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Abstract— Because identical fermions (elementary particles) have (except spacetime coordinates) exactly the 

same features everywhere, these are (per proper time) a multiple mapping of the same. This mapping also 

leads to the geometrical appearance (of spacetime) and it provides a set of possibilities which can be selected 

(like "phase space"). Selection of possibilities means information. New selection of possibilities means 

decision resp. creation of information. This paper should motivate to a more consequent information 

theoretical approach (not only in quantum mechanics but) also towards spacetime geometry. It is a short 

supplement to previously published material, where it was shown that proper time is proportional to the sum 

of return probabilities of a Bernoulli Random Walk. The probabilities at every point in such a walk result 

from "OR" operation of incoming paths. The probability of a "AND" operation at a certain point can be 

interpreted as meeting probability of two simultaneous and independent Bernoulli Random Walks. If no 

direction is preferred (p=1/2), after n steps this meeting probability (of two simultaneous symmetric Bernoulli 

Random Walks resp. BRWs) in the common starting point goes for large n to 1/(2πn), which is the inverse of 

the circumference of a circle with radius n. So if a BRW pair denotes two commonly starting simultaneous 

independent BRWs (each with p=1/2), after n steps (in case of large n) in the average 1 of 2πn BRW pairs 

meet again in its original starting point. 

Likewise due to the limited speed of light our knowledge of surrounding is the more delayed, the greater the 

distance n is. Therefore there are the more (geometric) possibilities of return (2πn possibilities for multiples of 

the same fermion on a circle with radius n), the greater the distance (the radius) n is. This shows a basic 

example for a connection between statistical results and geometrical appearance. 
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INTRODUCTION 

Due to quantum physical results it is reasonable to assume that geometry of spacetime has a discrete (and 

statistical) origin. A basal geometric feature is the nontrivial proportionality factor 2  between radius and 

circumference of a circle. Here we show a short statistical approach to this proportionality factor. 

 

APPROACH 

A Bernoulli Random Walk is generated by a sequence of independent trials or "steps" [Fe] [Sp], each one of 

which can have two results, e.g. "positive" (with probability p) or "negative" (with probability 1 - p). We can 

interpret it as model for the movement of a particle in a one-dimensional lattice of equidistant points or "states" 

which are indexed by an integer coordinate k. With every trial the particle makes a step from point k to point k + 

1 with given probability p ("positive direction") or a step from point k to point k - 1 with probability 1 - p 

("negative direction"). As in [O2] for  ,...3,2,1n  we denote by Q0P(n, k, p) the probability, that the particle is 

at point k after the n-th step and by Q0P(0, k, p) this probability before the first step. We assume start of 

movement at k = 0, so Q0P(0, 0, p) = 1 and Q0P(0, k, p) = 0 for k ≠ 0 and furthermore 

 Q0P(n + 1, k, p) = p Q0P(n, k - 1, p) + (1 - p) Q0P(n, k + 1, p)    (1) 

When making n trials, point k is only within reach, if n - k and n + k are non-negative even numbers. We will 

presuppose this subsequently. There are exactly n!/(((n+k)/2)! ((n-k)/2)!) paths with (n+k)/2 steps in positive and 

(n-k)/2 steps in negative direction, which lead into point k after the n-the step. They respectively have the 

probability (1-p)
(n-k)/2

 p
(n+k)/2

. So the chaining of these Bernoulli trials results into the binomial distribution  
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Subsequently assume assume p=1/2 and define 
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By BRW we denote a Bernoulli Random Walk with p=1/2. 

Q0(n,k) represents probabilities in case of p=1/2. In the symmetry center we get 
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Fig. 1 shows the Q0(n,k) which represent the probabilities of a BRW (Bernoulli random walk with p=1/2). 
 

n  k->  -9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8  9 

 
0                                   1                             *1/1 

1                                1     1                          *1/2 

2                             1     2     1                       *1/4 

3                          1     3     3     1                    *1/8 

4                       1     4     6     4     1                 *1/16 

5                    1     5    10    10     5     1              *1/32 

6                 1     6    15    20    15     6     1           *1/64 

7              1     7    21    35    35    21     7     1        *1/128 

8           1     8    28    56    70    56    28     8     1     *1/256 

9        1     9    36    84   126   126    84    36     9     1  *1/512 

... 

Fig. 1  Probabilities of a BRW (symmetric Bernoulli random walk with probabilities p=1-p=1/2 for both sides). The probabilities in the 

central column k=0 are underlined. Conservation laws suggest a natural privilege of these central states. The probabilities of the inflowing 
paths are in the columns with k=-1 and k=1. 

 

The probabilities of the 2 (left and right) paths into the center are 
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It is )1,1(0
2

1
)1,1(0

2

1
)0,(0  nQnQnQ  because Q0(n,k) is an OR-operation of both incoming paths (from 

Q0(n-1,k+1) plus from Q0(n-1,k-1)). This defines a BRW. 

 

Suppose that two symmetric BRWs (BRW1 and BRW2) start simultaneously and are stepping simultaneously. 

 

First we assume that the sum of all k is constant (symmetry around k=0, conservation law). In this case we 

know: If k increases in BRW1, then k decreases in BRW2, and reverse. If at start k=0, there is complete 

symmetry. We can assume that one of both BRWs moves freely and the other totally depends on it. If one BRW 

arrives at k=0, then also the other. So the meeting probability is the return probability of a symmetric BRW: 

 

Q0(n,0) = Q0(n-1,-1)/2 + Q0(n-1,1)/2         (6) 

 

Now suppose that two BRWs again start in k=0 and step simultaneously, but step directions (k+1 or k-1) are 

done independently. Let Q0AND(n,k) denote the meeting probability of two such BRWs with independent step 

directions. In this case the probability that one arrives after n steps at k=0 is Q0(n-1,-1)/2, and that the other 

arrives at k=0 is Q0(n-1,1)/2. Because steps are done independently, the probability Q0AND(n,0) that both meet 

in k is due to (5): 
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Equivalently we can suppose to do the split into two halves directly in the start, so that every half is an 

independent BRW with half probability. In point (n,k) it is Q0(n,k)/2 which again leads to the combined 

probability (7). 

 

Using the Stirling formula  
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and for large n so from (7) 
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From this follows (for BRWs with no preferred direction and large n) 



Formulation 1: 

The meeting probability of two commonly starting simultaneous independent BRWs after n steps in their 

common starting point goes for large n to 1/(2πn), which is the inverse of the circumference of a circle with 

radius n (or the probability to meet a segment of length 1 on a circle with radius n). 

 

More demonstrative may be the viewpoint after "renormalization". Implicitly we make within every perception a 

renormalization. The "probability" of an altogether very improbable perception is renormalizated to 1. According 

to the following formulation 2 the factor for such renormalization after n steps can be just 2πn: 

Formulation 2: 

If a BRW pair denotes two commonly starting simultaneous independent BRWs, after n steps (in case of large n) 

in the average 1 of 2πn BRW pairs meet again in its original starting point. 

 

This is interesting because it shows a relatively simple connection between statistics and geometry. If both 

BRWs start simultaneously and the sum of k is conserved (symmetry), the return probability (6) is also a 

meeting probability ("OR" operation). If, however, the BRWs start (later) simultaneously and decide 

independently ("AND" operation, (7)), the probability that they meet after n steps in the starting point k=0 is the 

geometrical probability Q0AND(n,0) which is the inverse of the circumference of a circle with radius n. 

 

The following supplementary chapters are added to show possible connections to current models. 

 

INTERPRETATION, THOUGHTS FOR FURTHER THOUGHTS 

At first the above approach seems to be only 2D (two-dimensional) because circumference is contained in a 2D 

plane. But this fits to propagation of electromagnetic fields. With (3) p=1/2 and according to [O2] this is 

connected with the propagation speed v=c (speed of light). So we can assume electromagnetic interaction. At 

this for example the direction of inducing resp. induced electric currents and changes in electric fields are 

proportional to the circulating magnetic fields. The 2D plane of a circulating (magnetic or electric) field is shown 

(resp. determined) by the direction of the inducing resp. induced (electric or magnetic) field. 

The 3D propagation of information results after more steps. 

 

Due to the limited speed of light our knowledge of surrounding is the more delayed, the greater the distance n is. 

Therefore there are the more (geometric) possibilities of return (2πn possibilities for multiples of the same 

fermion on a circle with radius n), the greater the distance (the radius) n is. 

So the above approach also shows first steps to answers of the following questions: 

 Why are there conservation laws? 

- Because completed perception at last is only possible inside a symmetry center (k=0, see Fig. 1). 

 Why is v=c (Why is the maximal information speed constant and finite)? 

- Because a well defined delay (at least n>=2 in Fig. 1) is necessary for statistical development of 

geometry, i.e. for freedom of geometrical coordinates in surrounding. 

 Why do the same fermions have exactly the same features everywhere?  

- Because during statistical development of geometry multiple possibilities (geometrical coordinates) 

lead (back) to the same elementary constellation. 

 What is the information theoretic origin of the proportionality factor   in geometric formulas? 

- see (9). Due to limits (8) and (9) the occurrence of   in geometric formulas (e.g. the proportionality 

factor 2  between radial distance and circumference) indicates a combination (concatenation or 

"AND" operation) of two statistics (BRWs). 

Two past1 BRWs compared to what? One step forward is more probable than a series of 2 steps back - this could 

define an order. Interpretation of experimental results concerning definition of time direction? 

 

QUESTIONS FOR CONTINUATION 

As already mentioned above, for description of 3D propagation of information more steps are necessary. How 

can we extend the (information theoretical) approach to 3 dimensions which represent statistically nearly 

uncorrelated quantities? 

 

Connected questions: 

 Information theoretical interpretation of basal (discrete) Maxwell Equations? We could study their 

development using varying conditions. 

 Connection to basal (discrete) Schroedinger Equation?  

In connection with the Schroedinger Equation it is noteworthy that  

       (Q0(n,k-2)-Q0(n,k)) - (Q0(n,k)-Q0(n,k+2))   =   4(Q0(n+2,k) - Q0(n,k))  

where the left side can be interpreted as discrete 2. derivation along location  

and the right side can be interpreted as discrete derivation along time. 

                                            

1
 Geometry shows past (due to the limited information speed), so statistics which lead to geometry are past. 



 Can the simplified low energy model of atomic shell (which starts in 2D) help as connection? 

 

CONSTRUCTIVE COMMENT TO CURRENT COSMOLOGICAL MODELS 

We should recall that a direct experimental evaluation of cosmological models is not possible. We cannot make 

experiments under conditions at very past time (e.g. with past physical constants). Therefore cosmological 

models are extrapolations. Current cosmological models ("Big Bang") extrapolate and start geometrically - 

despite the experimentally proven limits of geometrical models. Compared to this an approach with geometry as 

statistical consequence leads to completely different start conditions2 and conclusions. We recommend to 

investigate these in more detail. Plausible would be to use from the beginning an information theoretical 

approach which develops into increasing complexity resp. branching depth. We can ask for the initial (most 

simple) situation of "information". 

We know that information means selection from a set (of possibilities). A selection from a set with 0 elements is 

not possible. A selection from a set with 1 element (without alternative) provides no (new) information. So the 

most fundamental initial new information must describe selection of one element from a set with 2 elements. 

The most fundamental set with this nature results from distinction between "past" and "presence". It seems that 

from this results order of time and secondarily order of other dimensions. A graph theoretic approach can 

provide deeper insight into multiple steps. 

So it is recommendable to look in more detail and consequently for discrete definition of (local and global) time 

and to develop from this a contradiction free (information theoretical) interpretation of macroscopic geometrical 

appearance as statistical result. 

CAN WE ESTIMATE MAXIMAL N? 

How large may be n since start of our observable universe? In this chapter we try a rough guesswork: 

Let age = 4.3*10
17

s (rough age of observable universe) and c= 3 *10
8
 m/s (speed of light) 

If we assume  r = 10
-15

 m as (rough) diameter of a fermion (nucleon) and use this as minimal stepping size, we 

get c/r = 3 *10
23

 steps per second and z:= age*c/r= 1.29 * 10
41

steps since start of the universe. Due to above 

Formulation 2 we assume that from n=1 to z with every step 2πn new possibilities are generated, then for the 

total sum of possibilities we get 
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This seems not so far away from the currently estimated count of nucleons in the observable universe. 

 

CONCLUSION 

An information theoretical approach which develops into increasing complexity resp. branching depth (with 

geometry as secondary statistical consequence) is more plausible than a primarily geometrical model (like "Big 

Bang"). It seems that geometric (macroscopic) physical measurements result from differentiation, superposition 

and concatenation of (meanwhile partially very large, periodically in a symmetry center synchronized) statistics. 
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