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ABSTRACT. We consider a family {H.}. of eZ"-periodic Schrodinger opera-
tors with ¢’-interactions supported on a lattice of closed compact surfaces;
within a minimal period cell one has m € N surfaces. We show that in the
limit when € — 0 and the interactions strengths are appropriately scaled, H.
has at most m gaps within finite intervals, and moreover, the limiting behavior
of the first m gaps can be completely controlled through a suitable choice of
those surfaces and of the interactions strengths.
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1. INTRODUCTION

Spectral analysis of operators with periodic coefficients is a traditional topic in
mathematical physics. It received a new strong motivation recently coming from
the advances in investigation of metamaterials of various sorts. One of the central
questions concerns the structure of spectral gaps in view of their importance
for conductivity properties of such substances, in particular, the possibility of
engineering the gap structure by choosing a properly devised material texture.
In the present paper we investigate this problem for a class of such operators; we
are going to show that using a suitable lattice of ‘traps’ arranged periodically in
combination with a scaling transformation that makes these traps smaller and
weaker one can approximate any prescribed finite family of spectral gaps. Let us
recall in this connection that similar ideas can also appear in a different context,
for instance, concerning the gap creation by ‘decoration’ of quantum graphs [2],
[B, Sec. 5.1].

The idea to employ ¢ traps was first used in our recent paper [7] where we
demonstrated that it can provide an approximation to the first spectral gap in the

particular case of operators used to model nanowires regarding them as electron
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waveguides. In the said paper we focused our attention to guides with Neumann
boundary characteristic for metallic nanowires, and we also supposed that the
scaling makes the duct thin. Here we extend this result in two directions. First
of all, we suppose that the family of traps is periodic in more than one direction,
and secondly, we manage to get an approximation with any finite number of
prescribed gaps. What is equally important, however, not only the present result
is more general but also the method we employ is different from that used in [7]
where the argument was based on eigenvalue convergence for the elements of the
fibre decomposition by constructing approximations for the eigenfunctions.

In contrast, in the current paper we identify the limiting operators using Si-
mon’s results for a monotonic sequence of forms [I3]. The convergence of the
eigenvalues is then proven using a (slightly modified) lemma from [§]. This al-
lows us not only to prove the said convergence of eigenvalues, but also to estimate
its rate. Location of the spectral gaps can be then controlled by a suitable choice
of the interaction ‘strength’ and the trap shapes, that is, surfaces supporting
these interactions, following a result from[I0]. In the next section we describe
the problem properly and state the main result, Section [3]is then devoted to its
proof; in the appendix we recall the above indicated lemma.

2. SETTING OF THE PROBLEM AND MAIN RESULT

Let m € N and let {€; };n:l be a family of simply connected Lipschitz domains
in R", n € N\ {1}. We assume that

QNQy=0asj#; and UL Q;CY:=(0,1)"

Also, we set
QO = Y\ U Qij
j=1

In what follows & > 0 will be a small parameter. For i € Z" and j € {1,...,m}
we set

I, = e(09Q; +1).
Next we describe the family of operators H® which will be the main object of
our interest in this paper. We denote

m
<= U U I,
iezn j=1

and introduce the sesquilinear form h® in the Hilbert space L2(R") via

ht’:‘[u’ 'U] ::/ VuVT}d:L‘
R»\I'¢
w12 T T ds, >0, (1)

m
beX g [ st —u o

iez j=1 Ty Y N Y N
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with the form domain dom(h*) = H'(R™ \ I'). Here f [ (respectively, f [irnst)
(%) %)

stands for the trace of the function f taken from the exterior (respectively, inte-
rior) side of I';;; ds is the ‘area’ measure on I'j;.
Remark 1. From the viewpoint of the physical motivation mentioned in the
introduction the cases n = 2,3 are important, however, there is no problem
in stating and proving the result for any dimension; what matters is that the
codimension of the interaction support is one. In general the trap lattice may have
different periods in different dimensions but using suitable scaling transformations
one can reduce such situations to the case considered here.

The definition of h%[u, v] makes sense: the second sum in is finite as one
can check applying the standard trace inequalities within each period cell. Fur-
thermore, it is straightforward to check that the form h%[u,v] is densely defined,
closed, and positive. Then by the first representation theorem [9, Chapter 6,
Theorem 2.1] there is a the unique self-adjoint and positive operator associated
with the form h*, which we denote as H¢,

(Hu,v)2(mny = b[u,v], Vu € dom(HF), Vv € dom(h®).
Let v € dom(#H®) N C?(R™\ I'?). Integrating by parts one can easily show that
(Hfu)(x) = —Au(x) at z e R"\T*?,
while on I';; one has the following interface matching conditions,
(Onu) riz;;: (Ont) ri;g = eqj(u rfg —u ri;g ),

where 9y is the derivatve along the outward-pointing unit normal to I'};. This
supports our interpretation of H® as the Hamiltonians describing an lattice of
periodically spaced obstacles, or ‘traps’ in the form of given by a ¢ interaction

supported by I';.; the interaction becomes ‘weak’ as ¢ — 0. For more details on

117
Schrodinger opei"ators in R™ with ¢ interactions supported by hypersurfaces we
refer to [3], 4].

We denote by o(H?) the spectrum of H®. Due to the Floquet-Bloch theory
o(H®) is a locally finite union of compact intervals called bands. In general the
bands may touch each other or even overlap. The non-empty bounded open

interval (A4, B) C R is called a gap in the spectrum of H¢ if
(A,B)No(H*) =0, A,Bea(H).
First we give a simple estimate from above to the number of gaps.

Proposition 1. The spectrum o(H®) has at most m gaps within the interval
[0, Ae=2] with some constant A > 0 depending on the set gy only.

The proof of this proposition is simple, but we postpone it to Section [3] cf.
Corollary [5] since we need to do some preliminary work first. The constant A is

given by .
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Our main goal is to detect gaps in the spectrum of H® within the interval
[0, Ac~2] and to describe their asymptotic behavior as ¢ — 0. To state the result
we have to introduce some notations.

In what follows we denote by C', C1, etc. generic constants being independent of
€ and of functions appearing in the estimates and equalities where these constants
occur, however, they may depend on n, 2; and g;.

For j € {1,...,m} we set

451092
Aj = ,
T a4l
where the symbol | - | serves both for the volume of domain in R™ and for the

‘area’ of (n — 1)-dimensional surface in R™. We assume that the domains Q; and
the numbers ¢; are chosen in such a way that

Aj<Aj+1,jE{1,...,m—l}. (2)
Furthermore, we consider the following rational function,
A9,
FA) =1+ — 22— 3
=14 2 Tty - ¥

It is easy to show that F'(\) has exactly m roots, those are real and interlace
with A; provided holds. We denote them Bj, j € {1,...,m} assuming that
they are renumbered in the ascending order,

Aj<Bj<Aj+1, jE{l,...,m—l}, Ay < By, < o0. (4)

Now we are in position to formulate the main results of this work.

Theorem 2. The spectrum of HE has the following form within the interval
[0, Ac™2],

o(H)N[0,Ae™?] = [0, Ac 2]\ G (A5, B3)

j=1
The endpoints of the intervals (A;,BJE-) satisfy
A5 € [A; - Ce, Aj], Bj €[B; —Ce, By,
provided € is small enough.

Remark 2. In the above theorem ‘provided ¢ is small enough’ means ¢ < ¢ for
some £y which depends in general on ¢; and ;. It will be apparent from the
proof, cf. Lemmal[7] that £y can be given explicitly, but the formula looks rather
cumbersome, in particular, it depends on the constants appearing in the Poincaré
and trace inequalities for €2;.
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Using a lemma from [I0] one can choose the domains Q; and the numbers g; in
such a way that the limiting intervals (Aj, Bj) coincide with predefined segments.
Indeed, let us defined the map

L :dom(L) C R¥™ - R*™  (ay,...,am,b1,...,bm) A (A1,...,An,B1,...,Bp)

with the domain

dom(L) = {(al,...,am,bl,...,bm) e R?™ . a; >0, b; >0, ij <1, % < aj“}

= bj  bjt
acting as follows: A; = %, Bj are the roots of the function
J
1 —J7J _ wh =1— :

renumbered according to (4). The indicated result [10, Lemma 2.1] then reads as
follows:

Lemma 3. £ maps dom(L) onto the set of (A1,...,Am,B1,...By) € R?™
satisfying . Moreover L is one-to-one and the inverse map L' is given by the
following formule,

Pj pj
aj=Aj———, bj=—70—, (5)
1+ pi 1+ > pi
i=1 =1
where
J . _ .
A; =1,...,mli#j A= 4

Now it is clear how to choose the sought {1; and ¢;, cf. the statement following
Remark Specifically, assume that intervals (A;, B;) satisfying are given.
We define for them the numbers aj, b; by formulae , and then we choose
domains €2, j € {1,...,m}, in such a way that |2;| = b;. Obviously, this can be
always done since b; > 0 and Z;n:l bj < 1; recall that the closures of {2; must
be pairwise disjoint by assumption and belong to the unit cube. Needless to say,
such a choice is not unique. Finally, with these (2; we define the numbers ¢; by

Ayl
9= |§ij| )
3. PROOF OF THE RESULTS

3.1. Preliminaries. We introduce the sets
o I'; = 09, where j € {1,...,m}
o I'yj =00, +1i, where i € Z", j € {1,...,m}
o I' =Uiczn Ujeqr,...m} L'ij-
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The operator H® is by construction Z"-periodic with the period cell €Y. It is
convenient to perform a change of coordinates x = ey (from the old coordinates x
to the new coordinates y) that would allow us to work with an e-independent

period cell. More precisely, we introduce the sesquilinear form /b\g in the Hilbert
space L2(R") via

b [u, v] := Vu - Vids

=2
g Rn\l"

+Z§:%‘/

(ulE) —u E) (It —v ) ds, g5 >0,
iez j=1 'Ti

;i Ty ;5 Ty
with the form domain dom(fj\g) = HY(R™\T). Finally, by ¢ we denote the unique
self-adjoint and positive operator associated with the form h*. It is easy to see
that R
o(H®) = o(H").

Moreover, the operator He is periodic with respect to the e-independent period
cell Y.

The Floquet-Bloch theory — see, e.g., [0, [IT], 12] — establishes a relationship

between 0'(7/'26) and the spectra of certain operators on Y. Let ¢ = (é1,...,0n) €
[0,27)", the dual cell to Y. We introduce the space Hé(Y \ UTL,T), which

consists of functions from H!(Y \ U}”Zlfj) satisfying the following conditions at
the opposite faces of Y, usually referred to as quasi-periodic boundary conditions,

Vk e {1,...,n}: u(z+er) = exp(igy)u(z) forx = (x1,22,...,0,...,2,), (6)
k—tthlace
where e, = (0,0,...,1,...,0).
In the space L2(Y)) we introduce the sesquilinear form b‘;; defined by

-~ 1
olu,v] = 2/ Vu-Vode
& Iv\um,

m
xt int\ 7o rext o, fint)
#3015 T s (0
]:
with the domain Hé(Y \ U7 T). We denote by 7—7; the associated self-adjoint
and positive operator. Its domain consists of functions u € H?(Y \ U}”Zlfj) N
H}ﬁ(Y \ UYL T'j) satisfying also

Vke{l,...,n}:

ou ., Ou
a—m(x—{—ek)—exp(ngk)a—m(fv) for x = (1, 22,...,0,...,2,) (8)

T
k-th place
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and the following ¢’ interface matching conditions on I';,

(8nu) re)]ct (8nu) rlnti c q;( re)](t —u rint)’

F] Fj
where 0y, is the derivative along the outward-pointing unit normal to I';. The
operator 7—[2) acts as

~ 1
(Hj)u) fQjZ —7(Au) fQj, j € {0, . ,m}.

The spectrum of 7—[8 is purely discrete. We denote by {)\ ¢} kEN the sequence of
its eigenvalues arranged in the ascending order and repeated according to their
multiplicities.

According to the Floquet-Bloch theory we have

oH)=1J U M) (9)
k=1 ¢€[0,2m)"

and moreover, for any fixed k € N the set Ugc(g o) {)\i ¢} is a compact interval,
conventionally referred to as the kth spectral band
Along with the operators H we also introduce the operators H Y and Hs D>

which differ from ﬁz only by the boundary conditions at dY: instead of the
quasi-periodic conditions one imposes here the Neumann and the Dirichlet ones,
respectively. More precisely, we introduce in L2(Y") the sesquilinear forms H’f\, and
AED with the domains

dom(hy) = H'(Y\UL,T;) and dom(h5) = {u € H' (Y \ UL T}) : u [y=0}

and the action specified by ; then ’Hf\, and H% are the operators associated
with these forms. The spectra of these operators are purely discrete. We de-
note by {)\i N} keN (respectively, {/\i D} & eN) the sequence of eigenvalues of H5,

respectively, of He arranged in the ascending order and repeated according to
D
their multiplicities. Since

Vo € [0,2m)":  dom(bh) D dom(HZ,) > dom(b5),
using the min-max principle [12, Sec. XIII.1] we obtain
VkeN, Vo e0,2m)": Xy <Xy < ANop- (10)

For a fixed ¢ € [0,2m)" we denote by Ay 4(€2) the Laplace operator on g
subject to the Neumann conditions on U, 0€; and conditions (), on 0Y.

Lemma 4. For each ¢ € [0,2m)" one has
1
200 < Ami1e

where Ay is the smallest eigenvalue of the operator —An 4(€0).
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Proof. We consider the decoupled operator

- 1 . 1
M dec = <—EQAN,¢>(QO)> ©® <@j=1 (_ggAN(Qj))> )

where An(€;) is the Neumann Laplacian on €5, j = 1,...,m. Since ¢; > 0 we
get

h;,dec < hfﬁ? (11)
where H;dec is the form associated with ﬁé,dec 2 Using the min-max principle, we
conclude from Athat the kth eigenvalue of ’H;dec is smaller or equal than the
kth eigenvalue of Hg for any k € N. It is clear that the first m eigenvalues of
ﬁz’dec are equal to zero, while the (m+ 1)th one equals 6*2A¢, whence we obtain

the desired result. O

Now we set
A= max Ay. 12
¢€[0,2m)™ ¢ ( )

It is easy to see that A < oco. Indeed, due to the min-max principle, A < Ap,
where Ap is the smallest eigenvalue of the Laplace operator in {2y subject to the
Neumann conditions at szlaﬂj and the Dirichlet conditions at dY. Note, that
A # Ap in general.

From the above lemma and @D we immediately obtain the following corollary
justifying the claim of Proposition

Corollary 5. o(H?) (hence also o(HF)) has at most m gaps on the interval
[0, Ae?].

Now we are able to proceed to the proof of our main result. First we sketch
our strategy.

3.2. Sketch of the proof. We distinguish two points of the dual lattice cell,
usually referred to as Brillouin zone, denoting

¢o =(0,0,...,0), ¢r=(m,m,...,7),

In view of @D— the left edge of the kth spectral band of ¢ is located between
)\i’N and A ¢,, while the right edge between )\i,@r and A p. Clearly, )‘iN =
)\‘i 6o =V holds. Our goal is to prove that

lime 0 A, y = limes0 A 4, = Br—1, k=2,...,m+1,
lim. g )‘i,D = lim._,q )\i’% = Ag, k=1,...,m,

and moreover, that the rate of this convergence is of order C'e. These results
taken together constitute the claim of Theorem

Let us start from the Neumann eigenvalues. The idea is to find a limit operator
’ﬁN the eigenvalues of which will approach )\27 Ny as € — 0. It is not difficult to
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guess — using, e.g., Simon’s results [13] about monotonic sequences of forms —
how the ‘limit’ operator should looks like: it is associated with the form

dom(f)\N) = {u € Ne>o dom(aﬁ'\,) : SUP.s Hﬁ‘v[u,u] < oo},

. R (13)
bn[u,v] = lime_o b [u,v].

Evidently, dom(HN) consists of functions being constant on each 2; and the value

of the form on functions, with the abuse of notation written as u = (uq, ..., un) €

C™*1 is given by f: qj|Tj||uj — uo|?. Moreover, it turns out that the eigenvalues
j=1

of Hy are 0, Bi, ..., By, with the reference to a result obtained in [2].

The limit operator for ’ﬁ;o is again ”ﬁN, since function being constant on {2
satisfy ¢g-periodic boundary conditions, and consequently, leads to the same
operator.

The limit operator for ”;Q% is associated with the form /h\D defined by
except that va is replaced by /F)\ED Since the only constant satisfying the Dirichlet
boundary conditions is zero, we conclude that dom(ED) = C™ and the action of

m ~
this form on u = (uy,...,un) € C™is Y ¢;|T||uj|?. The eigenvalues of Hp are
j=1

thus A1, ..., Ap,. R R

Finally, the limit operator for M5, is Hp, since functions being constant on {2
can satisfy ¢,-periodic boundary conditions iff that constant is zero.

In the subsequent sections we will implement this strategy. Our asymptotic
analysis will be based on a (slighty modified) result from [8] which for the reader’s
convenience is presented in the Appendix.

3.3. Asymptotic behavior of A} ,, and \j 6o+ 1D the following we will work

with the space C™*! denoting its elements by bold letters, u, v, . ... Their entries
will be enumerated starting from zero,

ucC™! = u=(ug,...,uy) with u; € C.

Let (ngrl be the same space C"™*!, but equipped with the weighted scalar prod-
uct,

m
(W, V)emit = > uwey, (14)
j=0

In this space we introduce the sesquilinear form
m
by blw, vl = g7 (w) — uo) (v — vo)
j=1

with dom(hy) = CHt. Let #Hx be the operator in Cot! associated with this
form. It is obvious that Hy can be represented by the (n + 1) x (n + 1) matrix,
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symmetric with respect to the scalar product ),

m
> gl =Tl —@T2l|Q] ™ . =g [T |10
=1
7/_2 B —qﬂl“ﬂ]ﬂﬂ‘l Q1|F1H91’_1 0 0
N = —q2|PQHQQ|_1 0 q2‘r2”§22|_1 0
— | T || Q|71 0 0 v G| Tonl| Q|1
(15)

We denote by A\ v < Ao n < - < Ajpg1, v the eigenvalues of ﬁN.
Lemma 6. For any k € {1,...,m+ 1} one has

AN < Ak
Proof. By the min-max principle we have

AE
LN = min  max M’ 10
; Veylk] ueV\{0} HUHLQ(Y)

where U[k] is the family of all k-dimensional subspaces in dom(a}f\,). We introduce
the operator P : Cg™t — L2(Y) by

m
Pu = ZquQj’
j=0

where xq; is the indicator function of (2;; since the {2;’s are disjoint by assump-
tion, we have

[Pullizyy = luflgmer,  bx[Pu, Pu] = by[u,ul. (17)
Let ug n,...,u, v be an orthonormal system of eigenvectors of ﬁN such that
Hyujn = Ajnujn. We denote Wy := span(ug n, ..., Umn,N), then it is easy to
check that
u,u
Yue Wy : M < AkN, (18)
[l

the equality in being attained for u = uy y.
Finally, we set Vj, := PWj. It is obvious that V; € U[k] and using (16)-(18)

we obtain

/\S i
Aoy < max M = max M = AN,
’ uEVk\{O} HUHLQ(Y) ueWk\{O} HuHcg"'l

which concludes the proof. O
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Lemma 7. For any k € {1,...,m+ 1} one has
MeN S Ay +Ce (19)
provided € is small enough.

Proof. For u € dom(aﬁ\,) we introduce the norm

N 1/2
(9l ] + o)

Furthermore, we define the operator @ : dom(E‘E ) — dom(HN) b

(Pu); / 7=0,....,m.
]

Our goal is to prove that the following estimates hold for each u € dom(aﬁv),
JulRsqry < I@ulZpis + Cre el (20)
b [®u, ®u] < by [u,u] + Cozulff .. (21)
Then by means of Lemma [12] from Appendix we will get

Af v (L4 )‘i,N)CB?Q + (1+ Aj y)Coe

My <N+ ,
NI L= (14X, y)Cre?

(22)

and since )\27 N < Ag,n holds by Lemma@, the sought estimate ((19) would follow
from (22)).
Estimate is an easy consequence of the Poincaré inequality

Vi€{0,....mp: Jlu—(Qu)jlliz,) < ClVullL2q,)-

Indeed, we have
||u||L2 ) = Z ||“H|_2(Q N = ”(I)UHCmH + Z Ju— (Pu) HL2

< [ BullZ, + o S IVulaa, < [ulZr + 1l
§=0

Let us next prove . One has

m
E)\N[q)u, du| < va[u, u] + Z q; Rjlu,ul,

j=1

where

Rlu, ] 1= | (®w)o — (@) [Zaqr,) = e 15— 10 [
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and these expressions can be estimated in the following way,

Ty Ly

Bl < [I(@0d0 - (@0l ~ it ot

L2(Ty)

LQ(FJ)>
LQ(H‘))

< (I @wolliary) + 1@l + a1 ey + a1 liagr,))

Using the trace and the Poincaré inequalities we get

(@00 = @)l + e -

< (Jwuro - wiz

J

+ H(cbu)j oy pint

Ty

L2(Ty)

jed{l,...,m}: H((IJu)j—ufiFr;t

2 2
sy < OVI@0; = ullaga,) + V0l
< C1 |Vl iz, < Crellullie, (23)
and similarly,

< Cl[Vulliz(qq = Cellullz (24)

(SO I

Lj

Using further the trace and Cauchy-Schwarz inequalities one finds
I(@wollLary) + (@u)jllzqe;) + T2 ey + w1 ey
< Cllullnryrvur,ryy < Cllullie. (25)
Combining now - we obtain the needed estimate,
| Rjlu, ul| < Cellul1.c,
which implies the validity of concluding thus the proof. O

Finally, we notice that the matrix of the form was investigated already in
[2] (using different notations). It was demonstrated there that its eigenvalues are
the roots of the function AF(\), where F() is defined by (3). Taking this into
account we immediately obtain the following corollary from the last two lemmata.

Corollary 8. One has
iN:O’ )\27N§Bk—1 fOT kE{Q,,m+l}
Moreover, for small enough € there is also a lower bound,
By 1 —Ce <N,y for ke{2,...,m+1}.

As we have already noticed above, the limit operator in the ¢g-periodic situa-
tion has the same eigenvalues as the Neumann one. We have the following claim
the proof of which repeats verbatim the argument of Lemmata [6] and
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Lemma 9. One has
100 =0, Apgy < Bro1 for ke{2,...,m+1}.
Moreover, for small enough € there is also a lower bound,
B 1—Ce <N 4, for ke{2,...,m+1}.

3.4. Asymptotic behavior of A\; ;, and Af on+ Keeping the boldface sym-
bols from the previous section, we denote by C{ the space of vectors u =
(0,u1,...,uy) € C™F! equipped with the scalar product

(u, v)cp —Zu]v]\ﬁ l,

and introduce in this space the sesquilinear form f) D,

m
v =" g;|Tj[u;v;
j=1

with dom(hp) = C&. Let further Hp be the operator in C{y associated with this
form. It is clear that Hp acts as

Hpu = Zq1|r1\|91| u;
7j=1
and its eigenvalues are Ay, Ao,..., Ap.

Lemma 10. One has
Mep S A for ke {l,...,m}.
Moreover, for small enough € there is a lower bound,
A —=Ce <X, p for ke{l,...,m}.

The proof of this lemma is again similar to the proof of Lemmata[6land [7] The
only essential difference here is that instead of the Poincaré inequality in Qg we
use the Friedrichs inequality,

[ullz(00) < [Vullizy).,
which is valid because functions from dom(a%) have zero trace on 0Y.
The analogous result is valid for eigenvalues in the ¢,-periodic situation.
Lemma 11. One has
Mo S Ap for ke {l,...,m}.
Moreover, for small enough € there is a gain a lower bound
A —Ce <Ny, for ke{l,...,m}.

This brings us to the conclusion. Combining Corollary [§, Lemmata [9] and
equations @D, we arrive at the claim of Theorem
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APPENDIX

Here we recall a result from [8], which is a simple consequence of the min-max
principle and serves to compare eigenvalues of two operators acting in different
Hilbert spaces.

Let H and H' be two separable Hilbert spaces with the norms || - | and || - ||".
Let H and H’ be non-negative self-adjoint operators in these spaces with purely
discrete spectra, and b and b’ the corresponding forms, respectively. We denote
by {Ai}ken and {\) }ren the corresponding sequences of eigenvalues, numbered
in the ascending order and with account of their multiplicity. Finally, we set
ullf, <= [l + [[#"2ul].

Lemma 12. [8] Suppose that ® : dom(h) — dom(h’) is a linear map such that
for all u € dom(H™@{m:m2}/2) one has
2 2 2
[ull® < [|@ull + o1 flully,
b'[@u, Pu] < blu,u] + d2ull7,.
with some constants ni,ny > 0 and 61,62 > 0. Then for each k € N we have
Ae(L+ A0 4 (14 A2) o2
1—(1+X1)o

provided the denominator 1 — (14 X.*)d1 is positive.

(26)

A < A+

Remark 3. The above result was established in [8] under the assumption that
dim H = dim H' = oo, however, it is easy to see from its proof that the re-
sult remains valid for dim H < oo as well. In that case (26)) holds for k €
{1,..., dim H}. This is the situation in the proof of Lemmawhere we apply
Lemma to H = (Cg“.
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