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Abstract. We construct analytic and formal solutions for a family of q-difference-differential
problems, under the action of a perturbation parameter. This work is a continuation of the
study [10] focusing on a singularly perturbed q-difference-differential problem for which a phe-
nomenon of multilevel q-Gevrey asymptotics has been observed, owing to the fact that the main
equation is factorized as a product of two simpler equations in so-called normal forms, each
producing one single level of q-Gevrey asymptotics. The problem under study in this paper is a
priori not factorizable. We follow instead a direct approach developed in the contribution [4] of
the first author based on successive applications of two q-Borel-Laplace transforms of different
orders both to the same initial problem and which can be described by means of a Newton
polygon.
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1. Introduction

This work is devoted to the study of a family of linear q-difference-differential problems in the
complex domain. It can be arranged into a series of works dedicated to the asymptotic study of
holomorphic solutions to different kinds of q-difference-differential problems involving irregular
singularities such as [7], [8], [10], [13], and [15]. There are other interesting approaches to this
problems in the literature. We refer to [20] as a reference, and contributions in the framework
of nonlinear q-analogs of Briot-Bouquet type partial differential equations in [21].

The main aim of this work is to study a family of q-difference-differential equations of the
form

(1.1) Q(∂z)σq,tu(t, z, ε)

= (εt)dD1σ

dD1
k1

+1

q,t RD1(∂t)u(t, z, ε) + (εt)dD2σ

dD2
k2

+1

q,t RD2(∂t)u(t, z, ε)

+
D−1∑
`=1

ε∆`td`σδ`q,t(c`(t, z, ε)R`(∂z)u(t, z, ε)) + σq,tf(t, z, ε),

where D,D1, D2 are integer numbers larger than 3, Q, RD1 , RD2 and R` for ` = 1, . . . , D − 1
are polynomials of complex coefficients, and ∆` ≥ 0, δ`, d` ≥ 1 are nonnegative integers for
every 1 ≤ ` ≤ D − 1. The numbers dD1 and dD2 are positive integers, which would provide two
different q-Gevrey levels in the asymptotic representation of the solution of the problem under
study. q stands for a real number with q > 1.

We consider the dilation operator σq,t acting on variable t, i.e. σq,t(t 7→ f(t)) := f(qt), and
the generalization of its composition given by

σγq,t(t 7→ f(t)) := f(qγt),

for any γ ∈ R. We also fix positive integer numbers k1 and k2 with

1 ≤ k1 < k2.

The function c`(t, z, ε) is of the form

c`(t, z, ε) =

p1∑
j=0

F−1(m 7→ C`,j(m, ε))(εt)
j ,

where F−1 stands for the inverse Fourier transform in m variable (see Proposition 3.6), and C`,j
belong to some adecquate Banach space of functions. As a result, the function c`(t, z, ε) is a
holomorphic and bounded function on T ×Hβ′ ×D(0, ε0), where T is an open bounded sector
with vertex at the origin, and Hβ′ stands for the strip Hβ′ := {z ∈ C : |Im(z)| < β′}, for some
β′ > 0. D(0, ε0) stands for the disc in the complex plane centered at the origin and with radius
ε0 > 0. We will denote D(0, r) the closed disc centered at zero and radius r > 0.

The forcing term f(t, z, ε) is a holomorphic and bounded function on T ×Hβ′ × E , where E
is a finite sector wih vertex at the origin. Indeed, the variable ε plays the role of a complex
perturbation parameter in problem (1.1). The nature of this function is important to understand
the multi-level phenomenon described in this work. More precisely, the construction of f(t, z, ε)
is as follows: given a sequence of functions (m 7→ Fn(m, ε))n≥0 which are holomorphic functions
with respect to the perturbation parameter on D(0, ε0) and belonging to an appropriate Banach
space of functions on the real variable m depending on the index n (see (4.6)), we assume the
formal power series F (T,m, ε) =

∑
n≥0 Fn(m, ε)Tn is such that its formal q-Borel transformation

of order k1

Ψk1(τ,m, ε) =
∑
n≥0

Fn(m, ε)
τn

(q1/k1)n(n−1)/2
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defines a holomorphic function on a neighborhood of the origin, say D(0, ρ), and can be extended
along direction dp, for 1 ≤ p ≤ ς − 1 with q-exponencial growth k1. We denote such extension

by Ψ
dp
k1

(τ,m, ε). Indeed, there exists an infinite sector of bisecting direction dp, Udp , such that

|Ψdp
k1

(τ,m, ε)| ≤ CΨk1

1

(1 + |m|)µ
e−βm exp

(
k1

2

log2 |τ + δ|
log(q)

+ α log |τ + δ|
)
,

valid for all τ ∈ (Udp ∪ D(0, ρ)) and m ∈ R, for some CΨk1
> 0, β > β′ > 0, µ, δ > 0, α ∈ R.

In addition to this, we assume Ψk1(τ,m, ε) can not be prolongued to an entire function. More
precisely, we assume the formal q-Borel transformation of order k2 of F (T,m, ε) has null radius
of convergence.

As stated above, the extension of Ψk1(τ,m, ε) along different directions, dp, for p = 1, . . . , ς−1
leads to ς different problems, concerning the direction of extension which is chosen. For each of
such directions, one defines

fdp(t, z, ε) := F−1(m 7→ F dp(τ,m, ε))(T ),

where F dp(T,m, ε) consists of the consecutive action of two q-Laplace transformations, see Sec-
tion 3, of orders k2 and κ of Ψk1(τ,m, ε). More precisely,

F dp(T,m, ε) := Ldpq;1/k2
(τ 7→ Ψ

dp
k2

(τ,m, ε))(T ),

and

Ψ
dp
k2

(τ,m, ε) := Ldpq;1/κ(τ 7→ Ψ
dp
k1

(τ,m, ε)),

where
1

κ
:=

1

k1
− 1

k2
.

As a consequence, the problem (1.1) turns into ς different problems. Namely,

(1.2) Q(∂z)σq,tu
dp(t, z, ε)

= (εt)dD1σ

dD1
k1

+1

q,t RD1(∂t)u
dp(t, z, ε) + (εt)dD2σ

dD2
k2

+1

q,t RD2(∂t)u
dp(t, z, ε)

+
D−1∑
`=1

ε∆`td`σδ`q,t(c`(t, z, ε)R`(∂z)u(t, z, ε)) + σq,tf
dp(t, z, ε),

for every 0 ≤ p ≤ ς − 1. As a matter of fact, fdp(t, z, ε) is a holomorphic and bounded function
on T ×Hβ′ × Ep, where (Ep)0≤p≤ς−1 is a good covering of C? (see Definition 5.1).

Observe that two singularly perturbed terms on the right hand side of equation (1.2) are
distinguished. This point makes one difference with respect to the previous work [10] in which
only one term is distinguished, whilst the multi-level q-Gevrey asymptotic behavior comes from
the forcing term. Namely, we focused on families of q-difference-differential equations that can
be factorized as a product of two operators in so-called normal forms each enjoying one single
level of q-Gevrey asymptotics. In the present work,the appearance of these two terms would
cause the appearance of a multilevel q-Gevrey phenomenon in the study of the asymptotic
solution of (1.2) with respect to the perturbation parameter. However, a direct application of
q-Borel-Laplace summation procedure of order k2 would fail, as it is observed at the beginning
of Section 4.2. For this reason, our approach is to follow a two-step procedure of summation of
the formal solution, which makes the two q-Gevrey asymptotic orders emerge.

The point of view we use here is similar to the one performed in the work of the first author,
see [4], and is related to direct constraints on the shape of the main equation via a possible
description by a Newton polygon. It is important to stress that this approach is specific to
the q-difference case. Namely, such a direct procedure for producing two different Gevrey levels
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in the differential case for the problem stated in the work [9] is impossible due to very strong
restrictions related to a formula used in the proof and appearing in [19], see formula (8.7) p. 3630.
In that case, only a proposal via factoring the main equation did actually work, as performed
in our joint work [11].

Let 0 ≤ p ≤ ς − 1. First, we apply q-Borel transformation of order k1 to equation (1.2)
in order to obtain our first auxiliary problem in a Borel plane, problem (4.12). A fixed point
result in a complex Banach spaces of functions under an appropriate growth at infinity lead us

to an analytic solution, w
dp
k1

(τ,m, ε) of (4.12). More precisely, w
dp
k1

(τ,m, ε) defines a continuous

function defined in (Udp ∪ D(0, ρ)) × R × D(0, ε0), where Udp is an infinite sector of bisecting
direction dp, and holomorphic with respect to the variables τ and ε in (Udp∪D(0, ρ)) and D(0, ε0),
respectively. In addition to that, it holds that this function admits κ q-exponential growth at
infinity with respect to τ in Udp , i.e., there exists C

w
dp
k1

> 0 such that

|wdp
k1

(τ,m, ε)| ≤ C
w

dp
k1

1

(1 + |m|)µ
e−β|m| exp

(
κ

2 log(q)
log2 |τ + δ|+ α log |τ + δ|

)
,

for all m ∈ R and all τ ∈ (D(0, ρ) ∪ Udp) and ε ∈ D(0, ε0). This result is described in detail in
Proposition 4.2.

A second auxiliary problem in the Borel plane is constructed by applying the formal q-Borel
transformation of order k2 to the main problem (1.2) and substitute the formal forcing term

obtained by Ψ
dp
k2

(τ,m, ε). The second auxiliary equation is stated in (4.30). A second fixed point
result in another appropriate Banach spaces of functions allow us to guarantee the existence of

an actual solution of the second auxiliary problem, w
dp
k2

(τ,m, ε), defined in Sdp × R × D(0, ε0)

and holomorphic with respect to τ and ε in Sdp and D(0, ε0), respectively. Here, Sdp stands for
an infinite sector with vertex at the origin and bisecting direction dp. Moreover, this function
satisfies

|wdp
k2

(τ,m, ε)| ≤ C
w

dp
k2

1

(1 + |m|)µ
e−β|m| exp

(
k2

2 log(q)
log2 |τ |+ ν log |τ |

)
,

for some C
w

dp
k2

> 0, and some ν ∈ R, valid for every (τ,m, ε) ∈ Sdp×R×D(0, ε0). This statement

is proved in Proposition 4.4.
As a matter of fact, the key point in our reasoning is the link between the q-Laplace transform

of order κ with respect to τ variable of w
dp
k1

and w
dp
k2

. In Proposition 4.5, we guarantee that both
functions coincide in the intersection of their domain of definition. This would entail that the
function Ldq;1/κ(wdk1

(τ,m, ε)) can be prolongued along direction dp, with q-exponential growth of

order k2, see Propoposition 4.5.
The construction of the analytic solution of (1.2), udp(t, z, ε), is obtained after the application

of q-Laplace transformation of order k2 and inverse Fourier transform, providing a holomorphic
function defined in T ×Hβ′×Ep. This result is described in Theorem 5.3. The following diagram
illustrates the procedure to follow. For the attainment of the asymptotic properties of the
analytic solution we make use of a Ramis-Sibuya type theorem in two levels (see Theorem 6.4),
and the properties held by the difference of two analytic solutions in the intersection of their
domains, whenever it is not empty. The conclusion yields two different q-Gevrey levels of
asymptotic behavior of the analytic solution with respect to the formal solution depending on
the geometry of the problem. The final main result states the splitting of both, the formal and
the analytic solutions to the problem under study, as a sum of three terms. More precisely,
if F denotes the Banach space of holomorphic and bounded functions defined in T ×Hβ′ , and
û(t, z, ε) stands for the formal power series solution of (1.2), then it holds that

û(t, z, ε) = a(t, z, ε) + û1(t, z, ε) + û2(t, z, ε),
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Figure 1. Scheme of the different Borel levels attained in the construction of the solution

where a(t, z, ε) ∈ F{ε} and û1(t, z, ε), û2(t, z, ε) ∈ F[[ε]] and such that for every 0 ≤ p ≤ ς − 1,
the function udp can be written in the form

udp(t, z, ε) = a(t, z, ε) + u
dp
1 (t, z, ε) + u

dp
2 (t, z, ε),

where ε 7→ u
dp
1 (t, z, ε) is a F-valued function that admits û1(t, z, ε) as its q-Gevrey asymptotic

expansion of order 1/k1 on Ep and also ε 7→ u
dp
2 (t, z, ε) is a F-valued function that admits û2(t, z, ε)

as its q-Gevrey asymptotic expansion of order 1/k2 on Ep. This corresponds to Theorem 6.6.
One common drawback in this paper and in our last contribution [10] compared to our prior

study [16] concerns the restriction on the coefficients cl(t, z, ε) which are only allowed to depend
polynomially on time. An analytic dependence would cause the appearance of convolution
operators when studying the auxiliary equations in the Borel plane and are more delicated to
handle. We postpone this for a future work.

For the sake of clarity, we enclose the following table on the different elements involved in the
construction of the solution of the problem.

Transformation Solution Equation Domain of analyticity
û(t, z, ε) (5.1) Formal

F Û(T,m, ε) (4.7) Formal

B̂q;1/k1
w

dp
k1

(τ,m, ε) (4.12) Rdp,δ̃
× R×D(0, ε0)

Ldpq;1/κ w
dp
k2

(τ,m, ε) (4.30) Sdp × R×D(0, ε0)

Ldpq;1/k2
Udp(T,m, ε) (4.7) Sdp × R×D(0, ε0)

F−1 udp(t, z, ε) (5.1) T ×Hβ′ × Ep.
The paper is organized as follows.
In Section 2.1, we define some weighted Banach space of continuous functions on the domain

(D(0, ρ)∪U)×R with q-exponential growth on the unbounded sector U with respect to the first
variable, and exponential decay on R with respect to the second one. We study the continuity
properties of several operators acting of this Banach space. Section 2.2. is concern with the study
of a second family of Banach spaces of functions with q-exponential growth on an infinite sector
with respect to one variable and exponential decay on R with respect to the other variable. In
Section 3, we recall the definitions and main properties of formal and analytic operators involved
in the solution of the main equation. Namely, formal q-Borel transformation and an analytic
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q-Laplace transform of certain q-Gevrey orders, and inverse Fourier transform. In Section 4.1.
and Section 4.2, we study the analytic solutions of two auxiliary problems in two different
Borel planes and relate them va q-Laplace transformation (see Theorem 5.3). In Section 5,
we describe in detail the main problem under study, and construct its analytic solution and
the rate of growth of the difference of two neighboring solutions in their common domain of
definition. Finally, Section 6 deal with the existence of a formal solution of the problem, and
studies the asymptotic behavior relating the analytic and the formal solutions through a multi-
level q-Gevrey asymptotic expansion (Theorem 6.6). This result is attained with the application
of a two-level q-version of Ramis-Sibuya theorem (Theorem 6.4).

2. Auxiliary Banach spaces of functions

In this section, we describe auxiliary Banach spaces of functions with certain growth and
decay behavior. We also provide important properties of such spaces under certain operators.

Let Ud be an open unbounded sector with vertex at the origin in C, bisecting direction d ∈ R
and positive opening. We take ρ > 0 and consider D(0, ρ) = {τ ∈ C : |τ | < ρ}.

We fix real numbers β, µ > 0, q > 1 and α through the whole section. We assume the distance
from Ud ∪D(0, ρ) to the real number −δ is positive. Let k > 0. We denote D(0, ρ) the closure
of D(0, ρ).

The next definition of a Banach space of functions, and subsequent properties have already
been studied in previous works. Analogous spaces were treated in [7, 12], inspired by the
functional spaces appearing in [18]. We refer the reader to [10, 16] for some of the proofs of the
following results, whose enunciates are included for the sake of completeness.

2.1. First family of Banach spaces of functions with q-exponential growth and ex-
ponential decay.

Definition 2.1. Let q > 1. We denote Expq(k,β,µ,α,ρ) the vector space of complex valued con-

tinuous functions (τ,m) 7→ h(τ,m) on (Ud ∪ D(0, ρ)) × R, holomorphic with respect to τ on
Ud ∪D(0, ρ) and such that

‖h(τ,m)‖(k,β,µ,α,ρ) = sup
τ∈Ud∪D(0,ρ),

m∈R

(1 + |m|)µeβ|m| exp

(
−k

2

log2 |τ + δ|
log(q)

− α log |τ + δ|
)
|h(τ,m)|

is finite. The space (Expq(k,β,µ,α,ρ), ‖·‖(k,β,µ,α,ρ)) is a Banach space.

The proof of the following lemma is straightforward.

Lemma 2.2. Let (τ,m) 7→ a(τ,m) be a bounded continuous function on (Ud ∪ D(0, ρ)) × R,
holomorphic with respect to τ on Ud ∪D(0, ρ). Then, it holds that

‖a(τ,m)h(τ,m)‖(k,β,µ,α,ρ) ≤

(
sup

τ∈Ud∪D(0,ρ),m∈R
|a(τ,m)|

)
‖h(τ,m)‖(k,β,µ,α,ρ) ,

for every h(τ,m) ∈ Expq(k,β,µ,α,ρ).

Proposition 2.3. Let γ1, γ2, γ3 ≥ 0 such that

γ1 + kγ3 ≥ γ2.

Let aγ1(τ) be a continuous function on Ud ∪D(0, ρ), holomorphic on Ud ∪D(0, ρ), with

|aγ1(τ)| ≤ 1

(1 + |τ |)γ1
,
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for every τ ∈ (Ud∪D(0, ρ)). Then, there exists C1 > 0, depending on k, q, α, γ1, γ2, γ3, such that∥∥aγ1(τ)τγ2σ−γ3
q,τ f(τ,m)

∥∥
(k,β,µ,α,ρ)

≤ C1 ‖f(τ,m)‖(k,β,µ,α,ρ)

for every f ∈ Expq(k,β,µ,α,ρ).

Definition 2.4. We write E(β,µ) for the vector space of continuous functions h : R → C such
that

‖h(m)‖(β,µ) = sup
m∈R

(1 + |m|)µ exp(β|m|)|h(m)| <∞.

It holds that (E(β,µ), ‖·‖(β,µ)) is a Banach space.

The Banach space (E(β,µ), ‖·‖(β,µ)) can be endowed with the structure of a Banach algebra

with the following noncomutative product (see Proposition 2 in [16] for further details).

Proposition 2.5. Let Q(X), R(X) ∈ C[X] be polynomials such that

deg(R) ≥ deg(Q), R(im) 6= 0,

for all m ∈ R. Let m 7→ b(m) be a continuous function in R such that

|b(m)| ≤ 1/|R(im)|, m ∈ R.
Assume that µ > deg(Q)+1. Then, there exists a constant C2 > 0 (depending on Q(X), R(X), µ)
such that∥∥∥∥b(m)

∫ +∞

−∞
f(m−m1)Q(im1)g(m1)dm1

∥∥∥∥
(β,µ)

≤ C2 ‖f(m)‖(β,µ) ‖g(m)‖(β,µ) ,

for every f(m), g(m) ∈ E(β,µ). In the sequel, we adopt the notation

f(m) ?Q g(m) :=

∫ +∞

−∞
f(m−m1)Q(im1)g(m1)dm1,

for every m ∈ R, extending the classical convolution product ? for Q ≡ 1. As a result,
(E(β,µ), ‖·‖(β,µ)) becomes a Banach algebra for the product ?b,Q defined by

f(m) ?b,Q g(m) := b(m)f(m) ?Q g(m).

The next proposition is a slighted modified version of Proposition 3 in [16], adapted to the
appearance of two different types of growth of the functions involved, which force holding some
positive distance to the origin.

Proposition 2.6. Let b(m), Q(X), R(X) be chosen as in Proposition 2.5. We assume 1 < k ≤ κ
is an integer. Let ch(m) ∈ E(β,µ) for h = 0, . . . , p1. Let ϕk(τ,m) be the polynomial

ϕk(τ,m) =

p1∑
h=0

ch(m)
τh

(q1/k)h(h−1)/2
∈ E(β,µ)[τ ].

For every f(τ,m) ∈ Expq(κ,β,µ,α), we define a q-analog of the convolution of order k of ϕk(τ,m)

and f(τ,m) as

ϕk(τ,m) ?Qq;1/k f(τ,m) :=

p1∑
h=0

τh

(q1/k)h(h−1)/2
ch(m) ?Q (σ

−h
k

q,τ f)(τ,m).

Then, the function b(m)ϕk(τ,m) ?Qq;1/k f(τ,m) belongs to Expq(κ,β,µ,α) and there exist C3,h > 0,

depending on µ, q, α, k, κ,Q(X), R(X), δ, such that∥∥∥b(m)ϕk(τ,m) ?Qq;1/k f(τ,m)
∥∥∥

(κ,β,µ,α,ρ)
≤

(
p1∑
h=0

C3,h ‖ch‖(β,µ)

)
‖f(τ,m)‖(κ,β,µ,α,ρ) .
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Proof. Let f(τ,m) ∈ Expq(κ,β,µ,α). From the very definition, we know that

||b(m)ϕk(τ,m) ?Qq;1/k f(τ,m)||(κ,β,µ,α,ρ)

= sup
τ∈Ud∪D(0,ρ),m∈R

(1 + |m|)µeβ|m| exp

(
−κ

2

log2(|τ + δ|)
log(q)

− α log(|τ + δ|)
)
|b(m)|

×

∣∣∣∣∣
p1∑
h=0

τh

(q1/k)
h(h−1)

2

∫ +∞

−∞
ch(m−m1)Q(im1)f(

τ

qh/k
,m1)dm1

∣∣∣∣∣ .
The definition of the norm ‖·‖(κ,β,µ,α,ρ yields a bound in D(0, ρ). Let Ũd be the complementary

of D(0, ρ) in Ud. From what precede we may take the supremum over Ũd instead of Ud∪D(0, ρ).
By inserting terms that correspond to the ||.||(β,µ) norm of ch(m) and to the ||.||(κ,β,µ,α,ρ) norm

of f(τ/qh/k,m), there exists C̃1 > 0, such that we can give the bound estimates

||b(m)ϕk(τ,m) ?Qq;1/k f(τ,m)||(κ,β,µ,α,ρ)

≤ C̃1 sup
τ∈Ũd,m∈R

(1 + |m|)µeβ|m| exp

(
−κ

2

log2(|τ + δ|)
log(q)

− α log(|τ + δ|)
)
|b(m)|

×
p1∑
h=0

∫ +∞

−∞

(
(1 + |m−m1|)µeβ|m−m1| ch(m−m1)

(q1/k)h(h−1)/2
|τ + δ|h

)

×

(
|f(

τ

qh/k
,m1)|(1 + |m1|)µeβ|m1| exp

(
−κ

2

log2(|τ/qh/k + δ|)
log(q)

− α log(|τ/qh/k + δ|)

))

×

(
e−β|m−m1|

(1 + |m−m1|)µ
|Q(im1)|

(1 + |m1|)µ
e−β|m1| exp

(
κ

2

log2(|τ/qh/k + δ|)
log(q)

+ α log(|τ/qh/k + δ|)

))
dm1.

By means of the triangular inequality |m| ≤ |m−m1|+ |m1|, we deduce that

(2.1) ||b(m)ϕk(τ,m) ?Qq;1/k f(τ,m)||(κ,β,µ,α,ρ) ≤ Ĉ||f(τ,m)||(κ,β,µ,α,ρ)

where

(2.2) Ĉ = C̃1 sup
τ∈Ũd,m∈R

(1 + |m|)µ exp

(
−κ

2

log2(|τ + δ|)
log(q)

− α log(|τ + δ|)
)
|b(m)|

×
p1∑
h=0

||ch||(β,µ)
|τ |h

(q1/k)h(h−1)/2

∫ +∞

−∞

|Q(im1)|
(1 + |m−m1|)µ(1 + |m1|)µ

dm1

× exp

(
κ

2

log2(|τ/qh/k + δ|)
log(q)

+ α log(|τ/qh/k + δ|)

)
.

By construction, there exist two constants Q,R > 0 such that

(2.3) |Q(im1)| ≤ Q(1 + |m1|)deg(Q), |R(im)| ≥ R(1 + |m|)deg(R),

for all m ∈ R. Using (2.3) and from Lemma 4 in [14] (see also Lemma 2.2 from [2]), we get a

constant C̃2 > 0 with

(2.4) (1 + |m|)µ|b(m)|
∫ +∞

−∞

|Q(im1)|
(1 + |m−m1|)µ(1 + |m1|)µ

dm1

≤ sup
m∈R

Q

R
(1 + |m|)µ−deg(R) ×

∫ +∞

−∞

1

(1 + |m−m1|)µ(1 + |m1|)µ−deg(Q)
dm1 ≤ C̃2
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provided that µ > deg(Q) + 1. On the other hand, we can write

(2.5)
κ

2 log(q)
log2 |τ/qh/k| = κ

2 log(q)

(
log2 |τ | − 2

h

k
log |τ | log(q) + (

h

k
)2 log2(q)

)
,

α log |τ/qh/k| = α

(
log |τ | − h

k
log(q)

)
.

¿From (2.2) and gathering the estimates (2.4) and the identities (2.5), we get the existence of

C̃3 such that

(2.6) Ĉ ≤ C̃1C̃2C̃3

p1∑
h=0

‖ch‖(β,µ) q
h2

2
(1/κ−1/k)+h

k
(1/2−α) <∞.

Finally, taking into account (2.1) together with (2.6) yields the result. �

2.2. Second family of Banach spaces of functions with q-exponential growth and
exponential decay. The second family of auxiliary Banach spaces has already been studied
in previous works, such as [10, 16]. We refer to these references for the proofs of the related
results.

Let Sd be an infinite sector of bisecting direction d and let ν ∈ R.

Definition 2.7. We denote Expq(k,β,µ,ν) the vector space of continuous functions

(τ,m) 7→ h(τ,m) on Sd × R, and holomorphic with respect to τ on Sd, such that

‖h(τ,m)‖(k,β,µ,ν) = sup
τ∈Sd,m∈R

(1 + |m|)µeβ|m| exp

(
−k log2 |τ |

2 log(q)
− ν log |τ |

)
|h(τ,m)|

is finite. It holds that (Expq(k,β,µ,ν), ‖·‖(k,β,µ,ν)) is a Banach space.

Remark 2.8. Let 0 ≤ κ1 ≤ κ2. For every f ∈ Expq(κ1,β,µ,ν), It holds that f ∈ Expq(κ2,β,µ,ν), and

‖f(τ,m)‖(κ2,β,µ,ν) ≤ ‖f(τ,m)‖(κ1,β,µ,ν) .

The proof of the following lemma is a straightforward consequence of the definition.

Lemma 2.9. Let a(τ,m) be a bounded continuous function on Sd ×R, holomorphic on Sd with
respect to τ . Then,

‖a(τ,m)f(τ,m)‖(k,β,µ,ν) ≤ sup
τ∈Sd,m∈R

|a(τ,m)| ‖f(τ,m)‖(k,β,µ,ν)

for every f(τ,m) ∈ Expq(k,β,µ,ν).

Proposition 2.10. Let γ1, γ2 ≥ 0 and γ3 ∈ R such that

(2.7) γ1 + kγ3 ≥ γ2.

Let aγ1(τ) be an holomorphic on Sd, with

|aγ1(τ)| ≤ 1

(1 + |τ |)γ1
, τ ∈ Sd.

Then, there exists C4 > 0, depending on k, q, ν, γ1, γ2, γ3 such that∥∥aγ1(τ)τγ2σγ3
q,τf(τ,m)

∥∥
(k,β,µ,ν)

≤ C4 ‖f(τ,m)‖(k,β,µ,ν)

for every f ∈ Expq(k,β,µ,ν).
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Proof. For every f ∈ Expq(k,β,µ,ν) we have

∥∥aγ1(τ)τγ2σγ3
q,τf(τ,m)

∥∥
(k,β,µ,ν)

= sup
τ∈Sd,m∈R

(1 + |m|)µeβ|m| exp

(
−k log2 |τ |

2 log(q)
− ν log |τ |

)
|τ |γ2

(1 + |τ |)γ1
|f(τqγ3 ,m)|

× exp

(
−k log2 |τqγ3 |

2 log(q)
− ν log |τqγ3 |

)
exp

(
k log2 |τqγ3 |

2 log(q)
+ ν log |τqγ3 |

)
≤ sup

τ∈Sd
q
kγ2

3+2νγ3
2

|τ |kγ3+γ2

(1 + |τ |)γ1
‖f(τ,m)‖(k,β,µ,ν) .

The result follows from the condition (2.7). �

We may deduce from Proposition 3 in [16] the following proposition:

Proposition 2.11. Let b(m), Q(X), R(X), ch for h = 0, . . . , p1 and ϕk(τ,m) be chosen as in

Proposition 2.6. For every f(τ,m) ∈ Expq(k,β,µ,ν), it holds that b(m)ϕk(τ,m)?Qq;1/kf(τ,m) belongs

to Expq(k,β,µ,ν) and there exist C4,h > 0, depending on µ, q, ν, k,Q(X), R(X), such that∥∥∥b(m)ϕk(τ,m) ?Qq;1/k f(τ,m)
∥∥∥

(k,β,µ,ν)
≤

(
p1∑
h=0

C4,h ‖ch‖(β,µ)

)
‖f(τ,m)‖(k,β,µ,ν) .

3. Formal and analytic operators involved in the study of the problem

The main properties of some formal and analytic transformations are displayed for the sake
of completeness. In this section, E stands for a complex Banach space.

The definition and main properties of the q-analog of Borel and Laplace transformation in
several different orders can be found in [4, 18]. The proofs of the following results can be found
in [16].

Let q > 1 be a real number, and k ≥ 1 be a rational number.

Definition 3.1. For every â(T ) =
∑

n≥0 anT
n ∈ E[[T ]] we define the formal q-Borel transform

of order k of â(T ) by

B̂q;1/k(â(T ))(τ) =
∑
n≥0

an
τn

(q1/k)n(n−1)/2
∈ E[[τ ]].

Proposition 3.2. Let σ ∈ N and j ∈ Q. Then, it holds

B̂q;1/k(T σσjq â(T ))(τ) =
τσ

(q1/k)σ(σ−1)/2
σ
j−σ

k
q

(
B̂q;1/k(â(T ))(τ)

)
,

for every â(T ) ∈ E[[T ]].

The q-analog of Laplace transformation as it is shown was developed in [5]. The associated
kernel of such transformation is the Jacobi theta function of order k defined by

Θq1/k(x) =
∑
n∈Z

q−
n(n−1)

2k xn,

which turns out to be a holomorphic function in C?. It turns out to be a solution of the
q-difference equation

(3.1) Θq1/k(q
m
k x) = q

m(m+1)
2k xmΘq1/k(x),



PERTURBED q-DIFFERENCE-DIFFERENTIAL EQUATIONS WITH POLYNOMIAL COEFFICIENTS 11

for every m ∈ Z, valid for all x ∈ C?. As a matter of fact, Jacobi theta function of order k is a
function of q-Gevrey growth at infinity of order k in the sense that for every δ̃ > 0 there exists
Cq,k > 0, not depending on δ̃, such that

(3.2)
∣∣∣Θq1/k(x)

∣∣∣ ≥ Cq,kδ̃ exp

(
k

2

log2 |x|
log(q)

)
|x|1/2,

for x ∈ C? under the condition that |1 + xq
m
k | > δ̃, for every m ∈ Z.

Definition 3.3. Let ρ > 0 and Ud be an unbounded sector with vertex at 0 and bisecting
direction d ∈ R. Let f : D(0, ρ) ∪ Ud → E be a holomorphic function, continuous on D(0, ρ),
such that there exist K > 0 and α ∈ R with

‖f(x)‖E ≤ K exp

(
k log2 |x|
2 log(q)

+ α log |x|
)
, x ∈ Ud, |x| ≥ ρ,

and

‖f(x)‖E ≤ K, x ∈ D(0, ρ).

Set πq1/k = log(q)
k

∏
n≥0(1− 1

q(n+1)/k )−1. We define the q-Laplace transform of order k of f along

direction d by

Ldq;1/k(f(x))(T ) =
1

πq1/k

∫
Ld

f(u)

Θq1/k

(
u
T

) du
u
,

where Ld := {teid : t ∈ (0,∞)}.

We refer the reader to Lemma 4 and Proposition 6 in [16] for the proof of the next results. The
algebraic property held by q-Laplace transformation would allow to commute some operators
with respect to it.

Lemma 3.4. Let δ̃ > 0. Under the hypotheses of Definition 3.3, we have that Ldq;1/k(f(x))(T )

defines a bounded and holomorphic function on Rd,δ̃ ∩D(0, r1) for every 0 < r1 ≤ q(
1
2
−α), where

(3.3) Rd,δ̃ :=

{
T ∈ C? :

∣∣∣∣1 +
reid

T

∣∣∣∣ > δ̃, for all r ≥ 0

}
.

A different choice for d modulo 2πZ would provide the same function due to Cauchy formula.

Proposition 3.5. Let f be a function which satisfies the properties in Definition 3.3, and let
δ̃ > 0. Then, for every σ ≥ 0 one has

T σσjq(Ldq;1/kf(x))(T ) = Ldq;1/k
(

xσ

(q1/k)σ(σ−1)/2
σ
j−σ

k
q

)
(T ),

for every T ∈ Rd,δ̃ ∩D(0, r1), with 0 < r1 ≤ q(
1
2
−α)/k/2.

Another operator which is used through the work is the inverse Fourier transform.

Proposition 3.6. Let f ∈ E(β,µ) with β > 0, µ > 1. The inverse Fourier transform of f is
defined by

F−1(f)(x) =
1

(2π)1/2

∫ ∞
−∞

f(m) exp(ixm)dm

for all x ∈ R. The function F−1(f) extends to an analytic function on the strip

Hβ = {z ∈ C/|Im(z)| < β}.
Let φ(m) = imf(m) ∈ E(β,µ−1). Then, we have

∂zF−1(f)(z) = F−1(φ)(z)



12 THOMAS DREYFUS, ALBERTO LASTRA, AND STÉPHANE MALEK

for all z ∈ Hβ.

Let g ∈ E(β,µ) and let ψ(m) = 1
(2π)1/2 f ? g(m), the convolution product of f and g, for all

m ∈ R.
¿From Proposition 2.5, we know that ψ ∈ E(β,µ). Moreover, we have

F−1(f)(z)F−1(g)(z) = F−1(ψ)(z)

for all z ∈ Hβ.

4. Formal and analytic solutions to some auxiliary convolution initial value
problems with complex parameters

Let 1 ≤ k1 < k2 and D,D1, D2 ≥ 3 be integers and define κ−1 = k−1
1 − k−1

2 . Let q > 1 be a
real number. We also consider the positive integer numbers dD1 , dD2 . For every 1 ≤ ` ≤ D − 1
we consider nonnegative integers d`, δ` ≥ 1 and ∆` ≥ 0. We assume that

(4.1) δ1 = 1, δ` < δ`+1,

for 1 ≤ ` ≤ D − 2. We also assume that

(4.2) ∆` ≥ d`,
d`
k2

+ 1 ≥ δ`,
dD1 − 1

κ
− d`
k2
≥ δ` − 1,

dD2 − 1

k2
≥ δ` − 1,

for every 1 ≤ ` ≤ D − 1, and also

(4.3) k1dD2 > k2dD1 .

Let Q(X), R`(X) ∈ C[X] for 1 ≤ ` ≤ D − 1 and RD1 , RD2 ∈ C[X], such that

(4.4) deg(RD2) = deg(RD1),

and

(4.5) deg(Q) ≥ deg(RDj ) ≥ deg(R`), µ− 1 > deg(RDj ), Q(im) 6= 0, RDj (im) 6= 0,

for some µ > deg(RDj ) + 1 with j = 1, 2, for all m ∈ R, 1 ≤ ` ≤ D − 1.
We consider sequence of functions m 7→ Fn(m, ε) for n ≥ 0 belonging to the Banach space

E(β,µ) for some β > 0, depending holomorphically on ε ∈ D(0, ε0), for some ε0 > 0. We also

consider m 7→ C`(T,m, ε) =
∑p1

j=0C`,j(m, ε)T
j , for 1 ≤ ` ≤ D − 1 in E(β,µ)[T ], depending

holomorphically on ε ∈ D(0, ε0). We moreover assume there exist CF , T0 > 0 such that

(4.6) ‖Fn‖(β,µ) ≤ CF
(

1

T0

)n
(q1/k1)n(n−1)/2, n ≥ 0.

We define the formal power series in E(β,µ)[[T ]]

F̂ (T,m, ε) =
∑
n≥0

Fn(m, ε)Tn.

We consider the following initial value problem

(4.7) Q(im)σq,TU(T,m, ε)

= T dD1σ

dD1
k1

+1

q,T RD1(im)U(T,m, ε) + T dD2σ

dD2
k2

+1

q,T RD2(im)U(T,m, ε)

+
D−1∑
`=1

ε∆`−d`T d`σδ`q,T

(
1

(2π)1/2

∫ +∞

−∞
C`(T,m−m1, ε)R`(im1)U(T,m1, ε)dm1

)
+ σq,T F̂ (T,m, ε).
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Proposition 4.1. There exists a unique formal power series

(4.8) Û(T,m, ε) =
∑
n≥0

Un(m, ε)Tn,

solution of (4.7), where the coefficients Un(m, ε) belong to E(β,µ), for β > 0 and µ > deg(RDj )+1,
j ∈ {1, 2}, given above and depend holomorphically on ε ∈ D(0, ε0).

Proof. We plug the formal power series (4.8) into equation (4.7) to obtain a recursion formula
for the coefficients Un, for n ≥ 0. We have

Q(im)Un(m, ε)qn =

RD1(im)Un−dD1
(m, ε)q

(
dD1
k1

+1

)
(n−dD1

)
+RD2(im)Un−dD2

(m, ε)q

(
dD2
k2

+1

)
(n−dD2

)

+
D−1∑
`=1

ε∆`−d`q(n−d`)δ`

 ∑
n1+n2=n−d`

1

(2π)1/2

∫ +∞

−∞
C`,n1(m−m1, ε)R`(im1)Un2(m1, ε)dm1


+ Fn(m, ε)qn

for every n ≥ max{dD1 , dD2 ,max1≤`≤D−1 d`}. Here C`,n1 ≡ 0 in the case that n1 ≥ p1. Due to
Fn ∈ E(β,µ) for every n ≥ 0 we get Un ∈ E(β,µ) by recursion. �

4.1. Analytic solutions of a first auxiliary problem in the q-Borel plane. We proceed to
multiply at both sides of equation (4.7) by T k1 and then apply the formal q-Borel transformation
of order k1 with respect to T . Let ϕk1,`(τ,m, ε) be the formal q-Borel transform of order k1 of
C`(T,m, ε) with respect to T , and Ψk1(τ,m, ε) the formal q-Borel transform of order k1 of

F̂ (T,m, ε) with respect to T . More precisely, we have

ϕk1,`(τ,m, ε) =

p1∑
n=0

C`,n(m, ε)
τn

(q1/k1)n(n−1)/2
,

Ψk1(τ,m, ε) =
∑
n≥0

Fn(m, ε)
τn

(q1/k1)n(n−1)/2
.(4.9)

Assume that Ψk1(τ,m, ε) above, which defines a holomorphic function on D(0, T0), due to
(4.6), with values in the Banach space E(β,µ) can be analytically prolonged along direction
d ∈ R in the sector Ud, with q-exponential growth of order κ. More precisely, we have

(4.10) ‖Ψk1(τ,m, ε)‖(κ,β,µ,α,ρ) = CΨk1
<∞,

for some CΨk1
> 0. Observe from (4.6) that CF tends to zero when CΨk1

does. We also assume
that Ψk1 can not be prolongued to an entire function. More precisely, we assume that for every

positive constants C̃F and T̃0 there exists n0 ≥ 0 such that for every n ≥ n0 one has

(4.11) C̃F

(
1

T̃0

)n
(q1/k1)n(n−1)/2 < ‖Fn(m, ε)‖(β,µ) ,

for ε ∈ D(0, ε0).
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In view of the properties of the q-Borel transformation of order k1, we arrive at the equation

(4.12) Q(im)
τk1

(q1/k1)
k1(k1−1)

2

wk1(τ,m, ε) = RD1(im)
τdD1

+k1

(q1/k1)
(dD1

+k1)(dD1
+k1−1)

2

wk1(τ,m, ε)

+RD2(im)
τdD2

+k1

(q1/k1)
(dD2

+k1)(dD2
+k1−1)

2

σ
dD2

(
1
k2
− 1
k1

)
q,T wk1(τ,m, ε) +

τk1

(q1/k1)
k1(k1−1)

2

Ψk1(τ,m, ε)

+

D−1∑
`=1

ε∆`−d` τd`+k1

(q1/k1)
(d`+k1)(d`+k1−1)

2

σ
δ`−

d`
k1
−1

q,τ

(
1

(2π)1/2
ϕk1,`(τ,m, ε) ?

R`
q;1/k1

wk1(τ,m, ε)

)

where wk1(τ,m, ε) stands for the formal q-Borel transformation of order k1 with respect to T .
Observe the appearance only of negative powers of the dilation operator in one of the terms in
the sum of the right-hand side of the equation.

We assume an unbounded sector of bisecting direction dQ,RD1
∈ R exists,

SQ,RD1
=
{
z ∈ C : |z| ≥ rQ,RD1

, | arg(z)− dQ,RD1
| ≤ νQ,RD1

}
,

for some rQ,RD1
, νQ,RD1

> 0, in such a way that

Q(im)

RD1(im)
∈ SQ,RD1

,

for every m ∈ R. We factorize

Pm,1(τ) =
Q(im)

(q1/k1)
k1(k1−1)

2

− RD1(im)

(q1/k1)
(dD1

+k1)(dD1
+k1−1)

2

τdD1

in the form

Pm,1(τ) = − RD1(im)

(q1/k1)
(dD1

+k1)(dD1
+k1−1)

2

dD1
−1∏

`=0

(τ − q`(m)),

with

q`(m) = e
2iπ`
dD1

(
Q(im)

RD1(im)

)1/dD1

q
dD1

+2k1−1

2k1 ,

for every 0 ≤ ` ≤ dD1 − 1. Let Ud be an unbounded sector, and ρ > 0 such that the following
statements hold:

1) There exists M1 > 0 such that |τ − q`(m)| ≥ M1(1 + |τ |) for every 0 ≤ ` ≤ dD1 − 1,
m ∈ R, and τ ∈ Ud ∪D(0, ρ). An appropriate choice of rQ,RD1

and ρ yields |q`(m)| > 2ρ
for every m ∈ R, and 0 ≤ ` ≤ dD1 − 1. In the case that νQ,RD1

is small enough, the set

{q`(m) : m ∈ R, 0 ≤ ` ≤ dD1−1} stays at a positive distance to Ud, and it can be chosen
with the property that |q`(m)|/τ has positive distance to 1 ∈ C for every τ ∈ Ud, m ∈ R
and 0 ≤ ` ≤ dD1 − 1.

2) There exists M2 > 0 such that |τ − q`0(m)| ≥M2|q`0(m)| for some `0 ∈ {0, . . . , dD1 − 1},
m ∈ R and τ ∈ Ud ∪D(0, ρ). This is a direct consequence of 1), for some small enough
M2 > 0.
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The previous conditions yield the existence of CP > 0 such that

(4.13) |Pm,1(τ)|

≥MdD1
−1

1 M2
|RD1(im)|(1 + |τ |)dD1

−1

(q1/k1)
(dD1

+k1)(dD1
+k1−1)

2

(
|Q(im)|
|RD1(im)|

)1/dD1

q
dD1

+2k1−1

2k1

≥ CP (rQ,RD1
)1/dD1 |RD1(im)|(1 + |τ |)dD1

−1,

for every τ ∈ Ud ∪D(0, ρ), and m ∈ R.
The next result states the existence and uniqueness of a solution of (4.12) in the space

Expq(κ,β,µ,α,ρ), provided its norm in that space is small enough.

Proposition 4.2. Under the Assumptions (4.1), (4.2), (4.3), (4.4) and (4.5), there exist
rQ,RD1

> 0, a constant $ > 0 and constants ς`, ςΨ > 0 such that if

(4.14) ‖C`,j‖(β,µ) ≤ ς` CΨ1 ≤ ςΨ,

for all 1 ≤ ` ≤ D − 1 and 0 ≤ j ≤ p1, uniformly for ε ∈ D(0, ε0), then the equation (4.12)
admits a unique solution wdk1

(τ,m, ε) ∈ Expq(κ,β,µ,α,ρ) with
∥∥wdk1

(τ,m, ε)
∥∥

(κ,β,µ,α,ρ)
≤ $, for every

ε ∈ D(0, ε0).

Proof. Let ε ∈ D(0, ε0) and consider the operator Hε defined by

H1
ε (w(τ,m)) :=

RD2(im)

Pm,1(τ)

τdD2

(q1/k1)
(dD2

+k1)(dD2
+k1−1)

2

σ
dD2

(
1
k2
− 1
k1

)
q,T w(τ,m)

+
D−1∑
`=1

ε∆`−d` τd`

Pm,1(τ)(q1/k1)
(d`+k1)(d`+k1−1)

2

σ
δ`−

d`
k1
−1

q,τ

(
1

(2π)1/2
ϕk1,`(τ,m, ε) ?

R`
q;1/k1

w(τ,m)

)
+

1

Pm,1(τ)(q1/k1)
k1(k1−1)

2

Ψk1(τ,m, ε).

Note that a fixed point of H1
ε (w(τ,m)) will lead to a convenient solution of (4.12). To apply the

fixed point theorem, we are going ot prove successively two facts.

(1) One may choose small enough ς`, ςΨ, $ > 0, and large enough rQ,RD1
> 0 such that

(4.15) H1
ε (B(0, $)) ⊆ B(0, $),

where B(0, $) stands for the closed disc centered at 0, with radius $ in the Banach
space Expq(κ,β,µ,α,ρ).

(2) It holds

(4.16)
∥∥H1

ε (w1(τ,m))−H1
ε (w2(τ,m))

∥∥
(κ,β,µ,α,ρ)

≤ 1

2
‖w1(τ,m)− w2(τ,m)‖(κ,β,µ,α,ρ) ,

for every w1(τ,m), w2(τ,m) ∈ B(0, $).

Proof of (4.15).

We first check (4.15). Let w(τ,m) ∈ Expq(κ,β,µ,α,ρ).

With (4.2) and the definition of κ, we find that dD1 − 1 + κ(δ` + d`/k1 − 1) ≥ d`. Thus,
taking into account assumptions (4.1), (4.5), regarding (4.13) together with Proposition 2.3 and
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Proposition 2.6 we get

(4.17)∥∥∥∥∥ε∆`−d` τd`

Pm,1(τ)(q1/k1)
(d`+k1)(d`+k1−1)

2

σ
δ`−

d`
k1
−1

q,τ

(
1

(2π)1/2
ϕk1,`(τ,m, ε) ?

R`
q;1/k1

w(τ,m)

)∥∥∥∥∥
(κ,β,µ,α,ρ)

≤ ε∆`−d`
0

C1

(q1/k1)
(d`+k1)(d`+k1−1)

2 CP (rQ,RD1
)1/dD1 (2π)1/2

ς`

(
p1∑
h=0

C3,h

)
‖w(τ,m)‖(κ,β,µ,α,ρ) .

Gathering Lemma 2.2, and from (4.10), we get∥∥∥∥ 1

Pm,1(τ)(q1/k1)k1(k1−1)/2
Ψk1(τ,m, ε)

∥∥∥∥
(κ,β,µ,α,ρ)

≤ 1

(q1/k1)k1(k1−1)/2CP (rQ,RD1
)1/dD1

sup
m∈R

1

|RD1(im)|
ςΨ.(4.18)

Condition (4.4) and the application of Proposition 2.3 and Lemma 2.2 yields

An appropriate choice of rQ,RD1
> 0, $, ς`, ςΨ > 0, 1 ≤ ` ≤ D − 1 gives

+1
(q1/k1 )k1(k1−1)/2CP (rQ,RD1

)
1/dD1 supm∈R

1
|RD1

(im)| ςΨ+supm∈R
|RD2

(im)|
|RD1

(im)|
C1$

(q1/k1 )

(dD2
+k1)(dD2

+k1−1)

2 CP (rQ,RD1
)
1/dD1

≤$.

Regarding (4.17), (4.18), (??) and (4.1) one concludes (4.15).

Proof of (4.16).

We proceed to prove (4.16). Let w1, w2 ∈ Expq(κ,β,µ,α,ρ). We assume ‖w`(τ,m)‖(κ,β,µ,α,ρ) ≤ $,

` = 1, 2, for some $ > 0. Let E(τ,m) := w1(τ,m) − w2(τ,m). On one hand, from (4.17) one
has ∥∥∥∥∥ ε∆`−d`τd`

Pm,1(τ)(q1/k1)
(d`+k1)(d`+k1−1)

2

σ
δ`−

d`
k1
−1

q,τ

(
1

(2π)1/2
ϕk1,`(τ,m, ε) ?

R`
q;1/k1

E(τ,m)

)∥∥∥∥∥
(κ,β,µ,α,ρ)

≤ ε∆`−d`
0 ς`

C1

(q1/k1)
(d`+k1)(d`+k1−1)

2 CP (rQ,RD1
)1/dD1 (2π)1/2

(
p1∑
h=0

C3,h

)
‖E(τ,m)‖(κ,β,µ,α,ρ) .

(4.19)

On the other hand, (??) yields∥∥∥∥∥∥RD2(im)

Pm,1(τ)

τdD2

(q1/k1)
(dD2

+k1)(dD2
+k1−1)

2

σ
dD2

(
1
k2
− 1
k1

)
q,T E(τ,m)

∥∥∥∥∥∥
(κ,β,µ,α,ρ)

≤ sup
m∈R

|RD2(im)|
|RD1(im)|

C1

(q1/k1)
(dD2

+k1)(dD2
+k1−1)

2 CP (rQ,RD1
)1/dD1

‖E(τ,m)‖(κ,β,µ,α,ρ) .(4.20)
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We choose rQ,RD1
> 0, ς` > 0 for 1 ≤ ` ≤ D − 1 such that

D−1∑
`=1

ε∆`−d`
0 ς`

C1

(q1/k1)
(d`+k1)(d`+k1−1)

2 CP (rQ,RD1
)1/dD1 (2π)1/2

(
p1∑
h=0

C3,h

)

+ sup
m∈R

|RD2(im)|
|RD1(im)|

C1

(q1/k1)
(dD2

+k1)(dD2
+k1−1)

2 CP (rQ,RD1
)1/dD1

≤ 1

2
.(4.21)

The statement (4.16) is a direct consequence of condition (4.21) applied to (4.19) and (4.20).

Let us finish the proof of the proposition. At this point, in view of (4.15) and (4.16), one
can choose $ > 0 such that B(0, $) ⊆ Expq(κ,β,µ,α,ρ), which defines a complete metric space

for the norm ‖·‖(κ,β,µ,α,ρ). The map H1
ε is contractive from B(0, $) into itself. The fixed point

theorem states that H1
ε admits a unique fixed point wdk1

(τ,m, ε) ∈ B(0, $) ⊆ Expq(κ,β,µ,α,ρ), for

every ε ∈ D(0, ε0). The construction of wdk1
(τ,m, ε) allows us to conclude that it turns out to

be a solution of (4.12). �

The next step consists on studying the solutions of a second auxiliary problem. This problem
lies in a second q-Borel plane and its solution would guarantee the extension, with appropriate
growth, of the acceleration of the solution to our first auxiliary problem, described in (4.12).
For this purpose, we describe the acceleration of the elements of Expq(κ,β,µ,α,ρ).

Lemma 4.3. Let Yk1(τ,m, ε) ∈ Expq(κ,β,µ,α,ρ). The function

(4.22) τ 7→ Yk2(τ,m, ε) := Ldq;1/κ(h 7→ Yk1(h,m, ε))(τ) =
1

πq1/κ

∫
Ld

Yk1(u,m, ε)

Θq1/κ

(
u
τ

) du

u

is analytic in the set Rd,δ̃ (see (3.3)), where δ̃ > 0. Moreover, the function (τ,m) 7→ Yk2(τ,m, ε)

is continuous for m ∈ R and τ ∈ Rd,δ̃, and depends holomorphically on ε ∈ D(0, ε0). Further-

more, there exist CYk2
> 0 and ν ∈ R such that

(4.23) |Yk2(τ,m, ε)| ≤ CYk2
e−β|m|(1 + |m|)−µ exp

(
k2 log2 |τ |
2 log(q)

+ ν log |τ |
)
,

for every τ ∈ Rd,δ̃, m ∈ R and ε ∈ D(0, ε0).

Proof. The proof is analogous to that of Lemma 5 in [10].
As we can see in the proof of Lemma 5 in [10], there exists a constant C41, only depending

on δ, such that

k1 log2 |τ + δ|
2 log(q)

+ α log |τ + δ| ≤ k1 log2 |τ |
2 log(q)

+ α log |τ |+ C41,

for every τ ∈ Sd. Additionally with the definition of Expq(κ,β,µ,α,ρ), we find

(4.24) |Yk1(τ,m, ε)| ≤ C̃Yk1

e−β|m|

(1 + |m|)µ
exp

(
k1 log2 |τ |
2 log(q)

+ α log |τ |
)
,

for some constant C̃Yk1
> 0. We recall that k1 ≤ κ so that

(4.25) |Yk1(τ,m, ε)| ≤ C̃Yk1

e−β|m|

(1 + |m|)µ
exp

(
κ log2 |τ |
2 log(q)

+ α log |τ |
)
.
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This remains valid for all ε ∈ D(0, ε0), τ ∈ Ud and m ∈ R. Moreover, for every τ ∈ D(0, ρ), the
functions log2 |τ + δ| and log |τ + δ| are upper bounded. As a consequence, there exists ČYk1

> 0
such that

(4.26) |Yk1(τ,m, ε)| ≤ ČYk1
,

for every ε ∈ D(0, ε0), τ ∈ D(0, ρ) and m ∈ R. With (4.26) and (4.25) and Lemma 3.4, we

may affirm that Yk2 is well-defined as considered in (4.22). More precisely, given δ̃ > 0, the
function (τ,m, ε) 7→ Yk2(τ,m, ε) turns out to be a continuous and bounded function defined in

(Rd,δ̃ ∩D(0, r1))×R×D(0, ε0) for any 0 ≤ r1 ≤ q(1/2−α)/κ/2, and holomorphic with respect to

τ variable in Rd,δ̃ ∩D(0, r1). In addition to that, from (4.24) and (3.2) one has

∣∣∣Ldq;1/κ(h 7→ Yk1(h,m, ε))(τ)
∣∣∣ =

∣∣∣∣∣ 1

πq1/κ

∫
Ld

Yk1(u,m, ε)

Θq1/κ

(
u
τ

) du

u

∣∣∣∣∣
≤

C̃Yk1
e−β|m||τ |1/2

(1 + |m|)µCq,κδ̃πq1/κ

∫ ∞
0

exp

(
k1 log2(r)

2 log(q)
+ α log(r)

)
1

exp

(
κ log2

(
r
|τ |

)
2 log(q)

)
r1/2

dr

r
(4.27)

for every τ such that
∣∣∣1 + reid

τ

∣∣∣ > δ̃ for all r ≥ 0, m ∈ R and ε ∈ D(0, ε0). One has

rα−3/2 exp

(
k1 log2 r

2 log(q)
− κ log2 (r/|τ |)

2 log(q)

)
= r

α−3/2+
κ log |τ |
log(q) exp

(
−(κ− k1) log2(r)

2 log(q)
− κ log2 |τ |

2 log(q)

)
.

This last equality and (4.27) allow us to write∣∣∣Ldq;1/κ(Yk1(h,m, ε))(τ)
∣∣∣ ≤ C̃Yk1

e−β|m||τ |1/2

(1 + |m|)µCq,κδ̃πq1/κ

exp

(
−κ log2 |τ |

2 log(q)

)
×
∫ ∞

0
r
α−3/2+

κ log |τ |
log(q) exp

(
−(κ− k1) log2(r)

2 log(q)

)
dr.(4.28)

It is straight to check (see the proof of Lemma 5 in [10] for further details), one has the existence
of real constants C42, C43, with C42 > 0, only depending on k1, k2, q, such that

∫ ∞
0

r
α−3/2+

κ log |τ |
log(q) exp

(
−(κ− k1) log2(r)

2 log(q)

)
dr ≤ C42|τ |C43 exp

(
κ2 log2 |τ |

2 log(q)(κ− k1)

)
.

Hence, (4.28) is estimated from above by

C44

C̃Yk1

eβ|m||τ |−1/2−C43
(1 + |m|)−µ exp

(
−κ log2 |τ |

2 log(q)

)
exp

(
κ2 log2 |τ |

2 log(q)(κ− k1)

)
for some C44 > 0 only depending on k1, k2, q.

Then, (4.23) follows from the fact that −κ+ κ2

κ−k1
= k2, and by taking ν = −1/2− C43. �

4.2. Analytic solutions of a second auxiliary problem in the q-Borel plane. We mul-
tiply both sides of equation (4.7) by T k2 and apply formal q-Borel transformation of order k2

with respect to T . In view of the properties of q-Borel transformation, the resulting problem is
determined by
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(4.29) Q(im)
τk2

(q1/k2)
k2(k2−1)

2

ŵk2(τ,m, ε)

= RD1(im)
τdD1

+k2

(q1/k2)
(dD1

+k2)(dD1
+k2−1)

2

σ
dD1

(
1
k1
− 1
k2

)
q,T ŵk2(τ,m, ε)

+RD2(im)
τdD2

+k2

(q1/k2)
(dD2

+k2)(dD2
+k2−1)

2

ŵk2(τ,m, ε) +
τk2

(q1/k2)
k2(k2−1)

2

Ψ̂k2(τ,m, ε)

+
D−1∑
`=1

ε∆`−d` τd`+k2

(q1/k2)
(d`+k2)(d`+k2−1)

2

σ
δ`−

d`
k2
−1

q,τ

(
1

(2π)1/2
ϕk2,`(τ,m, ε) ?

R`
q;1/k2

ŵk2(τ,m, ε)

)
.

Here, ŵk2(τ,m, ε) (resp. Ψ̂k2(τ,m, ε)) stands for the formal q-Borel transformation of order

k2 of Û(T,m, ε) (resp. F (T,m, ε)) with respect to T . Observe from (4.11) that Ψ̂k2(τ,m, ε) has
null radius of convergence, and for that reason, the formal power series solution of (4.29) has
also null radius of convergence.

We substitute Ψ̂k2 by Ψk2 , constructed in Lemma 4.3 applied with Yk1 = Ψk1 , in equation
(4.29) and consider our second auxiliary problem, namely

(4.30) Q(im)
τk2

(q1/k2)
k2(k2−1)

2

wk2(τ,m, ε)

= RD1(im)
τdD1

+k2

(q1/k2)
(dD1

+k2)(dD1
+k2−1)

2

σ
dD1

(
1
k1
− 1
k2

)
q,T wk2(τ,m, ε)

+RD2(im)
τdD2

+k2

(q1/k2)
(dD2

+k2)(dD2
+k2−1)

2

wk2(τ,m, ε) +
τk2

(q1/k2)
k2(k2−1)

2

Ψk2(τ,m, ε)

+

D−1∑
`=1

ε∆`−d` τd`+k2

(q1/k2)
(d`+k2)(d`+k2−1)

2

σ
δ`−

d`
k2
−1

q,τ

(
1

(2π)1/2
ϕk2,`(τ,m, ε) ?

R`
q;1/k2

wk2(τ,m, ε)

)
.

We assume an unbounded sector of bisecting direction dQ,RD2
∈ R exists,

SQ,RD2
=
{
z ∈ C : |z| ≥ rQ,RD2

, | arg(z)− dQ,RD2
| ≤ νQ,RD2

}
,

for some νQ,RD2
> 0, in such a way that

Q(im)

RD2(im)
∈ SQ,RD2

,

for every m ∈ R. We factorize

Pm,2(τ) =
Q(im)

(q1/k2)
k2(k2−1)

2

− RD2(im)

(q1/k2)
(dD2

+k2)(dD2
+k2−1)

2

τdD2

in the form

Pm,2(τ) = − RD2(im)

(q1/k2)
(dD2

+k2)(dD2
+k2−1)

2

dD2
−1∏

`=0

(τ − q`,2(m)).

Let Sd be an unbounded sector with small enough aperture in such a way that:
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1) There exists M12 > 0 such that |τ − q`,2(m)| ≥ M12(1 + |τ |) for every 0 ≤ ` ≤ dD2 − 1,
m ∈ R, and τ ∈ Sd.

2) There exists M22 > 0 such that we have |τ − q`0,2(m)| ≥ M22|q`0(m)| for some
`0 ∈ {0, . . . , dD2 − 1}, m ∈ R and τ ∈ Sd.

The previous conditions yield the existence of CP,2 > 0 such that

(4.31) |Pm,2(τ)| ≥ CP,2(rQ,RD2
)1/dD2 |RD2(im)|(1 + |τ |)dD2

−1,

for every τ ∈ Sd, and m ∈ R.

Proposition 4.4. Let $ > 0. Under the hypotheses (4.1), (4.2), (4.3), (4.4), (4.5) and those
in the geometry of the problem described in this subsection concerning the construction of the
elements appearing in (4.30). If (4.14) holds, then, for every ε ∈ D(0, ε0), the equation (4.30) ad-
mits a unique solution wdk2

(τ,m, ε) in the space Expq(k2,β,µ,ν) for ν ∈ R determined in Lemma 4.3,

and depends holomorphically with respect to ε ∈ D(0, ε0). Moreover,
∥∥wdk2

(τ,m, ε)
∥∥

(k2,β,µ,ν)
≤ $.

Proof. Let ε ∈ D(0, ε0). We consider the map H2
ε defined by

(4.32) H2
ε (w(τ,m)) :=

RD1(im)

Pm,2(τ)

τdD1

(q1/k2)
(dD1

+k2)(dD1
+k2−1)

2

σ
dD1

(
1
k1
− 1
k2

)
q,T w(τ,m)

+
D−1∑
`=1

ε∆`−d` τd`

Pm,2(τ)(q1/k2)
(d`+k2)(d`+k2−1)

2

σ
δ`−

d`
k2
−1

q,τ

(
1

(2π)1/2
ϕk2,`(τ,m, ε) ?

R`
q;1/k2

w(τ,m)

)
+

1

Pm,2(τ)(q1/k2)
k2(k2−1)

2

Ψk2(τ,m, ε).

Note that a fixed point of H2
ε (w(τ,m)) will lead to a convenient solution of (4.30). To apply the

fixed point theorem, we are going ot prove successively two facts.

(1) One may choose small enough ς`, ςΨ, $ > 0, and large enough rQ,RD2
> 0 such that

(4.33) H2
ε (B(0, $)) ⊆ B(0, $),

where B(0, $) stands for the closed disc centered at 0, with radius $ in the Banach
space Expq(k2,β,µ,ν).

(2) It holds

(4.34)
∥∥H2

ε (w1(τ,m))−H2
ε (w2(τ,m))

∥∥
(k2,β,µ,ν)

≤ 1

2
‖w1(τ,m)− w2(τ,m)‖(k2,β,µ,ν) ,

for every w1(τ,m), w2(τ,m) ∈ B(0, $).

Proof of (4.33).

We first check (4.33). Let w(τ,m) ∈ Expq(k2,β,µ,ν).

With (4.2), we find that dD2−1+k2(δ`−d`/k2−1) ≥ d`. Taking into account assumptions (4.1),
(4.4), (4.5), regarding (4.31) together with Lemma 2.9, Proposition 2.10 and Proposition 2.11
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we get∥∥∥∥∥ε∆`−d` τd`

Pm,2(τ)(q1/k2)
(d`+k2)(d`+k2−1)

2

σ
δ`−

d`
k2
−1

q,τ

(
1

(2π)1/2
ϕk2,`(τ,m, ε) ?

R`
q;1/k2

w(τ,m)

)∥∥∥∥∥
(k2,β,µ,ν)

≤ ε∆`−d`
0

C4

(q1/k2)
(d`+k2)(d`+k2−1)

2 CP,2(rQ,RD2
)1/dD2 (2π)1/2

ς`

(
p1∑
h=0

C4,h

)
‖w(τ,m)‖(k2,β,µ,ν) .

(4.35)

Gathering Lemma 2.9 and from (4.23) we get∥∥∥∥ 1

Pm,2(τ)(q1/k2)k2(k2−1)/2
Ψk2(τ,m, ε)

∥∥∥∥
(k2,β,µ,ν)

≤ 1

(q1/k2)k2(k2−1)/2CP,2(rQ,RD2
)1/dD2

sup
m∈R

1

|RD2(im)|
ςΨ2 ,(4.36)

for some ςΨ2 . Observe that, in view of the proof of Lemma 4.3, one derives that ςΨ2 tends to 0
when ςΨ does.

Condition (4.4), and the application of Proposition 2.10 and Lemma 2.9 yields∥∥∥∥∥∥RD1(im)

Pm,2(τ)

τdD1

(q1/k2)
(dD1

+k2)(dD1
+k2−1)

2

σ
dD1

(
1
k1
− 1
k2

)
q,T w(τ,m)

∥∥∥∥∥∥
(k2,β,µ,ν)

≤ sup
m∈R

|RD1(im)|
|RD2(im)|

C4

(q1/k2)
(dD1

+k2)(dD1
+k2−1)

2 CP,2(rQ,RD2
)1/dD2

$.(4.37)

An appropriate choice of rQ,RD2
> 0, $, ς`, ςΨ > 0, 1 ≤ ` ≤ D − 1 gives

D−1∑
`=1

ε∆`−d`
0 ς`

C4

(q1/k2)
(d`+k2)(d`+k2−1)

2 CP,2(rQ,RD2
)1/dD2 (2π)1/2

(
p1∑
h=0

C4,h

)
$

+
1

(q1/k2)k2(k2−1)/2CP,2(rQ,RD2
)1/dD2

sup
m∈R

1

|RD2(im)|
ςΨ

+ sup
m∈R

|RD1(im)|
|RD2(im)|

C4$

(q1/k2)
(dD1

+k2)(dD1
+k2−1)

2 CP,2(rQ,RD2
)1/dD2

≤ $.(4.38)

Regarding (4.35), (4.36), (4.37) and (4.38) one concludes (4.33).

Proof of (4.34).

We proceed to prove (4.34). Let w1, w2 ∈ Expq(k2,β,µ,ν). We assume ‖w`(τ,m)‖(k2,β,µ,ν) ≤ $,

` = 1, 2, for some $ > 0. Let E(τ,m) = w1(τ,m)−w2(τ,m). On one hand, from (4.35) one has

∥∥∥∥∥ε∆`−d` τd`

Pm,2(τ)(q1/k2)
(d`+k2)(d`+k2−1)

2

σ
δ`−

d`
k2
−1

q,τ

(
1

(2π)1/2
ϕk2,`(τ,m, ε) ?

R`
q;1/k2

E(τ,m)

)∥∥∥∥∥
(k2,β,µ,ν)

≤ ε∆`−d`
0 ς`

C4

(q1/k2)
(d`+k2)(d`+k2−1)

2 CP,2(rQ,RD2
)1/dD2 (2π)1/2

(
p1∑
h=0

C4,h

)
‖E(τ,m)‖(k2,β,µ,ν) .

On the other hand, (4.37) yields
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∥∥∥∥∥∥RD1(im)

Pm,2(τ)

τdD1

(q1/k2)
(dD1

+k2)(dD1
+k2−1)

2

σ
dD1

(
1
k1
− 1
k2

)
q,T E(τ,m)

∥∥∥∥∥∥
(k2,β,µ,ν)

≤ sup
m∈R

|RD1(im)|
|RD2(im)|

C4

(q1/k2)
(dD1

+k2)(dD1
+k2−1)

2 CP,2(rQ,RD2
)1/dD2

‖E(τ,m)‖(k2,β,µ,ν) .

We choose rQ,RD2
> 0, ς` > 0 for 1 ≤ ` ≤ D − 1 such that

D−1∑
`=1

ε∆`−d`
0 ς`

C4

(q1/k2)
(d`+k2)(d`+k2−1)

2 CP,2(rQ,RD2
)1/dD2 (2π)1/2

(
p1∑
h=0

C4,h

)

+ sup
m∈R

|RD1(im)|
|RD2(im)|

C4

(q1/k2)
(dD1

+k2)(dD1
+k2−1)

2 CP,2(rQ,RD2
)1/dD2

≤ 1

2
.

We conclude (4.34). Let us finish the proof of the proposition. At this point, in view of (4.33) and
(4.34), one can choose $ > 0 such that B(0, $) ⊆ Expq(k2,β,µ,ν), which defines a complete metric

space for the norm ‖·‖(k2,β,µ,ν). The map H2
ε is contractive from B(0, $) into itself. The fixed

point theorem states that H2
ε admits a unique fixed point wdk2

(τ,m, ε) ∈ B(0, $) ⊆ Expq(k2,β,µ,ν),

for every ε ∈ D(0, ε0). The construction of wdk2
(τ,m, ε) allow us to conclude it turns out to be

a solution of (4.30). �

The existing link between the acceleration of wk1 and wk2 is now provided. Both functions
coincide in the intersection of their domain of definition. This fact assures the extension of the
acceleration of wk1 along direction d, with appropriate q-exponential growth in order to apply
q-Laplace transformation of that order to recover the analytic solution of the main problem
under study.

Proposition 4.5. We consider wd1(τ,m, ε) constructed in Proposition 4.2. The function

τ 7→ Ldq;1/κ(wdk1
(τ,m, ε)) := Ldq;1/κ(h 7→ wdk1

(h,m, ε))(τ)

defines a bounded holomorphic function in Rd,δ̃ ∩D(0, r1), for 0 < r1 ≤ q(
1
2
−α)/κ/2. Moreover,

it holds that

(4.39) Ldq;1/κ(wdk1
(τ,m, ε)) = wdk2

(τ,m, ε), (τ,m, ε) ∈ Sbd × R×D(0, ε0),

where Sbd is a finite sector of bisecting direction d.

Proof. We recall from Proposition 4.2 that wdk1
∈ Expq(κ,β,µ,α,ρ). This guarantees appropriate

bounds on τ ∈ Ud in order to apply q-Laplace transformation of order κ along direction d. This
yields that for every δ̃ > 0, the function Ldq;1/κ(wdk1

(τ,m, ε)) defines a bounded and holomorphic

function in Rd,δ̃ ∩D(0, r1) for 0 < r1 ≤ q(
1
2
−α)/κ/2.

In order to prove that (4.39) holds, it is sufficient to prove that Ldq;1/κ(wdk1
(τ,m, ε)) and wdk2

are both solutions of some problem, with unique solution in certain Banach space, so they must
coincide. For that purpose, we multiply both sides of equation (4.12) by τ−k1 and take q-Laplace
transformation of order κ along direction d.

The properties of q-Laplace transformation yield

(4.40) Ldq;1/κ
(
τdD1wdk1

(τ,m, ε)
)

= (q1/κ)dD1
(dD1

−1)/2τdD1σ
dD1
κ

q,τ Ldq;1/κ(wdk1
)(τ,m, ε),
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(4.41) Ldq;1/κ

(
τdD2σ

dD2

(
1
k2
− 1
k1

)
q,τ wdk1

(τ,m, ε)

)
= (q1/κ)dD2

(dD2
−1)/2τdD2Ldq;1/κ(wdk1

)(τ,m, ε),

and

(4.42) Ldq;1/κ

(
τd`σ

δ`+
d`
k1
−1

q,τ

(
1

(2π)1/2
ϕk1,`(τ,m, ε) ?

R`
q;1/k1

wdk1
(τ,m, ε)

))

= (q1/κ)d`(d`−1)/2τd`σ
δ`−

d`
k2
−1

q,τ Ldq;1/κ
(

1

(2π)1/2
ϕk1,`(τ,m, ε) ?

R`
q;1/k1

wdk1
(τ,m, ε)

)
.

We claim that we have

(4.43) Ldq;1/κ
(
ϕk1,`(τ,m, ε) ?

R`
q;1/k1

wdk1
(τ,m, ε)

)
= ϕk2,`(τ,m, ε) ?

R`
q;1/k2

Ldq;1/κ(wdk1
(τ,m, ε)).

This is a consequence of the change in the order of integration in the operators involved in
(4.43). This situation is different from that of (60) in the proof of Proposition 12 in [10]. Assume
the variable of integration with respect to Laplace operator is r. After the change of variable
r̃ = r/qh/k1 , we reduce the study to that of Ξ in the proof of Proposition 12 in [10], with r
replaced by r1−h. This last argument guarantees the availability of the change of order in the
integration operators involved in (4.43). We now give proof of (4.43) under this consideration.

We have

Ldq;1/κ
(

1

(2π)1/2
ϕk1,`(τ,m, ε) ?

R`
q;1/k1

wdk1
(τ,m, ε)

)
=

1

πq1/κ

∫ ∞
0

(
ϕk1,`(re

id,m, ε) ?R`q;1/k1
wdk1

(reid,m, ε)
) 1

Θq1/κ

(
reid

τ

) dr
r

=
1

πq1/κ

∫ ∞
0

(
p1∑
n=0

(reid)n

(q1/k1)n(n−1)/2
C`,n(m, ε) ?R` (σ

− n
k1

q,τ wk1)(reid,m, ε)

)
1

Θq1/κ

(
reid

τ

) dr
r

=
1

πq1/κ

∫ ∞
0

(
p1∑
n=0

(reid)n

(q1/k1)n(n−1)/2

∫ ∞
−∞

C`,n(m−m1, ε)R`(im1)wk1(reidq
− n
k1 ,m1, ε)dm1

)

× 1

Θq1/κ

(
reid

τ

) dr
r
.

We make the change of variable r̃ = r/qn/k1 to get that the previous expression equals

1

πq1/κ

∫ ∞
0

(
p1∑
n=0

(r̃eid)nqn(n−1)/k1

(q1/k1)n(n−1)/2

∫ ∞
−∞

C`,n(m−m1, ε)R`(im1)wk1(r̃eid,m1, ε)dm1

)

× 1

Θq1/κ

(
r̃eidqn/k1

τ

) dr̃
r̃
.
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In view of (3.1), k−1
1 = κ−1 +k−1

2 , and the change of order of the integrals, the previous equation
equals

=
1

πq1/κ

∫ ∞
0

(
p1∑
n=0

(r̃eid)nqn(n−1)/k1

(q1/k1)n(n−1)/2

∫ ∞
−∞

C`,n(m−m1, ε)R`(im1)wk1(r̃eid,m1, ε)dm1

)

× 1

Θq1/κ

(
r̃eidqn/k2

τ

)
q
n(n+1)

2κ

(
r̃eidqn/k2

τ

)n dr̃r̃
=

1

πq1/κ

∫ ∞
0

(
p1∑
n=0

τnqn(n−1)/κ

(q1/k1)n(n−1)/2

∫ ∞
−∞

C`,n(m−m1, ε)R`(im1)wk1(r̃eid,m1, ε)dm1

)

× 1

Θq1/κ

(
r̃eidqn/k2

τ

) dr̃
r̃

=

∫ ∞
−∞

(
p1∑
n=0

τn

(q1/k2)n(n−1)/2
C`,n(m−m1, ε)

)
R`(im1)

 1

πq1/κ

∫ ∞
0

wk1(r̃eid,m1, ε)

Θq1/κ

(
r̃eidqn/k2

τ

) dr̃
r̃

 dm1

= ϕk2,`(τ,m, ε) ?
R`
q;1/k2

Ldq;1/κ(wdk1
(τ,m, ε)),

from where we conclude (4.43).
In view of (4.40), (4.41), (4.42), (4.43) we derive that

Q(im)

(q1/k1)
k1(k1−1)

2

Ldq;1/κ(wdk1
)(τ,m, ε)

= RD1(im)
(q1/κ)dD1

(dD1
−1)/2

(q1/k1)
(dD1

+k1)(dD1
+k1−1)

2

τdD1σ
dD1
κ

q,τ Ldq;1/κ(wdk1
)(τ,m, ε)

+RD2(im)
(q1/κ)

dD2
(dD2

−1)

2

(q1/k1)
(dD2

+k1)(dD2
+k1−1)

2

τdD2Ldq;1/κ(wdk1
)(τ,m, ε) +

1

(q1/k1)
k1(k1−1)

2

Ψk2(τ,m, ε)

+

D−1∑
`=1

ε∆`−d`τd`
(q1/κ)

d`(d`−1)

2

(q1/k1)
(d`+k1)(d`+k1−1)

2

σ
δ`−

d`
k2
−1

q,τ

(
1

(2π)1/2
ϕk2,`(τ,m, ε) ?

R`
q;1/k2

Ldq;1/κ(wdk1
)(τ,m, ε)

)
,

for every (τ,m, ε) ∈ (Rd,δ̃ ∩D(0, r1))× R×D(0, ε0). We multiply at both sides of the previous

equation by (q1/k1)k1(k1−1)/2/(q1/k2)k2(k2−1)/2. The fact that

(q1/κ)
d`(d`−1)

2 (q1/k1)
k1(k1−1)

2

(q1/k1)
(d`+k1)(d`+k1−1)

2 (q1/k2)
k2(k2−1)

2

=
1

(q1/k2)
(D+k2)(D+k2−1)

2

,

with D ∈ {dD1 , dD2 , d`} entails that Ldq;1/κ(wdk1
(τ,m, ε)) is a solution of (4.30) in its domain of

definition.
Let Sbd be a bounded sector of bisecting direction d such that Sbd ⊆ (Rd,δ̃ ∩ D(0, r1)) ∩ Sd,

which is a nonempty set due to the assumptions on the construction of these sets. The functions
Ldq;1/κ(wdk1

(τ,m, ε)) and wdk2
(τ,m, ε) are continuous complex functions defined on Sbd×R×D(0, ε0)

and holomorphic with respect to τ (resp. ε) on Sbd (resp. D(0, ε0)).
Let ε ∈ D(0, ε0) and put Ω = min{α, ν}. It is straight to check that both functions belong to

the complex Banach space H(k2,β,µ,Ω), of all continuous functions (τ,m) 7→ h(τ,m), defined on
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Sbd × R, holomorphic with respect to τ in Sbd such that

‖h(τ,m)‖H(k2,β,µ,Ω)
= sup

τ∈Sbd,m∈R
(1 + |m|)µeβ|m| exp

(
−k2

2

log2 |τ |
log(q)

− Ω log |τ |
)
|h(τ,m)|

is finite. It holds that Ldq;1/κ(wdk1
(τ,m, ε)), wdk2

(τ,m, ε) and Ψk2(τ,m, ε) belong to H(k2,β,µ,Ω) due

to Proposition 4.2, Proposition 4.4 and Lemma 4.3 respectively. As we can see in the proof of
Proposition 4.4, the operator H2

ε defined in (4.32) has a unique fixed point in H(k2,β,µ,Ω) provided
small enough constants ςΨ, ς` > 0, for 1 ≤ ` ≤ D− 1. Indeed, this fixed point is a solution of the
auxiliary problem (4.30) in the disc D(0, ς) of H(k2,β,µ,Ω), whilst Ldq;1/κ(wdk1

(τ,m, ε)), wdk2
(τ,m, ε)

are both solutions of the same problem, in the disc D(0, ς) of H(k2,β,µ,Ω), so they do coincide in

the domain Sbd × R×D(0, ε0). Identity (4.39) follows from here. �

5. Analytic solutions to a q-difference-differential equation

This section is devoted to determine in detail the main problem under study, and provide
an analytic solution to it. It is worth mentioning that, although the techniques developed in
previous sections are essentially novel, once the tools have been implemented, the procedure of
construction of the solution coincides with that explained in Section 5 of [10]. For the sake of
completeness and a self contained work, we describe every step of the construction in detail,
whilst we have decided to pass over the proofs which can be found in [10].

Let 1 ≤ k1 < k2. We define 1/κ = 1/k1− 1/k2 and take integers D,D1, D2 larger than 3. Let
q > 1 be a real number. We also consider positive integers dD1 , dD2 , and for every 1 ≤ ` ≤ D−1
we choose non negative integers d`, δ` ≥ 1 and ∆` ≥ 0. We make the following assumptions on
the previous constants:

Assumption (A): δ1 = 1 and δ` < δ`+1 for every 1 ≤ ` ≤ D − 2.
Assumption (B): We have

∆` ≥ d`,
d`
k2

+ 1 ≥ δ`,
dD1 − 1

κ
− d`
k2
≥ δ` − 1,

dD2 − 1

k2
≥ δ` − 1,

for every 1 ≤ ` ≤ D − 1, and
k1dD2 > k2dD1 .

Let Q,RD1 , RD2 , and R` for 1 ≤ ` ≤ D − 1 be polynomials with complex coefficients such
that

Assumption (C): deg(RD2) = deg(RD1), deg(Q) ≥ deg(RD1) ≥ deg(R`). Moreover, we
assume Q(im) 6= 0 and RDj (im) 6= 0 for all m ∈ R, 1 ≤ ` ≤ D − 1.

Let SQ,RD1
and SQ,RD2

be unbounded sectors of bisecting directions dQ,RD1
∈ R and

dQ,RD2
∈ R respectively, with

SQ,RDj =
{
z ∈ C : |z| ≥ rQ,RDj , | arg(z)− dQ,RDj | ≤ νQ,RDj

}
,

for some νQ,RDj > 0, and such that

Q(im)

RDj (im)
∈ SQ,RDj ,

for every m ∈ R.

Definition 5.1. Let ς ≥ 2 be an integer. A family (Ep)0≤p≤ς−1 is said to be a good covering in
C? (in the ε plane) if the next hypotheses hold:

• Ep is an open sector of finite radius ε0 > 0, and vertex at the origin for every 0 ≤ p ≤ ς−1.
• Ej ∩ Ek 6= ∅ for 0 ≤ j, k ≤ ς − 1 if and only if |j − k| ≤ 1 (we put Eς := E0).

• ∪ς−1
p=0Ep = U \ {0} for some neighborhood of the origin U .
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Definition 5.2. Let (Ep)0≤p≤ς−1 be a good covering. Let T be an open bounded sector with
vertex at the origin and radius rT > 0. Given α ∈ R and ν ∈ R we assume that

0 < ε0, rT < 1, ν +
k2

log(q)
log(rT ) < 0, α+

κ

log(q)
log(ε0rT ) < 0, ε0rT ≤ q(

1
2
−ν)/k2/2,

for ν determined in Lemma 4.3.
We consider a family of unbounded sectors Udp , 0 ≤ p ≤ ς−1, with bisecting direction dp ∈ R,

and a family of open domains Rbdp := Rdp,δ̃
∩D(0, ε0rT ), with

Rdp,δ̃
:=

{
T ∈ C? :

∣∣∣∣1 +
reidp

T

∣∣∣∣ > δ̃, for every r ≥ 0

}
.

We assume dp, 0 ≤ p ≤ ς − 1 is chosen to satisfy the following conditions: there exist

Sdp ∪D(0, ρ) and ρ > 0 such that

• Conditions 1), 2), Page 14 in Section 4.1 hold. Observe that, under this assumption,
Conditions 1), 2), Page 19 in Section 4.2 hold for Sdp .

• For every 0 ≤ p ≤ ς − 1 we have Rbdp ∩ R
b
dp+1

6= ∅, and for every t ∈ T and ε ∈ Ep we

have εt ∈ Rbdp (where Rdς := Rd0).

The family {(Rdp,δ̃
)0≤p≤ς−1, D(0, ρ), T } is said to be associated to the good covering (Ep)0≤p≤ς−1.

Let (Ep)0≤p≤ς−1 be a good covering, and a family {(Rdp,δ̃
)0≤p≤ς−1, D(0, ρ), T } associated to

it. For every 0 ≤ p ≤ ς − 1 we study the following equation

(5.1) Q(∂z)σq,tu
dp(t, z, ε)

= (εt)dD1σ

dD1
k1

+1

q,t RD1(∂t)u
dp(t, z, ε) + (εt)dD2σ

dD2
k2

+1

q,t RD2(∂t)u
dp(t, z, ε)

+
D−1∑
`=1

ε∆`td`σδ`q,t(c`(t, z, ε)R`(∂z)u
dp(t, z, ε)) + σq,tf

dp(t, z, ε).

The terms c`(t, z, ε) are determined as follows, for every 1 ≤ ` ≤ D − 1. Let C`(T,m, ε) be
the polynomial

C`(T,m, ε) =

p1∑
j=0

C`,j(m, ε)T
j ∈ E(β,µ)[T ],

for some β > 0 and µ ∈ R, such that µ− 1 ≥ deg(RDj ), for j ∈ {1, 2}. Assume these functions
depend holomorphically on ε ∈ D(0, ε0). Moreover, we assume there exists CF > 0 such that
(4.6) hold for all n ≥ 0 and ε ∈ D(0, ε0). We put

c`(t, z, ε) := F−1 (m 7→ C`(εt,m, ε)) (z),

which is a holomorphic and bounded function on T ×Hβ′ ×D(0, ε0). Indeed, one can substitute
T by any bounded set in C in the previous product domain.

The function fdp(t, z, ε) is constructed as follows. Let m 7→ Fn(m, ε) be a function in E(β,µ)

for every n ≥ 0, depending holomorphically on ε ∈ D(0, ε0). We also assume there exist CF , T0

such that (4.6) holds and define F̂ (T,m, ε) =
∑

n≥0 FnT
n. Then, the formal q-Borel transform

of k1 of the formal power series F̂ (t,m, ε) with respect to T , Ψ
dp
k1

(τ,m, ε), is holomorphic in

D(0, T0). Assume this function can be prolonged along an infinite sector of bisecting direction
dp such that

(5.2)
∥∥∥Ψ

dp
k1

(τ,m, ε)
∥∥∥

(κ,β,µ,α,ρ)
= CΨk1

<∞,
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but this extension is not an entire function. More precisely, assume that (4.11) holds. We define

Ψ
dp
k2

(τ,m, ε) following Lemma 4.3. Property (4.23) allow us to compute

(5.3) F dp(T,m, ε) := Ldpq;1/k2
(τ 7→ Ψ

dp
k2

(τ,m, ε))(T ),

which defines a holomorphic function with respect to T in the domain Rdp,δ̃
∩D(0, r1), for all

0 < r1 ≤ q(
1
2
−ν)/k2/2. We define

(5.4) fdp(t, z, ε) := F−1(m 7→ F dp(εt,m, ε))(z),

which defines a holomorphic and bounded function on T × Hβ′ × Ep for all 0 < β′ < β under
the assumptions at the beginning of this section.

Theorem 5.3. Under the construction made at the beginning of this section of the elements
involved in the problem (5.1), assume that the above conditions hold. Let (Ep)0≤p≤ς−1 be a good
covering in C?, for which a family {(Rdp,δ̃

)0≤p≤ς−1, D(0, ρ), T } associated to this covering is

considered.
Then, there exist large enough rQ,RD1

, rQ,RD2
> 0 and constants ςΨ > 0 and ς` > 0 for

1 ≤ ` ≤ D − 1 such that if

CΨ1 ≤ ςψ, ‖C`,j‖(β,µ) ≤ ς`,

then, for every 0 ≤ p ≤ ς − 1, one can construct a solution udp(t, z, ε) of (5.1), which defines a
holomorphic function on T ×Hβ′ × Ep, for every 0 < β′ < β.

Proof. Let 0 ≤ p ≤ ς − 1 and consider the equation

Q(im)σq,TU
dp(T,m, ε) = T dD1σ

dD1
k1

+1

q,T RD1(im)Udp(T,m, ε) + T dD2σ

dD2
k2

+1

q,T RD2(im)Udp(T,m, ε)

+

D−1∑
`=1

ε∆`−d`T d`σδ`q,T

(
1

(2π)1/2

∫ +∞

−∞
C`(T,m−m1, ε)R`(im1)Udp(T,m1, ε)dm1

)
(5.5)

+σq,TF
dp(T,m, ε).

Under an appropriate choice of the constants ςΨ and ς` for 1 ≤ ` ≤ D − 1 one can follow the
construction in Section 4.1 and apply Proposition 4.2 to obtain a solution Udp(T,m, ε) of (5.5).

Regarding the properties of q-Laplace transformation, and from the results obtained in Sec-

tion 4.2, Udp(T,m, ε) is the q-Laplace transformation of order k2 of a function w
dp
k2

along direction
dp, which depends on T . Indeed,

(5.6) Udp(T,m, ε) =
1

πq1/k2

∫
Ldp

w
dp
k2

(u,m, ε)

Θq1/k2

(
u
T

) du
u
,

for some Ldp ⊆ Sdp ∪ {0}, and w
dp
k2

(τ,m, ε) defines a continuous function on Sdp × R×D(0, ε0),

and holomorphic with respect to (τ, ε) in Sdp×D(0, ε0). In addition to this, there exists C
w

dp
k2

> 0

such that

(5.7) |wdp
k2

(τ,m, ε)| ≤ C
w

dp
k2

1

(1 + |m|)µ
e−β|m| exp

(
k2

2 log(q)
log2 |τ |+ ν log |τ |

)
,

for some ν ∈ R. This holds for τ ∈ Sdp , m ∈ R, and ε ∈ D(0, ε0). Moreover, in view of

Proposition 4.5, the function w
dp
k2

(τ,m, ε) and the q-Laplace transformation of order κ of the

function w
dp
k1

(τ,m, ε) along direction d1
p, where eid

1
pR+ ⊆ Sdp ∪ {0}, depending on τ , coincide
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in (Sdp ∩ D(0, r1)) × R × D(0, ε0), for 0 < r1 ≤ q(
1
2
−α)/κ/2, for some α ∈ R. The function

w
dp
k1

(τ,m, ε) is such that

(5.8) |wdp
k1

(τ,m, ε)| ≤ C
w

dp
k1

1

(1 + |m|)µ
e−β|m| exp

(
κ

2 log(q)
log2 |τ + δ|+ α log |τ + δ|

)
,

for some C
w

dp
k1

, δ > 0, valid for τ ∈ (D(0, ρ) ∪ Udp), m ∈ R and ε ∈ D(0, ε0). This function

is the extension of a function wk1(τ,m, ε), common for every 0 ≤ p ≤ ς − 1, continuous on
D(0, ρ)× R×D(0, ε0) and holomorphic with respect to (τ, ε) in D(0, ρ)×D(0, ε0).

The bounds in (5.7) with respect to m variable are transmitted to Udp(T,m, ε) as defined in
(5.6). This allows to define the function

udp(t, z, ε) := F−1(m 7→ Udp(εt,m, ε))(z)

=
1

(2π)1/2

1

π
1/k2
q

∫ ∞
−∞

∫
Ldp

w
dp
k2

(u,m, ε)

Θq1/k2

(
u
εt

) du
u

exp(izm)dm,

which turns out to be holomorphic on T ×Hβ′×Ep. The properties of inverse Fourier transform
allow us to conclude that udp(t, z, ε) is a solution of equation (5.1) defined on T ×Hβ′ ×Ep. �

Proposition 5.4. Let 0 ≤ p ≤ ς − 1. Under the hypotheses of Theorem 5.3, assume that
the unbounded sectors Udp and Udp+1 are wide enough so that Udp ∩ Udp+1 contains the sector
Udp,dp+1 = {τ ∈ C? : arg(τ) ∈ [dp, dp+1]}. Then, there exist K1 > 0 and K2 ∈ R such that

|udp+1(t, z, ε)− udp(t, z, ε)| ≤ K1 exp

(
− k2

2 log(q)
log2 |ε|

)
|ε|K2 ,

|fdp+1(t, z, ε)− fdp(t, z, ε)| ≤ K1 exp

(
− k2

2 log(q)
log2 |ε|

)
|ε|K2 ,(5.9)

for every t ∈ T , z ∈ Hβ′, and ε ∈ Ep ∩ Ep+1.

Proof. Let 0 ≤ p ≤ ς − 1. Taking into account that Udp,dp+1 ⊆ Udp ∩ Udp+1 , we observe from the

construction of the functions Udp and Udp+1 that Ldpq;1/κ(w
dp
k1

)(τ,m, ε) and Ldp+1

q;1/κ(w
dp+1

k1
)(τ,m, ε)

coincide in the domain (Rbdp∩R
b
dp+1

)×R×D(0, ε0). This entails the existence of w
dp,dp+1

k2
(τ,m, ε),

holomorphic with respect to τ onRbdp∪R
b
dp+1

, continuous with respect to m ∈ R and holomorphic

with respect to ε in D(0, ε0) which coincides with Ldpq;1/κ(w
dp
k1

)(τ,m, ε) on Rbdp ×R×D(0, ε0) and

also with Ldp+1

q;1/κ(w
dp+1

k1
)(τ,m, ε) on Rbdp+1

× R×D(0, ε0).

Let ρ̃ > 0 be such that ρ̃eidp ⊆ Rbdp and ρ̃eidp+1 ⊆ Rbdp+1
. The function

u 7→
w

dp,dp+1

k2
(u,m, ε)

Θq1/k2

(
u
εt

)
is holomorphic on Rbdp ∪R

b
dp+1

for all (m, ε) ∈ R× (Ep ∩ Ep+1) and its integral along the closed
path constructed by concatenation of the segment starting at the origin and with ending point
fixed at ρ̃eidp , the arc of circle with radius ρ̃ connecting ρ̃eidp with ρ̃eidp+1 ⊆ Rbdp+1

, and the

segment from ρ̃eidp+1 to 0, vanishes. The difference udp+1 − udp can be written in the form
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(5.10) udp+1(t, z, ε)− udp(t, z, ε)

=
1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Ldp+1,ρ̃

w
dp+1

k2
(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm,

− 1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Ldp,ρ̃

w
dp
k2

(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm

+
1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Cρ̃,dp,dp+1

w
dp,dp+1

k2
(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm,

where Ldj ,ρ̃ = [ρ̃,+∞)eidj for j ∈ {p, p + 1} and Cρ̃,dp,dp+1
is the arc of circle connecting ρ̃eidp

with ρ̃eidp+1 (see Figure 2).

Figure 2. Deformation of the path of integration, first case.

Let us put

I1 :=

∣∣∣∣∣ 1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Ldp+1,ρ̃

w
dp+1

k2
(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm

∣∣∣∣∣ .
In view of (5.7) and (3.2), one has

I1 ≤
C̃
w

dp+1
k2

Cq,k2 δ̃(2π)1/2

|εt|1/2

πq1/k2

∫ ∞
−∞

e−β|m|−m=(z) dm

(1 + |m|)µ

×
∫ ∞
ρ̃

exp

(
k2 log2 |u|
2 log(q)

+ ν log |u|
)
|u|−3/2 exp

−k2 log2
(
|u|
|εt|

)
2 log(q)

 d|u|.

We recall that we have restricted the domain on the variable z such that |=(z)| ≤ β′ < β. Then,
the first integral in the previous expression in convergent, and one derives

I1 ≤
C̃
w

dp+1
k2

(2π)1/2

(ε0rT )1/2

πq1/k2

∫ ∞
ρ̃

exp

(
k2 log2 |u|
2 log(q)

)
exp

−k2 log2
(
|u|
|εt|

)
2 log(q)

 |u|ν−3/2d|u|,
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for some C̃
w

dp+1
k2

> 0. We derive

exp

(
k2 log2 |u|
2 log(q)

)
exp

−k2 log2
(
|u|
|εt|

)
2 log(q)

 = exp

(
k2

2 log(q)
(− log2 |ε| − 2 log |ε| log |t| − log2 |t|)

)

× exp

(
k2

log(q)
(log |u| log |ε|+ log |u| log |t|)

)
.

¿From the assumption that 0 < ε0 < 1 and 0 < rT < 1, we get

exp

(
− k2

log(q)
log |ε| log |t|

)
≤ |ε|−

k2
log(q)

log(rT )
,(5.11)

exp

(
k2

log(q)
log |u| log |ε|

)
≤ |ε|

k2
log(q)

log(ρ̃)
,

for t ∈ T , ε ∈ Ep ∩ Ep+1, |u| ≥ ρ̃, and also

(5.12) exp

(
k2

log(q)
log |u| log |t|

)
≤ |t|

k2
log(q)

log(ρ̃)
, if ρ̃ ≤ |u| ≤ 1

exp

(
k2

log(q)
log |u| log |t|

)
≤ |u|

k2
log(q)

log(rT )
, if |u| ≥ 1,

for t ∈ T . In addition to that, there exists Kk2,ρ̃,q > 0 such that

(5.13) sup
x>0

x
k2

log(q)
log(ρ̃)

exp

(
− k2

2 log(q)
log2(x)

)
≤ Kk2,ρ̃,q.

In view of (5.11), (5.12), (5.13), and bearing in mind that the inequalities of Definition 5.2

hold, we deduce there exist K̃1 ∈ R, K̃2 > 0 such that

exp

(
k2 log2 |u|
2 log(q)

)
exp

−k2 log2
(
|u|
|εt|

)
2 log(q)

 |u|ν ≤ K̃2 exp

(
− k2

2 log(q)
log2 |ε|

)
|ε|K̃1

,

for t ∈ T , r ≥ ρ̃, and ε ∈ Ep ∩ Ep+1. Provided this last inequality, we arrive at

(5.14) I1 ≤
K̃2C

w
dp+1
k2

Cq,k2 δ̃(2π)1/2

(ε0rT )1/2

πq1/k2

∫ ∞
ρ̃

d|u|
|u|3/2

exp

(
− k2

2 log(q)
log2 |ε|

)
|ε|K̃1

= K̃3 exp

(
− k2

2 log(q)
log2 |ε|

)
|ε|K̃1

,

for some K̃3 > 0, for all t ∈ T , z ∈ Hβ′ , and ε ∈ Ep ∩ Ep+1.
We can estimate in the same manner the expression

I2 :=

∣∣∣∣∣ 1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Ldp,ρ̃

w
dp
k2

(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm

∣∣∣∣∣ .
to arrive at the existence of K̃4 > 0 such that

(5.15) I2 ≤ K̃4 exp

(
− k2

2 log(q)
log2 |ε|

)
|ε|K̃1

,

for all t ∈ T , z ∈ Hβ′ , and ε ∈ Ep ∩ Ep+1. We now provide upper bounds for the quantity

I3 :=

∣∣∣∣∣ 1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Cρ̃,dp,dp+1

w
dp,dp+1

k2
(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm

∣∣∣∣∣ .
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¿From the construction of w
dp,dp+1

k2
(τ,m, ε), we have

|wdp,dp+1

k2
(u,m, ε)| ≤ C̃

w
dp
k1

1

(1 + |m|)µ
e−β|m|,

for some C̃
w

dp
k1

> 0, valid for u ∈ Cρ̃,dp,dp+1
, m ∈ R and ε ∈ D(0, ε0).

The estimates with (3.2) allow us to obtain the existence of C̃
dp,dp+1
wk2

> 0 such that

I3 ≤ C̃
dp,dp+1
wk2

∫ ∞
−∞

e−β|m|−m=(z)

(1 + |m|)µ
dm|dp+1 − dp||t|1/2 exp

−k2 log2
(

ρ̃
|εt|

)
2 log(q)

 ,

for all t ∈ T , z ∈ Hβ′ , and ε ∈ Ep ∩ Ep+1. We can follow analogous arguments as in the previous
steps to provide upper estimates of the expression

|t|1/2 exp

−k2 log2
(

ρ̃
|εt|

)
2 log(q)

 .

Indeed,

|t|1/2 exp

−k2 log2
(

ρ̃
|εt|

)
2 log(q)

 = exp

(
−k2 log2(ρ̃)

2 log(q)

)
|ε|

k2 log(ρ̃)
log(q) |t|

k2 log(ρ̃)
log(q)

× exp

(
k2

2 log(q)
(− log2 |ε| − 2 log |ε| log |t| − log2 |t|)

)
|t|1/2.

¿From the assumption 0 ≤ ε0 < 1 we check that

exp

(
− k2

log(q)
log |ε| log |t|

)
≤ |ε|−

k2
log(q)

log(rT )
,

for t ∈ T , ε ∈ Ep ∩ Ep+1. Gathering (5.13), we get the existence of K̃5 ∈ R, K̃6 > 0 such that

|t|1/2 exp

−k2 log2
(

ρ̃
|εt|

)
2 log(q)

 ≤ K̃6 exp

(
− k2

2 log(q)
log2 |ε|

)
|ε|K̃5

,

to conclude that

(5.16) I3 ≤ K̃7 exp

(
− k2

2 log(q)
log2 |ε|

)
|ε|K̃5

,

for some K̃7 > 0, all t ∈ T , z ∈ Hβ′ , and ε ∈ Ep ∩ Ep+1. We conclude the proof of this result in
view of (5.14), (5.15), (5.16) and the decomposition (5.10).

In order to obtain analogous estimates for the forcing term fdp , one can follow analogous
estimates as for udp under the consideration of the estimates (4.10) and by the application of
Lemma 4.3 with Yk1 = Ψk1 . Observe that Rdp,δ̃

(resp. Rdp+1,δ̃
) contains an infinite sector of

small opening and bisecting direction dp (resp. dp+1). �

Lemma 5.5. Let 0 ≤ p ≤ ς − 1. Under the hypotheses of Theorem 5.3, assume that
Udp ∩ Udp+1 = ∅. Then, there exist KLp > 0, MLp ∈ R such that∣∣∣Ldp+1

q;1/κ(w
dp+1

k1
)(τ,m, ε)− Ldpq;1/κ(w

dp
k1

)(τ,m, ε)
∣∣∣

≤ KLp e−β|m|(1 + |m|)−µ exp

(
− κ

2 log(q)
log2 |τ |

)
|τ |MLp ,

for every ε ∈ (Ep ∩ Ep+1), τ ∈ (Rbdp ∩R
b
dp+1

) and m ∈ R.
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Proof. We first recall that, without loss of generality, the intersectionRddp∩R
d
dp+1

can be assumed

to be a nonempty set because one can vary δ̃ in advance to be as close to 0 as desired.
Analogous arguments as in the beginning of the proof of Proposition 5.4 allow us to write

(5.17) Ldp+1

q;1/κ(w
dp+1

k1
)(τ,m, ε)− Ldpq;1/κ(w

dp
k1

)(τ,m, ε)

=
1

πq1/κ

∫
Ldp+1,ρ̃

w
dp+1

k1
(u,m, ε)

Θq1/κ

(
u
τ

) du

u
,

− 1

πq1/κ

∫
Ldp,ρ̃

w
dp
k1

(u,m, ε)

Θq1/κ

(
u
τ

) du

u

+
1

πq1/κ

∫
Cρ̃,dp,dp+1

wk1(u,m, ε)

Θq1/κ

(
u
τ

) du

u
,

where ρ̃, Ldp,ρ̃, Ldp+1,ρ̃ and Cρ̃,dp,dp+1
are constructed in Proposition 5.4.

In view of (5.8) and (3.2), one has

IL1 :=

∣∣∣∣∣ 1

πq1/κ

∫
Ldp,ρ̃

w
dp
k1

(u,m, ε)

Θq1/κ

(
u
τ

) du

u

∣∣∣∣∣
≤
C
w

dp
k1

Cq,κδ̃

|τ |1/2

(1 + |m|)µ
e−β|m|

∫ ∞
ρ̃

exp
(
κ log2 |reidp+δ|

2 log(q) + α log |reidp + δ|
)

exp

(
κ
2

log2
(
r
|τ |

)
log(q)

) dr

r3/2

≤ KLp,1|τ |1/2(1 + |m|)−µe−β|m|
∫ ∞
ρ̃

exp
(
κ log2 r
2 log(q) + α log r

)
exp

(
κ
2

log2
(
r
|τ |

)
log(q)

) dr

r3/2

for some KLp,1 > 0. Usual calculations, and taking into account the choice of α in Definition 5.2,
one derives the previous expression equals

KLp,1|τ |1/2(1 + |m|)−µe−β|m| exp

(
− κ

2 log(q)
log2 |τ |

)∫ ∞
ρ̃

r
κ log |τ |
log(q)

+α−3/2
dr,

which yields

(5.18) IL1 ≤ KLp,2(1 + |m|)−µe−β|m| exp

(
− κ

2 log(q)
log2 |τ |

)
,

for some KLp,2 > 0. Analogous arguments allow us to obtain the existence of KLp,3 > 0 such that

(5.19) IL2 :=

∣∣∣∣∣ 1

πq1/κ

∫
Ldp+1,ρ̃

w
dp+1

k1
(u,m, ε)

Θq1/κ

(
u
τ

) du

u

∣∣∣∣∣
≤ KLp,3(1 + |m|)−µe−β|m| exp

(
− κ

2 log(q)
log2 |τ |

)
.

We write

IL3 :=

∣∣∣∣∣ 1

πq1/κ

∫
Cρ̃,dp,dp+1

wk1(u,m, ε)

Θq1/κ

(
u
τ

) du

u

∣∣∣∣∣ .
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Regarding (5.8) and (3.2), one derives that

IL3 ≤
C
w

dp
k1

πq1/κ

e−β|m|

(1 + |m|)µ
|τ |1/2

ρ̃1/2Cq,κδ̃

∫ dp+1

dp

exp
(
κ log2 |ρ̃eiθ+δ|

2 log(q) + α log |ρ̃eiθ + δ|
)

exp

(
κ
2

log2
(
ρ̃
|τ |

)
log(q)

) dθ

≤ KLp,4|τ |1/2
e−β|m|

(1 + |m|)µ
exp

−κ
2

log2
(
ρ̃
|τ |

)
log(q)



with

KLp,4 = |dp+1 − dp|
C
w

dp
k1

πq1/κ

1

ρ̃1/2Cq,κδ̃
exp

(
κ log2(ρ̃+ δ)

2 log(q)
+ α log(ρ̃+ δ)

)
.

Let KLp,5 = KLp,4 exp(− κ
2 log(q) log2(ρ̃)). It is straightforward to check that

(5.20) IL3 ≤ KLp,5|τ |
1/2+

κ log(ρ̃)
log(q)

e−β|m|

(1 + |m|)µ
exp

(
−κ

2

log2 |τ |
log(q)

)
.

¿From (5.18), (5.19) and (5.20), put into (5.17), we conclude the result. �

Proposition 5.6. Let 0 ≤ p ≤ ς − 1. Under the hypotheses of Theorem 5.3, assume that
Udp ∩ Udp+1 = ∅. Then, there exist K3 > 0 and K4 ∈ R such that

|udp+1(t, z, ε)− udp(t, z, ε)| ≤ K3 exp

(
− k1

2 log(q)
log2 |ε|

)
|ε|K4 ,

|fdp+1(t, z, ε)− fdp(t, z, ε)| ≤ K3 exp

(
− k1

2 log(q)
log2 |ε|

)
|ε|K4 ,(5.21)

for every t ∈ T , z ∈ Hβ′, and ε ∈ Ep ∩ Ep+1.

Proof. Let 0 ≤ p ≤ ς − 1. Under the assumptions of the enunciate, we observe that one can
not proceed as in the proof of Proposition 5.4 for there does not exist a common function for
both indices p and p + 1, defined in Rbdp ∪ R

b
dp+1

in the variable of integration, when applying
q-Laplace transform. However, one can use the analytic continuation property and write the
difference udp+1−udp as follows. Let ρ̃ > 0 be such that ρ̃eidp ∈ Rbdp and ρ̃eidp+1 ∈ Rbdp+1

, and let

θp,p+1 ∈ R be such that ρ̃eθp,p+1 lies in both Rbdp and Rbdp+1
. We write udp+1(t, z, ε)− udp(t, z, ε)

as follows
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(5.22) udp+1(t, z, ε)− udp(t, z, ε)

=
1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Ldp+1,ρ̃

w
dp+1

k2
(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm

− 1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Ldp,ρ̃

w
dp
k2

(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm

− 1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Cρ̃,θp,p+1,dp+1

w
dp,dp+1

k2
(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm

+
1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Cρ̃,θp,p+1,dp

w
dp,dp+1

k2
(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm

+
1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
L0,ρ̃,θp,p+1

Ldp+1

q;1/κ(w
dp+1

k1
)(τ,m, ε)− Ldpq;1/κ(w

dp
k1

)(τ,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm.

Here, we have denoted Ldj ,ρ̃ = [ρ̃,+∞)eidj for j ∈ {p, p + 1}, Cρ̃,θp,p+1,dp+1
is the arc of circle

connecting ρ̃eidp+1 with ρ̃eiθp,p+1 , Cρ̃,θp,p+1,dp is the arc of circle connecting ρ̃eidp with ρ̃eiθp,p+1 ,

L0,ρ̃,θp,p+1
= [0, ρ̃]eiθp,p+1 , as it is shown in the following figure.

Figure 3. Deformation of the path of integration, second case.

Following the same line of arguments as those in the proof of Proposition 5.4, we can guarantee
the existence of K̂j > 0 and K̂k ∈ R for 1 ≤ j ≤ 4 and 5 ≤ k ≤ 8 such that

J1 :=

∣∣∣∣∣ 1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Ldp+1,ρ̃

w
dp+1

k2
(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm

∣∣∣∣∣
≤ K̂1 exp

(
− k2

2 log(q)
log2 |ε|

)
|ε|K̂5

,
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J2 :=

∣∣∣∣∣ 1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Ldp,ρ̃

w
dp
k2

(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm

∣∣∣∣∣
≤ K̂2 exp

(
− k2

2 log(q)
log2 |ε|

)
|ε|K̂6

,

J3 :=

∣∣∣∣∣ 1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Cρ̃,θp,p+1,dp+1

w
dp,dp+1

k2
(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm

∣∣∣∣∣
≤ K̂3 exp

(
− k2

2 log(q)
log2 |ε|

)
|ε|K̂7

,

J4 :=

∣∣∣∣∣ 1

(2π)1/2

1

πq1/k2

∫ ∞
−∞

∫
Cρ̃,θp,p+1,dp

w
dp,dp+1

k2
(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm

∣∣∣∣∣
≤ K̂4 exp

(
− k2

2 log(q)
log2 |ε|

)
|ε|K̂8

We now give estimates for

J5 :=
1

(2π)1/2

1

πq1/k2

×

∣∣∣∣∣∣
∫ ∞
−∞

∫
L0,ρ̃,θp,p+1

Ldp+1

q;1/κ(w
dp+1

k1
)(u,m, ε)− Ldpq;1/κ(w

dp
k1

)(u,m, ε)

Θq1/k2

(
u
εt

) exp(izm)
du

u
dm

∣∣∣∣∣∣ .
In view of Lemma 5.5 and (3.2), one has

J5 ≤
KLp

(2π)1/2

1

πq1/k2

∫ ∞
−∞

e−β|m|−=(z)m dm

(1 + |m|)µ

∫ ρ̃

0

exp
(
− κ

2 log(q) log2 |u|
)
|u|MLp

Cq,k2 δ̃ exp

(
k2
2

log2| uεt |
log(q)

) ∣∣ u
εt

∣∣1/2 d|u||u| .
We recall that z ∈ Hβ′ for some β′ < β. Then, there exists K31 > 0 such that

J5 ≤
KLp K31

(2π)1/2

|ε|1/2r1/2
T

πq1/k2Cq,k2 δ̃

∫ ρ̃

0

exp
(
− κ

2 log(q) log2 |u|
)
|u|MLp

exp

(
k2
2

log2| uεt |
log(q)

) d|u|
|u|3/2

.

We now proceed to prove the expression∫ ρ̃

0

exp
(
− κ

2 log(q) log2 |u|
)

exp

(
k2
2

log2| uεt |
log(q)

) exp

(
k1

2 log(q)
log2 |ε|

)
d|u|

|u|3/2−MLp

is upper bounded by a positive constant times a certain power of |ε| for every ε ∈ (Ep ∩ Ep+1)
and t ∈ T . This concludes the existence of K32 > 0 such that

(5.23) J5 ≤ K32|ε|1/2 exp

(
− k1

2 log(q)
log2 |ε|

)
,

for every ε ∈ (Ep ∩ Ep+1), t ∈ T and z ∈ Hβ′ .
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Indeed, we have∫ ρ̃

0

exp
(
− κ

2 log(q) log2 |u|
)

exp

(
k2
2

log2
(
|u|
|εt|

)
log(q)

) exp

(
k1

2 log(q)
log2 |ε|

)
d|u|

|u|3/2−MLp

equals

(5.24) exp

(
k1

2 log(q)
log2 |ε| − k2

2 log(q)
log2 |εt|

)
×
∫ ρ̃

0
exp

(
−(κ+ k2)

2 log(q)
log2 |u|

)
|u|

k2 log |εt|
log(q)

− 3
2

+MLp d|u|.

Given m1 ∈ R and m2 > 0, the function [0,∞) 3 x 7→ H(x) = xm1 exp(−m2 log2(x)) attains

its maximum value at x0 = exp( m1
2m2

) with H(x0) = exp(
m2

1
4m2

). This yields and upper bound for

the integrand in (5.24); the expression in (5.24) is estimated from above by

(5.25) ρ̃ exp

(
(MLp − 3/2)2 log(q)

2(κ+ k2)

)
exp

(
1

2 log(q)
(

k2
2

κ+ k2
− k2 + k1) log2 |ε|

)

× exp

(
1

2 log(q)
(

k2
2

κ+ k2
− k2) log2 |t|

)
|t|

k2(MLp −3/2)

κ+k2

× exp

(
1

log(q)
(

k2
2

κ+ k2
− k2) log |ε| log |t|

)
|ε|

k2(MLp −3/2)

κ+k2 .

The second line in (5.25) is upper bounded for every t because
k2

2
κ+k2

< k2 and also, one has an

upper bound for exp
(

1
log(q)(

k2
2

κ+k2
− k2) log |ε| log |t|

)
is 1. Regarding Definition 5.2, and taking

into account that
k2

2

κ+ k2
− k2 = −k1,

the expression (5.25) is upper bounded by

K33|ε|
k2(MLp −3/2)

κ+k2

for some K33 > 0. The conclusion is achieved. The result follows from (5.22), the estimates
J1 to J4, and (5.23). The proof for the estimates of fdp is analogous as that for udp : take into
account (5.2), (4.23) and (5.3). �

6. Existence of formal series solutions in the complex parameter and
asymptotic expansion in two levels

In the first part of this section, we remind two q-analogs of Ramis-Sibuya theorem from
[10, 16]. This result provides the tool to guarantee the existence of a formal power series in the
perturbation parameter which formally solves the main problem and such that it asymptotically
represents the analytic solution of that equation.

This asymptotic representation is held in the sense of q-asymptotic expansions of certain
positive order.

Definition 6.1. Let V be a bounded open sector with vertex at 0 in C. Let (F, ‖·‖F) be a
complex Banach space. Let q ∈ R with q > 1 and let k be a positive integer. We say that a
holomorphic function f : V → F admits the formal power series f̂(ε) =

∑
n≥0 fnε

n ∈ F[[ε]] as its
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q-Gevrey asymptotic expansion of order 1/k if for every open subsector U with (U \ {0}) ⊆ V ,
there exist A,C > 0 such that∥∥∥∥∥f(ε)−

N∑
n=0

fnε
n

∥∥∥∥∥
F

≤ CAN+1q
N(N+1)

2k |ε|N+1,

for every ε ∈ U , and N ≥ 0.

The set of functions which admit null q-Gevrey asymptotic expansion of certain positive order
are characterized as follows. The proof of this result, already stated in [16], provides the q-analog
of Theorem XI-3-2 in [6].

Lemma 6.2. A holomorphic function f : V → F admits the null formal power series 0̂ ∈ F[[ε]]
as its q-Gevrey asymptotic expansion of order 1/k if and only if for every open subsector U with
(U \ {0}) ⊆ V there exist constants K1 ∈ R and K2 > 0 with

‖f(ε)‖F ≤ K2 exp

(
− k

2 log(q)
log2 |ε|

)
|ε|K1 ,

for all ε ∈ U .

We recall the one-level version of the q-analog of Ramis-Sibuya theorem proved in [16].

Theorem 6.3. (q-RS) Let (F, ‖·‖F) be a Banach space and (Ep)0≤p≤ς−1 be a good covering in
C?. For every 0 ≤ p ≤ ς − 1, let Gp(ε) be a holomorphic function from Ep into F and let the
cocycle ∆p(ε) = Gp+1(ε)−Gp(ε) be a holomorphic function from Zp = Ep ∩ Ep+1 into F (we put
Eς = E0 and Gς = G0). We also make the further assumptions:

1) The functions Gp(ε) are bounded as ε tends to 0 on Ep for every 0 ≤ p ≤ ς − 1.
2) For all 0 ≤ p ≤ ς − 1, the function ∆p(ε) is q-exponentially flat of order k on Zp, i.e.,

there exist constants C1
p ∈ R and C2

p > 0 such that

‖∆p(ε)‖F ≤ C
2
p |ε|C

1
p exp

(
− k

2 log(q)
log2 |ε|

)
,

for every ε ∈ Zp, all 0 ≤ p ≤ ς − 1.

Then, there exists a formal power series Ĝ(ε) ∈ F[[ε]] which is the common q-Gevrey asymptotic
expansion of order 1/k of the functions Gp(ε) on Ep, which is common for all 0 ≤ p ≤ ς − 1.

The next result leans on the one level version of the q-analog of Ramis Sibuya theorem, and
states a two level result in this framework. See [10] for a proof.

Theorem 6.4. Let (F, ‖·‖F) be a Banach space and (Ep)0≤p≤ς−1 be a good covering in C?. Let
0 < k1 < k2, consider a holomorphic function Gp : Ei → F for every 0 ≤ p ≤ ς − 1 and put
∆p(ε) = Gp+1(ε)−Gp(ε) for every ε ∈ Zp := Ep ∩ Ep+1. Moreover, we assume:

1) The functions Gp(ε) are bounded as ε tends to 0 on Ep for every 0 ≤ p ≤ ς − 1.
2) There exist nonempty sets I1, I2 ⊆ {0, 1, . . . , ς − 1} such that I1 ∪ I2 = {0, 1, . . . , ς − 1}

and I1 ∩ I2 = ∅. Also,
- for every p ∈ I1 there exist constants K1 > 0, M1 ∈ R such that

‖∆p(ε)‖F ≤ K1|ε|M1 exp

(
− k1

2 log(q)
log2 |ε|

)
, ε ∈ Zp,

- and, for every p ∈ I2 there exist constants K2 > 0, M2 ∈ R such that

‖∆p(ε)‖F ≤ K2|ε|M2 exp

(
− k2

2 log(q)
log2 |ε|

)
, ε ∈ Zp.
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Then, there exists a convergent power series a(ε) ∈ F{ε} defined on some neighborhood of the

origin and Ĝ1(ε), Ĝ2(ε) ∈ F[[ε]] such that Gp can be written in the form

Gp(ε) = a(ε) +G1
p(ε) +G2

p(ε).

G1
p(ε) is holomorphic on Ep and admits Ĝ1(ε) as its q-Gevrey asymptotic expansion of order 1/k1

on Ep, for every p ∈ I1; whilst G2
p(ε) is holomorphic on Ep and admits Ĝ2(ε) as its q-Gevrey

asymptotic expansion of order 1/k2 on Ep, for every p ∈ I2.

We conclude this section with the main result in the work in which we guarantee the existence
of a formal solution of the main problem (5.1), written as a formal power series in the pertur-
bation parameter, with coefficients in an appropriate Banach space, say û(t, z, ε). Moreover, it
represents, in some sense to be precised, each solution udp(t, z, ε) of the problem (5.1).

This result is based on the existence of a common formal power series f̂(t, z, ε) which is the
q-Gevrey asymptotic expansion of order 1/k1, seen as a formal power series in the perturbation
parameter ε with coefficients in a certain Banach space, of every fdp on Ep.

¿From now on, F stands for the Banach space of bounded holomorphic functions defined on
T ×Hβ′ , with the supremum norm, where β′ < β, as above.

Lemma 6.5. Under the hypotheses of Theorem 5.3, there exists a formal power series

f̂(t, z, ε) =
∑
m≥0

fm(t, z)
εm

m!
,

with fm(t, z) ∈ F for m ≥ 0, which is the common q-Gevrey asymptotic expansion of order 1/k1

on Ep of the functions fdp, seen as holomorphic functions from Ep to F, for all 0 ≤ p ≤ ς − 1.

Proof. Let 0 ≤ p ≤ ς − 1. We consider the function fdp constructed in (5.4), and define

Gfp(ε) := (t, z) 7→ fdp(t, z, ε), which is a holomorphic and bounded function from Ep into F.
Regarding (5.9) and (5.21), and taking into account that k1 < k2, we have that (5.21) holds for

every 0 ≤ p ≤ ς − 1. This yields the cocycle ∆f
p(ε) := Gfp+1(ε)−Gfp(ε) satisfies the conditions of

Theorem 6.3 for k = k1, and one concludes the result by the application of Theorem 6.3. �

Theorem 6.6. Under the hypotheses of Theorem 5.3, there exists a formal power series

(6.1) û(t, z, ε) =
∑
m≥0

hm(t, z)
εm

m!
∈ F[[ε]],

formal solution of the equation

(6.2) Q(∂z)σq,tû(t, z, ε)

= (εt)dD1σ

dD1
k1

+1

q,t RD1(∂t)û(t, z, ε) + (εt)dD2σ

dD2
k2

+1

q,t RD2(∂t)û(t, z, ε)

+
D−1∑
`=1

ε∆`td`σδ`q,t(c`(t, z, ε)R`(∂z)û(t, z, ε)) + σq,tf̂(t, z, ε).

Moreover, û(t, z, ε) turns out to be the common q-Gevrey asymptotic expansion of order 1/k1

on Ep of the function udp, seen as holomorphic function from Ep into F, for 0 ≤ p ≤ ς − 1. In
addition to that, û is of the form

û(t, z, ε) = a(t, z, ε) + û1(t, z, ε) + û2(t, z, ε),

where a(t, z, ε) ∈ F{ε} and û1(t, z, ε), û2(t, z, ε) ∈ F[[ε]] and such that for every 0 ≤ p ≤ ς − 1,
the function udp can be written in the form

udp(t, z, ε) = a(t, z, ε) + u
dp
1 (t, z, ε) + u

dp
2 (t, z, ε),
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where ε 7→ u
dp
1 (t, z, ε) is a F-valued function that admits û1(t, z, ε) as its q-Gevrey asymptotic

expansion of order 1/k1 on Ep and also ε 7→ u
dp
2 (t, z, ε) is a F-valued function that admits

û2(t, z, ε) as its q-Gevrey asymptotic expansion of order 1/k2 on Ep.

Proof. For every 0 ≤ p ≤ ς − 1, one can consider the function udp(t, z, ε) constructed in The-
orem 5.3. We define Gp(ε) := (t, z) 7→ udp(t, z, ε), which is a holomorphic and bounded func-
tion from Ep into F. In view of Proposition 5.4 and Proposition 5.6, one can split the set
{0, 1, . . . , ς−1} in two nonempty subsets of indices, I1 and I2 with {0, 1, . . . , ς−1} = I1∪I2 and
such that I1 (resp. I2) consists of all the elements in {0, 1, . . . , ς−1} such that Udp∩Udp+1 contains
the sector Udp,dp+1 , as defined in Proposition 5.4 (resp. Udp ∩ Udp+1 = ∅). From (5.9) and (5.21)

one can apply Theorem 6.4 and deduce the existence of formal power series Ĝ1(ε), Ĝ2(ε) ∈ F[[ε]],
a convergent power series a(ε) ∈ F{ε} and holomorphic functions G1

p(ε), G
2
p(ε) defined on Ep and

with values in F such that

Gp(ε) = a(ε) +G1
p(ε) +G2

p(ε),

and for j = 1, 2, one has Gjp(ε) admits Ĝj(ε) as its q-Gevrey asymptotic expansion or order
1/kj on Ep. We put

û(t, z, ε) =
∑
m≥0

hm(t, z)
εm

m!
:= a(ε) + Ĝ1

p(ε) + Ĝ2
p(ε).

It only rests to prove that û(t, z, ε) is the solution of (6.2). Indeed, since udp (resp. fdp)

admits û(t, z, ε) (resp. f̂) as its q-Gevrey asymptotic expansion of order 1/k1 on Ep, we have
that

lim
ε→0,ε∈Ep

sup
t∈T ,z∈Hβ′

|∂mε udp(t, z, ε)− hm(t, z)| = 0,

lim
ε→0,ε∈Ep

sup
t∈T ,z∈Hβ′

|∂mε fdp(t, z, ε)− fm(t, z)| = 0,

for every 0 ≤ p ≤ ς − 1 and m ≥ 0. Let p ∈ {0, 1, . . . , ς − 1}. By construction, the function
udp(t, z, ε) solves equation (6.2). We take derivatives of order m ≥ 0 with respect to ε at both
sides of equation (5.1) and deduce that

(6.3) Q(∂z)σq,t(∂
m
ε u

dp)(t, z, ε)

=
∑

m1+m2=m

m!

m1!m2!
∂m1
ε (εdD1 )tdD1σ

dD1
k1

+1

q,t RD1(∂z)(∂
m2
ε udp)

+
∑

m1+m2=m

m!

m1!m2!
∂m1
ε (εdD2 )tdD2σ

dD2
k2

+1

q,t RD2(∂z)(∂
m2
ε udp)

+

D−1∑
`=1

∑
m1+m2+m3=m

m!

m1!m2!m3!
(∂m1
ε ε∆`)td`σδ`q,t(∂

m2
ε c`(t, z, ε)R`(∂z)∂

m3
ε udp(t, z, ε))

+ σq,t(∂
m
ε f

dp)(t, z, ε),
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for every (t, z, ε) ∈ T ×Hβ′ × Ep. We let ε→ 0 in (6.3) and obtain the recursion formula

(6.4) Q(∂z)σq,thm(t, z)

=
m!

(m− dD1)!
tdD1σ

dD1
k1

+1

q,t RD1(∂z)(hm−dD1
(t, z))+

m!

(m− dD2)!
tdD2σ

dD2
k2

+1

q,t RD2(∂z)(hm−dD2
(t, z))

+

D−1∑
`=1

∑
m2+m3=m−∆`

m!

m2!m3!
td`σδ`q,t(∂

m2
ε c`(t, z, 0)R`(∂z)hm3(t, z)) + σq,tfm(t, z),

for every m ≥ max{dD1 , dD2 ,max1≤`≤D−1 ∆`}, and all (t, z) ∈ T ×Hβ′ . Bearing in mind that c`
is holomorphic with respect to ε in a neighborhood of the origin, in such neighborhood one has

(6.5) c`(t, z, ε) =
∑
m≥0

(∂mε c`)(t, z, 0)

m!
εm,

for every 1 ≤ ` ≤ D − 1. By plugging (6.1) into (6.2) and bearing in mind (6.4) and (6.5) one
concludes that the formal power series û(t, z, ε) =

∑
m≥0 hm(t, z)εm/m! is a solution of equation

(6.2).
�
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