Hβ′ for any
fixed β′ < β, where Kp,3,Mp,3 are positive constants.

2

Remark: Observe that, in case that the path Lγp1 coincides with Lγp′1
, but Lγp2 does not

coincide with Lγp′2
, then it is not possible to obtain estimates on the difference of two solutions

in the form exp(−M/|ε|k2), as it happens in Case 2. The reason is that we can not deform the

path Lγp2 − Lγp′2 since the function w
dp1 ,d̃p2
k (τ ,m, ε) and w

dp′1
,d̃p′2

k (τ ,m, ε) are not holomorphic

on a disc centered at 0 respect to τ2.

5 Asymptotics of the problem in the perturbation parameter

5.1 k−Summable formal series and Ramis-Sibuya Theorem

For the sake of completeness, we recall the definition of k−Borel summability of formal series
with coefficients in a Banach space, and Ramis-Sibuya Theorem. A reference for the details on
the first part is [1], whilst the second part of this section can be found in [2], p. 121, and [10],
Lemma XI-2-6.

Definition 5 Let k ≥ 1 be an integer. A formal series

X̂(ε) =

∞∑
j=0

aj
j!
εj ∈ F[[ε]]
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with coefficients in a Banach space (F, ||.||F) is said to be k−summable with respect to ε in the
direction d ∈ R if

i) there exists ρ ∈ R+ such that the following formal series, called formal Borel transform of
X̂ of order k

Bk(X̂)(τ) =

∞∑
j=0

ajτ
j

j!Γ(1 + j
k )
∈ F[[τ ]],

is absolutely convergent for |τ | < ρ,

ii) there exists δ > 0 such that the series Bk(X̂)(τ) can be analytically continued with respect
to τ in a sector Sd,δ = {τ ∈ C∗ : |d − arg(τ)| < δ}. Moreover, there exist C > 0, and K > 0
such that

||B(X̂)(τ)||F ≤ CeK|τ |
k

for all τ ∈ Sd,δ.

If this is so, the vector valued Laplace transform of order k of Bk(X̂)(τ) in the direction d is
defined by

Ldk(Bk(X̂))(ε) = ε−k
∫
Lγ

Bk(X̂)(u)e−(u/ε)kkuk−1du,

along a half-line Lγ = R+e
iγ ⊂ Sd,δ ∪ {0}, where γ depends on ε and is chosen in such a way

that cos(k(γ − arg(ε))) ≥ δ1 > 0, for some fixed δ1, for all ε in a sector

Sd,θ,R1/k = {ε ∈ C∗ : |ε| < R1/k , |d− arg(ε)| < θ/2},

where π
k < θ < π

k + 2δ and 0 < R < δ1/K. The function Ldk(Bk(X̂))(ε) is called the k−sum of

the formal series X̂(t) in the direction d. It is bounded and holomorphic on the sector Sd,θ,R1/k

and has the formal series X̂(ε) as Gevrey asymptotic expansion of order 1/k with respect to ε
on Sd,θ,R1/k . This means that for all π

k < θ1 < θ, there exist C,M > 0 such that

||Ldk(Bk(X̂))(ε)−
n−1∑
p=0

ap
p!
εp||F ≤ CMnΓ(1 +

n

k
)|ε|n

for all n ≥ 1, all ε ∈ Sd,θ1,R1/k .

Multisummability of a formal power series is a recursive process that allows to compute the
sum of a formal power series in different Gevrey orders. One of the approaches to multisumma-
bility is that stated by W. Balser, which can be found in [1], Theorem 1, p.57. Roughly speaking,
given a formal power series f̂ which can be decomposed into a sum f̂(z) = f̂1(z) + . . . + f̂m(z)
such that each of the terms f̂j(z) is kj-summable, with sum given by fj , then, f̂ turns out to be
multisummable, and its multisum is given by f1(z) + . . . + fm(z). More precisely, one has the
following definition.

Definition 6 Let (F, ‖·‖F) be a complex Banach space and let 0 < k2 < k1. Let E be a bounded
open sector with vertex at 0, and opening π

k1
+ δ1 for some δ1 > 0, and let F be a bounded open

sector with vertex at the origin in C, with opening π
k2

+ δ2, for some δ2 > 0 and such that E ⊆ F
holds.

A formal power series f̂(ε) ∈ F[[ε]] is said to be (k1, k2)−summable on E if there exist f̂2(ε) ∈
F[[ε]] which is k2−summable on F , with k2-sum given by f2 : F → F, and f̂1(ε) ∈ F[[ε]] which
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is k1−summable on E, with k1-sum given by f1 : E → F, such that f̂ = f̂1 + f̂2. Furthermore,
the holomorphic function f(ε) = f1(ε) + f2(ε) on E is called the (k1, k2)−sum of f̂ on E. In
that situation, f(ε) can be obtained from the analytic continuation of the k2−Borel transform of
f̂ by the successive application of accelerator operators and Laplace transform of order k1, see
Section 6.1 in [1].

We recall the reader the classical version of Ramis-Sibuya Theorem for the Gevrey asymp-
totics as stated in [10] in the framework of our good covering {Ep1,p2}0≤p1≤ς1−1

0≤p2≤ς2−1
, given above in

Definition 3.
Theorem (RS) Let 0 < k1 < k2 be integer numbers. Let (F, ||.||F) be a Banach space over C and
{Ep1,p2}0≤p1≤ς1−1

0≤p2≤ς2−1
be a good covering in C∗, such that the aperture of every sector is slightly larger

than π/k2. For all 0 ≤ p1 ≤ ς1 − 1, 0 ≤ p2 ≤ ς2 − 1, let Gp1,p2 be a holomorphic function from
Ep1,p2 into the Banach space (F, ||.||F) and let the cocycle Θ(p1,p2)(p′1,p

′
2)(ε) = Gp1,p2(ε)−Gp′1,p′2(ε)

be a holomorphic function from the sector Z(p1,p2),(p′1,p
′
2) = Ep1,p2 ∩ Ep′1,p′2 6= ∅ into E. We make

the following assumptions.

1) The functions Gp1,p2(ε) are bounded as ε ∈ Ep1,p2 tends to the origin in C, for all 0 ≤ p1 ≤
ς1 − 1 and all 0 ≤ p2 ≤ ς2 − 1.

2) The functions Θ(p1,p2)(p′1,p
′
2)(ε) are exponentially flat of order 1/k1 on Z(p1,p2)(p′1,p

′
2), for

all 0 ≤ p1, p
′
1 ≤ ς1 − 1, and 0 ≤ p2, p

′
2 ≤ ς2 − 1. This means that there exist constants

Cp1,p2,p′1,p
′
2
, Ap1,p2,p′1,p

′
2
> 0 such that

||Θ(p1,p2)(p′1,p
′
2)(ε)||F ≤ Cp1,p2,p′1,p

′
2
e
−Ap1,p2,p′1p′2

/|ε|k1

for all ε ∈ Z(p1,p2),(p′1,p
′
2), all 0 ≤ p1, p

′
1 ≤ ς1 − 1 and 0 ≤ p2, p

′
2 ≤ ς2 − 1.

Then, for all 0 ≤ p1 ≤ ν1 − 1 and 0 ≤ p2 ≤ ς2 − 1, the functions Gp1,p2(ε) admit a common
formal power series Ĝ(ε) ∈ F[[ε]] as asymptotic expansion of Gevrey order 1/k1.

A novel version of Ramis-Sibuya Theorem has been developed in [25], and has provided
successful results in previous works by the authors, [14], [15, 12]. A version of the result in two
different levels which fits our needs is now given without proof, which can be found in [14], [15].

Theorem (multilevel-RS) Assume that 0 < k2 < k1 are integer numbers. Let (F, ||.||F) be a
Banach space over C and {Ep1,p2}0≤p1≤ς1−1

0≤p2≤ς2−1
be a good covering in C∗, where all the sectors have

an opening slightly larger than π/k1. For all 0 ≤ p1 ≤ ς1− 1 and 0 ≤ p2 ≤ ς2− 1, let Gp1,p2 be a
holomorphic function from Ep1,p2 into the Banach space (F, ||.||F) and for every (p1, p2), (p′1, p

′
2) ∈

{0, . . . , ς1−1}×{0, . . . , ς2−1} such that Ep1,p2∩Ep′1,p′2 6= ∅ we define Θ(p1,p2)(p′1,p
′
2)(ε) = Gp1,p2(ε)−

Gp′1,p′2(ε) be a holomorphic function from the sector Z(p1,p2),(p′1,p
′
2) = Ep1,p2 ∩ Ep′1,p′2 into F. We

make the following assumptions.

1) The functions Gp1,p2(ε) are bounded as ε ∈ Ep1,p2 tends to the origin in C, for all 0 ≤ p1 ≤
ς1 − 1 and 0 ≤ p2 ≤ ς2 − 1.

2) ({0, . . . , ς1 − 1} × {0, . . . , ς2})2 = U0 ∪ Uk1 ∪ Uk2, where
((p1, p2), (p′1, p

′
2)) ∈ U0 iff Ep1,p2 ∩ Ep′1,p′2 = ∅,

((p1, p2), (p′1, p
′
2)) ∈ Uk1 iff Ep1,p2 ∩ Ep′1,p′2 6= ∅ and

||Θ(p1,p2),(p′1,p
′
2)(ε)||F ≤ Cp1,p2,p′1,p

′
2
e
−Ap1,p2,p′1,p′2

/|ε|k1

for all ε ∈ Z(p1,p2),(p′1,p
′
2).
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((p1, p2), (p′1, p
′
2)) ∈ Uk2 iff Ep1,p2 ∩ Ep′1,p′2 6= ∅ and

||Θ(p1,p2),(p′1,p
′
2)(ε)||F ≤ Cp1,p2,p′1,p

′
2
e
−Ap1,p2,p′1,p′2

/|ε|k2

for all ε ∈ Z(p1,p2),(p′1,p
′
2).

Then, there exists a convergent power series a(ε) ∈ F{ε} and two formal power series
Ĝ1(ε), Ĝ2(ε) ∈ F[[ε]] such that Gp1,p2(ε) can be split in the form

Gp1,p2(ε) = a(ε) +G1
p1,p2

(ε) +G2
p1,p2

(ε),

where Gjp1,p2(ε) ∈ O(Ep1,p2 ,F), and admits Ĝj(ε) as its asymptotic expansion of Gevrey order
1/kj on Ep1,p2, for j ∈ {1, 2}.

Moreover, assume that

{((p0
1, p

0
2), (p1

1, p
1
2)), ((p1

1, p
1
2), (p2

1, p
2
2)), . . . , ((p2y−1

1 , p2y−1
2 ), (p2y

1 , p
2y
2 ))}

is a subset of Uk1, for some positive integer y, and

Epy1 ,py2 ⊆ Sπ/k2
⊆

⋃
0≤j≤2y

E
pj1,p

j
2
,

for some sector Sπ/k2
with opening larger than π/k2. Then, the formal power series Ĝ(ε) is

(k1, k2)−summable on Epy1 ,py2 and its (k1, k2)−sum is Gpy1 ,p
y
2
(ε) on Epy1 ,py2 .

5.2 Formal solution and asymptotic behavior in the complex parameter

The second and third main results state the existence of a formal power series in the perturbation
parameter ε, with coefficients in the Banach space F of holomorphic and bounded functions on
(T1 ∩ D(0, h′′)) × (T2 ∩ D(0, h′′)) × Hβ′ , with the norm of the supremum. Here h′′, T1, T2 are
determined in Theorem 1.

It is worth observing the different asymptotic behavior of the analytic solutions of the prob-
lem depending on k1 and k2. More precisely, in case that k1 < k2, Theorem 2 shows a Gevrey
estimates occurrence, whilst k2 < k1 displays a multisummability phenomenon; in contrast to
the results observed in [12], where multisummability is always observed.

Theorem 2 Let k2 > k1. Under the assumptions of Theorem 1, a formal power series

û(t, z, ε) =
∑
m≥0

Hm(t, z)εm/m! ∈ F[[ε]]

exists, with the following properties. û is a formal solution of (12). Moreover, for every p1 ∈
{0, . . . , ς1− 1} and p2 ∈ {0, . . . , ς2− 1}, the function up1,p2(t, z, ε) admits û(t, z, ε) as asymptotic
expansion of Gevrey order 1/k1. This means that

sup
t∈(T1∩D(0,h′′))×(T2∩D(0,h′′)),z∈Hβ′

∣∣∣∣∣up1,p2(t, z, ε)−
N−1∑
m=0

hm(t, z)
εm

m!

∣∣∣∣∣ ≤ CMNΓ(1 +
N

k1
)|ε|N ,

for every ε ∈ Ep1,p2 and all integer N ≥ 0.
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Proof Let (up1,p2(t, z, ε))0≤p1≤ς1−1
0≤p2≤ς2−1

be the family constructed in Theorem 1. We recall that

(Ep1,p2)0≤p1≤ς1−1
0≤p2≤ς2−1

is a good covering in C?, with all its components being finite sectors of opening

slightly larger than π/k2.
The function Gp1,p2(ε) := (t1, t2, z) 7→ up1,p2(t1, t2, z, ε) belongs to O(Ep1,p2 ,F). We consider

{(p1, p2), (p′1, p
′
2)} such that (p1, p2) and (p′1, p

′
2) belong to {0, . . . , ς1 − 1} × {0, . . . , ς2 − 1},

and Ep1,p2 and Ep′1,p′2 are consecutive sectors in the good covering, so their intersection is not
empty. In view of (52) and (53), one has that ∆(p1,p2),(p′1,p

′
2)(ε) := Gp1,p2(ε)−Gp′1,p′2(ε) satisfies

exponentially flat bounds of Gevrey order k1, due to Uk1 coincides with {0, . . . , ς1}×{0, . . . , ς2}.
Ramis-Sibuya Theorem guarantees the existence of a formal power series Ĝ(ε) ∈ F[[ε]] such that
Gp1,p2 admits Ĝ(ε) as its Gevrey asymptotic expansion of order k1, say

Ĝ(ε) =: û(t, z, ε) =
∑
m≥0

Hm(t, z)
εm

m!
.

Let us check that û(t, z, ε) is a formal solution of (12). For every 0 ≤ p1 ≤ ς1−1, 0 ≤ p2 ≤ ς2−1,
the existence of an asymptotic expansion concerning Gp1,p2(ε) and Ĝ(ε) implies that

(55) lim
ε→0,ε∈Ep1,p2

sup
(t,z)∈(τ1∩D(0,h′′))×(τ2∩D(0,h′′))×Hβ′

|∂`εup1,p2(t, z, ε)−H`(t)| = 0,

for every ` ∈ N. By construction, the function up1,p2(t, z, ε) is a solution of (12). Taking
derivatives of order m ≥ 0 with respect to ε on that equation yield

(56) Q(∂z)∂t2 +
∑

m1+m2=m

∂m1
ε (ε∆̃2)td̃2

2 ∂
δ̃D2
t2

RD1,D2(∂z)∂
m2
ε up1,p2(t, z, ε)

+
∑

m1+m2=m

∂m1
ε (ε∆̃3)td̃3

2 ∂
δ̃D3
t2

RD3(∂z)∂
m2
ε up1,p2(t, z, ε)

=
∑

m1+m2=m

m!

m1!m2!

( ∑
m11+m12=m1

m1!

m11!m12!
∂m11
ε P1(∂z, ε)∂

m12
ε up1,p2(t, z, ε)

)

×

( ∑
m21+m22=m2

m2!

m21!m22!
∂m21
ε P2(∂z, ε)∂

m22
ε up1,p2(t, z, ε)

)

+
∑

0≤lj≤Dj
j=1,2

( ∑
m1+m2=m

m!

m1!m2!
∂m1
ε (ε∆l1,l2 )t

dl1
1 t

d̃l2
2 ∂

δl1
t1
∂
δ̃l2
t2
Rl1,l2(∂z)∂

m2
ε up1,p2(t, z, ε)

)

+ ∂mε f(t, z, ε),

for every m ≥ 0 and (t, z, ε) ∈ (T1 ∩D(0, h′′))× (T2 ∩D(0, h′′))×Hβ′ ×Ep1,p2 . Tending ε→ 0 in
(56) together with (55), we obtain a recursion formula for the coefficients of the formal solution.
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(57) Q1(∂z)Q2(∂z)∂t1∂t2Hm(t, z) +
m!

(m− ∆̃2)!
td̃2
2 ∂

δ̃D2
t2

RD1,D2(∂z)Hm−∆̃2
(t, z)

+
m!

(m− ∆̃3)!
td̃3
2 ∂

δ̃D3
t2

RD3(∂z)Hm−∆̃3
(t, z)

=
∑

m1+m2=m

m!

m1!m2!

( ∑
m11+m12=m1

m1!

m11!m12!
∂m11
ε P1(∂z, 0)Hm12(t, z)

)

×

( ∑
m21+m22=m2

m2!

m21!m22!
∂m21
ε P2(∂z, 0)Hm12(t, z)

)

+
∑

0≤l1≤D1,0≤l2≤D2

m!

(m−∆l1,l2)!
t
dl1
1 t

d̃l2
2 ∂

δl1
t1
∂
δ̃l2
t2
Rl1,l2(∂z)Hm−∆l1,l2

(t, z)

+ ∂mε f(t, z, 0),

for every m ≥ max{max1≤l1≤D1,1≤l2≤D2 ∆l1,l2 , ∆̃2, ∆̃3}, and (t, z, ε) ∈ (T1 ∩ D(0, h′′)) × (T2 ∩
D(0, h′′))×Hβ′ . From the analyticity of f with respect to ε in a vicinity of the origin we get

(58) f(t, z, ε) =
∑
m≥0

(∂mε f)(t, z, 0)

m!
εm,

for every ε ∈ D(0, ε0) and (t, z) as above. On the other hand, a direct inspection from the
recursion formula (57) and (58) allow us to affirm that the formal power series û(t, z, ε) =∑

m≥0Hm(t, z)εm/m! solves the equation (12). 2

Theorem 3 Let k1 > k2. Under the assumptions of Theorem 1, a formal power series

û(t1, t2, z, ε) =
∑
m≥0

hm(t1, t2, z)ε
m/m! ∈ F[[ε]]

exists, with the following properties. û is a formal solution of (12). In addition to that, û can
be split in the form

û(t, z, ε) = a(t, z, ε) + û1(t, z, ε) + û2(t, z, ε),

where a(t, z, ε) ∈ F{ε}, and û1, û2 ∈ F[[ε]]. Moreover, for every p1 ∈ {0, . . . , ς1 − 1} and p2 ∈
{0, . . . , ς2 − 1}, the function up1,p2(t, z, ε) can be written as

up1,p2(t, z, ε) = a(t, z, ε) + u1
p1,p2

(t, z, ε) + u2
p1,p2

(t, z, ε),

where ε 7→ ujp1,p2(t, z, ε) is an F−valued function which admits ûj(t, z, ε) as its kj−Gevrey asymp-
totic expansion on Ep1,p2, for j = 1, 2.

Moreover, assume that

{((p0
1, p

0
2), (p1

1, p
1
2)), ((p1

1, p
1
2), (p2

1, p
2
2)), . . . , ((p2y−1

1 , p2y−1
2 ), (p2y

1 , p
2y
2 ))}

is a subset of Uk1, for some positive integer y, and

Epy1 ,py2 ⊆ Sπ/k2
⊆

⋃
0≤j≤2y

E
pj1,p

j
2
,

for some sector Sπ/k2
with opening larger than π/k2. Then, û(t, z, ε) is (k1, k2)−summable on

Epy1 ,py2 and its (k1, k2)−sum is upy1 ,p
y
2
(ε) on Epy1 ,py2 .
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Proof Let (up1,p2(t, z, ε))0≤p1≤ς1−1
0≤p2≤ς2−1

be the family constructed in Theorem 1. In this case, we

have
∅ 6= Uk2 := {0, . . . , ς1 − 1} × {0, . . . , ς2 − 1} \ Uk1 ,

and the opening of the sectors in the good covering are of opening slightly larger than π/k1.
The function Gp1,p2(ε) := (t1, t2, z) 7→ up1,p2(t1, t2, z, ε) belongs to O(Ep1,p2 ,F). We consider

{(p1, p2), (p′1, p
′
2)} such that (p1, p2) and (p′1, p

′
2) belong to {0, . . . , ς1 − 1} × {0, . . . , ς2 − 1}, and

Ep1,p2 and Ep′1,p′2 are consecutive sectors in the good covering, so their intersection is not empty. In
view of (52) and (53), one has that ∆(p1,p2),(p′1,p

′
2)(ε) := Gp1,p2(ε)−Gp′1,p′2(ε) satisfies exponentially

flat bounds of certain Gevrey order, which is k1 in the case that {(p1, p2), (p′1, p
′
2)} ∈ Uk1 and

k2 if {(p1, p2), (p′1, p
′
2)} ∈ Uk2 . Multilevel-RS Theorem guarantees the existence of formal power

series Ĝ(ε), Ĝ1(ε), Ĝ2(ε) ∈ F[[ε]] such that

Ĝ(ε) = a(ε) + Ĝ1(ε) + Ĝ2(ε),

and the splitting
Gp1,p2(ε) = a(ε) +G1

p1,p2
(ε) +G2

p1,p2
(ε),

for some a ∈ F{ε}, such that for every (p1, p2) ∈ {0, . . . , ς1 − 1} × {0, . . . , ς2 − 1}, one has that
G1
p1,p2

(ε) admits Ĝ1
p1,p2

(ε) as its Gevrey asymptotic expansion of order k1, and G2
p1,p2

(ε) admits

Ĝ2
p1,p2

(ε) as its Gevrey asymptotic expansion of order k2. We define

Ĝ(ε) =: û(t, z, ε) =
∑
m≥0

Hm(t, z)
εm

m!
.

Following analogous arguments as in the second part of the proof of Theorem 2, we conclude
that û(t, z, ε) is a formal solution of (12). 2
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