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Abstract

The asymptotic behavior of a family of singularly perturbed PDEs in two time variables in the complex
domain is studied. The appearance of a multilevel Gevrey asymptotics phenomenon in the perturbation
parameter is observed. We construct a family of analytic sectorial solutions in € which share a common
asymptotic expansion at the origin, in different Gevrey levels. Such orders are produced by the action of
the two independent time variables.

Key words: asymptotic expansion, Borel-Laplace transform, Fourier transform, initial value problem, for-
mal power series, nonlinear integro-differential equation, nonlinear partial differential equation, singular
perturbation. 2010 MSC: 35C10, 35C20.

1 Introduction

This work is devoted to the study of a family of nonlinear initial value Cauchy problems of the
form

(1) Q1(9:)Q2(0:)0, O, u(t, z,€) = (P1(0z, €)u(t, z,€)) (Pa(0z, €)u(t, z,€))

A diy 501, ,diy 01
+ > At 10,1152 012 Ry, 1, (92 )ult, 2, €)
0<11<D1,0<12< D2

+ co(t, z,€)Ro(02)ult, z,€) + f(t, 2, €),

with initial null data (0, t9, z,€) = u(t1,0, z,€) = 0. Here, Dy, Dy > 2 are integer numbers, and
for every 0 < [y < D; and 0 < Iy < Dy we take non negative integers dh,(s,l,cih,, 512, Ay 1, The
elements Q1,Q2, Ry and Ry, j, for 0 < Iy < Dy and 0 < lp < Dy turn out to be polynomials
with complex coefficients, and P;, P» are polynomials in their first variable, with coefficients
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being holomorphic and bounded functions in a neighborhood of the origin, say D(0,¢), for
some ¢y > 0: P, Py € (O(D(0,¢))[X].

The coefficient ¢y(t, z, €) and the forcing term f(¢, z, €) are holomorphic and bounded func-
tions on D(0,7)? x Hg x D(0,¢€), where r > 0, and Hp stands for the horizontal strip

Hg:={z € C: |[Im(z)| < B},

for some 5 > 0.

The precise assumptions on the elements involved in the definition of the problem, and the
construction of the coefficients and the forcing term are described in detail in Section 5. We
mention two direct extensions that can be made to this study, and which do not offer any
additional difficulty. On one hand, the existence of a quadratic nonlinearity can be extended to
any higher order derivatives. On the other hand, the monomials in #; and t» appearing in the
linear part of the right-hand side of the main equation can be substituted by any polynomial
p(t1,t2) € C[t1,ta]. We have restricted our study to the family of equations in the form (1) for
the sake of brevity, aiming for a more comprehensive reading.

The present work is a continuation of that in [7]. In that work, the existence of a k—summable
formal power series in the perturbation parameter € is established, connecting the analytic so-
lution of the problem with the formal one via Gevrey asymptotics. More precisely, the analytic
solution is constructed in terms of a fixed point argument applied on a contractive map defined
on appropriate Banach spaces. It admits the formal solution as its Gevrey asymptotic of cer-
tain order with respect to the perturbation parameter €, with coefficients belonging to certain
Banach space of functions. The Gevrey order emerges from the coefficients and the forcing term
appearing in the Cauchy problem.

The importance of the present work with respect to that previous one is mainly due to
the appearance of a multilevel Gevrey asymptotics phenomenon in the perturbation parameter,
when dealing with a multivariable approach in time. On the way, different and more assorted
situations appear. In addition to this, novel Banach spaces in zero, one and several time variables
appearing in the reasoning are necessary in order to describe exponential growth with respect
to certain monomial, or both time variables at the same time.

A recent overview on summability and multisummability techniques under different points
of view is displayed in [11].

In recent years, an increasing interest on complex singularly perturbed PDEs has been ob-
served in the area. Parametric Borel summability has been described in semilinear systems of
PDEs of Fuchsian type by H. Yamazawa and M. Yoshino in [16]

n
0
Ny /\j*’?jgu(ﬂf) = f(z,u),
j=1 J
where z = (z1,...,2,) € C" and f(z,u) = (fi(z,u),..., fn(z,u)), for n,N > 1, and A\; € C.
v is a small complex perturbation parameter and f stands for a holomorphic vector function

in a neighborhood of the origin in C® x CV. Also, in partial differential equations of irregular
singular type by M. Yoshino in [17]:

n . )
ny Ay 5, 42) = g(z,u,m),
=1 E

where s; > 2 for 1 < j < m < n, and g(z,u,n) is a holomorphic vector function in some
neighborhood of the origin in C"* x CV x C.



Recently, S.A. Carrillo and J. Mozo-Fernandez have studied properties on monomial summa-
bility and the extension of Borel-Laplace methods to this theory in [4, 5]. In the last section of
the second work, a further development on multisummability with respect to several monomials
is proposed. Novel Gevrey asymptotic expansions and summability with respect to an analytic
germ are described in [13] and applied to different families of ODEs and PDEs such as

P P
2228 p ot i pa) e 00 (090 BPFY 4+ PB ) g of = h,
8 T2 8 I 8 8 €2

where P is an homogeneous polynomial, k& € N* and h, A, B are convergent power series, and
«, B satisfy certain conditions.

The present research joins monomial summability techniques to obtain multisummability of
formal solutions of certain family of nonlinear PDEs.

The procedure in our study is as follows. The main problem under consideration, (1) is
specified in terms of an auxiliary problem through the change of variable (T1,T5) = (ety, eto)
and the properties of inverse Fourier transform (see Proposition 8). This change of variable has
been successfully applied previously by the authors in [12, 10, 7] and rests on the work by M.
Canalis-Durand, J. Mozo-Fernandez and R. Schéfke [3]. This auxiliary problem is given by (32).
We guarantee the existence of a formal power series

UMy, To,mye) = Y Unyny(m, )T 132,

ni,ne>1

which formally solves (32) (see Proposition 10). Its coefficients depend holomorphically on
e € D(0,¢), for some ¢y > 0, and belong to a Banach space of continuous functions with
exponential decay on R. The singular operators involved in the problem allow to expand them
into certain irregular operators at (71,72) = (0,0), following the approach in the work [14]. A
second auxiliary problem (42) is obtained by means of two consecutive Borel transforms of order
k1 with respect to 177 and order ko with respect to 715 in order to arrive at a convolution-like
problem.

At this point, we make use of a fixed point argument to an appropriate convolution operator
(see Proposition 11) in a Banach space of functions under certain growth and decay properties on
their variables (see Definition 1). It is worth mentioning that several Banach spaces are involved
in this result, due to the splitting of the sums in the linear operator which concerns functions
which only depend on 71 or 73, or which depend on both or neither of the variables in time.
This entails additional technical considerations on the way that different Banach spaces act on
convolution operators (see Section 2). Let k = (ki,k2). The fixed point theorem guarantees
the existence of a solution of the second auxiliary problem (42), wg(71, T2, m, €), continuous on
D(0,p)? x R x D(0,€) and holomorphic with respect to (71, 72,€) on D(0, p)2 x D(0, €), which
can be extended to functions w,acpl o2 (71, 72,m, €) defined on a set Sy, X Sp,, X R X &, p,, for
every 0 <p; < ¢ —1and 0 <py < — 1. Here, S, (resp. Sﬁpz) stands for an infinite sector

with vertex at the origin and bisecting direction d,, € R (resp. dp, € R), and (Epy ps)o<pr <ci—1
0<p2<e—1
is a good covering of C* of finite sectors with vertex at the origin (see Definition 6). In addition

to this, the functions wzp L7P2 gatisfy that

€
L [P 1 |22

w2 (1, 72, m, )| < w0 (L m])

T T
GXP(—ﬂ\mHVﬂ?\kl—V2’?|k2)7



for some w, 5 >0, and all (11, 72,m,€) € S, X Sp,, X R x &, p,. Returning to our main
problem, this entails that the function

k1ks Feo 2 3 - uzyky o dug dug
Upy o (L, 2, €) e 2 (ur, ug, m,€)e () —(a3)" M= dm
bz 27‘( 1/2 Uz U1
L”Ym L'YPQ

defines a bounded and holomorphic function on (71 N D(0, k")) x (Ta N D(0,h")) x Hpr X Ep, ps
for some bounded sectors Ty, T2 with vertex at 0, some h” > 0, and where Hg is a horizontal
strip. The properties of Laplace and inverse Fourier transform guarantee that wu,, ,, is an actual
solution of the main problem under study (1).

The previous statement shapes the first part of Theorem 1. The second part of that result
proves that the difference of two consecutive solutions up, p, and uy 1 (in the sense that &, p,
and &y ¢ are consecutive sectors in the good covering, with nonempty intersection) can be

classified into two categories: those pairs ((p1,p2), (P}, ph)) € Uk, such that

_Mp
|up1»p2 (tv 2 6) - Up! pl (ta 2y 6)’ < er o™ ; €€ gphpz N 5p’1,p2
uniformly for every t; € 7; N D(0,h”), for j = 1,2 and all z € Hg;
and those pairs ((p1,p2), (p},P5)) € Uk, such that
_ My
|up1»p2<t727€) - Up) pl ( z 6)’ < K e I 2, €€ gphpz mgp’17p2

uniformly for every t; € 7; N D(0,h”), for j = 1,2 and all z € Hg'.

The second main result, Theorem 2, makes use of a multilevel version of Ramis-Sibuya
Theorem (see Theorem (RS)) and the exponential decay at zero with respect to the perturbation
parameter observed in Theorem 1, in order to state the existence of a formal power series
u(t1,ta, z,€), written as a formal power series in €, with coefficients in the Banach space F of
holomorphic and bounded functions on (7;ND(0, ")) x (T2ND(0, ")) x Hg with the supremum
norm. This formal power series can be split as a sum of two formal power series in F[[¢]], and
each of the holomorphic solutions is decomposed accordingly in such a way that different Gevrey
asymptotic behavior can be observed in each term of the sum. This phenomenon is the key point
to multisummability, as described in [1] and also Section 7.5 in [11].

The structure of the paper is as follows.

Section 2 analyzes the structure of Banach spaces involved in the construction of the solution of
the main problem, and their behavior with respect to different convolution operators. A brief
overview on Laplace and Fourier transforms and related properties is described in Section 3.
Section 4 is devoted to the construction of two auxiliary problems and the existence of a fixed
point of certain operator which is the source for the construction of analytic solutions to the
main problem (1), obtained in Theorem 1 of Section 5. Finally, in Theorem 2 of Section 6,
we proof the existence of a formal solution, which is connected to the analytic solutions via a
multilevel Gevrey asymptotic representation.

2 Banach spaces functions with exponential growth and decay

We denote by D(0,r) an open disc centered at 0 with radius » > 0 in C, and by D(0,r) its
closure. Let Sy, be open unbounded sectors with bisecting directions d; € R for j = 1,2, and &
be an open sector with finite radius r¢, all centered at 0 in C. For the sake of brevity, we denote
T = (7’ 1, T 2).

The definition of the following norm heavily rests on that considered in [7]. Here, the
exponential growth is held with respect to the two time variables which are involved.



Definition 1 Let vi,v9, 8,1 > 0 and p > 0 be positive real numbers. Let ki, ko > 1 be integer

numbers and let e € £. We put v = (v1,12), k = (k1,k2), d = (di,d2), and denote F( Bko)

the vector space of continuous functions (T,m) — h(T,m) on the set (D(0, p)U Sy, ) x (D(0, p)U
Sa,) X R, which are holomorphic with respect to (11,72) on (D(0,p) U Sy ) x (D(0,p)U Sa,) and
such that

( 2) Hh(‘ ? m)H(V,BHU,,k,E)
71 |2k T2 |2k
|7| 1 + |i| 2

= sup (1+[ml|)*
TE(D(O,p)USdl)X(D(O,p)usdz)
meR

1k T2k
EY E eXp(5|m‘_V1’?| 1_V2’?| 2)|h(T,m)]

is finite. One can check that the normed space (F&B%k’e), -1l (v,8,,k,¢)) 8 @ Banach space.

Throughout the whole section, we assume € € &€, u,3,> 0 are fixed numbers. We also fix
v = (v1,12) for some positive numbers vq,1v9, and k = (ki, k2) is a couple of positive integer
numbers. Additionally, we take di,ds € R, and write d for (di, d2). The next results are stated
without proofs, which are analogous to those in Section 2 of [7]. The integrals appearing in
these results can be split accordingly, in order to apply the proof therein.

Lemma 1 Let (1,m) — a(7,m) be a bounded continuous function on (D(0, p)USg, ) x (D(0, p)U
Sa,) X R, holomorphic with respect to T on (D(0, p) U Sq,) x (D(0, p) U Sq,). Then,
(3)

Ha(7-7m)h(‘r7m)”(l/,,é’,u,k:x) < < B sup \a(r,m)\) Hh(Tam)H(V,ﬁ,u,k,e)
TE(D(0,p)USq, )% (D(0,p)USq,),meER

for all h(r,m) € F&, ;.

Proposition 1 Let y21,7v22 > 0 be real numbers. Assume that ki,ky > 1 are such that 1/k; <
Y25 <1, for j =1,2. Then, a constant C1 > 0 (depending on v, k,~21,7v22) exists with

dso ds
(4) H/ / it = ) (2 = )2 f (0 m) T ke

S92 81
< Cylel172 022 | £ (7, m)| |8 pukse)

for all f(T,m) € F(Cxlz,ﬁ,mk,ﬁ)'

Proposition 2 in [7] is adapted to the Banach space considered in this work.

Proposition 2 Let 11,712 > 0 and x21, x22 > —1 be real numbers. Let Ea1,&20 > 0 be integer
numbers. We write v; = (y11,712). We consider a, € O((D(0,p) U Sa,) x (D(0,p) U Sa,),
continuous on (D(0, p) U Sy, ) x (D(0,p) USg,), such that

1
L [y [F) 1 (1 4 [rpfF2)me

|a~, k()] < ( € (D(0,p) U Sa,) x (D(0,p) U Say).

Assume that for j =1 and j = 2, one of the following holds

® x2; > 0 and &5 + x25 — 71 <0, or



'XQJ_k 1f0rsomeX]21cmdf2]+k —mj; <0.

Then, there exists a constant Cy > 0 (depending, eventually, on v,&21,E&22, X21, X22, Y1, X1: X2, k)
such that

1/k 1/k
(5) llag, k(7 / / P sy (e sppensta gt (s % e ds |4

< 02|€|k‘1(1+§21+X21—"/11)+k2(1+£22+x22—712)||f(7_’ m)”(u,ﬂ,u,k,e)

fOT all f(T m) S F( Byp,k€)”

The previous result can also be particularized to each of the variables in time in the following
manner. We write the result which corresponds to the first time variable, but one can reproduce
the same arguments symmetrically on the second variable in time, 5.

Proposition 3 Let y1 > 0 and x2 > —1 be real numbers, and & > 0 be an integer number. We
consider a, , € O(D(0,p) U Sq,), continuous on D(0,p) U Sy, , such that

1
@k ()] < (

W’ T € D(Ovl)) U Sy, -

Assume that

e xo>0and &+ x2—m1 <0, or
.Xg—kl 1f0rsomex>1cmd§2+ -—m <0.
Then, there exists a constant Cy > 0 (dependmg, eventually, on v,&, x2,71, X, k1) such that
k1
n k1 X2 &2 1/k1
(6) @y, g (11) ; (it —81) 287 f(s)", T2, m)dst]| w8 ke,e)
< 02’6’161(1—%2—’_)(2_71)Hf(T7 m)”(u,,@,u,k,e)

for all f(T,m) € F(

NENTR AN
Proposition 4 Let Q1(X),Q2(X), R(X) € C[X] such that
(7) deg(R) > deg(Q1) , deg(R) > deg(Q2) , R(im)# 0, m € R.

Assume that p > max(deg(Q1) + 1,deg(Q2) +1). Let m +— b(m) be a continuous function on R
such that

1
|b(m)| < Rm)|’ m € R.

Then, there exists a constant C5 > 0 (depending on Q1,Q2, R, u, k,v) such that

®) libm) [ g / b ey E (s
([ @utitn = manstss = 20 (o2 = ) =)

, ki 1/k 1 1
<Qalimn)ge ) o e

< CalelI1f (T, m) | ..k, 19(T, 1) || 0 10,00

dmldxgdm) dsadsi | ’(V,B,,u,,k:,e)

fOT all f(T7 m)7g(T7 m) 6 F((’ilngzljlrkve).



Definition 2 Let ¢ € £. We denote F( Bk 6) the vector space of continuous functions

(11, m) = h(11,m) defined on the set (D(0, p) U Sy, ) x R, which are holomorphic with respect to
71 on D(0,p) U Sy, and such that

9) (T, )| 1 8,k 6)
| T |2k

€ T1
= ~ sup (1+ ]m|)“771 exp(B|lm| — Vl\—]kl)]h(ﬁ,m)\
T1€(D(0,0)USg, ),meR |?| €

. . d .
is finite. The normed space (F(Vllﬁ’u’/,ﬂ’e)7 [-[lw1,8,k1,6)) s @ Banach space.

The enunciate of Proposition 4 can be adapted in the following form to the Banach spaces
involved, as follows.

Proposition 5 Let Q1(X),Q2(X), R(X) € C[X] such that
(10) deg(R) > deg(Q1) , deg(R) > deg(Q2) , R(im)#0, meR

Assume that p > max(deg(Q1) + 1,deg(Q2) +1). Let m +— b(m) be a continuous function on R

such that 1

[b(m)| < W,

Then, there exists a constant Cs9 > 0 (depending on Q1,Q2, R, u, k,v) such that

(1) [|b(m // (rh1 s R (rhe gy
) </0 /_+OO Q1(i(m —m)) f((s1 — 21)/¥ m — my)

. 1 ds
X Q2 (Zml)g(l’i/kl 3;/]@ ) ml)(sl—xl)xldmldm> ?;dsl ‘ |(u,,8,,u,k,e)

< C3-2’6’2| ’f(Th m) H(l/hﬁy#,kl,e) | ’g(T7 m) H(V,ﬁ,,u,k:,e)

m e R

for all f(11,m) € F(dyll,ﬂ,y,,kl,e) and g(T,m) € F(‘f,,g,u,k,e)-

Proof A first stage of the proof is analogous to that of Proposition 3 in [7], concerning the
operators involving the first variable in time, 7. One leads to

1 1 s1 p+oo
b0 k/ / pesi - (1 Qutim - m)

. ds
F((sr = 20)'/% m = 1) x Qalima)g(ay™, 55/, my) del) 1l sk

v :
< sup Cale| — 77— exp(—v )
T2€D(0,p)USd2 }?|

(81 — $1)3§1

T2

|72 |F2 ‘ 1/k2 d
ke o \/ke S22/ |€] |s2| | d]s2]
/0 (I72| |s2]) 1+ [s2]2/]€[2k2 exp( 2| ‘kz) |5 HfH(VmB 1ok1,€) HgH v,Bu,ke) 3



for some C35 > 0. The change of variable |sy| = h|e|* in the integral above allow us guarantee
that the previous expression is upper bounded by

1+ 22 v h1/k2
Csalel” SUP = Tk exp(— Vzif)/o ($—h)1/k21+h2 eXP(VZh)*”fH ik 19w g k.0

= Csale® SUP A) 1l 101,019l )
Tz

It is straight to check that A(x) is bounded for all x > 0, and the result is attained. O

The previous result is also valid by interchanging the role of the variables 71 and 7. The
following definition deals with a Banach space considered in [7]. We provide inner operaions
linking this and the previous Banach spaces.

Definition 3 Let 8,u € R. We denote by Eg, the vector space of continuous functions
h:R — C such that

[A(m)l (5,0 = Slé%(l + [m[)* exp(B|m|)|h(m)]
is finite. The space Eg ) equipped with the norm ||.||(s ) is a Banach space.
Proposition 6 Let Q(X), R(X) € C[X] such that

(12) deg(R) = deg(Q) , R(im)#0
for allm € R. Assume that p > deg(Q) + 1. Let m +— b(m) be a continuous function such that

1
|R(im)|’

Then, there exists a constant Cy > 0 (depending on Q, R, u,k,v) such that

(13
1 1 oo ] dso ds
[b(m / / R g )P (2 ) P / Fm=m)Qim)g(si/*, 55" mu)dm T2 g

oo S

< Culel®I1F )|, |19 (T, M) 08, 4116)

m € R.

|b(m)| <

for all f(m) € Eg, all g(T,m) € F(‘,ij’@“’k’e).

Proposition 7 Let Q1(X),Q2(X), R(X) € C[X] such that
(14) deg(R) > deg(Ql) ) deg(R) > deg(Q2) ) R(lm) 7é 0, meR.

Assume that 1 > max(deg(Q1)+1,deg(Q2)+1). Then, there exists a constant Cs > 0 (depending
on Q1,Q2, R, 1) such that

1 too

U9 M timy ).

Q1(i(m —ma)) f(m — m1)Q2(im1)g(ma)dma|| s )

< Gsllf(m)l g llg(m)]] (8,



for all f(m),g(m) € Eg,y. Therefore, (Eg ) |-ll(3,,) becomes a Banach algebra for the prod-
uct x defined by

1 oo

] Q1(i(m —mq)) f(m —m1)Q2(im1)g(m1)dm;.

f*g(m):W B

As a particular case, when f,g € Eg )y with 8> 0 and p > 1, the classical convolution product
“+o00
Frgm) = [ fm— mi)gtmi)dm,
—0oQ

belongs to Eg ,,)-

3 Laplace transform, asymptotic expansions and Fourier trans-
form

We recall the definition of k—Borel summable formal power series with coefficients in a fixed
Banach space (E, ||.||g). This tool has been adapted from the classical version in [1], Section 3.2.

Definition 4 Let k > 1 be an integer. Let my(n) be the sequence defined by

A formal power series X(T) = S.°° | a, T" € TE[[T]] is my,—summable with respect to t in the
direction d € [0,2m) if

i) there exists p € Ry such that the following formal series, called a formal my— Borel
transform of X

N > An
By (X)(r) =3 s € T[]
n=1 k
is absolutely convergent for |T| < p.

ii) there ewists & > 0 such that the series By, (X)(1) can be analytically continued with
respect to T in a sector Sg5 = {1 € C* : |d — arg(7)| < 6}. Moreover, there exist C > 0 and
K > 0 such that

1By (X)(7)|[s < CeXIT, 7€ Sy

Under the previous hypotheses, the vector valued Laplace transform of By, (X)(7) in the
direction d is defined by

£, (BN =k [ By (D) /DL,
L'Y

u

along a half-line L, = Re” C S5 U {0}, where v depends on T and is chosen in such a way
that cos(k(y — arg(T"))) > 01 > 0, for some fixed d;. The function £%k(l’>’mk (X))(T) is well
defined, holomorphic and bounded in any sector

Suorie ={T €C*:|T| < RV |d —arg(T)| < 6/2},



10

where 7 < 6 < T +260 and 0 < R < 01/K. This function is called the mj—sum of the formal
series X (T)) in the direction d.

Some elementary properties regarding mg—sums of formal power series are the following:

1) £4, (B, (X))(T) admits X (T) as its Gevrey asymptotic expansion of order 1/k with respect
tot on S,y pi/e. More precisely, for every 7 < 61 < 0, there exist C, M > 0 such that

n—1
(16) L5, By (X)) = > apT?||e < CM"T(1+ )\TI" n=2, TeSy g
p=1

Unicity of such function on sectors S; g pi/» with opening 61 > 7 is guaranteed by Watson’s
lemma (see Proposition 11 p. 75, [1]).

2) Let us assume that (E,||.||r) also has the structure of a Banach algebra for a product . Let
X1(T), Xo(T) € TE[[T]] be my—summable formal power series in direction d. Let q; > g2 > 1 be
integers. We assume that X1 (7T") + Xa(T), X1(T) x Xo(T) and T90% X1 (T), which are elements
of TE[[T]], are mi—summable in direction d. Then, the following equalities

(17) L5, By, (X))(D) + L33, (B, (X2)(T) = (Bmk(X1+X2))(T)
Eﬁzk(Bmk(Xl))(T)*Eik(Bmk(Xz))( )= Lo, ( mk(Xl*Xz))(T)
TUOP L5, (B (X1))(T) = L5, (B, (T 0 X1))(T)

hold for all T" € Sd,t97R1/k'

The next result recalls some properties on the mg—Borel transform, successfully used in [7, 8]

Proposition 8 Let (E,||.||z) be a Banach algebra for some product x. Let f(t) = D ons1 fnt" €
E[[t]], g(t) = >_,>1 9nt™ € E[[t]]. Let k,m > 1 be integers. Then, the following formal identities
hold.

(15) B, (410, (1)) (r) = k7B, (F(0)(7)
. Tk 7 m P ds
m 7) = Tk—s -1 - Sl/k o
(19) B (" FO)0) = gy [ = 9 B (PO
and
f =T 7' — s)VFy & s1/k 71 S
(20) B (F(1) % 5(1))(7) = / B, (f ) B (0 (5)

Some regular properties of inverse Fourier transform are also involved in our construction.

Proposition 9 Let f € E(g ) with 8 >0, u> 1. The inverse Fourier transform of f, defined
by

1 oo
(2%)1/2

extends to an analytic function on the strip

F ) () = f(m)exp(izm)dm, =€ R,

(21) Hy = {z € C/|Im(2)]| < B}.
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Let ¢(m) =imf(m) € Eg,_1). Then, it holds
(22) .F 1(f)z) = F 1#)(2), =€ Hp.

Let g € Eg, and put ¢(m) = Wf x g(m), the convolution product of f and g, for all
m € R. From Proposition 7, one gets that ¢ € Eg ). Moreover, we have

(23) FHHRF () =F  W)(2), z€H;g

4 Formal and analytic solutions of convolution initial value prob-
lems with complex parameters

Let k1, k2 > 1 and Dy, Dy > 2 be integers. For j € {1,2} and 1 < [; < D, let d;,, 511,A11712,d12,512
be non negative integers. We assume that

(24) 1=61=061 , 0y <iyt1 5 O <Ot

forall1<li < Dy—1and 1<y < Dy—1. We also make the assumptions that

(25) dp, = (6p, —1)(k1 +1) , dyy > (0, — 1)(k1 + 1)

forall1 <l < D;—1, and

(26) dp, = (bp, = (k2 +1) , di, > (b, = 1)(ka +1)

for all 1 <ly < Dy — 1. We take

(27) Ap,.p, =dp, +dp, —6p, —0p, +2 , Ap,o=dp, —6p, +1 , Aop,=dp, —dp, +1

Let Q1(X), Q2(X), Ro(X) € C[X], and for 1 < {3 < D; and 1 <l < Dy, we take Ry, 1,(X) €
C[X] such that

(28) Rp i, =Ry, p, =0, 1< <Dy, 1<13< Dy

and such that Rp, p, can be factorized in the form Rp, p,(X) = Rp, o(X)Ro,p,(X). We write
Rp, == Rp,o and Rp, := Ry p, for simplicity. Let P, be polynomials with coefficients
belonging to O(D(0, €y))[X], for some ¢y > 0. We assume that

(29) deg(Q]) > deg(RDj)7 ] € {17 2}7

and

(30) deg(Qj) > deg(Rp,) , deg(Rp, n,) > deg(Ry, 1,)
deg(Rp,,p,) > deg(P1) , deg(Rp, p,) > deg(P) , Qj(im)#0 , Rp, p,(im)#0

forallm e R, all j € {1,2} and 0 <1; < D; — 1.

For every non negative integer n, we take m — Cp n(m, €), and m — F,,11(m,€), belonging
to the Banach space E(g ) for some 8 > 0 and p > max{deg(P1) + 1,deg(P2) + 1}, depending
holomorphically on € € D(0, €p), for some positive eg. We assume the existence of Ky, Ty > 0
such that

1

1
(31) ||Cn1,ﬂ2(m> 6)||(ﬂ,,u) < KO(?O)W‘H_”Z ) ||Fn1,n2 (mve)H(ﬂ,u) < KO(?O)nH_nQ
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for all ny1,ne > 1 and € € D(0,e). We write T = (T1,T2) and put

Co(T,m,e) = > Coymy(m, T2, F(Tymye) = Y Foyny(m, o) T T3

ni,n2>0 ni,na2>1

which are convergent series on D(0,7p/2) x D(0,7p/2) with values in Eg ). We consider the
following singular initial value problem

(32)
(Ql(im)aTl _ T1(5D1—1)(k1—1)a;?1 Rp, (Zm)) <Q2(im)8T2 B T2(6D2—1)(k2—1)a§§2 Rp, (Zm)) U(T,m,e)
2 1 oe ,
=€ @i Pl( (m—m1),e)U(T,m —my,€)Pa(imy, e)U(T, mq,€)dm;
+ Z Azl 12—d11—d12+511+§z —2le1 lez 8611 8512 RZ1 0 (zm)U(T, m, 6)
1< <Dy —1,1<l3<Dy—1
1 +oo .
+ E_QW Co(T,m —mq,€)Ro(im1)U (T, my, €)dmy

+ e 2F(T,m,e)

for given initial data U (71,0, m,e) = U(0, T2, m,e) = 0.

Proposition 10 There exists a unique formal series

UT,m,e)= > Unymy(m,e) T T2

ni,na2>1

solution of (32) with initial data U(T1,0,m,e) = U(0,To, m,€) = 0, where the coefficients m
Unyny (M, €) belong to Eg ) for 8> 0 and pp > max(deg(P1) + 1,deg(P,) + 1) given above and
depend holomorphically on € in D(0,¢€p) \ {0}.

Proof Proposition 8 and the conditions in the statement above yield Uy, ,(m, €) are determined
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by the following recursion formula and belong to Eg ) for all e € D(0,¢) \ {0},

(33) (n1+1)(n2 + D)Uny+1,n5+1(m €)
e 2 1
= Q1(im)Qa(im) 2. 2. (2m)1/2

n11+n12=ny ngi+nga=ny
nii,mi2>1 noi,ne>1

“+oo
X Pr(i(m —m1))Unyy ng, (M — ma, €) Po(ima)Upy gy, (M1, €)dmy
Sp —1
Rp, (im) ! ,
m( 2+ 1) 3130 (n1+0p, — (6p, = 1)(k1 — 1) = §)Uny16p, —(6p, —1) (k1 —1)ma+1
5p,—1
Rp,(im) 2 ~ ~ )
+ Ougim) MY ]HO (3 + b, = Bpy = D)k2 = 1) = DU 1y 40, Gy 1)k 1)
R, (im) R 5D1 15p,—1
p, (im) Rp, (im) ‘ . _ ‘
Qll(zm Q; (im) HO HO (n1+0p, —(0p, —1)(k1 —1) = j1)(n2+0p, — (6p, —1) (k2 —1) —j2)
J1 J2
X Un1+5D1—(5D1—1)(k:1—1),n2+5D2—(5D2—1)(k2—1)
Rup 1. (im) 5o, ~1
7 < m
+ Z Antg—diy —dip 0, 0y —2_ oA T H (n1+ 0y, — diy — J1)
1<1, <Dy~ 1,1<l5<Dy—1 Qu(im)Qa(im) 12,
by —1
x H (n2 + 512 - dl2 - j2)U’rl1+6ll—dll,n2+(§l2—d~l2
j2=0

6_2 1 +o00

t ST So Z Z 0. \1/2 Chiinan (m—m, €)Ro (iml)Unlz,nm (ma, €)dmy
Q1(lm)Q2 (Zm) ni1tni2=ng no1tnoa=ng (27T) / >
ni1,n122>21 n21,n222>1

) +oo

€ 1 )
-+ m Z W Cn11,0(m —my, e)RO(Zml)Unlz,nz (m17 €)dm1
nipt+nig=ng >
nii,niz>1

-2 +oo

€ 1 .
+ O1Gm)Oalim) E ani | Co,npy (M — ma, €) Ro(im1)Uny ny, (M1, €)dmy
ng+ngg=ng R
na21,n22>1

672 1 +oo )
+ Gr (i) Qo i) (2m)172 Co,o(m —ma, €)Ro(im1) Uy, n, (M1, €)dmy

6_2
+ Ql(Zm)QQ(Zm) Fnhnz (m’ 6)

for all n1 > max;<;<p, d; and ny > maxi<;<p, d;. O

The following relations (see [14], p. 40) hold

5 ) 6p,—
(34) TlDl(k1+1)aTlD1 _ (Tf1+18T1)5D1 4 Z Aépl,plel( Dy pl)(Tfl'i‘laTl)pl
1<p1<ép, —1

= (TP'9r,)" ™ + Asp, (T1,0ry)
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(35) T25D2 (k2+1)8§§2 _ (Tka—l-laTz)SDQ + Z A- T2k2(5D2 —p2)(T2kg+18T2 )p2

0Dy ,p2
1<p2<dp,—1

= (132 0r,)2 + A5, (T3, 01,)

for some real numbers Aépl,pu p1=1,...,6p, —1 and ASD pos P2 = 1,... ,SD2 — 1. We write
2’

Ap, (resp. lez) for A5D1 (resp. flgD ) for the sake of simplicity. Let d,l,kl,dll,,@ > 0 satisfying
2

(36) dl1 +k+1= 511 (k‘l + 1) + dll,kzl d~l2 + ko +1= 512 (k‘z + 1) + d~l27k2

forall 1 <ly < Dj—1and 1<Ily < Dy — 1. Multiplying the equation (32) by T{“HTQM’Jrl and
taking into account (34,35), we rewrite (32) in the form

(37)  (Qilim)Ti o, — (T 100 + Ap, (T1.01,)) o, (im))

% <Q2(im)T2kQ+13T2 - ((T§2+13T2)SD2 + Ap, (T276T2)) RDz(im)) U(T,m,e)

1 oo
= ¢ 2phitiplet TERE / Pi(i(m —mq),e)U(T, m —my, €)Pa(imy, e)U (T, m1, €)dm;
—00

" Z Aty —dy _dl2+511+512_2Tf“(k1+1)+dll’k185ll
T1
1<lh1<D1-1,1<l2<D2—1

Sty (ko +1)+d1y iy o

x T ‘”2311,( m)U(T,m, )

1 oo

+ e 2kt Co(T,m — my,€)Ro(im1)U (T, my, e)dmy
—0o0

2 (2m)1/2

+ 2T L BT m €)

We write T = (71, 72) and denote by wg (7, m, €) for the formal my, —Borel transform with re-
spect to T and the my, —Borel transform with respect to 75 of U(Tl, Ts,m,€). Let pg(T1, 72, M, €)
denote the formal my, —Borel transform with respect to 77 and the my,—Borel transform with
respect to Ty of Co(T',m,€); and (T, m,€) the formal my, —Borel transform with respect to
Ty and the my, —Borel transform with respect to T» of F(T',m,e€),

- ¥
wi (T, m, €) Unino (M, €) 177, 2n’
2 D O
Tnl TTLQ
ng(T,m,G): Z Cnl,nz(mﬂdl—\(lnil) F(znig)?
n1na>1 EE
i
Sok(’rl:mvf) - Z Cnl,o(m7 E)I‘<1nil)’
n1>1 k1
T2
‘;0]@(7-2777%6) - Z C10 ng(m7 6)F<2n,72)a
ng>1 2
R
djk(T m 6) Z Fn1,n2 (mve) lnl 2712
INC-IRNC=)
ni,na2>1 1 2
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Using (31) we arrive at o (7,€) € F(‘f/ﬁ%k’e) and (T, m,€) € F((i,ﬂ,u,k,e)? for all e € D(0,¢p) \
{0}, any unbounded sectors Sy, and Sy, centered at 0 and bisecting directions d; € R and

ds € R, respectively, for some v = (v1, 1) € (0,400)2. Indeed, we have

(38) H‘Pk(Tam7 6)”(1/,,6’,;1,&5) < Z HCTLLWQ (mv G)H(ﬂ,u)

ni,n2>1
o el - Lk T2 oy T2 72|
x( sup I o exp(—vi|—[*" — 1| =] Q)W)’
Te(D(0.p)US1, )% (D(0.p)USs,) || | 22| € (F)T(%2)

”djk(Tvmve)H(u,B,u,k:,e)S Z ‘|Fn1,n2(m76)||(5,u)

ni,ne>1
L e Tl i 1k T2k T2 T2|™?
<( sup = m— exp(—vi| =" = e[ 1) Fap onay )
Te(D(0,0)USay) X (DO0,p)USay) | ¢ 2 € ()T ()

Using classical estimates and Stirling formula we guarantee the existence of A1, As > 0 depending
on v, k such that, if egAs < Tp, then for all € € D(0,¢) \ {0}. One has

AlKg AlKO

- 2 qubk(7-7m7 6)|| v,B,u,k,e <———
(TO _1)2 (v,B,u ) (TO _1)2
€0As €0 A2
for all € € D(0,¢) \ {0}.

One can also check that in the case that ¢ fulfills egAs < Tp, then

(39) HSOk (Tv m, 6) ‘ |(V,B,,u,k:,e) <

A1 Ky A1 Ky
(40) ngllc(Thm?G)H(Vh@u,kl,e) < Ty 1 H‘pi(T%m: G)H(ug,ﬁ,u,kg,e) < To 1
€0Aa B €Az o

for all e € D(0,¢p) \ {0}.

From the properties of the formal my, —Borel and my, —Borel transforms stated in Proposi-
tion 6 we get the following equation satisfied by wg (7, m, €). In the following writing, Ap, (71, 07,)
(resp. Ap,(m2,0r,)) stands for the my, —Borel transform of the operator Ap, (T1,dr,) with re-
spect to T} (resp. the my,—Borel transform of the operator ADQ (T, 0r,) with respect to T3),
ie.

(41)
Asp Tt 71 1/k dsy
Asy wr(T,mye) = Y F(;li)/ (1 — 1) Py P (5170, 7, m, )~
1<pr<op, -1 D1 P Jo !
Ax The ke -
% Dy P22 2 po— 1/k dsy
Asp, wr(Tym, €) = Z P@DQi)/ (732 — 52)°P2 P2 ey D20 (71, 55/ m, 6)?2-
1<pa<ip,—1 P2 P20

We arrive at
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(42) (Qu(im)kimf* — (ki7i)°P1 Rp, (im))(Qa(im)karh — (kah2)°P2 Rpy, (im))won, (7, m, €)
= (Q1(im)ky it — (ky7)901 R, (im)) Ap, Rp, (im)w (T, m, €)
+ (Qa(im)kars® — (ka7h?)°P2 Rp, (im)).Ap, Rp, (im)wg (T, m, €)

— Ap, Ap,Rp, (zm RDQ(zm)wk(T m,€)

+€_2F(1 +71 1rh? / / sy (rh — g1k
+<>o
X < 1/25152/ / / (m —my), e)wr((s1 — 21)*%, (s — 22)V/*2 m — my, €)
1 1/k1 1/k2 1 dSQ d81
x P, dmydaadz, | 241
2(1m1, )wk(fﬁl y Lo mlaf) (31 _wl)x1(82_$2)x2 miarsz ZE1> Sy 51
- N Tlekz
+ Z Rll,ZQ (im)eAll7l2_dl1 —dl2 +511+512—2 1 '2 _
1<11<D1—1,1<1,<Dy~1 r <dl,1€—’“1) r <dl,§"2)
1 2
U dss d
[0 e i o ol om0 2
0 0 52 51
-2 71 Tz _ 1/l~c1 ky o \l/ky L
T (1+ / / SR BN = e
S ACE e 1k 1/k
><8182/ / / ok ((s1 — 1)k 17(52_xQ)l/k27m_mlaf)RO(iml)Wk(-Tl Lay ™ my )
0 0 —00
! dmidxodx @@
(s1 —x1)x1(82 —332)962 P
-2 7'1 7'2 _ 1/k1 ky o \l/ky L
T (1+4) / / )t = ) R G
s1 o0 1 dss ds
ki 1/k 2 dsy
x51/0 /_Oocpk((slm) [k ,m—my, €)Ro(imq )wi(x; [k 52/ 2 ml,e)mdmldmgs—l
+e2 lelTQ / / 1/k1( ko )1/k2 1
€ L T2 — 8 —_—
T (1 +L 1 + L 2 277 em)ie
S9 00
2 1/ko . ki 1/k2 1 dss dsq
X 89 S9—T9 ,m—myq,€)Ro(imq)wg(s ,mi,€) —————dmidro— —
||t Rofimn (s, 1, ) dmda, T2
rhirk 1
42 1 2 / / gk 1/ks
‘ F(1+ 1+ s ) (2m)1/2
dso d
/ Co,o(m —ma, )Ro(lml)wk( T <5‘2/k2,"7”b1,6)dm1ﬂﬂ
S2 81
dso d
S (1+4) Tl 72 / / R G
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For the sake of simplicity, we write the previous equation in the form

(43)  (Q1im)k17* — (k17{™)°P1 Rp, (im))(Qa(im)kay? — (ko7?)°P2 Rp, (im))wk (T, m, €)
= (Q1(im)kyr{" — (kyr")’1 Rp, (im)
+ (Q2(im)katy? — (ka7h?)°P2 Rpp, (im)

— Ap, Ap, Rp, (im)Rp, (im)wy (T, m, €) + O (T, m, €)wi (T, m, €).

ADQ RD2 (im)wk (Tv m, 6)

)
)AD, Rp, (im)wg (T, m, €)

We make the additional assumption that for j = 1,2, there exist unbounded sectors
SQJ',RD]- ={2€C/|z| > TQj.Rp; > larg(z) — de7RDj| < an:RDj}
with directions dg;, Rp, € R, aperture ngq,, Rp, > 0 for some radius rq,, Rp, > 0 such that
Qj(im)
44 ————= € 50.
( ) RD]- ('Lm) Q] :RDj

op. (Op.—1)k;

for all m € R. We consider the polynomial Py, ;(7;) = Q;(im)k; — Rp, (z’m)ijj T; 2y~ ks

and assume that {QI,1}0<Z<(5D1—1)k1—1 and {q172}0<l<(5D C1)kp—1 AT€ the complex roots of each
S =0=9Dy

polynomial, for m € R. Following an analogous manner as in the construction of [7], one can
choose unbounded sectors S;, and Sg,, with vertex at 0 and p > 0 such that

—t . 6p. —1)— L
(45) [Pt (11)] = Cp(rqy rp,) PP " | R, (im) (1 + [ry [F1) 0P~ 77

for all 7, € Sy, UD(0,p), and m € R; and
1 N
(46) [Pra(r2)] 2 Cp(rqap,) ™2 7" |Rpy (im)| (1 + [ro|F4) 72717,
for all 79 € Sy, U D(0, p), and m € R. From now on, we write
1 1

5p, —Dk 5p,—Dk
Cr, = OP(TQlyRDl)( DY) Yy Gy = CP(TQ%RDQ)( Dy~ k2

for a more compact writing.
Let d = (d1,ds). The next result guarantees the existence of an element in Fi?, 5. uk,c) Which

turns out to be a fixed point for certain operator to be described, solution of (42). Here 3, u are
fixed at the beginning of this section.

Proposition 11 Under the assumption that
2 ~ = 2 <
(47) dp, 2511—1-]?17 0D, 25[2-#]{:*2, All,lz+k1(1—5D1)+k2(1—5D2)+2207

Jorall1 <y < Dy —1,1 <1y < Dy — 1, there exist constants @, (1,(2 > 0 (depending on
Q17 Q27k7CP7IU’7Va607Rh,lz?All,l276l175l27dll7dl2 fOT’ 0 < ll < Dl and 0 < l2 < DQ) such that Zf

(48) ||90k(7-7 m, E)H(V,B,,u,k,e) < Cl ) H%(ﬂma 6)H(I/,B,u,k,e) < CQ
||(10]1~z(7-17ma €)||(V1,ﬂ,p,k1,e) < Cll ) ||(10]2c(7—2>m7 €)||(V2,B,;L,k2,e) < C12 ) ||CO,U(m¢ €)||(ﬂ,u) < C?
for all € € D(0,€p) \ {0}, the equation (42) has a unique solution wi(T,m,€) in the space

F(lf/,ﬁ,u,k,e) where B, > 0 are defined in Proposition 6 which verifies ||wg(7', m, )| (w8 k) < s
for all e € D(0, ¢) \ {0}.
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Proof
Let € € D(0,€p) \ {0}. We consider the operator H., defined by

8
(49) He(w(T,m)) =Y Hl(w(r,m))
j=1
where
H(w(T,m)) = L, (im) (im) Ap, w(r,m) + £p, (im) (im) Ap, w(T,m)

"~ Pra(m) ™ Pra(m)

_ Rp,(im) Rp,(im) Ap, Ap,

w(T,m
Pm,l(Tl) Pm,2(7—2) T{Cl ki ( )
HQwT,m = / / — 85 1/]“ 2 go)1/k2
6( ( )) ml T1 mQTQF(1+ 1+ ( 2)
+oo
( 1/28182/ / / (m —m1), e)w((s1 — 1) *, (59— w2) /*2,m — )
1 dso ds
Py(i ki pl/ke dmydaodz; | 252451
X Py (imy, €)w(xzy ™, x5 ’m1>(81—x1)m1(52—x2)x2 midzodry o
H(w(r,m)) = > Iz R(ﬁ’liz(am)u A —
1<U<D1—1,1<lp<Dy—1 - MLV S 2802 r (%) r (2“)
1 2
/ / — 5 d11 ky /1= 1( 5 *SQ)CZZQ”“?/kQ_kallkgbsillsgbw(si/kl,sé/kz,m)@@
S2 81
4 e’ Yi/k k 1/k
He(w(T,m)) = / / L sk (k2 —sp) [k2
P 1(11) P 2(12)T (1 + i 1 + =

S18
L2 / / / or((s1 —x1) /%, (2—$2)1/k2,m—m1, €)Ro(im1 )wi (7 kL é/kQ,ml)

(2m) (2m)1/2
! dss dsy
(81 B x1)$1(82 - x2)$2 dmld:Edeng
H?(W<T7m)) = € / / 1/k1(7_§2 —Sg)l/kQ
Pm,l(Tl)Pm,2(7'2)F (1 + = 1 +

S S1 o) |
><(277)11/2/ / gpk((sl_xl)l/kl’m_ml’E)RO(Zml)Wk(nykl,Sé/b’ml)
0 J-oo
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2
%E(W(T7m)) = € / / —81 1/k1(7_§:2 _82)1/k2
Pm,l(Tl)Pm,z(TQ)F< + L 1+
st/s2 /OO 02 ((sa—22)/*2, m—m, €) Ro(im1 )wg(s; ™ $1/k2,m1);dm1dx2@@
(277)1/2 0 —c0 ’ ’ Lo (82 —902)562 S2 81
)
H (ol m)) = ‘ / / L gy )Yk _ )1k
Prn1(11) Pm 2(Tz)F< + 4 1+
dss ds
1/2/ Coo(m = m1, ) Roima)wn (51" 55/, ma)dm =22 728
8 672
He(w(T,m)) = : 1
Pm,1<Tl)Pm Z(TQ)F (1 + F) I (1 -+ E)
/ / VA (rf ) (st 5y m, 0 20
Sy 81

Let @ > 0 and assume that w(r,m) € F¢ o ke Assume that [lw(T,m)|[,, 5,k < @ for
all e € D(0, 60) \ {0}. We first obtaln the existence of w > 0 such that the operator #H. sends

B(0,w) C F4 (3 k) IEO itself. Here, B(0, ) stands for the closed ball of radius w, centerd at
0, in the Banach space F( Brike)”
Using Lemma 1 and Proposition 3, with (45) and (46) we get

Rp,(im) Ap Az, Cs

(50) P<()> D2 (7, m) < X s e s
™ T2 (V,,B,}L,k,ﬁ) 1SPQSSD2*1 p2

Rp, (im) Ap, Asp, ;1 Co
(51) : oo w(T,m) < Y a2 el W m) sk

Pm,l(Tl) Tll (0,8 ks€) 1<p1<dp, -1 F<5D1 - pl) C
(52) RD1 (Zm) ADI RDQ (Zm) ADQ (7_ m)

k k ’
Bpa(m) us Pn2(72) 7y (v,8,1,k )
A(SD Dp1 ASD P2 (02)2
< L 2 e|? ||lw T, m

1<p1<ép, —1 1SPQSSD2 -1

Proposition 4 and Lemma 1 yield
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kq ko
6_2 /7'1 /TQ (Tkl _ Sl)l/kl (Tk2 N 32)1/7452
Poa(1)Pma(m2) Jo  Jo 2
s1 sz p+oo
: </ / / Pi(i(m —ma), e)w((s1 — 1)/, (s2 — 22)/"2,m — my)
o Jo Joo

1
X Py(imy, e)w(az}/kl,xé/b,ml) (51— 21)71 (52 — 2272 dmld:nzd:m) dsadsy

(53)

(V7/8)#1k7€)

G I,
C’kICkQ o5k

<

From Proposition 2 and Lemma 1, we get

(54) Rl1,l2 (Zm) EAZ1’12_dll_d~l2+6l1+512_2
Py 1(71) P 2(m2)
ke . 5. & dso ds
/ / (T{cl _ Sl)dllakl/kl_l(T§2 _ 82)d12’k2/k2_lslllsleW(S}/kl, s;/kz,m)?;?;
0 0 (v,B,1,k,¢€)
Co A 81, (1+k1)—K16p, +0,, (14ka)—k2d
< e[ Attat 1y (14+k1)—k16p, +01, (14+k2)—k26p, lw(T,m)]|] k
_— Ck‘l CkQ (V7/B’l1‘1 76)

Also, Proposition 4 and Lemma 1 yield

(55)

S1 S92 o0
X / / / or((s1 — 21)Y%1, (s9 — 22)Y*2 m — my, €)Ro(imy)
0 0 —00

X w( my) dmydxodridsadsy

(s1 — x1)z1(s2 — T2) X2

)

1k 1/ko 1
Ly Ty

(V7/3’H’k76)

Cs
<
< Goon sl mllo s

In view of Proposition 5 and Lemma 1 we get

k1 ko
1 1 T2
56) |l ? / / T — s1) /R (2 — sg) /P2
(56) P (11) Pr2(72) Jo 0 (1 R ?
81 o0 . 1 dS
8 /O / (Pllc((sl — xl)l/kl,m —my, e)Rg(zml)w(x}/kl, sé/]”,rm) (31 — x1>x1 dmldxl?;dsl
Cs.2 1
SCoc (T, M)l ) |08 (71, 2, €)H(V1,B,u,khe)
1 2

Cs.2 1
w T, m v €
< 22 oty €
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57 - _ 1/k1 _ 1/k2
(57 |e PmlTl szQ/ / o1 (rg* = 2)
1/ko 1/k1 1/ko 1 dsy
<pk sg —x2) ', m —my, €)Ro(imi)w(sy ", x5 7, my) —————dmydzadsy—
(82 — z2)T2 s1
G2 o (r, m)| |2 (72, m, )]
- CkICkQ ’ (V757M7k76) Spk 2’ ’ (1/2,5,#,1472,6)
Cs.2
< Geopn 1Ml s pre

Proposition 6 and Lemma 1 yield

-2 1/k1 o \1/ky
‘ Pm 1 Tl m,2 TQ / / o ( 82)
dsz dsy

52 81

(58)

x/ C’070(m—ml,e)Ro(iml)w(si/kl,sé/kQ,ml)dml

(v,B,1,k.€)

Cy
< C C Cl ||w(7- m)”(u,,@,u,k,e)

Finally, from Proposition 1 and Lemma 1 we get

(59) 6_2 / / 1/k1( o 82)1/k2
P (11)Pra(2)

X k(s 1/’617 %/k’z?m,e)@@

52 51 l(w,B.u.k.e)

Ch ki 1/ks
< —- S , S S, €
N CklckZ wk( ! 2 ) (u,ﬂ,y,k,e)
C1
- Ck10k2 42'

In view of (48) and by choosing €, @, (1, (2, (1, (¥, ¢ > 0 such that
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Ch, Az Co A
60) X paa ol X el
1<p2<ip,—1 D2 b2 e

Asp, p A5D P2 Caw?
+ 1’ _ P C 2 € 2w+
Z Z ['(dp, —p1) T(dp, —pg)( 2)7leol T(1+ )T+ 5)(2m)Y/2

1=p1=0p; ~11<py<ép, 1

5 5 R
i Z o | At +0 (k1) —k18p, +61, (1+h2) —k23, - 1 R -
1<h <Dy~ 11<1,<Dy—1 D(ZRHN(Z52)
C3Q1@ 4 C32(i@ n Cs0(iw
F(1+ 201+ 5)2m)Y2 T+ &)1+ £)2m)Y2 T+ 51+ £)(2m)!/2
n Cydw n C1¢e
T+ 51+ )22 T(1+ £)T(1 + ) minger|Rp, (im) Rp, (im)]

1

w

_'_

< wC, Ch,-

k
In view of (50), (51), (52), (53), (54), (55), (56), (57), (58), (59), and (60), one gets that the
operator H, is such that H.(B(0,w)) C B(0,w). The next stage of the proof is to show that,
indeed, H. is a contractive map in that ball. Let wi,wy € F(‘fj B k) With ||ij(V Bk < @

Then, it holds that -

1
(61) IHe(wr) = He(w2)ll o 500 < 5 w1 = w2l 400 5

for all e € D(0,€) \ {0}.
Analogous estimates as in (50), (51), (52), (54), (55), (56), (57) and (58) yield

RD m A
(62) Pz((m) P2 (@i, m) = wa(r,m))
m, Ty (v,B, 1,k €)
A-
5p,, Cs
< > 11(51772_”)0 el lwr(m,m) —wa (T, M)l (1 3 1.k e)
1<p2<dp,—1 D2 T b2) ks
RD m AD
(63) pl%g f (@1(T,m) = wa(T,m)
m, T (v,B,1,k;¢€)
A5D D1 C2
< Z w5 A lel lwi(m,m) —walr, M), 5k
rem ST 1 I'(0p, —p1) Ck, n
RD im) A R im A
(64) |15 o 1?11 PDQ( ) kDQz(wl(T7m)_w2(T’m))
m,1(T1) T m,2(72) T2 (v,B,11,k,€)
A6 4 AS Y (C2)2
< Z Z Dy P1 Do P2 ‘6‘2 ||(,L)1(T,m) —U-)2(Tam)||(u,ﬁ,u,k,e)

1<p1<0p, 1 1<py<bp, 1 I'(6p, = p1) T(0p, — p2) Cki Chs
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(65)
Rl1,lg<im) eAllsZQ dl2+5ll+512 /7—1 /7'2 — 51 d11 kl/k1 l(éC —Sg)leg,kz/lﬁ—lsillsgl?
P 1 (1) P2 (72)
. ) i k dss ds
X(wl(si/ lvsé/ 27m) _w2(81/ 1’8;/ 2,m))872871
2 2l ll(w,B,u.k.e)
Cs A - 5 ka6
< 11,19 +01; (14+Fk1)=k10p, +01, (1+k2)—k20D, -
= C, Chy €] leor (. 1m) = w2 (T m) |4, 5,110
(66) [l / / — 51V (12 — )02
P 1(11) P 2(12)
X / / / or((s1— 21)YF1, (s2 — 22)/%2 m — my, €) Ro(ima)
0
1k, 1/k 1k, 1/k
wl(:l:l/ ! :c2/ *,ma) — W2($1/ 17:62/ Q’ml)dmldedafldSstl
(81 — z1)w1(s2 — w2)22 (v,B,1,k€)
C3
< _
= O, Ch, G e (r,m) = wa(T,m) 0 5 4 e)
) Tl 7—2 1/k 1/k
(67) e / / = 51)!/¥1 (732 — sg) /12
P 1(11) P 2(T2)

S1
. / / ok ((s1 — x1)' ¥ m —my, 6)R0(im1)(w1($i/klaSé/kQ»ml) - wz(l’}/lﬂ Séﬂwvml))
0 —00

1 dSQ < C3,2

————dmydr1—d — 1
(s1—21)21 en 2 = Cry Cr Joor(rm) = wa(m, M)l k) G

(68)

72
< / / = 51) /M (1 — sp) /12
P 1(71) P 2(72)

S1
. / / ok ((s2 — w2)' "2 m —my, E)Ro(im1)(w1(81/klaCU;/kQ»ml) - Wz(Si/klal';/kQ?ml))
0 —00

1 dsy Cs.2
————dmidzodsy— <
(52— wa)wg 2 281 = CryChy

lwr (7, m) = w2 (. 1) |, 5 ) CF

X / Co,o(m — my, e)Ro(iml)(wl(s%/kl, sé/kQ, my) — wg(si/kl,s;/@, my))dm

dss dsy
21

S2 81

(v,B,1,k€)
<G
Ck, Cr,

G llwr(r,m) = wa(m,m)ll () g k)



24

Finally, put

Wi = wi((s1 — 21)Y*, (59— 22) 2 m —my) —wa((s1 — 21)™, (52 — 22)/*2,m — my),

and Wy := wl(:c}/kl xé/k’?, my) — wg(x}/kl,x;/kz, my ). Then, taking into account that
(70)  Py(i(m —ma), )wi ((s1 — 21)*, (55 — 22)Y*2 m — my) Pa(ima, €)wn (27", 22 my)
— Pi(i(m —mq), €)wa((s1 — xl)l/kl, S9 — l’g)l/kQ m — my)Py(imy, )wg(x}/kl x;/b,ml)

(
= Pi(i(m — my), )W Py(imy, eyw (2™ 2y my)

+ Py(i(m —ma), €)wa((s1 — 1) %1, (s3 — 22) %2, m — my) Py(imy, €)W,

and by using Lemma 1 and analogous estimates as in (53) and (45), we get

P 1 (71) P2 7'2/ / — 1)k (r]2 — sp) /R
</ / /+Oo i(m —ma),e)W1

dmldazgd:cl) dsadsy

(71)

X Py(imy, €)Wy

(81— 331)?61(82 — x2)T2 (v, Bopikese)

25 e () — ol m)I,
w m w m
_Cklokg 1\7, 2 B kes€)
Let @, €g, (1 > 0 such that
Cri As CrpAs
(72) > 7Dm02|60|+ Y.t o5 Celel
(6D2 p2> 1§p1§5D1*1 ( Dy pl)

1<pa<dp,—1

A Az
Y Y e s el

T — _
1§p1§6D1—1 1§p2§5D2—1 (5D1 pl) F((SDZ pg)

n 2053w
T(1+ 501+ 5)(2m)1 /2

81y 4 01,
kl k2

+ Z C2‘GO‘A11,Z2+511(1+k1)*k15D1 +61, (14k2)—k26p, _
diy kg diy ko
1<11<D;—1,1<ls<Da—1 D(—H)T(=2)
Cs Cs.2 1 Cs.2
+ G+ G+ ¢
P14+ )T+ 5)@m)Y27 T+ )T+ ) (2m)Y27 DL+ )01+ kQ)( m)1/2
Cy

- I(1+ 5T+ 5)@r )1/241 -2

oo

Then, (72) combined with (62), (63) (64), (65), (66), (67), (68), (69) and (71) yields (61).
We consider the ball B(0,w) C F? (. Boikese) constructed above. It turns out to be a complete

metric space for the norm ||.|[(, g 4 k.c)- As H. is a contractive map from B(0, ) into itself,
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the classical contractive mapping theorem, guarantees the existence of a unique fixed point
wi(T,m,€) € B(0,w) C F((Ii/ﬁuke) for He. The function wg(7,m,€) depends holomorphically
on € in D(0,¢p) \ {0}. By construction, wg(7,m,€) defines a solution of the equation (42). O

Regarding the construction of the auxiliary equations, one can obtain the analytic solutions
of (32) by means of Laplace transform.

Proposition 12 Under the hypotheses of Proposition 11, choose the sectors Sq,, Sq, and SQhRnl , SQQ,RD2
in such a way that the roots of Py, 1(T1) and Py, 2(12) fall appart from Sq, and Sg,, respectively,
as stated before (45).

Notice that they apply for any small enough ey > 0, provided that (39) and (40) hold.

Let Sy, 6, 1|c|> Sda,00,h|c| be bounded sectors with aperture w/k; < 0; < 7/k;j + 205, for
j = 1,2 (where 205 ; is the opening of Sa; ), with direction d; and radius h'|e| for some h' >0
independent of e. We choose 0 < ' < f3.

Then, equation (32) with initial condition U(T1,0,m,e) = U(0,T3,m,e) = 0 has a solution
(T,m) = U(T,m,¢) defined on Sq, g, n'|e| X Sdz,00,h'|c| X R for some h' >0 and all e € D(0,¢€p) \
{0}. Lete € D(0,€0)\ {0}, then for j = 1,2 and all Tj € Sq; 9, w|c|; the function m — U(T,m,e€)
belongs to the space Eg ,y and for each m € R, the function T +— U(T,m,e) is bounded
and holomorphic on Sq, o, n'ie| X Sdy,04,1'|e|- Moreover, U(T,m,e€) can be written as a Laplace
transform of order ky in the direction di with respect to Ty and the Laplace transform of order
ko in the direction do with respect to Tb,

_(¥LVky _(¥2Vko duo d
(73) U(T, m, 6) = ]{71]{72 / Wg(ul, Uy, M, 6)6 (Ti )kl (Tg)kQ ﬂ (751
Ly,

Loy, uz U

where L, = R e € Sa; U {0}, for j = 1,2 has bisecting direction which might depend on T}.
The function wd(T,m,€) defines a continuous function on (D(0, p)U Sy, ) x (D(0, p)U Sg,) x R x
D(0,€) \ {0}, holomorphic with respect to (7,€) on (D(0, p)USg,) x (D(0, p) US4,) x (D(0,€) \
{0}). Moreover, there exists a constant wq (independent of €) such that

i 2

Lo [P 1 |2 2R
for all (1) € (D(0,p) U Sq,) x (D(0,p) USg,), allm € R, and € € D(0,¢) \ {0}.

(74) Wit m, o) < @a(l +|m]) e

T T
exp(v|— " + 1] 2 |7)

Proof Let € € D(0,¢) \ {0}. We take the function w@(7,m,€) constructed in Proposition 11
and consider (11, m) — w(7,m, €), which is a function belonging to F(d;lﬂ,#’khe), with values in
the Banach space of holomorphic functions in D(0, p) U Sy, with exponential growth of order
ko in Sg,, and continuous in D(0, p) X Sy,. In view of the results stated in Section 3, one can
apply Laplace transform of order my, following direction d; in order to obtain a holomorphic
and bounded function defined in Sg, g, 1/|¢|, for some h' > 0. The function

(7—27 m) = ﬁgrikl (wg(Tv m, 6))(T1)

da
belongs to F(VQ,B,u,kzye)’

functions in Sg, g, nje|- One can apply Laplace transform L‘fgh in order to obtain the function

and takes its values in the Banach space of holomorphic and bounded

U(T,m,e), satisfying the statements above. Moreover, this function is of the form (73), and
preserves holomorphy with respect to the perturbation parameter in D(0, €y) \ {0}.

Observe that U(T,m,¢€) is a solution of equation (32) due to the properties satisfied by
Laplace transform described in (17), the construction of Co(T",m, €) and F (T, m,€) in 39 and 40,
and the fact that wi(7,m, €) is a solution of (42), as stated in Proposition 11. O
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5 Analytic solutions of a nonlinear initial value Cauchy problem
with complex parameter

Let k1,ke > 1 and D1, Dy > 2 be integer numbers. We fix, without loss of generality, that
k1 < ko,

for the roles of such parameters is symmetric. For j € {1,2} and 1 < I; < Dj, let dy,, dy,, 1, diy, iy 1, >
0 be non negative integers. We assume that

(75) 1=06,=01 , 0y <041 > O <Ot

foralll1 <y <Dy—1and 1<y <Dy —1. We also assume that

(76) dp, = (6p, =1)(k1 +1) , diy > (6, — (k1 +1)

forall1 <l <Dy—1,and

(77) dp, = (0p, = )(k2+1) , di, > (3, = 1)(ka + 1)

for all 1 <l < Dy — 1. In addition to this, we take

(78) Ap,.p, =dp, +dp, —6p, —=0p, +2 , Ap,g=dp, —6p, +1 , Aop,=dp, —dp, +1

Let Ql(X),QQ(X),Ro(X) € (C[X], and for 0 < [y < D;j and 0 < Iy < Dy we take Rh,lg(X) €
C[X] such that
RDl,ZQERll,DQEO7 ]-SllSD:h 1§12§D2

and such that Rp, p, can be factorized in the form Rp, p,(X) = Rp, o(X)Ro,p,(X). We write
Rp, := Rp,0 and Rp, := Ry p, for simplicity. Let P;, P> be polynomials with coefficients
belonging to O(D(0, €y))[X], for some ¢y > 0. We assume that

(79) deg(Q;) = deg(Rp,), Jj €{1,2}.

and

(80) deg(Qj) > deg(Rp,) , deg(Rp, n,) > deg(Ry1,) , deg(Rp, p,) > deg(F;)
Q](Zm) 7é 0, RD1,D2 (Zm) 7é 0

for all m € R, all j € {1,2} and 0 <1; < D; — 1. We denote t := (t1,t2).
We consider the following nonlinear initial value problem

(81) Q1(9:)Q2(0:)0:, O, u(t, z,€) = (P1(0z, €)u(t, z,€))(Pa(0z, €)u(t, z,¢€))

A diy 201, ,dis A0
+ > Mt 10,1152 9,2 Ry, 1, (02 )ult, 2, €)
0<11<D1,0<12< D>

+ co(t, z,€)Ro(0:)u(t, z,€) + f(t, 2, ¢€)

for given initial data u(t1,0, z,€) = u(0, t2, z,€) = 0.

The coefficient ¢y(t, z,€) and the forcing term f(¢, z,€) are constructed as follows. We con-
sider families of functions m — Cy, n,(m,€), for ni,ng > 0 and m — Fy,, n,(m,€), for ny,ng > 1,
that belong to the Banach space E(g ) for some > 0, > max(deg(P1) + 1,deg(P,) + 1) and
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which depend holomorphically on € € D(0, ¢p). We assume there exist constants Ko, Tp > 0 such
that (31) hold for all ny,ny > 1, for all € € D(0,€p). We deduce that the functions

Co(T, z,¢€) Z F Y m e Cpyny(m, €)(2) T Ty

ni,n2>0

F(T,z,e)= Y F '(me> Fuymy(m,e)(2)T{ T3
ni,n2>1
represent bounded holomorphic functions on D(0,7y/2)* x Hg x D(0,€g) for any 0 < 8/ < f3
(where F~! stands for the inverse Fourier transform, see Proposition 9). We define the coefficient
co(t, z,€) and the forcing term f(¢,z,¢) as

(82) CO(t> 2, 6) = CO(etb €la, 2, 6) ) f(ta 2, 6) = F(Etla €ly, z, 6)‘
The functions ¢y and f are holomorphic and bounded on D(0,7)% x Hg x D(0, €9) where rep <

To/2.
We make the additional assumption that there exist unbounded sectors

SQJ',RD]- ={z€C/|z| > TQj.Rp; > larg(z) — de7RDj| < an:RDj}

with direction dg;, Rp, € R, aperture ng;, Rp, > 0 for some radius rq;, Rp, > 0 such that

Q,(im)

(83) R, (im) € 5Q;.Rp,

for all m € R, and for j =1, 2.
The assumptions made at the beginning of this section allow us to write equation (81) in
the form

(84) (Qu(0:), — DDty o g (o)) )
X <Q2(3z)at2 _ e(SDQ_1)(’“2"‘1)_5132+1té6D2_1)(k2+1)66D2 Rp, (0. )) u(t, 2, €)

= (P1(0z, €)u(t, z,€))(Pa(0,, €)u(t, z,¢€))
+ Z €A, l2tdlla6l1 l20512Rll7l2(62)u(t,Z,6)

1< <D1,1<12< D2

+ CO(t7 Z, G)Ro(aZ)U(t, 2 6) + f(ta 2, E)
We recall the definition of a good covering in C*.

Definition 5 Let 1,52 > 2 be integer numbers. Let {Ep, p, }o<pi<a—1 be a finite family of open
0<p2<¢2—1

sectors with vertex at 0, radius €y and opening strictly larger than ]?—2 We assume that the

intersection of three different sectors in the good covering is empty, and Up<p,<¢—1Ep, po =
0<p2<¢2—1
U\ {0}, for some neighborhood of 0, U € C. Such set of sectors is called a good covering in C*.

Definition 6 Let 1,50 > 2 and {&p, p, bo<pi<ci—1 be a good covering in C*. Let T; be open
0<p2<¢2—1
bounded sectors centered at 0 with radius r7; for j € {1,2}, and consider two families of open

sectors as follows. The first one is given by

Sopy 01corr, =111 € C*/|Th| <eoryy , [0p, —arg(Th)| < 61/2}



28

with opening 01 > 7/k1, and some 0, € R, for all 0 < py < g1 — 1. This family is chosen to
satisfy that:
1) There exists a constant My > 0 such that

(85) |1 — @, (m)| > My (1 + |m1])

forall0 <l < (6p, —1)k1 —1, m e R, and 11 € Sop, U D(0,p), for all0 < p; < ¢ — 1, and
every root qi, of the polynomial Py, 1(71).
2) There exists a constant My > 0 such that

(86) ’7_1 ) (m)| > MQ‘qh,o (m)|

for some root of Pp1, qy, allm €R, 71 € S5, U D(0, p), for all0 < p; < ¢ — 1.
The second family is chosen in an analogous manner. It is given by

={ReC/|n| <ern . [0y, —arg(Th)| < 62/2}

0py,02,€07 T,

with opening 0y > 7/ka, and some 5p2 € R, for all 0 < ps < ¢ — 1. This family is chosen to
satisfy analogous conditions with respect to the roots of the polynomial Py, 2(T2).

In addition to the previous assumptions, we consider Saplygl,eo,ﬂT1 and Sy
forall0<p;1 <¢ —1,0<py<q—1,teTi xTa, and € € &, ,, one has

such that

pa,02,€07 T,

€l1 € Saplﬁl,EoTTl and ety € Sﬁp2792760T7’2'

We say that the family {(Sa,, 01 ,corr; Jo<pr<ai—1, (S Jo<pe<er—1, T1 X T2} is associated to

5p2,92,eor7—2
the good covering {Ep, p, Fo<pi<ci—1-
0<p2<¢2—1
The first main result of the present work is devoted to the construction of a family of actual
holomorphic solutions to the equation (84) for null initial data. Each of the elements in the family
of solutions is associated to an element of a good covering with respect to the complex parameter
€. The strategy leans on the control of the difference of two solutions defined in domains with
nonempty intersection with respect to the perturbation parameter e. The construction of each
analytic solution in terms of two Laplace transforms in different time variables requires to
distinguish different cases, depending on the coincidence of the integration paths or not.

Theorem 1 We consider the equation (84) and we assume that (75-80) and (83) hold. We also
make the additional assumption that

2 ~ ~ 2 ~
(87) dop, >0, + — O0p, > 01, + — All,lz+k1(1_5D1)+k2(1_5D2)+2ZO’

k'’ ko’
foralll1 <ly < Dy—1and1<ly < Dy—1. Let the coefficient cy(t1,ta,2,€) and forcing term

1,09,%,€ e construcitea as in . € 0<pqy<ci—1 € a qooda covering i1n Suc at a
t1,t b tructed in (82). Let EprQ <pr<q be a good ing in C* h that
0<p2<c2—1

family {(So,, 01,07 Jo<pi<ai—1, (Sﬁpgﬂz,em“@)0§P2§<2*1’7’1 X T2} associated to this good covering
can be considered.
Then, there exist rg r, > 0, small enough €g, (o > 0 such that if

1Co,0(m, €)|l(s,) < Co

for all e € D(0,¢e0) \ {0}, then for every 0 < p; < —1 and 0 < ps < ¢ — 1, one can construct
a solution up, p,(t,2,€) of (84) with up, p,(0,t2,2,€) = up, p,(t1,0,2,€) = 0 which defines a
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bounded holomorphic function on the domain (Ti N D(0,h")) x (Ta N D(0,h")) x Hg x Ep, p, for
any given 0 < ' < 8 and for some h' > 0.

Moreover, there exist constants 0 < h" < K, K, M, > 0 (independent of €), and sets
U, xUr, €H{0,1,...,6—1}x{0,1,...,50—1} such that for every (p1,p2), (P, p5) € {0,1,..., 61—
1} x{0,1,...,60 — 1}, one of the following holds:

° gprQ N gp’l,p’g = 0.

® Epipo NEy py, # 0 and
My

(88) sup [tupy po(t, 2, €) — Uyt (t,z,€)| < er_ EL
te(TinD(0,h")) x (T2ND(0,h'")),2€H g/

forall € € &, p, NEy . In this situation, we say that {(p1,p2), (P}, p3)} belong to Uy, .
o Epipo N gp’l,p’Q # 0 and

_Mp
(89) sup |UP17P2 (t,z,e) A (t7276)| < er el*2
te(TiND(0,h")) X (T2ND(0,h")),2€ H g1

for all € € &, p, N Ey . In this situation, we say that {(p1,p2), (P}, p3)} belong to Uy, .

Proof Regarding Proposition 12, one can choose rg, Rp, >0, and small enough ¢y, (o > 0 such
that

[Coo(m, s < Go

for all e € D(0, €0) \ {0}. For each pair (p1,p2), we fix the multidirection (9,,,0,,) with 0 < p; <
g; — 1 and construct U®1%:2 (T, m, €) such that U%1:%2(0,Ts, m,€) = U°n1-%2(T},0,m,e) = 0
and is a solution of

(90)
<Q1(im)aT1 _ T1(5D1*1)(7€171)a§11D1 RD1 (2m)> (@2(lm)aT2 _ T2(5D2*1)(k271)a§§2 RD2 (zm)) U(T, m, 6)
5 1 too .
=€ W . Py(i(m —mq),e)U(T,m —mq,€)Pa(imq,e)U (T, mq, €)dm;
" > Aty iy ~diy i+ 2 e o g By (i) U(T, )
1<1<D1—1,1<l9<Ds—1
1 oo
+ 6_2W n C()(T, m—mz, E)Ro(iml)U(T, mi, e)dm1
+ e 2F(T,m,e€),

where

00(T7m7 6) = Z 00,711,”2 (mv E)Tlan2nQ ) F(T’mv 6) = Z Fm,n2 (ma 6)T1mT2n2

ni,n2>1 ni,ne>1

are convergent series in D(0,Tp/2)? with values in Eg ), for all € € D(0, €9) \ {0}. The function
(T, m) — U°1:%2(T m,e) is well defined on Sy, 01,17 X Sﬁpgﬁ%h’ld x R where h' > 0, for all
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e € D(0,¢) \ {0}. Moreover, U%1%2 (T, m, €) can be written as the iterated Laplace transform
of order k; in the direction 9,,, and the Laplace transform of order ks in the direction d,,

(91) U105 (T,m,e) = klk‘Q/ / apl’apz (u1, uz, m, €)e (7)1 - (;2)@@@
”/m L’sz Uz
along L.ij = R+em'j which might depend on Tj. Here, me P2 (1,m,¢€) defines a continuous

function on (D(0, p) U Sa,, ) % (D(0, p) U Sa,,) x R x D(0,€) \ {0}, holomorphic with respect
to (1,¢) on (D(0,p) U Sy, ) x (D(0,p) U Sﬁm) x (D(0,¢€p) \ {0}) for all m € R. Moreover, there
exists a constant @, 5 (independent of €) such that

€ |k’1
L |2 1 |22

Zke)

(92) w72 (,m, €)| < @y, 5, (1+|m])He o exp(v| [ 41

for all 7 € (D(0,p) U Sy, ) x (D(0,p) U S5p2), all m € R and € € D(0,¢p) \ {0}. The function

(T, 2) = U1%2(T, 2, €) = F ' (m > U1%2 (T, m, €))()

turns out to be holomorphic on Sy, g, nr|e| X Sﬁp2’927h/|6| x Hg, for all e € D(0,¢p) \ {0} and
0<p <B. Forall 0 <p; <gj—1,7€{1,2} let

Upy pa(t,2,€) = Un D3 (et1, €ta, 2, €)

+Oo u u
= klkZ/ / / D”’Dp?(ul,m,m e)e_(ﬁ)kl_(é)ke @%d
L L

1/2 Uz U
2T oy Loy 2 UL

By construction (see Definition 6), the function u,, ,,(t, 2,€) defines a bounded holomorphic
function on (71 N D(0,R")) x (T2 N D(0,R')) x Hp x Ep, p,. Moreover, up, 5, (0,t2,2,€) =
Up, po(t1,0,2,€) = 0. Moreover, the properties of inverse Fourier transform described in Propo-
sition 9 guarantee that wy, p,(,2,€) is a solution of the main problem under study (84) on
(TiNnD(0,1)) x (Ta N D(0,h")) x Hgr x Ep, -

py 0py (

It is worth mentioning that all the functions 7 — w,
continuation of a common function

T,m,€) provide the analytic

T
T wi(T,m,€) = Z Uny ns (M, e)r(lm) F(%Lg)
ni>1na>1 k2 ks

to Sy, X 55p2. Observe that Uy, n,(m,€) € E(g ) are the coefficients of the formal solution of

the equation (90), for all € € D(0,¢) \ {0}, U(T1, To,m, €) = > > 1ms>1 Una o (M, €)T1 T2
The proof of the estimates (88) and (89) leans on those in the proof of Theorem 1 in [7].
In the present situation, different digressions are considered, due to the presence of two time
variables. Let pj,p; €{0,...,5; — 1} for j € {1,2}, and assume that &, p, N Ep oty F (). Then,
three different cases should be considered:
Case 1: Assume that the path L., coincides with L7 2 and L., does not coincide with

€ O(D<07 p)27 E(ﬁ,u))

p1:0p2 (

L, ,. Then, using that uy — w uy, uz, m, €) exp(—(2 ) 2) /ug is holomorphic on D(0, p)

2
for all (m,e) € R x (D(0,€p) \ {0}), and every uj € L,, , one can deform one of the integration
paths to write

~ ko ~ 2
0y D - “—2> dus 0y D ) dug
I—/ wy " (ur, ug, m, €)e (“2 — — w7 (ur, ug, my €)e <€f2
L L

u2 Yo w2

Tp2 Py
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in the form

V0 (X2 yka dug
0 [ mge @0
L 2
P/2,7pg
s D u2 \ky dug
—/ Wkpl p2(u17u27m76)e (Etg)
u
LP/Q;’Y / 2
0pq,0 u2 yko dug
-I-/ wy P (u1, ug, m, €)e (G, 242
C U2

where L/, = [p/2, +00)e P2 LP/Q%,2 = [,0/2,—}—00)6”"'2 and C is an arc of circle

PI2 Yy, V2
connecting (p/2)e’ ™ and (p/2)e?r2 with the adequate orientation.

The estimates for the previous expression can be found in detail in the proof of Theorem
1, [7].

Namely, we get the existence of constants sz,p’g’ My, p, > 0 such that

M /
o T
WGXP(VH?\ De ™2,

I<c, (14 |m|)~rePIml

2.9 %0y, 3y
for to € T, N D(0,h') and € € &y, p, N Epl p, and uy € Lo, . We have

(94) |up1,172 (tv 2, 6) - up/l,p’2 (ta 2, €)|

K1k (/OO —tg=Blm| ,—m|Im(z)|
< ———=C,, (14 |m|)~HePlmle=mIm)l gy,
Qmyz rrs\ |

/ Ll p (L) exp(— (2 )
L 14 [w]2k e ety

Y1

M
P2,D5

The last integral is estimated via the reparametrization u; = re’r: V=T and the change of variable

r = |e|s by .
/ L e 15" s,
0 ]. + 82

for some §; > 0, whenever t; € 71 N D(0,h').
From the fact that z € Hg/, we get that {(p1, p2), (p],p5)} belong to Uy, .
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Case 2: The path L., coincides with Lyp, , and L, does not coincide with La,p, . It can
2

1
be handled analogously as Case 1. We get that the set {(p1,p2), (P}, p5)} belongs to Uy,. More
precisely, we arrive at the expression

|up1,p2 (t’ Zs 6) A (tv 2, €)|

< (2]{;1')]{12/20171719/1 (/ (1+ |m|)_“e_mm'e_mIIm(Z)ldm)

‘%| U2 | koo U2 k2
., T o et

et
Tp2 2

M
_p1,p)

du
2| e TleFn

U2

Case 3: Assume that neither L, coincides with L, ,, nor L., coincides with va, .
2

We deform the integration paths with respect to the first time variable and write

Upy po (E, 2, €) — up’l,pg(ta z,6) =J1 — Jo + J3,
where

k1 ks 2 1yky (%2 )k dus duy
7 P17 P2 UI’ Ug, M, 6) (Etl ) (etQ) eZZmdm .
(27) (2m)1/2 uz Uy
Wp 1 Loy,

k1ko 2,0, (MR _(22ky dus duy
~ (2n)2 w7 (g, g, m, e)e )T Tl T gt g SE2 L
ﬂ- W ] ALy, J—oo

ug2 Ul
Leit 0o
J3 = 7]{;1]{2 /2 /
(2m)1/2 Jo .

Opy »0ps (42 k2 dug
/ Wy, (u1,ug, m,€)e ‘<2

Loy, u2
0 76 !, U2 Vkg dUQ ; Y1 VR dul
— wkpl 2 (uy,ug, m,€)e (&) e*mam, | e () )
L U2 U1
Y !
P3

where geie is such that 0 is an argument between 7y, and v, . The path L., 1 (resp. L, 1)
1

consists of the concatenation of the arc of circle connecting 5e? with Se”1 (resp. with e M)
and the half line [§¢"771, 00) (resp. [5e 7’f’l,oo)).
We first give estimates for |J1|. We have

0py,0 — “—2k2dUQ o |ﬂ‘ U
/L wkpl P2 (Ul,ug,m, 6)6 (€t2) s < wapl 75;72 (]. + ’m|) Fe ﬁ|m|ﬁiﬂ|2kl eXp(V1’?|kl)
Tp2o €
u2 k _(ug k2 d
X/ (’ZJ% exp(vs |2 2) ()7 |2z
L’Yp2 1+ |?‘ 2 € Uu
- — ‘ﬂ’ Ui
< @y, iy, O (L [ml) e i exp(| 2™,
€

for some Cp, > 0, and to € T N D(0,h’). Using the parametrization up = re2V=1 and the
change of variable r = |¢|s. Using analogous estimations as in the Case 1, we arrive at

_Mpa
|J1‘ < Cp,le el 5
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Figure 2: Path deformation in Case 3

for some Cp 1, Mp1 > 0, for all € € &, ,, N 5p’1,p’27
z€H B
Analogous calculations yield to

where t; € T1ND(0,h') and t2 € TN D(0,h'),

|J2‘ S Cp,26_MT1,

for some Cyp,2, My, > 0, for all € € &, p, N Ey 1, Where t1 € TN D(0, h') and ty € ToND(0, 1),
S Hﬁ/.

In order to give upper bounds for |J3|, we consider

? 76 _ ﬂkszZ D/,é/ _ﬁdeuZ
/ w2 (g, ug, m, €)e ()2 a2 wkpl "2 (uy, ug, m, €)e (G du2 )
L U2 L

U2
Tpo 'Yp/2

We choose a deformation path in the form of that considered in Case 1. We get the previous
expression is upper estimated by
2
€

\/1 /
. — Uy D2,p
iy o1+ ) el ) v (-2 ).
€

for € € Epy py NEy 1, ta € T2 N D(0,R), uy € [0, p/26]. We finally get

PPy

kle o0 Bl ] .
WCPQ’péwap1,6p2 (/ (1+[m]) e Blml g=m/Im( )Idm>

—00

p/2€i0 U (ug k1
. (/ e explon 2 ()
0

1 |2

|J3] <

dU1

Mpz DY
exp | — e .

We conclude that

Mp,3

|J3] < Kpze €72

uniformly for (t1,t2) € (71 N D(0,k")) x (T2 N D(0,1”)) for some h” > 0, and z € Hg for any
fixed 8’ < B, where Ky 3, Mp 3 are positive constants. O
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6 Asymptotics of the problem in the perturbation parameter

6.1 k—Summable formal series and Ramis-Sibuya Theorem

For the sake of completeness, we recall the definition of k—Borel summability of formal series
with coefficients in a Banach space, and Ramis-Sibuya Theorem. A reference for the details on
the first part is [1], whilst the second part of this section can be found in [2], p. 121, and [6],
Lemma XI-2-6.

Definition 7 Let k > 1 be an integer. A formal series

with coefficients in a Banach space (F,||.||r) is said to be k—summable with respect to € in the
direction d € R if

i) there exists p € Ry such that the following formal series, called formal Borel transform of
X of order k

Bu(X)(r) = > T

- e
T+ )

F{[=1l;

is absolutely convergent for |T| < p,

i) there exists 6 > 0 such that the series By(X)(7) can be analytically continued with respect
to T in a sector Sg5 = {T € C* : |d — arg(r)| < d}. Moreover, there exist C > 0, and K > 0
such that
IBX) (7l < CeXITT

forall T € Sg;.

If this is so, the vector valued Laplace transform of order k of Bj(X)(7) in the direction d is
defined by

LIBUX)) ) = | Br(X)(w)e™ W kub1du,
L"/

along a half-line L, = R e C Sa,s U {0}, where v depends on € and is chosen in such a way
that cos(k(y — arg(e))) > 6; > 0, for some fixed 01, for all € in a sector

Syomin ={e€C :|el < RYE | |d—arg(e)| < 0/2},

where 7 <60 < 7 +20 and 0 < R < 01/K. The function Eg(l’)’k()z))(e) is called the k—sum of
the formal series X (¢) in the direction d. Tt is bounded and holomorphic on the sector Sa.0.R1/k

and has the formal series X (€) as Gevrey asymptotic expansion of order 1/k with respect to e
on S, g gi/e. This means that for all 7 < 601 <0, there exist C, M > 0 such that

n—1
d % ap n n n
||1£5: (B (X)) (€) — pz:(:) HepHF < CMTT(1+ el

for all n > 1, all € € Sy, pi/x-
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Multisummability of a formal power series is a recursive process that allows to compute the
sum of a formal power series in different Gevrey orders. One of the approaches to multisumma-
bility is that stated by W. Balser, which can be found in [1], Theorem 1, p.57. Roughly speaking,
given a formal power series f which can be decomposed into a sum f(z) = f1(z) + ... + fm(2)
such that each of the terms fj(z) is kj-summable, with sum given by f;, then, f turns out to be
multisummable, and its multisum is given by fi1(z) + ...+ fin(z). More precisely, one has the

following definition.

Definition 8 Let (F, |-||p) be a complex Banach space and let 0 < ki < ka. Let € be a bounded
open sector with vertex at 0, and opening k% + 6o for some do > 0, and let F be a bounded open

sector with vertex at the origin in C, with opening -+ 61, for some 61 > 0 and such that € C F
holds.

A formal power series f(€) € F|[€]] is said to be (ko, k1 )—summable on & if there exist fo(€) €
F[e]] which is ky—summable on &, with ky-sum given by fo : € — F, and fi(¢) € F[le]] which
is k1—summable on E, with ki-sum given by f1 : F — F, such that f = f1 + fg. Furthermore,
the holomorphic function f(e) = fi(e) + fa(e) on & is called the (ky,ki)—sum of f on E. In
that situation, f(e) can be obtained from the analytic continuation of the ki— Borel transform of
f by the successive application of accelerator operators and Laplace transform of order ky, see
Section 6.1 in [1].

A novel version of Ramis-Sibuya Theorem has been developed in [15], and has provided
successful results in previous works by the authors, [8], [9]. A version of the result in two
different levels which fits our needs is now given without proof, which can be found in [8], [9].

Theorem (multilevel-RS) Let (F,||.||r) be a Banach space over C and {&p, p, }o<pi<a—1 be
0<p2<ca—1
a good covering in C*. Assume that 0 < k1 < ka. For all 0 < p;1 < ¢ —1and 0 < ps <

G2 — 1, let Gp, p, be a holomorphic function from &,, p, into the Banach space (F,||.||[r) and for
every (p1,p2), (P1,P5) € {0,...,q1 — 1} x {0,...,c2 — 1} such that &y, p, N Ep, y # O we define
O (p1,p2) (0, 0) (€) = Gpr,ps (€) =Gt . (€) be a holomorphic function from the sector Z
Eprpo N 5p’1,p’2 into F. We make the following assumptions.

P1 472)7(17/1 7p,2)

1) The functions Gp, p,(€) are bounded as € € &y, 5, tends to the origin in C, for all 0 < p; <
c1—land0<py < —1.

2) ({07 <561 — 1} X {O, e 7§2})2 = Z/{O Uukl Uu]{:g; where
((p17p2)7 (pllapl2)) € Uy Z,ﬁc 8p17p2 N 5p37p§ = Q)’
((p17p2)7 (pllapé)) € Uy, iff gpl,pz N (S'pll’p/2 % 0 and
H@( e_Amvpz,p'l,p’Q/lE'kl

llr < C,

p1,p2),(P}.Ph) (€) 1,P2,P P

for all € € Zp, po) (oh )
((pl,pQ)’ (plap2)) € qu iff SPLPQ N gp’l,p’Q 7& 0 and

-4 /lel¥>
”@(p17p2)7(p/17p/2)(6)”F < Cm,pz,p’l,p’ge PLP2P1 P

fO?“ all e € Z(p17p2)’(p/17p/2).
Then, there exists a convergent power series a(e) € F{e} and two formal power series
GY(e), G%(€) € F[[e]] such that Gp, p,(€) can be split in the form

Gpl,Pz (6) = CL(E) + Gjljl,pg (6) + Gzl,pg (6)7
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where ng,m (€) € O(&py po,F), and admits GI(e) as its asymptotic expansion of Gevrey order
1/kj on &y, p,, for j € {1,2}.

Moreover, assume that

{7, 99). (01, p2)). (P, 23): (0T, 3)), -, (03" ™), (01", 15"))}

s a subset of Uy,, for some positive integer y, and

Eptpy © Sufka & U Pl.p)
0<5<2y

Jor some sector Sy, with opening larger than mw/k1. Then, the formal power series é(e) is

(k2, k1) —summable on Eyy v and its (kg, k1) —sum is Gy u(€) on E .

6.2 Existence of formal power series solutions in the complex parameter and
asymptotic behavior

The second main result of our work states the existence of a formal power series in the perturba-
tion parameter €, with coefficients in the Banach space I of holomorphic and bounded functions
on (71 N D(0,h")) x (T2 N D(0, k")) x Hg, with the norm of the supremum. Here h”, 71, T are
determined in Theorem 1.

The importance of this result compared to the main one in [7] lies on the fact that a mul-
tisummability phenomenon can be observed here, in contrast to [7]. This situation is attained
due to the appearance of different Gevrey levels coming from the different variables in time.

Theorem 2 Under the assumptions of Theorem 1, a formal power series
i(t,z,€) = Y Hp(t,2)e™/m) € Fl[e]]
m>0

exists, with the following properties. 4 is a formal solution of (81). In addition to that, 4 can
be split in the form
u(t, z,€) = a(t, z,e) + u1(t, z,€) + Ua(t, 2, €),

where a(t, z,€) € F{e}, and 11,02 € F[[e]]. Moreover, for every p1 € {0,...,¢1 — 1} and pa €
{0,...,62 — 1}, the function up, p,(t, z,€) can be written as

UP17P2 (t7 Z? 6) - a’(t’ Z’ 6) + U’pl ,p2 (t7 Z? 6) + ujzjl,pg <t7 Z, 6)7

where € — u{;l,m (t, 2, €) is an F—valued function which admits u;(t, z, €) as its kj— Gevrey asymp-
totic expansion on &y, p,, for j =1,2.
Moreover, assume that

{(®9,29), (01, 23)), ((p1.p3), (. 93)), -, (T, 05"~ ), (1Y, p3"))}

is a subset of Uy,, for some positive integer y, and

gpi’my C S/ S U Epl i

0<j<2y

for some sector Sy i, with opening larger than w/ky. Then, u(t, z,€) is (kz, k1)—summable on

Epy py and its (ka, ky)—sum is uyy v (€) on E .
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Proof Let (up, p,(t, 2, €))o<p,<c;—1 be the family constructed in Theorem 1. We recall that
0<p2<c2—1
(Ep1 p2)o<pi<a—1 is a good covering in C*.
0<p2<e2—1
The function Gy, p,(€) == (t1,t2,2) = Up, p, (t1, 12, 2, €) belongs to O(Ep, p,, F). We consider

{(p1,p2), (P}, P5)} such that (p1,p2) and (p},ph) belong to {0,...,¢1 — 1} x {0,...,¢2 — 1}, and
Ep,po and &y pl, are consecutive sectors in the good covering, so their intersection is not empty. In
view of (88) and (89), one has that A, )yt ) (€) 1= Gpy ps (€) =Gy (€) satisfies exponentially
flat bounds of certain Gevrey order, which is k; in the case that {(p1,p2), (P}, p5)} € Uk, and
ko if {(p1,p2), (P}, Ph)} € Uy,. Multilevel-RS Theorem guarantees the existence of formal power
series G(€), G1(€), Ga(e) € F[[e]] such that

~ A~ A~

G(e) = a(e) + Gi(e) + Ga(e),

and the splitting
Gpype(€) = ale) + G1101 pz( €) + G12o1 pz( €),

for some a € F{e}, such that for every (p1,p2) € {0,...,61 — 1} x {0,...,52 — 1}, one has that
Gy, p, (€) admits Gzl,1 o (€) as its Gevrey asymptotic expansion of order ki, and G2, (€) admits

Ggl p,(€) as its Gevrey asymptotic expansion of order k2. We define

Gle) =: a(t, z,€) = ZH tz —
m

m>0

It only rests to prove that 4(t, z,€) is a formal solution of (81). For every 0 < p1 < ¢ — 1,
0<py<e—1and j=1,2, the existence of an asymptotic expansion concerning Gy, ,,(€) and
G’ (€) implies that

(95) lim sup |Ottpy pa (., 2, €) — Hi(t)| =0,
€0,€€8p1 vy (t,2)€(T1ND(0,h")) x (12ND(0,h")) X H g

for every ¢ € N. By construction, the function wp, ,,(t, z,€) is a solution of (81). Taking
derivatives of order m > 0 with respect to € on that equation yield

(96)  Q1(9:)Q2(0:)0%, 01,0 up, s (¢, 2, €)

!
m: mi
= —_— 7877“1 1(02,€)0.""?u t,z,€

mi1+ma=m mi1+miz=mi

X ( Z L8m21p2(a )agnzzuphm (t7zv€)>

mo1!mas!
ma1+ma2=ma2 21 22

+ Z ( Z m1|m2 ar 1( AV 12) 118t11t2128 Rllh(az)aﬁ Qupl,pg(t,2,6)>

0<l1<D1,0<l2<Dz \mi+mz=m

|
Y e (t, 2, ) Ro(0:) 0 g, o 2, €) + O F (2 2.,

ml'mg

mi1+meo=m

for every m > 0 and (¢, z,¢) € (1N D(0,R”)) x (TaND(0,h")) x Hgr X &p, p,- Tending € — 0 in
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(96) together with (95), we obtain a recursion formula for the coefficients of the formal solution.
(97) Q1(8z>Q2( )8151 O H, m(t, Z)

m! my .
= 2 i ( Y P00t Z>>

mi1+ma=m mi1+miz=mi

m s
X ( Z ma 21P2<8z,0) m12(t 2))

ma1+ma2=ma2

m)! 5 5
+ Z m ll atlll t212a lo Rll,ZQ (8Z)Hm_All,l2 (t’ z)
0<11<D1,0<l2<D3 1,2

S T gmicn(t 5 0) Ro(0:) Hyny (£ 2) + O £ (£, 2,0),

mqlmeo!
mi1+meo=m 1 2

for every m > maxi<j,<p, 1<io<D, Ay 1y, and (¢, z,€) € (T1 N D(0,h")) x (T2 N D(0,h")) x Hgr.
From the analyticity of ¢ and f with respect to € in a vicinity of the origin we get

(98) ot =Y O8O ®:2.0) - piy s o > Wem’

m!
m>0 m>0
for every € € D(0,¢p) and (t,z) as above. On the other hand, a direct inspection from the
recursion formula (97) and (98) allow us to affirm that the formal power series u(t,z,€) =
Ym0 Hm(t, 2)€™ /m! solves the equation (81). O
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