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Abstract: The paper deals with the easily verifiable necessary camddi the
preservation of the nonnegativity of the solutions of a eysbf parabolic equa-
tions in the case of the anomalous diffusion with the Laplegerator in a frac-
tional power in one dimension. This necessary conditionitally important for
the applied analysis society because it imposes the negdesa of the system of
equations that must be studied mathematically.
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1. Introduction

The solutions of many systems of convection-diffusiorctiea equations arising
in biology, physics or engineering describe such quastaipopulation densities,
pressure or concentrations of nutrients and chemicalss,Tdnatural property to
require for the solutions is the nonnegativity. Models thahot guarantee the non-
negativity are not valid or break down for small values of sadution. In many
cases, showing that a particular model does not preservedteegativity leads
to the better understanding of the model and its limitatid@ee of the first steps
in analyzing ecological or biological or bio-medical moslehathematically is to
test whether solutions originating from the nonnegativigaihdata remain nonneg-
ative (as long as they exist). In other words, the model undesideration ensures
that the nonnegative cone is positively invariant. We igbait if the solutions (of
a given evolution PDE) corresponding to the nonnegati&indata remain non-



negative as long as they exist, we say that the system satikBenonnegativity
property.

For scalar equations the nonnegativity property is a diceasequence of the
maximum principle (see [2] and the references therein). &l@wn for systems of
equations the maximum principle is not valid. In the pafacicase of monotone
systems the situation resembles the case of scalar egsiasiofficient conditions
for preserving the nonnegative cone can be found in [2].

In this paper we aim to prove a simple and easily verifiableegan, that is,
the necessary condition for the nonnegativity of solutiohsystems of nonlinear
convection-anomalous diffusion-reaction equationsragié the modelling of life
sciences. We believe that it could provide the modeler withog which is easy to
verify, to approach the question of positive invariancehef tnodel.

The present article deals with the preservation of the ngauingty of solutions
of the following system of reaction-diffusion equations

ou "L du
5 — F(u), (1.1)
whereA, I, 1 < | < m are N x N matrices with constant coefficients, which

is relevant to the cell population dynamics in Mathematiialogy. We call sys-

tem (1.1) as g N, m) one. Note that the analogous model can be used to study
such branches of science as the Damage Mechanics, the sgorpedistribution

in Thermodynamics. In the present article the space variakbrresponds to the
cell genotypew,(x, t) stands for the cell density distributions for various greop
cells as functions of their genotype and time,

u(z,t) = (uy(x,t), ug(z,t), ..., un(z, )",

The operatof—A,)® in problem (1.1) describes a particular case of anomaldus di
fusion actively treated in the context of different appficas in plasma physics and
turbulence [4], [1], surface diffusion [5], [7], semicoradars [8] and so on. Anoma-
lous diffusion can be described as a random process of lgarimtion characterized
by the probability density distribution of jump length. Th®ments of this density
distribution are finite in the case of normal diffusion, bhistis not the case for
superdiffusion. Asymptotic behavior at infinity of the pedility density function
determines the valueof the power of the Laplacian [6]. The operaterA,)® is
defined by virtue of the spectral calculus. For the simplioftpresentation we will
treat the case of the one spatial dimension Witk s < 1/4. Front propagation
problems with anomalous diffusion were studied activelydoent years (see e.g.
[9], [10]). The solvability of the single equation contaigithe Laplacian with
drift relevant to the fluid mechanics was treated in [11]. Wsumne here that (1.1)
contains the square matrices with the entries constaneicespnd time

(A)k,j = Ak 4, (F)k,] = Vk,j> 1 S ka] S N
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and that the matrixl + A* > 0 for the sake of the global well posedness of system
(1.1). HereA* stands for the adjoint of matrid. Hence, problem (1.1) can be
rewritten in the form

N

0

j=1
: 1 . , ,
with 0 < s < 1 In the present work the interaction of species term

F(u) = (Fy(u), Fy(u), ..., Fx(u))T,

which can be linear, nonlinear or in principle even nonlo@# assume its smooth-
ness in the theorem below for the sake of the well posednessrafystem (1.1),
although, we are not focused on the well posedness issue préisent article. Let
us choose the space dimensiba- 1, which is related to the solvability conditions
for the linear Poisson type problem (4.14) stated in Lemmal@th From the per-
spective of applications, the space dimension is not oésttitod = 1 because the
space variable corresponds to cell genotype but not to i physical space. We
denote the inner product as

(f(2), 9(2)) ey = / " f@)go)de, (1.3)

with a slight abuse of notations when the functions involwve(l.3) are not square
integrable, like for example the one present in orthogoyaélations (4.17) and
(4.18) of Lemma 2 below. Indeed, ff(x) € L'(R) andg(x) is bounded , then
the integral in the right side of (1.3) makes sense. As fovdwtor functions, their
inner product is defined using their components as

N

(U, U)LQ(]R,]RN) = Z(Uk, Uk;)LQ(R)- (14)
k=1

Clearly, (1.4) induces the norm

N
||u||%2(R,RN) = Z ||Uk||%2(m<)-
k=1

We use the Sobolev spaces

2

H*(R) := {u(g;) ‘R = R|u(z) € L*(R), (-%) u € L2(R)}, 0<s<1



equipped with the norm
2

lullZrs ) = IlullZ2@ + (1.5)

2\
Tae )Y

By the nonnegativity of a vector function below we mean themegativity of the
each of its components. Our main statement is as follows.

L*(R)

Theorem 1.Let F' : RY — R¥, such thatF" € C!, the initial condition for system
(1.1) isu(z,0) = up(x) > 0 andug(x) € L*(R,RY). We also assume that the off
diagonal element of the matri%, are nonnegative, such that

aMZO, 1§]€,ZSN, k?#l (16)

Then the necessary condition for problem (1.1) to admit atsml u(z,¢) > 0 for
all ¢ € [0, 00) is that the matrices! andI" are diagonal and for alll < &k < N

Fr(ui(z), .oy ug—1(x), 0, upy1 (), ..., un(x)) <0 (1.7)
holds a.e., where;(z) > 0 andu;(z) € L*(R) with1 <[ < N, [ # k.

Remark 1. In the case of the linear interaction of species, namely wken) =
Lu, whereL is a matrix with elements ;, 1 <4, j < N constantin space and time,
our necessary condition leads to the condition that the mdtmust be essentially
nonpositive, thatis, ; < 0fori # j, 1 <4,5 < N.

Remark 2. Our proof implies that, the necessary condition for presegthe non-
negative cone is carried over from the ODE (the spatially bgemeous case, as
described by the ordinary differential equatief{t) = —F'(u)) to the case of the
anomalous diffusion and the convective drift term.

Remark 3. In the forthcoming papers we intend to consider the follgaiases:
a) the necessary and sufficient conditions of the preserik,wor

b) the nonautonomous version of the present work,

c) the density-dependent diffusion matrix,

d) the effect of the delay term in the cases a), b) and c).

Let us proceed to the proof of our main result.
2. The preservation of the nonnegativity of the solution ofthe system of parabolic equations

Proof of Theorem 1Let us note that the maximum principle actively used for the
studies of solutions of single parabolic equations doespply to systems of such



equations. We consider a time independent, square infegrabtor functiorw(x)

and estimate
. 1) —
,v) = <“mH0u(x )t uO(x),v(az)) .
t=0 L2(R,RN) L2(R,RN)

du
ot

By means of the continuity of the inner product, the righesid the identity above
equals to

(u(x7t)’v<$))L2(R7RN) _ ”mt 0<U0($C>7U(5U>>L2(R,RN). (2.8)

t t

”mtao

Let us choose the initial condition for our system(z) > 0 and the constant in
time vector functiorv(z) > 0 to be orthogonal to each other iif (R, RY). This
can be achieved, for instance for

ug(x) = (U1 (), ..., p—1(2), 0, g1 (), ..., un(2)), vj(x) =0(x)djr, (2.9)

with 1 < j < N, whered;;, is the Kronecker symbol antdd < k£ < N s fixed.
Therefore, the second term in (2.8) vanishes and (2.8) sqoial

S oo w(e, (@)

due to the nonnegativity of all the componenigz, t) andv,(z) involved in the
formula above. Thus, we arrive at

Z/ Ouy

By virtue of (2.9), only the: th component of the vector functiarz) is nontrivial.
This yields
/ O
o O
Hence, via (1.2) we arrive at

e S w(-2) e ¥
/ a a( Vi,
- [ J=1, j#k < ) J=1, j#k " ox

—Fp(ty(x), .oy Ug—1(2), 0, Ugr 1 (), ..., ﬂN(x))] o(x)dx > 0.

x)dx > 0.

0(x)dx > 0.

t=0




Since the nonnegative, square integrable funciiar) can be chosen arbitrarily, we

obtain N . v
9\ 0u;
- Z a;w(— @) a;(z) + Z Vi g
J=1, j#k i=1, j#k
—Fi(ty(x), ...y Up—1(2), 0, Ugsr (), ..., an(z)) >0 a.e. (2.10)

For the purpose of the scaling, let us replace allif{e) by u; g) in the inequal-

ity above, where > 0 is a small parameter. This yields

N

B k. ; 0? Vhj 8uj

, Z ez | oy? Z €
J=1, j#k J=1, j#k

—Fp (1 (y), ooy t—1(y), 0, g1 (y), ..., un(y)) >0 a.e. (2.11)

Clearly, the second term in the left side of (2.11) is the ileg@dne as — 0. In
the case ofy,; > 0 we can choose herg;(y) = e~¥ in a neighborhood of the
origin, smooth and decaying to zero at the infinitiesylf < 0, then we can pick
u(y) = e¥ around the origin and tending to zero at the infinities. THenl¢ft side
of (2.11) can be made as negative as possible which will teateequality (2.11).
Note that the last term in the left side of (2.11) will remaoubded. Therefore, for
the matrixI" involved in problem (1.1), the off diagonal terms shouldigansuch
that

’yk,jzou 1§k7j§N7 k#]
Therefore, from (2.11) we obtain
N o S
Qf,j ( 0 ) -
= > ol s W)
j=t, ik © Py

—Fp(ty(y), ooy t—1(y), 0, g1 (y), ..o, un(y)) >0 a.e. (2.12)

Let us suppose that some of tlae; involved in the sum in the left side of (2.12) are
strictly positive. We choose here all thie(y), 1 < j < N, j # k to be identical.
For the equation

_ < - 66—;2> Uj(z) =0j(z), 0<s< i, (2.13)

we assume that its right side belongsi®’(R). Clearly,v;(z) € L'(R) N L*(R)

as well. Then by means of the part 1 of Lemma 2 below, (2.13)itscanunique
solutiona;(z) € H*(R). Suppose the right side of (2.13) is nonnegative on the
whole real line. By virtue of Section 5.9 of [3] we have the koipformula

a(z) = —c, /_m| P (y)dy,

[e.9]



wherec, > 0 is a constant. Thefi;(z) is negative orR, which contradicts to our
original assumption. Thereforg;(x) has the points of negativity on the real line.
By making the parameter small enough, we can violate the inequality in (2.12).
Since the negativity of the off diagonal elements of the iratris ruled out due to
assumption (1.6), we arrive at

ap; =0, 1<k, j<N, k#j
Therefore, by means of (2.10) we obtain
Fi(ty (), ..., ug—1(x), 0, g1 (x), ..., an(2)) <0 a.e.,
wherei;(z) > 0 andi;(z) € L*(R)with1 < j < N, j # k. u
4. Auxiliary results

Below we state the solvability conditions for the linear $3amin type equation
with a square integrable right side

2\
(‘@)u:f(x), reR, 0<s<l. (4.14)

We have the following technical proposition. It can be gad#érived by applying
the standard Fourier transform

o(p) = \/% /_O; d(x)e P d. (4.15)

to both sides of problem (4.14) (see Lemma 1.6 of [13]). Ferdimilar results in
three dimensions see Lemma 5 of [12]. We will use the obvigyueubound

~ 1
o®) < —||0(2)||L1(R)- 4.16
o)l <R>_\/§H¢>( M@ (4.16)
We will provide the proof below for the convenience of thedess.

Lemma2.Let f(z) : R — Rand f(x) € L*(R).
1) When0 < s < 1 and in additionf(z) € L*(R), equation (4.14) admits a
unique solution:(z) € H*(R).

2) When; < s < 2 and additionally|z|f(z) € L*(R), problem (4.14) pos-

sesses a unique solutiair) € H%*(R) if and only if the orthogonality relation

(f(x), D2y =0 (4.17)
holds.



3) When? < s < 1 and in additionz?f(z) € L'(R), equation (4.14) has a
unique solutionu(x) € H?**(R) if and only if orthogonality conditions (4.17) and

(f(x), 2)r2m) =0 (4.18)
hold.

Proof. First, let us observe that by virtue of norm definition (1.8ng with the
square integrability of the right side of (4.14), it would sadficient to establish the
solvability of equation (4.14) ir.?(R). Clearly, the solutioni(z) € L*(R) will
belong toH*(R), 0 < s < 1 as well.

We prove the uniqueness of solutions for problem (4.14), if(x) € H*(R)
both solve (4.14), then the differenedz) := u,(z) — us(z) € L*(R) satisfies the

homogeneous equation
2\
el A

2 S

d . -
Because the operat r—ﬁ on the real line does not possess nontrivial square
X

integrable zero modes;(x) = 0 a.e. onR.
We apply (4.15) to both sides of problem (4.14). This yields

[ f(p)
u(p) = |p‘25X{peR||p|<1}+‘ 2 <R | pl>1): (4.19)

wherey 4 is the characteristic function of a sétC R. Evidently, forall0 < s < 1
the second term in the right side of (4.19) is square intdgtajomeans of the bound

* |F)P L
o |pl* Tas X{peR | [p|>1}4P = ||f||L2 < 0.

To establish the square integrability of the first term in tight side of (4.19) for
0 < s < 1, we apply inequality (4.16), which yields

|f( )2 Hf(xw%l(R)
/_OO |p| % X{pek | [pl<13dp < 7(1 ~4s) < o0

This completes the proof of part 1) of our lemma.

To prove the solvability of problem (4.14) whe}in < s < % we apply the

formula R
Pdf(s)
——=d
* /0 ds

This enables us to express the first term in the right side.@Bjdas

n f(s)

f(@0 p dfs ds

\p(|22 X{peR | |p|<1} T %X{peﬂ%| Ip|<1}- (4.20)



By means of definition (4.15)
df ( )

\/—|||93|f( )| Lrmy < o0

via the one of our assumptions. Thus,

P df(s)
0 ds ds

|p|?

X{peR | [p|<1}

\/—Hlaflf( )|a@) Pl X per | pi<1y € LA(R).

. . {0 . S
The remaining term in (4.20693—23;({]@@ pi<iy € L*(R) if and only if £(0) =
which gives us orthogonality relation (4.17) in case 2) & ldgmma.

. . , o 3
Finally, it remains to study the situation Wh%ﬂﬁ s < 1. For that purpose, we
use the identity

f(p) = F(0) +p§—§(0) + /Op (/O dz}f)dq)dr.

This allows us to express the first term in the right side acf$%as

[f<o>+p§£<o> i (s 2 dq)dr]

X R <11 (421)
RE p|2s |p|25 {peR | |p|<1}

Definition (4.15) yields
d2

|22 ()| ) < 00

<
’ \/271"

as assumed. This enables us to estimate

15 ( " de(q dq)dr

X{peR | |p|<1}

2\/—H F@) @l Xper | <1y

|p|25
which is clearly square integrable. The sum of the first amdsicond terms in
~ d ,
(4.21) does not belong t6*(R) unless bothy (0) andd—f(o) are equal to zero. This

yields orthogonality relations (4.17) and (4.18) respetyi [ |
Let us note that the left side of relations (4.17) and (4.38yell defined under
the given conditions. For the lower values of the power of iegative second
I 1 : .
derivative operatob < s < 1 under the assumptions stated above no orthogonality
relations are required to solve the linear Poisson typetemuét.14) in %% (R).
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