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Abstract. We consider the spectral stability problem for Floquet-type systems such as the wave
equation vττ = γ2vxx − ψv with periodic forcing ψ. Our approach is based on a comparison
with finite-dimensional approximations. Specific results are obtained for a system where the
forcing is due to a coupling between the wave equation and a time-period solution of a nonlinear
beam equation. We prove (spectral) stability for some period and instability for another. The
finite-dimensional approximations are controlled via computer-assisted estimates.

1. Introduction

The aim of this paper is to develop a nonperturbative method for analyzing the stability
of certain periodically driven systems. We do this in the context of a wave equation

vττ (τ, x) = γ2vxx(τ, x)− ψ(τ, x)v(τ, x) , τ ∈ R , x ∈ (0, π) , (1.1)

where ψ depends periodically on the time variable τ . For the function v we impose Dirichlet
boundary conditions at x = 0 and x = π. We consider a model where the coefficient ψ
is determined canonically by the desired time-period T . In this case we prove spectral
stability for some value of T and absence of spectral stability for another.

We say that the equation (1.1) is spectrally stable if the corresponding evolution
operator Φ(T ) has no spectrum outside the unit circle. To be more specific, let us write
the second order equation (1.1) in the usual way as a pair of first order (in τ) equations:
vτ = ν and ντ = γ2vxx−ψv. The solution depends linearly on the initial condition at time
zero, and this defines the time-τ map Φ(τ) via the equation

V (τ) = Φ(τ)V (0) , V (τ) =

[

v(τ, .)
ν(τ, .)

]

, τ ∈ R . (1.2)

If ψ is time-periodic with period T , then the flow Φ satisfies Φ(τ +T ) = Φ(τ)Φ(T ). So the
growth properties of Φ are determined by the properties of the linear operator Φ(T ). We
note that, formally, this operator is symplectic, and thus its spectrum is invariant under
complex conjugation z 7→ z̄ and inversion z 7→ 1/z.

Our spectral analysis of Φ involves a comparison principle for monotone families of
Floquet systems. This allows us e.g. to bound the eigenvalues of Φ(T ) on the unit circle
from both sides by the eigenvalues obtained from certain finite-dimensional approxima-
tions. The finite-dimensional systems are still nontrivial, but we can estimate their Floquet
spectrum by using computer-assisted techniques.
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Our analysis was motivated in part by numerical observations [6] on instabilities in a
model of a suspension bridge. To be more precise, and to motivate our choice of the forcing
ψ in (1.1), consider the following (Hamiltonian) system of partial differential equations:

uττ = −uxxxx + 1
2

[

f(u+ v) + f(u− v)
]

,

vττ = γ2vxx + 1
2

[

f(u+ v)− f(u− v)
]

.
(1.3)

Here u = u(τ, x) and v = v(τ, x) are functions on R×(0, π), satisfying Navier and Dirichlet
boundary conditions, respectively, at x = 0 and x = π. The coupling function f is nonlinear
and will be specified below.

The equations (1.3) are a simplified version of a model [6] for a suspension bridge.
In this context, u describes the longitudinal modes of the bridge, and v describes the
torsional modes. The function f models the force that the hangers apply to the deck;
see also equation (4) and the ensuing discussion in [5]. Numerical studies on the model
described in [6] indicate that there is a loss of stability in the torsional modes as the energy
of the longitudinal modes exceeds a certain threshold. Since the torsional amplitudes are
typically small, we will v-linearize the system (1.3) in the sense of dropping all terms of
order v2.

A reasonable choice for a simplified bridge model is f(u) = −κu−u3. With this choice
of f , setting v = 0 in (1.3) reduces the system to a nonlinear beam equation for u. In
order to show that this equation has a time-periodic solution with a given periods T , it is
convenient to perform a change of variables t = ατ with α = 2π/T , so that T -periodicity
in τ corresponds to 2π-periodicity in t. In these new variables, and for f(u) = −κu− u3,
the system (1.3) becomes

α2utt = −uxxxx −
(

u2 + κ
)

u , (1.4)

α2vtt = γ2vxx −
(

3u2 + κ
)

v , (1.5)

up to terms of order v2.
Using the methods developed in [12], is it possible to find nontrivial solutions u of the

beam equation (1.4) for many different values of the parameters. Some recent work that
involves similar techniques can be found in [7-12]. Notice that the equation (1.5) for v is
equivalent to (1.1), with ψ = 3u2 + κ.

From now on, we restrict the values of the model parameters to

γ = 7
8 , κ = 1

2 . (1.6)

We will comment on this choice later on. Denote by B the vector space of all real analytic
functions u on R2 that are 2π-periodic in each argument and whose Fourier series is of the
form u(t, x) =

∑

n,k

un,k cos(nt) sin(kx), with un,k = 0 whenever nk is even.

Theorem 1.1. For each α ∈
{

5
4 ,

14
11

}

, the beam equation (1.4) has nontrivial solution
u ∈ B.

Numerically we have computed solutions of (1.4) for many other rational values of α.
They all lie on what looks like a branch of solutions, similar to the one shown in Fig. 4
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(right) in [12]. Along the values of α considered, the solutions on this “branch” are of the
form u(t, x) = cα[cos(t) sin(t) + small ], and the amplitude cα is increasing with α, starting
with cα = 0 for α =

√
1 + κ = 1.22 . . .. In a more realistic model of a suspension bridge,

say with some damping included, we would expect to find a true branch of solutions, where
the amplitude cα of the longitudinal mode varies continuously with α.

Our proof Theorem 1.1 follows closely the proof of Theorem 1.3 in [12] on periodic
solutions of the beam equation (1.4) with γ = 1 and κ = 0. But unlike in [12] we only
consider rational values of α, since our analysis of (1.5) requires that β = γ/α be rational.
Another restriction imposed by our analysis of (1.5) is that pβ ∈ Z for some integer p ≥ 1
that is not too large; otherwise our computer-assisted estimates take a prohibitive amount
of time. This is our main reason for choosing relatively simple rational values for γ and
α. In principle, our methods should apply to a large range of parameters with β and α
rational. The only significant restriction is that the function ψ = 3u2 + κ be dominated
by its average. (This holds in the cases considered here.) We have some idea on how to
overcome this restriction, but this would complicate the analysis significantly.

Coming back to the problem mentioned at the beginning, we have the following result.

Theorem 1.2. Consider the system (1.5) for both of the pairs (α, u) described in Theo-
rem 1.1. If α = 5

4 , then the system is spectrally stable. If α = 14
11 then the system is not

spectrally stable.

We have carried out purely numerical computations for a few more values of α. If we
simply connect the dots, then our findings indicate that the torsional modes v are stable
for small amplitudes of the longitudinal modes u, but that they become unstable as the
amplitude of u increases past a value cα where α ≈ 1.27.

In what follows, Φ(t) denotes the time-t map associated with the equation (1.5),
where the forcing is 2π-periodic in t. Our strategy for estimating the spectrum of Φ(2π)
is roughly as follows. For β = q/p rational, the spectrum consists of isolated eigenvalues
with finite multiplicities, together with a finite set of accumulation points consisting of p-th
roots of unity. In order to estimate these eigenvalues, we consider one-parameter families of
Floquet systems that have a certain monotonicity property. This property implies that the
eigenvalues on the unit circle move either clockwise or counterclockwise as the parameter
is increased, depending on the Krein signature of the eigenvalue. By choosing monotone
families that start and end at two simple systems, this allows us to enclose eigenvalues of
Φ(2π) between the corresponding eigenvalues of the two simple systems. Here “simple”
means finite dimensional (modulo a trivial part) with sufficiently low dimension. The
time-2π maps of these simple systems are matrices, which we estimate by integrating the
first order equation at high accuracy. Then we estimate the eigenvalues of these matrices.
(All this is done of course with rigorous error estimates.) In order to exclude bifurcations
along the chosen families, we prove that the eigenvalues never cross certain “separating
values”.

The remaining part of this paper is organized as follows. In Section 2 we introduce
some notation and review a few facts from Floquet-Krein theory that will be needed later
on. One-parameter families of Floquet systems are discussed in Section 3. This includes
the parameter-dependence of eigenvalues, monotone families, and bounds related to the
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above-mentioned separating values. All results given in the first two sections concern
finite-dimensional systems only. But they apply to the problem at hand by taking limits,
as will be shown in Section 5. In Section 4 we describe some general properties of the flow
Φ. To be more precise, we first perform a symplectic change of variables U , and then work
with Φ̃ = UΦU−1. In Section 5 and Subsection 6.1 we give a proof of Theorem 1.2 and
Theorem 1.1, respectively, based on three technical lemmas. Our proof of these lemmas is
discussed in the remaining parts of Section 6 and described in detail in [13].

Figures 1 and 2 show the spectrum of Φ̃(2π) in the case α = 5
4 and α = 14

11 , respectively.
The eigenvalues on the left (right) correspond to eigenvectors that are even (odd) under
translations x 7→ x+π. Eigenvalues that are not marked with dots lie in the red and black
arcs. The color indicates the Krein signature: red 7→ positive, black 7→ negative. Blue
dashes mark the primary separating values (described later). The on-circle spectrum in
these figures is accurate, but the values of the off-circle eigenvalues (blue dots) in Figure
2 are purely numerical.

Figure 1. Spectrum for α = 5

4
in the even (left) and odd (right) subspace.

Figure 2. Spectrum for α = 14

11
in the even (left) and odd (right) subspace.
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2. Floquet and Krein theory

In this section we cover some basic facts from Floquet-Krein theory [1,2] in finite dimen-
sions. The same notation and concepts will be used later in our discussion of the system
(1.5). The results themselves will be applied only to finite-dimensional approximations of
this system. For other applications of the Krein signature to problems in partial differential
equations, we refer to [3,4] and references therein.

2.1. The flow for periodic vector fields

Let B be a Banach space. Unless specified otherwise, we assume that B is finite-dimen-
sional. Let X : R → L(B) be a continuous curve in the space L(B) of all linear operators
onB. Floquet theory addresses the stability of the trivial solution of the evolution equation

d

dt
V (t) = X(t)V (t) , V (t) ∈ B , (2.1)

in the case whereX(t) depends periodically on time t ∈ R. This can be done by considering
the associated flow Φ : R → L(B), which is the solution of the initial value problem

d

dt
Φ(t) = X(t)Φ(t) , Φ(0) = I . (2.2)

The solution of (2.1) with initial condition V (0) = V0 is then given by V (t) = Φ(t)V0.
A basic tool in Floquet theory is the following representation of the flow.

Lemma 2.1. Let T > 0 be the fundamental period of X. Then there exists an operator
C ∈ L(B), and a periodic curve P : R → L(B) with period T , such that

Φ(t) = P (t)etC , t ∈ R . (2.3)

Proof. First we note that Φ(t+T ) = Φ(t)Φ(T ), due to the periodicity ofX. After choosing
a branch of the logarithm whose domain of analyticity includes all eigenvalues of Φ(T ),
define C = 1

2π log(Φ(T )). Clearly (2.3) holds if we set P (t) = Φ(t)e−tC . In addition,

P (t+ T ) = Φ(t+ T )e−(T+t)C = Φ(t)Φ(T )e−TCe−tC = Φ(t)e−tC = P (T ) , (2.4)

as claimed. QED

The operator Φ(T ) is called the matrizant of the Floquet system (2.2). Some other
standard definitions are the following.

Definition 2.2. The eigenvalues of Φ(T ) are called the Floquet multipliers (of the given
system). The eigenvalues of C are called Floquet exponents. Clearly, if r is a Floquet
exponent then eTr is a Floquet multiplier. We note that Floquet exponents depend on the
choice of C and are determined by Φ(T ) only modulo 2πi/T .

Notice that CV0 = rV0 implies that V (T ) = eTrV0. Thus, every Floquet exponent
r with positive (negative) real part gives rise to exponentially increasing (decreasing) so-
lutions of (2.1). Suppose now that each Floquet exponent r is purely imaginary. If r is
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not semisimple, meaning that both (C − rI)V0 = 0 and (C − rI)V1 = V0 admit nontrivial
solutions, then etCV1 grows linearly with t. Thus, we have the following.

Proposition 2.3. The flow Φ is bounded if and only if every Floquet exponent has a
nonpositive real part, and every Floquet exponent with zero real part is semisimple.

Next we discuss Floquet systems that arise from second order equations. Let H be a
finite-dimensional real Hilbert space. Consider the equation

d2

dt2
v(t) = −X (t)v(t) , v(t) ∈ H , (2.5)

with X : R → L(H) continuous and periodic with period T > 0. Introducing ν = d
dtv and

V =
[

v
ν

]

, X =
[

0 I
−X 0

]

, (2.6)

the equation (2.5) reduces to an evolution equation (2.1) in the space B = H2. Assume
now that X (t) is self-adjoint for all t ∈ R. A straightforward computation shows that
equation (2.5) arises from a Hamiltonian H(t, v, ν) = 1

2 〈v,X (t)v〉 + 1
2 〈ν, ν〉 , in the sense

that the equation (2.1) can be written as

d

dt
V (t) = J∇H(t) , J =

[

0 I
−I 0

]

. (2.7)

For a proper discussion of Floquet exponents, we need to consider a complexification
of H. To simplify notation, the complexified space will again be denoted by H. On the
complex space H2 we consider the inner product

〈V, V ′〉 = 〈v, v′〉+ 〈ν, ν′〉 , V =
[

v
ν

]

∈ H2 , V ′ =
[

v′

ν′

]

∈ H2 , (2.8)

where 〈., .〉 is the inner product inH. The convention adopted here is that 〈., .〉 is antilinear
in the first argument and linear in the second. We say that an operator on H2 is real if it
leaves the real part of H2 invariant.

Definition 2.4. A real operator A ∈ L(H2) is called symplectic if A∗JA = J.

Denote by Φ the flow associated with the linear vector field X defined in (2.6). The
operators X (t) are assumed to be real and self-adjoint.

Proposition 2.5. The time-t maps Φ(t) are symplectic.

Proof. Using that X ∗ = X we have X∗J+ JX = 0, and thus

d
dtΦ(t)

∗
JΦ(t) = Φ(t)∗X(t)∗JΦ(t) + Φ(t)∗JX(t)Φ(t) = 0 . (2.9)

Given that Φ(0) = I, the assertion follows. QED
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2.2. Eigenvalues and Krein signature

The main tool of Krein theory is the quadratic form

G(V, V ′) = 〈V, (iJ)V ′〉 = i〈v, ν′〉 − i〈ν, v′〉 . (2.10)

We remark that G is nondegenerate on H2, since G(V, iJV ) = 〈V, V 〉. Notice also that
G(V, V ) is real for all V , since iJ is Hermitian. Another immediate consequence of the
definitions is the following.

Proposition 2.6. A real operator A ∈ L(H2) is symplectic if and only if G(AV,AV ′) =
G(V, V ′) for all V, V ′ ∈ H2.

We conclude this section by mentioning some spectral properties of symplectic linear
maps that will be needed later on.

First, consider an arbitrary bounded linear operator A on some (not necessarily finite-
dimensional) Banach space B. Let Λ and Λ′ be two disjoint compact sets in C whose
union includes the spectrum of A. Then the Riesz projection P (Λ, A) associated with the
spectrum in Λ admits a representation

P (Λ, A) = Pγ(A)
def

=
1

2πi

∫

γ

(zI−A)−1 dz , (2.11)

where γ is any regular cycle in the complement of Λ∪Λ′ that has winding number 1 relative
to every point in Λ and winding number 0 relative to every point in Λ′. If A is fixed, then
the spectral subspace P ({λ}, A)B associated with an isolated eigenvalue λ of A will also
be denoted by E(λ). If λ has a finite algebraic multiplicity m, then E(λ) is the null space
of (λI−A)m.

Assume now that A is a symplectic operator on H2. It follows readily from Defini-
tion 2.4 that A is nonsingular, and that the spectrum of A is invariant under complex
conjugation λ 7→ λ̄ and inversion λ 7→ λ−1.

Lemma 2.7. Let λ and λ′ be eigenvalues of a symplectic A. If λ̄λ′ 6= 1 then the spectral
subspaces E(λ) and E(λ′) are G-orthogonal; that is, G(V, V ′) = 0 for all V ∈ E(λ) and
all V ′ ∈ E(λ′)

Proof. Straightforward algebraic manipulations yield the identity

G
(

(A− λI)mV,AmV ′
)

= (−λ̄)mG
(

V, (A− λ̄−1I)mV ′
)

(2.12)

for m = 1. This extends to m > 1 by induction. Taking m to be the algebraic multiplicity
of λ, this shows that E(λ) is G-orthogonal to the range of

(

A− λ̄−1I
)m

.
Clearly E(λ′) is invariant under any function of A, including A − λ̄−1I. Assuming

that λ′ 6= λ̄−1, the restriction of A− λ̄−1I to E(λ′) is nonsingular. Thus, E(λ′) lies in the
range of (A− λ̄−1I)m, which is G-orthogonal to E(λ). QED

Definition 2.8. A subspace E of H2 is said to be Krein definite if G(V, V ) 6= 0 for every
nonzero V ∈ E. If G(V, V ) is positive (negative) for every nonzero V ∈ E then we say that
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E has a positive (negative) Krein signature. An eigenvalue λ of a linear operator is said to
have positive (negative) Krein signature if the corresponding spectral subspace E(λ) has
positive (negative) Krein signature.

We remark that an eigenvalue λ of a symplectic operator A can be Krein definite only
if λ is semisimple and |λ| = 1. This follows e.g. from (2.12) with m = 1, which implies
that the null space of A− λI is G-orthogonal to the range of A− λ̄−1I.

The following proposition illustrates the usefulness of the Krein signature for questions
of stability and bifurcations.

Proposition 2.9. Let A be a symplectic operator on H2. Let Λ be a closed arc on the unit
circle whose endpoints are not eigenvalues of A. Let γ be a cycle in C such that P (Λ, A) =
Pγ(A), as described after (2.11). Assume that, within any given positive distance from A,
there exists a symplectic operator A′ ∈ L

(

H2
)

with the property that Pγ(A
′)H2 is Krein

definite. Then every symplectic operator A′ ∈ L
(

H2
)

within some positive distance of A
has this property, and P (Λ, A′)H2 has the same dimension as P (Λ, A)H2.

Proof. It suffices to consider the positive signature case. Clearly the map A′ 7→ Pγ(A
′) is

continuous near A. Define Eγ(A
′) = Pγ(A

′)H2. In what follows, A′ and An always denote
symplectic operators on H2.

Under the given assumptions, there exists a sequence An → A such that G is positive
definite when restricted to Eγ(An). Thus, G is positive semidefinite on Eγ(A). Assume for
contradiction that G(V, V ) = 0 for some nonzero V ∈ Eγ(A). Using the Cauchy-Schwarz
inequality we find that V is G-orthogonal to every vector in Eγ(A). When combined with
Lemma 2.7, this implies that V is G-orthogonal to every vector in H2. But this contradicts
the fact that G is nondegenerate. Thus, G is positive definite on Eγ(A).

If A′ is sufficiently close to A, then G is positive definite on Eγ(A
′) as well, and Eγ(A

′)
has the same dimension as Eγ(A). As a result of positivity, Eγ(A

′) cannot include an
eigenvector V of A with an eigenvalue off the unit circle, since this would imply G(V, V ) = 0
by Lemma 2.7. Thus, P (Λ, A′) = Pγ(A

′). QED

3. Parametrized families of Floquet systems

3.1. Separating sets

We will need to control eigenvalues on the unit circle S = {z ∈ C : |z| = 1} for continuous
families of symplectic operators. The goal is to partition the circle S into arcs and then
apply Proposition 2.9.

Definition 3.1. Let A be a symplectic operator whose eigenvalues on S are all Krein
definite. A finite set Z ⊂ S partitions S \ Z into arcs, and we say that Z is a separating
set for A if all eigenvalues of A that lie on the same arc have the same Krein signature.
We also assume that Z does not include any eigenvalues of A.

Let now s 7→ As be a continuous family of symplectic operators on H2, where s ranges
over some interval I. As a consequence of Proposition 2.9, we have the
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Corollary 3.2. Let Z be a finite subset of S that does not include any eigenvalues of
As for any s. Assume that one of the operators As has the following property: Z is a
separating set for As, and all eigenvalues of A lie on S. Then each of the operators As has
this property.

Definition 3.3. We say that Z ⊂ S is a separating set for the family s 7→ As if Z is a
separating set for each As with s ∈ I.

In the remaining part of this section we restrict our analysis to symplectic operators
Φ(t) that are the time-t maps associated with a second order equation of the type (2.5).
To simplify notation, let us assume from now on that X is periodic with period T = 2π.
First we need to introduce some notation and basic facts.

Consider a solution curve V for the evolution equation d
dtV (t) = X(t)V (t), where

X is given by (2.6). Assume that V (2π) = e2πrV (0) for some complex number r. In
other words, V (0) is an eigenvector with eigenvalue e2πr of the matrizant Φ(2π) associated
with the given system. If we set W (t) = e−rtV (t), then the curve W is 2π-periodic.
A straightforward computation shows that the first component w(t) = e−rtv(t) of W (t)
satisfies the equation

(

d
dt + r

)2
w(t) = −X (t)w(t) . (3.1)

Conversely, if this equation has a nonzero 2π-periodic solution w, and if we set W =
[

w
ω

]

,

where ω =
(

d
dt + r

)

w, then W (0) is an eigenvector of Φ(2π) with eigenvalue e2πr.
It is useful to write the equation (3.1) in the form M(η)w = 0, where η = −ir and

M(η) = (n+ η)2 −X , n = −i d
dt . (3.2)

For a proper discussion of the operator M(η), consider the vector space C of all continuous
2π-periodic curves w : R → H, equipped with the inner product

〈〈w,w′〉〉 = 1

π

∫ 2π

0

〈

w(t), w′(t)
〉

dt , (3.3)

and define H to be the completion of this space C. A natural domain for the operator
M(η) is the space D of all curves w ∈ H with the property that n2w belongs to H. Clearly
M(η) is a relatively compact perturbation of n2, so the spectrum of M(η, s) consists of
isolated eigenvalues of finite multiplicity. We assume from now on that X (t) is self-adjoint
for each t. In this case, M(η) is self-adjoint as well if η is real.

Proposition 3.4. Assume that t 7→ X (t) is real analytic. V (0) is an eigenvector of Φ(2π)
with eigenvalue e2πiη if and only if the equation M(η)w = 0 admits a nonzero solution
w ∈ D. In this case, t 7→ w(t) is analytic in a complex open neighborhood of R.

The proof of this proposition is straightforward; see Lemma 4.5 for a similar result in
the case of the periodically forced wave equation.

Consider now two orbits d
dtV = XV and d

dtV
′ = XV ′. Assume that V (0) and V ′(0)

are eigenvectors of Φ(2π) with eigenvalues e2πr and e2πr
′

, respectively. Let w(t) and w′(t)
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be the first components of W (t) = e−rtV (t) and W ′(t) = e−r′tV ′(t), respectively. A
straightforward computation shows that

G
(

V (t), V ′(t)
)

= ie(r̄+r′)t
[

〈

w(t),
(

d
dt + r′

)

w′(t)
〉

−
〈(

d
dt + r

)

w(t), w′(t)
〉

]

. (3.4)

Since Φ(t) is symplectic, the left hand side of this equation does not depend on t. Assume
now that η = −ir is real. Setting V ′ = V in (3.4) and taking the average over t ∈ [0, 2π],
we find that

G(V, V ) = Gη(w)
def

= −〈〈w, (n+ η)w〉〉 . (3.5)

Definition 3.5. Let A and B be a bounded self-adjoint linear operator on a Hilbert space
H. We say that A is strongly positive, in symbols A >> 0, if there exists a > 0 such that
〈h,Ah〉 ≥ a〈h, h〉 for all h ∈ H. If B −A >> 0, then we also write B >> A or A << B.

Coming back to parametrized systems, we consider the equation Ms(η)ws = 0 asso-
ciated with a curve t 7→ Xs(t), all depending on a parameter s. For simplicity, we restrict
now to affine curves s 7→ Xs. In this case we have

Ms(η) = (n+ η)2 −Xs , Xs = X0 + sD . (3.6)

We assume that X0 and D are self-adjoint bounded linear operators on H.

Lemma 3.6. Assume that D is strongly positive. Assume that Ms0(η0) has an eigenvalue
zero for some η0, s0 ∈ R. Then there exist real analytic functions s̃ : R → R and w̃ : R → H

nonzero, such that w̃(η) ∈ D and Ms̃(η)(η)w̃(η) = 0 for all η ∈ R. Furthermore,

ds̃

dη
= − 2Gη(w̃(η))

〈〈

w̃(η), Dw̃(η)
〉〉 , s̃(η0) = s0 . (3.7)

Moreover, if the eigenvalue zero of Ms0(η0) is simple, then s̃ is unique, and w̃ is unique up
to a constant factor.

Proof. The equation Ms(η)w = 0 is equivalent to the eigenvalue problem

(

D−1/2
[

(n+ η)2 −X0

]

D−1/2
)

g = sg . (3.8)

where g = D1/2w. The existence of the real analytic functions s̃ and w̃ now follows from
Theorem 7.3.9 in [14]. Uniqueness in case of a simple eigenvalue zero follows from the fact
that an analytic function, such as s̃ or 〈w′, w̃(.)〉 for any w′ ∈ H, has only isolated zeros,
unless it is identically zero.

Differentiating the identity Ms̃(η)w̃ = 0 with respect to η, we obtain

[

2(n+ η)− ds̃

dη
D

]

w̃ +
[

(n+ η)2 −X0 − s̃D
]dw̃

dη
= 0 . (3.9)
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After taking the inner product with w̃, this yields

2
〈〈

w̃, (n+ η), w̃
〉〉

−
〈〈

w̃,Dw̃
〉〉ds̃

dη
= 0 . (3.10)

Now we solve for ds̃
dη and use (3.5) to get (3.7). QED

We will use this lemma in situations where the signature Gη(w̃(η)) cannot vanish. In
this case, s̃ is strictly monotone and thus has an inverse s 7→ ηs. From Lemma 3.6 we then
get

d

ds
ηs = −

〈〈

ws,
(

d
dsXs

)

ws

〉〉

2Gηs
(ws)

, Ms(ηs)ws = 0 , (3.11)

where ws = w̃(ηs) and d
dsXs = D. Notice that then Floquet exponents e2πiηs with posi-

tive (negative) signature move (counter)clockwise on the unit circle as the parameter s is
increased. Presumably (3.11) holds for more general curves s 7→ Xs. But we do not need
such a generalization in this paper.

In the following two corollaries, we continue assuming that s 7→ Xs is an affine family
of bounded self-adjoint linear operators on H. But the parameter s is now restricted
to [−1, 1]. Let X be an arbitrary bounded self-adjoint linear operator on H. The flows
associated with Xs and X are denoted by Φs and Φ, respectively.

Corollary 3.7. Assume that X−1 << X << X1. Let Z be a finite subset of the unit circle
S that includes no eigenvalues of Φs(2π) for any s. Assume that for some s, the operator
A = Φs(2π) has the following property: Z is a separating set for A, and all eigenvalues of
A lie on S. Then A = Φ(2π) has the same property.

Proof. By Corollary 3.2, Z is a separating set for the family s 7→ Φs(2π), and all eigen-
values of Φs(2π) for all s lie on the unit circle. Let X r = (1− r)X0 + rX for r ∈ [0, 1]. To
each of these operators X r we associate a family s 7→ X r

s by setting

X r
s = X r +

{

s(X r −X−1) if s ∈ [−1, 0],
s(X1 −X r) if s ∈ [0, 1].

(3.12)

Here, and in what follows, we always assume that (r, s) belongs to R = [0, 1] × [−1, 1].
Notice that X 0

s = Xs and X r
0 = X r. Denote by Φr

s the flow associated with X r
s . Define

f(r, s) to be the distance (on S) between the set Z and the eigenvalue of Φr
s(2π) on S

that is closest to Z. Clearly f is continuous on R. Furthermore, f does not vanish on the
segment r = 0. Thus, by compactness, Z is a separating set for s 7→ Φr

s(2π), if r > 0 is
sufficiently small. Denote by r0 the largest value in [0, 1] such that s 7→ Φr

s(2π) has Z as
a separating set for all r < r0.

Consider r < r0. By using (3.11) for the two affine segments of the curve s 7→ X r
s , we

see that the eigenvalues of Φr
s(2π) move monotonely along S as s increases from −1 to 1,

covering an arc that starts at an eigenvalue of Φ−1(2π) and ends at an eigenvalue of Φ1(2π),
without crossing the set Z. Thus, f(r, .) is bounded from below by min(f(0,−1), f(0, 1)),
which is positive. This extends by continuity to r = r0. Using Proposition 2.9, we conclude
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that Z is a separating set for Φr0
s (2π), and that all eigenvalues of Φr0

s (2π) lie on S. If we
assume that r0 < 1, then f−1((0,∞)) includes a strip (r0 − ε, r0 + ε) × [−1, 1] for some
ε > 0, contradicting the defining property of r0. Thus, r0 = 1, and Corollary 3.7 is proved.
QED

It is possible to deal with situations where not all eigenvalues lie on the unit circle,
but additional conditions are required to avoid off-circle eigenvalues from interfering. The
following covers a special case, where it suffices to include the point 1 in Z.

Corollary 3.8. Assume that X−1 << X << X1. Let Z0 ∋ 1 be a finite subset of the unit
circle S that includes no eigenvalues of Φs(2π) for any s. Assume that for some s, the
operator A = Φs(2π) has the following property: Z0 is a separating set for A, and all
eigenvalues of A lie on the lie on S, except for two simple real eigenvalues in (0, 1)∪ (1,∞).
Then A = Φ(2π) has the same property.

Proof. Consider Z = Z0 ∪ {z−, z+} where z± = cos(ε) ± i sin(ε). By choosing ε > 0
sufficiently small, the assumptions of Corollary 3.8 are still satisfied if Z0 is replaced by Z.
Now we follow the proof of Corollary 3.7, but with the following changes.

It may happen that the eigenvalues of Φr
0(2π) in (0, 1) ∪ (1,∞) approach 1 as r is

increased. With r0 defined as before, consider the possibility that r0 is the largest value
in [0, 1] such that none of the operators Φr

s(2π) with r < r0 has an eigenvalue 1. All
eigenvalues of Φr0

s (2π) in S \ {1} can be bounded away from Z as before. So Φr0
0 (2π) must

have an eigenvalue 1.
Now consider perturbations X̂ = X + tI of X , with |t| > 0 sufficiently small so that

X−1 << X̂ << X1. Define operators X̂ r
s and Φ̂r

s(2π) analogous to X r
s and Φr

s(2π). By
arguments analogous to those used in the proof of Proposition 4.6, we can find a sequence
n 7→ tn 6= 0 converging to zero, such that the operator Φ̂r0

0 (2π) defined with t = tn has
no eigenvalue 1 but two eigenvalues on S \ {1} close to 1. Let r < r0. If we choose t = tn
with n sufficiently large, then Z0 is a separating set for the operators Φ̂r

s(2π). Thus, all
eigenvalues of Φ̂r

0(2π) are bounded away from Z0, uniformly in r < r0 and large n. Taking
n → ∞ and then r → r0, we see that Φr0

0 (2π) cannot have an eigenvalue 1. Now we
proceed as in the proof of Corollary 3.7 to show that r0 = 1.

For reference later on, we remark that Φ(2π) has no eigenvalues in the arc bounded
by z± that includes 1, since Z is a separating set for the family s 7→ Φ1

s(2π). QED

Remark 1. Under the assumption of Corollary 3.7 or Corollary 3.8, if s 7→ λs ∈ S is
a continuous curve of simple eigenvalues for the family s 7→ Φs(2π), that is isolated from
any other eigenvalue for that family, then one of the eigenvalues λs is also an eigenvalue
of Φ(2π). This follows by including extra points in the separating sets.

3.2. Verifying separation

Let X0 be bounded self-adjoint linear operator on H. Let D be a positive self-adjoint
linear operator on H. We extend D to H by setting (Dw)(t) = Dw(t). Then we define
Xs = X0 + sD for all s ∈ [−1, 1].
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Our goal is to show that for some given η ∈ R, none of the operators Ms(η) with
s ∈ [−1, 1] has an eigenvalue zero. To allow for better approximations, we replace the
operator Ms(η) by

M̂s(η) = θMs(η)θ = θ(n+ η)2θ − X̂0 − sD̂ , (3.13)

where θ is some strictly positive operator on H. Here X̂0 = θX0θ and D̂ = θDθ. For
concreteness let us assume that θ−1 is a bounded perturbation of |n|. Then it is clear that
Ms(η) has an eigenvalue zero if and only if M̂s(η) has an eigenvalue zero.

The idea is to approximate X̂0 by a self-adjoint linear operator X̌0 on H for which

M̌s(η) = θ(n+ η)2θ − X̌s (3.14)

is easier to analyze. Here X̌s = X̌0 + sD̂. In our application, M̌s(η) acts trivially outside
some finite dimensional subspace of H, so M̌ is essentially a family of symmetric matrices.
But here we make no such assumption. The first step is to prove a bound

∥

∥X̂0 − X̌0

∥

∥ < C , (3.15)

for some (small) positive constant C > 0. Then we choose appropriate parameter values
−1 ≤ s0 < s1 < . . . < sm = 1 and verify the hypotheses of the following lemma.

Lemma 3.9. With C > 0 satisfying (3.15), assume that M̌sj (η) has no eigenvalue in
[−C,C], and that

(sj − sj−1)
∥

∥D̂
∥

∥ < 2C , (3.16)

for j = 1, 2, . . . ,m. Then none of the operators M̂s(η) with s ∈ [−1, 1] has an eigenvalue
zero.

Proof. First we note that the eigenvalues of M̌s(η) can be organized into a sequence
k 7→ µ̌k(s) with each µ̌k being real analytic on [−1, 1]. Similarly for the corresponding
eigenvectors w̌k(s). This follows e.g. from Theorem 7.3.9 in [14]. A computation analogous
to (3.11) shows that

d

ds
µ̌k(s) = −

〈

w̌k(s), D̂w̌k(s)
〉

〈w̌k(s), w̌k(s)〉
. (3.17)

Thus, the functions µ̌k are decreasing, and

∣

∣µ̌k(sj)− µ̌k(sj−1)
∣

∣ ≤ (sj − sj−1)
∥

∥D̂
∥

∥ < 2C . (3.18)

This shows that none of the curves µ̌k can cross the interval [−C,C], as s increases from
sj−1 to sj . Thus, M̌(η, s) has no eigenvalue in [−C,C] for all s ∈ [−1, 1].

Now we interpolate linearly between X̂s and X̌s for a fixed but arbitrary s ∈ [−1, 1].
By arguments analogous to the ones used above for the interpolation between X̌sj−1

and

X̌sj , we find that

∣

∣µ̂k(s)− µ̌k(s)
∣

∣ ≤
∥

∥X̂s − X̌s

∥

∥ =
∥

∥X̂0 − X̌0

∥

∥ < C . (3.19)
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Such a bound holds for every eigenvalue µ̂k(s) of M̂s(η). Combining this bound with the
fact that |µ̌k(s)| > C, we find that

∣

∣µ̂(s)
∣

∣ ≥
∣

∣µ̌(s)
∣

∣−
∣

∣µ̂(s)− µ̌(s)
∣

∣ > C − C = 0 . (3.20)

This shows that M̂s(η) has no eigenvalue zero, for every s ∈ [−1, 1]. QED

4. The wave equation with periodic forcing

4.1. The flow

In order to motivate our choices, consider a pair (α, u) as described in Theorem 1.1 and
define h = α−2

(

3u2 + κ
)

− c for some constant c ≥ 0. Using the notation v(t) = v(t, .),
the equation (1.5) can be written as

d2

dt2
v(t) = −β2k2v(t)− cv(t)−H(t)v(t) , t ∈ R , (4.1)

where k2 = −∂2x with Dirichlet boundary conditions at x = 0 and x = π, and where
H(t) denotes multiplication by h(t, .). This is an infinite-dimensional version of (2.5), with
X = β2k2+c+H. The vector field X = XH in the corresponding evolution equation (2.1)
is given formally by

XH(t) =

[

0 I
−y2 −H(t) 0

]

, y =
(

β2k2 + c
)1/2

. (4.2)

In this section, we consider the flow ΦH associated with vector fields of this type, where
H(t) need not be a multiplication operator.

We start by choosing appropriate spaces for the initial conditions at t = 0. Given any
real number ρ ≥ 0, denote by Hρ the Hilbert space of functions v on R,

v(x) =
∞
∑

k=1

vk sin(kx) ,
∞
∑

k=1

e2ρk|vk|2 <∞ , (4.3)

equipped with the inner product

〈v, v′〉ρ =

∞
∑

k=1

e2ρk vk v
′
k , v, v′ ∈ Hρ . (4.4)

On the space H2
ρ of all pairs V =

[

v
ν

]

with components in v, ν ∈ Hρ we use an inner
product analogous to (2.8). Notice that, if ρ is positive, then the functions in Hρ extend
to analytic functions in the strip |Im (x)| < ρ.
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For the system considered in Theorem 1.2, the operators H(t) are as described at the
beginning of this section. The function h = α−2

(

3u2+κ
)

− c is 2π-periodic, even, and real
analytic in both variables. So in this case, there exists ̺ > 0 such that the following holds
whenever 0 ≤ ρ < ̺.

Property 4.1. t 7→ H(t) is a 2π-periodic real analytic family of bounded self-adjoint linear
operator on H0. If 0 < ρ < ̺ then the restriction to Hρ defines a real analytic family of
bounded linear operators on Hρ.

In what follows, we allow t 7→ H(t) to be any family with this property. But we always
assume that 0 ≤ ρ < ̺.

It is convenient to perform a (formally symplectic) change of variables

U =
[

y1/2 0

0 y−1/2

]

. (4.5)

The vector field in the new coordinates is given by

X̃H = UXHU
−1 =

[

0 y
−y− H̃ 0

]

, H̃ = y−1/2Hy−1/2 . (4.6)

The natural domain for the operators X̃H(t) is (y−1Hρ)
2.

Proposition 4.2. Let 0 ≤ ρ ≤ ρ′ < ̺. For each t ∈ R, the time-t map (with initial
time zero) for the vector field X̃H defines a bounded linear operator Φ̃X(t) from H2

ρ′ to

H2
ρ. The operator norm of Φ̃X(t) grows at most exponentially with |t|. If ρ < ρ′ then the

flow t 7→ Φ̃X(t) defines a C∞ function from R to the space L
(

H2
ρ′ ,H2

ρ

)

of bounded linear

operators from H2
ρ′ to H2

ρ.

Proof. To simplify notation we first consider ρ′ = ρ. The vector field X̃H for H = 0
generates the continuous group of unitary operators

Φ̃0(t) = etX̃0 =

[

cos(ty) sin(ty)
− sin(ty) cos(ty)

]

(4.7)

on the space H2
ρ. The time-t maps Φ̃H(t) for the vector field X̃H , with initial time 0, can

be obtained by solving the Duhamel equation

Φ̃H(t) = Φ̃0(t) +

∫ t

0

Φ̃0(t− s)
[

X̃H(s)− X̃0

]

Φ̃H(s) ds . (4.8)

Using the operators P1 = [1 0] and P2 = [0 1] from H2
ρ′ to Hρ, this equation can also be

written as

Φ̃H(t) = Φ̃0(t)−
∫ t

0

Φ̃0(t− s)P ∗
2 H̃(s)P1Φ̃H(s) ds . (4.9)
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Multiplying both sides of this equation from the left by Φ̃0(−t), we obtain

A(t) = −
∫ t

0

B(s)
[

I +A(s)
]

ds , (4.10)

where

A(t) = Φ̃0(−t)Φ̃H(t)− I , (4.11)

and
B(s) = Φ̃0(−s)P ∗

2 H̃(s)P1Φ̃0(s)

=

[

− sin(sy)H̃(s) cos(sy) − sin(sy)H̃(s) sin(sy)
cos(sy)H̃(s) cos(sy) cos(sy)H̃(s) sin(sy)

]

.
(4.12)

Notice that each B(s) is a bounded linear operator on H2
ρ. Their operator norms satisfy

a bound ‖B(s)‖ρ ≤ b that is independent of s. Thus, the equation (4.10) for A(.) can be
solved by iteration,

A(t0) =
∞
∑

n=1

(−1)n
∫ t0

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtnB(t1)B(t2) · · ·B(tn) , (4.13)

and the solution satisfies a bound ‖A(t)‖ρ ≤ eb|t| − 1. When combined with (4.11), this
shows that, if ρ′ = ρ, then ΦH(t) belongs to L

(

H2
ρ′ ,H2

ρ

)

and the operator norm of ΦH(t)

grows at most exponentially with |t|. The same holds if ρ′ > ρ since H2
ρ′ is continuously

embedded in H2
ρ, with ‖V ‖ρ ≤ ‖V ‖ρ′ for every V ∈ H2

ρ′ .
Assume now that ρ′ > ρ. From the explicit expressions (4.7) and (4.12) it is clear that

Φ̃0 and B are of class C∞ as curves in L
(

H2
ρ1
,H2

ρ2

)

, whenever ρ′ ≥ ρ1 > ρ2 ≥ ρ. Using the
equation (4.10) and the product rule of differentiation, we see that the same holds for the
curve A, as well as for the curve t 7→ Φ̃H(t) = Φ̃0(t)[I +A(t)]. This completes the proof of
Proposition 4.2. QED

4.2. The spectrum

Notice that H̃(s) is compact for each s, due to the factors y−1/2 in (4.6). Thus, B(s)
is compact for each s. Using the equation (4.10) and Theorem 1.3 in [15] about strong
integrals of compact operators, we find that A(t) is compact for all t. This in turn implies
that Φ̃H(t)−Φ̃0(t) = Φ̃0(t)A(t) is compact for all t. In particular, the essential spectrum of
Φ̃H(2π) agrees with the essential spectrum Σe of Φ̃0(2π). This follows e.g. from Theorem
4.5.35 in [14]. Notice that Σe is the set of all accumulation points of the sequence k 7→ e2πiyk

for k ∈ Z.
We are interested in the spectral stability of Φ̃H(2π). Since Σe is included in the unit

circle, it suffices to consider points λ in the spectrum of Φ̃H(2π) that do not belong to Σe.
The question is whether the results depend on the choice of the domain parameter ρ. The
following can be applied e.g. to the operator Φ̃H(2π) acting on X = Hρ and X ′ = Hρ′

with 0 ≤ ρ ≤ ρ′ < ̺.
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Proposition 4.3. Let X ′ and X be Banach spaces, with X ′ being continuously embedded
and dense in X. Let L be a bounded linear operator on X that leaves X ′ invariant and
defines a bounded linear operator L′ on X ′. Let λ be a point in the spectrum of L. Assume
that the essential spectra of both L and L′ are countable and do not include λ. Then λ
is an eigenvalue for both L and L′. The corresponding spectral subspaces Eλ ⊂ X and
E′

λ ⊂ X ′ are finite-dimensional and they agree.

Proof. Under the given assumption, λ is an isolated eigenvalue of L with finite (algebraic)
multiplicity. This follows e.g. from Theorem 4.5.33 in [14]. Similarly, if λ belongs to the
spectrum of L′, then λ is an isolated eigenvalue of L′. Denote by Pλ the Riesz projection
in X onto the spectral subspace Eλ associated with the eigenvalue λ of L. It admits
a representation of the form (2.11), and the integration contour γ can be chosen in the
resolvent set of both L and L′. Thus, the restriction of Pλ to X ′ defines a bounded
projection onX ′. Given a fixed but arbitrary nonzero y ∈ Eλ, pick a sequence n 7→ xn ∈ X ′

such that xn → y in X. Let yn = Pλxn. Then yn → y for the norm in X. But yn belongs
to E′ = PλX

′ for all n, and since all norms on E′ are equivalent, the sequence n 7→ yn
converges for the norm in X ′, and the limit has to be y. Since y ∈ Eλ was arbitrary,
this show that Eλ ⊂ E′. In particular, λ is an eigenvalue of L′. Since X ′ is continuously
embedded in X we have E′

λ = E′ ⊂ Eλ. Thus, E
′
λ = Eλ as claimed. QED

Assume that 0 ≤ ρ ≤ ρ′ < ̺. Applying Proposition 4.3 to the operator Φ̃H(2π) acting
on X = Hρ and on X ′ = Hρ′ , we obtain the following.

Lemma 4.4. The essential spectrum of Φ̃H(2π) is the set Σe of all accumulation points of
the sequence k 7→ e2πiyk for k ∈ Z. The spectrum of Φ̃H(2π) outside Σe consists of eigen-
values with finite multiplicities, and the corresponding spectral subspaces are independent
of ρ.

4.3. Borderline stability

The main result of this subsection concerns a borderline situation between (spectral) sta-
bility and instability. This situation has to be excluded in the case α = 14

11 described in
Theorem 1.2.

Formally, we have a one-to-one correspondence between nonzero solutions w of the
equation

[

(

d
dt + r

)2
+ β2k2 + c+H(t)

]

w(t) = 0 , (4.14)

and eigenvectors V0 of ΦH(2π) with eigenvalue e2πr. The maps V0 7→ w and w 7→ V0 are
described before and after (3.1). In order to make this correspondence more precise, we
need to discuss regularity properties.

To any curve t 7→ w(t) in H0 we can associate a function w♭ of two variables by setting
w♭(t, .) = w(t) for all t. If t 7→ H(t) is a family of linear operators on H0 then we define
H♭w♭ = (Hw)♭. In what follows we will identify w♭ with w and H♭ with H.
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Consider the space H = L2
(

[0, 2π] × [0, π]
)

. A function w belongs to H if and only if
it admits a Fourier series

w =
∞
∑

n=−∞

∞
∑

k=1

wn,kEn,k , En,k(t, x) = eint sin(kx) , (4.15)

that converges in L2. Given any nonnegative integer m, we defined H
′
m to be the space

of all function w ∈ H with the property that the function (|n| + |k|)mw with Fourier
coefficients (|n|+ k)mwn,k belongs to H.

If we set F = c+H and η = −ir, then the equation (4.14) can be written as

MF (η)w = 0 , MF (η) = (n+ η)2 − β2k2 − F . (4.16)

Below we will also consider the operator M0(η), which is defined by setting F = 0 in the
above equation. But, unless stated otherwise, we always assume that F = c+H.

We consider MF as a densely defined linear operator on H. Its domain Dη is the set
of all functions w ∈ H with the property that MF (η)w belongs to H. A more explicit
description will be given below.

Assume now that H satisfies Property 4.1, and that HH
′
m ⊂ H

′
m for every m ≥ 0.

Lemma 4.5. Let β be a positive rational number. Then Σe is a finite set. Let η be a
real number such that λ = e2πiη does not belong to Σe. If λ is an eigenvalue of Φ̃(2π)
with eigenvector Ṽ0 ∈ H2

0, then the corresponding function w = w(t, x) belongs to Dη and
satisfies MF (η)w = 0. Conversely, if w ∈ Dη satisfies the equation MF (η)w = 0, then the

corresponding function Ṽ0 belongs to H2
0 and is an eigenvector of Φ̃(2π) with eigenvalue λ.

Proof. Write β = q/p with q and p coprime positive integers. Then it is clear that Σe is
a finite set, consisting of p-th roots of unity.

Assume that λ is an eigenvalue of Φ̃(2π) with eigenvector Ṽ0 ∈ H2
0. By Lemma 4.4,

this eigenvector belongs to H2
ρ for every positive ρ < ̺. And Proposition 4.2 implies that

t 7→ Ṽ (t) is a C∞ curve of function in H2
ρ. So it is clear that w belongs to Dη and satisfies

the equation (4.16).
Before proving the converse, we note that w ∈ H belongs to the domain Dη of MF (η)

is and only if the series

M0(η)w =

∞
∑

n=−∞

∞
∑

k=1

wn,kµn,k(η)En,k , µn,k(η) = (n+ η)2 − β2k2 , (4.17)

converges in H, where wn,k are the Fourier coefficients of w. Notice that each En,k is an
eigenfunction of M0(η) and that µn,k(η) is the corresponding eigenvalue. Under the given
assumption on η, these eigenvalues satisfy a bound

|µn,k(η)| = p−2
∣

∣(pn+ pη + qk)(pn+ pη − qk)
∣

∣ ≥ Cη

(

|n|+ k
)

, (4.18)

with Cη > 0. So in particular, M0(η) has a compact inverse.
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Assume now that the equation MF (η)w = 0 has a nonzero solution w ∈ Dη. Then
M0(η)w − Fw = 0 and thus

w =M0(η)
−1Fw . (4.19)

The bound (4.18) implies that the right hand side of (4.19) belongs to H
′
m+1 whenever

w ∈ H
′
m. Thus, w belongs to H

′
m for all m ≥ 0. So w is of class C∞. It is now clear that

the corresponding function Ṽ0 belongs to H2
0 and is an eigenvector of Φ̃H(2π). QED

Proposition 4.6. Let β be positive and rational. Assume that 1 is an isolated eigenvalue
of Φ̃H(π). Then for η > 0 sufficiently close to zero there exists s = s(η) such that Φ̃H+s(2π)
has an eigenvalue e2πiη. Furthermore s(η) → 0 as η → 0.

Proof. We use the same notation as in the proof of Lemma 4.5.
Since the eigenvalue 1 is isolated, there exists some open interval J containing zero

such that e2πiη 6∈ Σe whenever η ∈ J . From (4.18) we see that that if η, η′ ∈ J then

|µn,k(η
′)− µn,k(η)| = |(2n+ η′ + η)(η′ − η)| ≤ C ′

η|µn,k(η)| , (4.20)

for some C ′
η > 0. This shows that Dη = D0 for all η ∈ J . This extends trivially to all η

in some complex open neighborhood of J . Clearly M0(η) : Dη → H is a closed Fredholm
operator. Since F = c + H is bounded and compact relative to M0(η), the operator
MF (η) : Dη → H is closed and Fredholm as well. Thus, MF (η) has compact resolvents.
Furthermore, the family η 7→MF (η)w for any w ∈ D0 is analytic in an open neighborhood
of J . Notice also that MF (η) is Hermitian for η ∈ R. Thus, given that MF (0) has an
eigenvalue zero, there exists a real analytic function s on J , with s(0) = 0, such that s(η)
is an eigenvalue of MF (η) for each η ∈ J . This follows e.g from Theorem 7.3.9 in [14].
Since an eigenvector w of MF (η) with eigenvalue s satisfies MF+s(η)w = 0, the assertion
follow. QED

5. Reduction to finite dimensions

5.1. Finite-dimensional approximations

Here we approximate the operators H(t) by “truncated” operators Hℓ(t) that act trivially
outside an ℓ-dimensional subspace of H0. Suppose that we want to prove spectral stability
for ΦH . Our strategy is to look for a family of the form Xs = β2k2 + c +HK + sD that
can be shown to have a separating partition, and which satisfies HK −D << Hℓ << HK +D
for all ℓ > K. Then we take ℓ→ ∞.

For ℓ ≥ 1 consider the orthogonal projections Pℓ on H0 defined by the equation

(Pℓv)(x) =

ℓ
∑

k=1

vk sin(kx) , v ∈ H0 , x ∈ R , (5.1)
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where v1, v2, . . . are the coefficients in the sine series (4.3) of v.
To a family t 7→ H(t) of bounded self-adjoint operators on H0 we associate a family

t 7→ Hℓ(t) by setting Hℓ(t) = PℓH(t)Pℓ. Assume now that H has the Property 4.1.

Proposition 5.1. Let 0 ≤ ρ < ̺. Then Φ̃Hℓ
(t) → Φ̃H(t) in L(Hρ), uniformly in t on

bounded subsets of R.

Proof. We adopt the notation from the previous section but include a subscript ℓ whenever
we use the family Hℓ in place of H.

Clearly, each family Hℓ has the Property 4.1. Furthermore, H̃ℓ(s) → H̃(s) in norm,
uniformly in s ∈ R. Then Bℓ(s) → B(s) in norm, uniformly in s ∈ R. Using (4.13), we
find that Aℓ(t) → A(t) in norm, uniformly on bounded subsets of R. Combining this with
(4.11) proves the claim. QED

Using Proposition 5.1 together with the contour-integral formula (2.11) for spectral
projections, we obtain the following.

Corollary 5.2. Let λ be an eigenvalue Φ̃H(2π) that lies outside Σe. Then for every ℓ
there exists an eigenvalue λℓ of Φ̃Hℓ

(2π) such that λℓ → λ as ℓ→ ∞.

Another consequence of Proposition 5.1 is that Φ̃H(t) is symplectic for each t, as an
operator on H0. It should be clear what symplecticity means in the current setting.

Notice that the restriction of Hℓ(t) to (I−Pℓ)H0 is identically zero. Correspondingly,
the operator Φ̃Hℓ

(2π) has a set of trivial eigenvalues λk and λk that lie on the unit circle
and are given by

λk = e2πiyk , yk =
√

β2k2 + c , (5.2)

for k > ℓ. The corresponding eigenvectors are Vk =
[

1
i

]

sin(k.) and Vk. The set of
accumulation points for these eigenvalues is precisely the essential spectrum Σe of the
operator Φ̃H(2π). Thus, we have the following.

Corollary 5.3. For each ℓ denote by ΦHℓ
the flow for the vector field XHℓ

restricted to
(PℓH0)

2. Let λ be an eigenvalue Φ̃H(2π) that lies outside Σe. Then for every ℓ there exists
an eigenvalue λℓ of ΦHℓ

(2π) such that λℓ → λ as ℓ→ ∞.

In what follows we ignore the trivial action on (I− Pℓ)H0 and regard Hℓ as a family
of operators on PℓH0. The corresponding space of 2π-periodic curves w : R → PℓH0, with
the inner product (3.3), will be denoted by Hℓ.

Consider the basis in PℓH0 consisting of the vectors ek = sin(k.) for k = 1, 2, . . . , ℓ.
In this basis, a linear operator T on Hℓ is represented by a matrix Tk,j = (Tej)k. As a
measure for the size of the k-th row of this matrix we define

Rk(T ) =
ℓ

∑

j=1

|Tk,j | . (5.3)

Let now K ≥ 1 be fixed. In what follows, we always assume that ℓ > K. Our goal is to
estimate the difference Hℓ −HK in a way that is uniform in ℓ.
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To this end, assume that there exist positive constants δ, d1, d2, d3, . . . such that

dk > Rk

(

Hℓ(t)−HK(t)
)

+ δ , (5.4)

for all ℓ ≥ k. Let D be the linear operator on PℓH0 whose matrix is diagonal, with entries
Dk,k = dk.

Proposition 5.4. As operators on Hℓ we have HK −D << Hℓ << HK +D.

Proof. Let d′k = dk − δ, and let D′ be the diagonal operator on PℓH0 whose matrix is
diagonal, with entries D′

k,k = d′k. Given any t ∈ R, define T = Hℓ(t)−HK(t). By (5.4) we
have

(D′ ± T )k,k = d′k ± Tk,k ≥ d′k − |Tk,k| >
∑

j 6=k

|Tk,j | =
∑

j 6=k

|(D′ ± T )k,j | . (5.5)

This means that the matrix for D′ ± T is diagonally dominated, with positive diagonal
entries. By the Levy-Desplanques theorem, this implies that the operator D′±T is positive
definite. Thus,

HK(t)−D′ < Hℓ(t) < HK(t) +D′ . (5.6)

Since t ∈ R was arbitrary, we have

〈〈w, (HK −D′)w〉〉 < 〈〈w,Hℓw〉〉 < 〈〈w, (HK +D′)w〉〉 , (5.7)

for every w ∈ Hℓ. This proves the claim. QED

For reference later on let us compute the trivial Floquet multipliers associated with
the operator HK,s = HK + sD. For s = 0 the eigenvalues of ΦHK,s

(2π) are given by (5.2)

for k > K. For arbitrary s ∈ [−1, 1] the trivial eigenvalues are λk,s and λk,s, where

λk,s = e2πiηk,s , ηk,s = −n+
√

β2k2 + c+ sdk . (5.8)

Here, n can be any integer. Recall that k > K, and k ≤ ℓ if we restrict the flow to (PℓH0)
2.

Choosing for n the integer part of βk and denoting by ⌊βk⌋ the fractional part of βk, we
have

ηk,s = ⌊βk⌋+ c+ sdk
2βk

(

1 + ǫk(c+ sdk)
)

, ǫk(x) = O
(

k−2x
)

. (5.9)

An explicit computation of G(Vk, Vk) shows that the Krein signature of λk,s is negative,
while the Krein signature of λk,s is positive. Alternatively, this can be seen from the
dependence of these eigenvalues on the parameter s, using (3.11).

5.2. Application to the wave equation

Here we will state two technical lemmas that, together with Theorem 1.1, are shown to
imply Theorem 1.2. The proof of Theorem 1.1 will be described in Section 6.

First a definition: for any real analytic function h of the form

h(t, x) =
∑

n,k

hn,k cos(nt) cos(kx) , (5.10)
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we define ‖h‖ =
∑

n,k |hn,k|. This applies in particular to any product of two functions in
B; and in this case, we have hn,k = 0 unless n and k are both even.

Now back to the setting of Theorem 1.2. To a given value α ∈
{

5
4 ,

14
11

}

we associate
several quantities as follows. Denote by u the solution of the beam equation (1.4) described
in Theorem 1.1. Our goal is to apply the steps described so far with h = α−2

(

3u2+κ
)

− c.
But it is convenient to first consider a simpler function h. To be more precise, we now
choose a triple (c, h, δ) where c and δ are positive real numbers, and where h is a Fourier
polynomial of the form (5.10) that satisfies a bound

∥

∥h−
[

α−2
(

3u2 + κ
)

− c
]∥

∥ < δ . (5.11)

In addition, we require that hn,k = 0 unless n and k are both even. Of course we choose
c close to the average value of α−2

(

3u2 + κ
)

and h close to α−2
(

3u2 + κ
)

− c. So δ is in
fact very small.

Define H to be the operator “pointwise multiplication by h” on H. The operator
“pointwise multiplication by h(t, .)” on H0 is denoted by H(t). Here, H0 and H are the
Hilbert spaces defined in Section 4. To H we associate a sequence of approximants Hℓ as
described in Section 5.

Besides (c, h, δ) we also choose a positive integerKα. In what follows, ℓ always denotes
a fixed but arbitrary integer larger thanKα. We regardHKα

(t) andHKα
as linear operators

on PℓH0 and Hℓ, respectively.

Lemma 5.5. If α = 5
4 , then the operator ΦHKα

(2π) has no eigenvalue off the unit circle.
If α = 14

11 , then the operator ΦHKα
(2π) has exactly two real positive eigenvalues off the

unit circle. Furthermore, all eigenvalues of all these operators are semisimple.

We remark that the two off-circle eigenvalues for α = 14
11 appear in the odd subspace,

as defined below.
Recall that hn,k = 0 unless n and k are both even. This simplifies our task in the

following way. For σ ∈ {0, 1} denote by Hσ
0 the subspace of H0 consisting of all functions

v ∈ H0 whose coefficients vk in the sine series (4.3) vanish unless k ≡ σ (mod 2). Similarly,
denote by H

σ the subspace of H consisting of all functions w ∈ H whose coefficients wn,k

in the series (4.15) vanish unless k ≡ σ (mod 2). Due to the above-mentioned property of
h, the subspaces Hσ

0 and H
σ are invariant under the operators H(t) and H, respectively.

So in particular, the time-t maps Φ̃H(t) leave the spaces (Hσ
0 )

2 invariant. As a result, the
spectral analysis for Φ̃H(t) splits into two separate and independent tasks: in one step
we can restrict all operators to the even (σ = 0) subspaces, and in the other step we can
restrict to the odd (σ = 1) subspaces.

The following lemma refers to some quantities that were introduced in Subsection 3.2.
Here we consider X0 = β2k2+c+HKα

. For the operator θ that appears in (3.14) we choose
θ = (|n|+ |k|)−1.

Lemma 5.6. Let α ∈
{

5
4 ,

14
11

}

and σ ∈ {0, 1} be fixed but arbitrary. Consider the
restriction to the subspaces of parity σ, as described above. Let (c, h, δ) be as described
earlier. Then there exists a sequence of real numbers dk < c satisfying (5.4), a constant
C > 0, a self-adjoint linear operator X̌0 on HKα

satisfying (3.15), and a separating set Z
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for ΦHKα−D(2π) that includes 1, such that the following holds. For each value η ∈ [0, 1)
defining a primary (as described below) point e2πiη in Z, there exist m > 0 and real
numbers −1 = s0 < s1 < . . . < sm = 1, such that the operator M̌sj (η) has no eigenvalue
in [−C,C], and such that (3.16) holds, for j = 1, 2, . . . ,m.

Our proof of Lemma 5.5 and Lemma 5.6 is computer-assisted and will be described
in Section 6.

Remark 2. Lemma 5.5 is formulated for a “computationally minimal” version of our
proof, where the claims of that lemma are verified not for HKα

directly, but for HKα
−D.

Then Lemma 5.6 implies that the same holds forHKα
. If Lemma 5.5 is verified directly, then

one finds that all eigenvalues of ΦHKα
(2π) are simple, and that the off-circle eigenvalues for

α = 14
11 are λ = 1.06 . . . and 1/λ. In a “computationally extended” version of our proof, we

verify an analogue of Lemma 5.5 for both HKα
±D. This yields accurate bounds on many

on-circle eigenvalues of Φ̃(2π) via the method described in Remark 1. The eigenvalues
of ΦHKα+D(2π) are close enough to those of ΦHKα−D(2π) that the difference is barely
noticeable at the resolution of Figures 1 and 2. We do not know, however, whether the
off-circle eigenvalues of Φ̃(2π) for α = 14

11 lie between the corresponding eigenvalues of
ΦHKα±D(2π).

By “primary” points in Z we mean the following. Z defines a partition of the unit
circle into arcs. By assumption, Z is a separating set for the operator A = ΦHKα−D(2π),
so each arc Λ can be assigned an signature: the Krein signature of the eigenvalues of A
that lie in Λ. We say that a point in Z is primary (for A) if the adjacent arc in the
(counter)clockwise direction has a negative (positive) signature.

For a given pair (α, σ) as described in Lemma 5.6, the set of non-primary point in
Z includes all values ⌊βk⌋, and all values 1 − ⌊βk⌋ different from 1, as k ranges over the
integers k > K with parity k ≡ σ (mod 2). These are the accumulation points (as k → ∞
with ℓ ≥ k) of the trivial eigenvalues e2πiηk,s and e2πi(1−ηk,s) described in (5.8) and (5.9).
Since dk < c by assumption, the eigenvalues of opposite signature accumulate at a given
point from opposite sides, independently of the parameter value s ∈ [−1, 1].

In this context, let us add that 1 is not an accumulation point for the trivial eigenvalues
when α = 14

11 and σ = 1. In this case β = 11
16 , and no odd multiple of β can be an integer.

Based on the two lemmas above, and on Theorem 1.1, we can now give a

Proof of Theorem 1.2. Consider a fixed α ∈
{

5
4 ,

14
11

}

and σ ∈ {0, 1}. Let Z ⊂ S be
the set described in Lemma 5.6. The connected components of S \Z will be referred to as
arcs. Let K = Kα. Define Xs = β2k2 + c+HK + sD, and denote by Φs the corresponding
flow. Here, and in what follows, we always assume that s ∈ [−1, 1].

Let z = e2πiy be a point in Z, with 0 ≤ y < 1. If z is a primary point, then by
Lemma 5.6 and Lemma 3.9, none of the operators Ms(y) has an eigenvalue zero. So
in this case, none of the operators Φs(2π) has z as an eigenvalue. This follows from
Proposition 3.4. Consider now an eigenvalue curve s 7→ λs = e2πiηs for the family s 7→
Φs(2π), obtained by integrating (3.11), starting at s = −1. By Lemma 3.6, the curve
s 7→ ηs is real analytic as long as Gηs

(ws) does not vanish, and by Proposition 2.9, this
holds as long as λs stays in a single arc. Clearly λs never meets a primary point. And
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by the definition of a primary point, it is impossible to meet a non-primary point before
meeting a primary point, as s is increased. Thus, the curve stays in a single arc. This
shows that Z is a separating set for the entire family s 7→ Φs(2π).

We first prove the claim in Theorem 1.2 for the flow defined by h instead of α−2
(

3u2+

κ
)

− c. By Proposition 5.4 we have HK −D << Hℓ << HK +D for all ℓ > K. Thus, we can
use Corollary 3.7 or Corollary 3.8 to conclude that that Z is a separating set for ΦHℓ

(2π).
Furthermore, the eigenvalues of ΦHℓ

(2π) are all on the unit circle, except for two simple
real eigenvalues in (0, 1) ∪ (1,∞) in the case (α, σ) =

(

14
11 , 1

)

. Now we take the limit

ℓ → ∞ and use Corollary 5.3 to conclude that all eigenvalues of Φ̃H(2π) lie on the unit
circle, except in the following case.

Consider (α, σ) =
(

14
11 , 1

)

. In this case, all but two eigenvalues (counting multiplicities)

of Φ̃H(2π) must lie on the unit circle. These eigenvalues are all bounded away from 1. This
follows e.g. from the fact (see the remark at the end of the proof of Corollary 3.8) that the
operators ΦHℓ

(2π) have no eigenvalues in some fixed open neighborhood of 1 in S. The
remaining two eigenvalues lie on (0,∞). Assume for contradiction that 1 is an eigenvalue
of Φ̃H(2π).

Consider small perturbation Hs = H + sI of H and the corresponding approximants
Hs

ℓ . If s 6= 0 is chosen sufficiently close to zero, then HK − D << Hs
ℓ << HK + D for all

ℓ > K. This follows from the fact that Proposition 5.4 holds for any choice of δ > 0 in
(5.4). By Proposition 4.6 we can find a sequence n 7→ sn 6= 0 converging to zero, such
that the operator Φ̃Hs defined with s = sn has all of its eigenvalues in S \ {1}. Here
we have used that the eigenvalue 1 of Φ̃H(2π) has multiplicity 2. Now we can choose n
sufficiently large such that the inequality HK −D << Hs

ℓ << HK +D holds, and such that
all eigenvalues of ΦHs

ℓ
(2π) lie in S \ {1}, if ℓ > K is sufficiently large. But by Corollary 3.8

this is impossible, given that ΦHK
(2π) has two simple eigenvalues in (0, 1) ∪ (1,∞), as

stated in Lemma 5.5. So Φ̃H(2π) must have two eigenvalues in (0, 1)∪ (1,∞). This proves
the analogue of Theorem 1.2 for the flow defined by h.

Consider now the function ĥ = α−2
(

3u2 + κ
)

− c. First we note that u ∈ B is

real analytic on R2. Thus, the family t 7→ Ĥ(t) has the Property 4.1. The condition
ĤH

′
m ⊂ H

′
m required by (and described before) Lemma 4.5 is clearly satisfied as well, for

any m ≥ 0.
Let ℓ 7→ Ĥℓ the sequence of approximants associated with Ĥ. Below we will show

that
HK −D << Ĥℓ << HK +D , (5.12)

for all ℓ > K. This bound allows us to repeat the arguments above, with Ĥℓ in place of
Hℓ, and the proof of Theorem 1.2 will be complete.

By (5.11) we can find a real number r such that ‖ĥ−h‖ < r < δ . Consider the space of
all real analytic functions (5.10), equipped with the norm ‖.‖ defined after (5.10). Denote
by b the completion of this space. Then b is a Banach algebra. So the operator norm of
Ĥ −H : b → b is less than r. Regarding Ĥ −H as an infinite matrix, it is not hard to see
that the operator norm of Ĥℓ −Hℓ : b → b is less than r as well. Thus, the spectral radius
of Ĥℓ −Hℓ is less than r, implying that

−rI << Ĥℓ −Hℓ << rI , (5.13)
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as operators on Hℓ. Now we use again the fact that Proposition 5.4 holds for any choice
of δ > 0 in (5.4). This allows us to replace D by D − rI and conclude that

HK − (D − rI) << Hℓ << HK + (D − rI) . (5.14)

Combining this bound with (5.13) yields (5.12), as claimed. This completes the proof of
Theorem 1.2. QED

6. The remaining proofs

6.1. The beam equation

In order to solve the equation (1.4) we first rewrite it as a fixed point problem:

u = Fα(u)
def

= −L−1
α u3 , Lα = α2∂2t + ∂4x + κ . (6.1)

For the domain of Fα we choose one of the following spaces Bρ. Denote by P the span of all
functions (t, z) 7→ cos(nt) sin(kx) on R2, with n ≥ 0 and k ≥ 1. Given a pair ρ = (ρ1, ρ2)
of positive real numbers, denote by A◦

ρ the closure of P with respect to the norm

‖u‖ρ =
∑

n,k

|un,k|(1 + ρ1)
n(1 + ρ2)

k , u(t, x) =
∞
∑

n=0

∞
∑

k=1

un,k cos(nt) sin(kx) . (6.2)

The functions in A◦
ρ extend analytically to the complex domain |Im t| < log(1 + ρ1) and

|Imx| < log(1 + ρ2). The subspace of all functions u ∈ A◦
ρ whose Fourier coefficients un,k

vanish whenever nk is even will be denoted by Bρ. Clearly u3 belongs to Bρ whenever u
does. And we will see below that Lα has a bounded inverse L−1

α : Bρ → Bρ for the values
of α considered in Theorem 1.1.

In order to solve the fixed point problem for Fα, we first determine an approximate
fixed point u0 and write u = u0 + Ah, where A is a suitable linear isomorphism of Bρ.
Then u is a fixed point of Fα if and only if h is a fixed point of the map Nα defined by

Nα(h) = Fα(u0 +Ah)− u0 + (I−A)h . (6.3)

By choosing A to be an approximate inverse of I − DFα(u0) we can expect Nα to be a
contraction near u0.

Given r > 0 and u ∈ Bρ, denote by Br(u) the open ball of radius r in Bρ, centered at
u. Theorem 1.1 is proved by verifying the following bounds.

Lemma 6.1. For each α ∈
{

5
4 ,

14
11

}

there exists a pair ρ of positive real numbers, a Fourier
polynomial u0 ∈ Bρ, a linear isomorphism A : Bρ → Bρ, and positive constants K, δ, ε
satisfying ε+Kδ < δ, such that for every α ∈ Rκ the map Nα defined by (6.1) and (6.3)
is analytic on Bδ(0) and satisfies

‖Nα(0)‖ρ < ε , ‖DNα(h)‖ρ < K , h ∈ Bδ(0) . (6.4)
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Based on this lemma we can now give a

Proof of Theorem 1.1. Lemma 6.1, together with the contraction mapping principle,
implies that for each α ∈

{

5
4 ,

14
11

}

the map Nα has a unique fixed point h∗ ∈ Bδ(0). The
corresponding function u∗ = u0 +Ah∗ is a fixed point of Fα and thus solves the equation
(1.4) as claimed. QED

Our proof of Lemma 6.1 is computer-assisted. It is essentially the same as the proof
of Lemma 3.1 in [12], but simpler, since we only consider rational values of α here. The
operator Lα used in [12] is the same as (6.1) but with κ = 0. The eigenvalues of Lα are
given by Ln,k = −α2n2 + k4 + κ. Since −α2n2 + k4 takes on both positive and negative
values, we cannot use the bounds given in [12]. Instead we use the following.

For r, s ∈ R define r ∨ s = max(r, s) and |⌈s⌋| = dist(s,Z).

Proposition 6.2. Let α = p/q, with p and q coprime positive integers that are not both
odd. Assume that there exists δ > 0 such that

p
∣

∣

⌈

α−1c1
⌋∣

∣ ≥ δ , 1− 1
18κq ≥ δ , (6.5)

where c1 =
√
1 + κ. Then for all odd positive integers n and k,

|Ln,k| ≥ α2p−2
[(

qk2
)

∨ (pn)− δ
]

δ . (6.6)

Proof. The eigenvalues of α−2Lα can be written as

α−2Ln,k = p−2
[

q2k4c2k − p2n2
]

, c2k = 1 + k−4κ . (6.7)

We will need the following two bounds. If k = 1 then

∣

∣qk2ck − pn
∣

∣ = |qc1 − pn| = p
∣

∣α−1c1 − n
∣

∣ ≥ p
∣

∣

⌈

α−1c1
⌋∣

∣ ≥ δ . (6.8)

And for k ≥ 3 odd we have

∣

∣qk2ck − pn
∣

∣ ≥
∣

∣qk2 − pn
∣

∣− qk2(ck − 1) ≥ 1− 1
18κq ≥ δ . (6.9)

Now we use the fact [12] that
∣

∣r2 − s2
∣

∣ ≥ (2(r∨ s)− δ)δ whenever |r− s| ≥ δ with r, s > 0.
When applied to the difference of squares in (6.7), it yields

α−2|Ln,k| ≥ p−2
[(

qk2ck
)

∨ (pn)− δ
]

δ , (6.10)

which implies (6.6). QED

This estimate is used (in the procedure Fouriers2.Beam.InvLinear) to estimate
truncation errors in the Fourier series for L−1

α v with v ∈ Bρ. The remaining parts of
the proof of Lemma 6.1 are essentially identical to those in [12]. We refer to [12] for a
description and to [13] for the details of the proof. Some general aspects are described
below.
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6.2. Enclosures and bounds

Our proof of Lemmas 6.1, 5.5, and 5.6 consists in reducing these lemmas to successively
simpler propositions, until the claims are trivial numerical statements that can be verified
by a computer. This part of the proof is written in the programming language Ada [17]
and can be found in [13]. Any description here is necessarily incomplete. The main steps
will be discussed in the remaining part of this section. We start by describing some of the
underlying principles and setting the context.

Consider a proposition “if x ∈ X then f(x) ∈ Y = . . .”. In Ada this may be declared
as a procedure F(X: in Xtype; Y: out Ytype), and the definition of F provides a proof.
HereX and Y have to be “representable” sets. In the notation described below, X = 〈X,X〉
belongs to 〈Xtype,X〉, and similarly for Y . We will refer to F as a bound on f .

Say we want to represent balls in a real Banach algebra X with unit 1. The type
Ball used for this consists of pairs S=(S.C,S.R), where S.C is a representable number
(Rep) and S.R a nonnegative representable number (Radius). The corresponding ball in
X is 〈S,X〉 = {x ∈ X : ‖x− (S.C)1‖ ≤ S.R}. The collection of all such balls is denoted by
〈Ball,X〉. Our bounds on some basic functions involving the type Ball can be found in
the packages Std Balls and MPFR Balls.

An Ada package is simply a collection of definitions and procedures, centered around
a few specific data types. Basic types such as Ball can be used to build more complex
types. In fact, we build Vector, Matrix, Taylor1, Fourier2, . . .. from a generic type
Scalar, which can be instantiated later to Ball, or to any type that provides a predefined
set of Scalar operations.

The type Fourier2 with Scalar => Ball and X = R is used to compute enclosures
for functions in a space Aρ that includes the space A◦

ρ defined in Subsection 6.1. For
definitions and basic bounds involving this type we refer to the package Fouriers2. A
description of the type Fourier2 can also be found in [7]. Bounds that are specific to the
beam equation (1.4) are implemented in the child package Fouriers2.Beam. Other child
packages will be mentioned in later subsections.

Since our integration procedure involves Taylor series, and to give a concrete example,
let us describe here the type Taylor1 in the case Scalar => Ball and X = R. Given
a Radius ρ, consider the space Tρ of all real analytic functions g(t) =

∑

n gnt
n on the

interval |t| < ρ, obtained by completing the space of polynomials with respect to the norm
‖g‖ρ =

∑

n |gn|ρn. Given a positive integer D, a Taylor1 is a triple P=(P.C,P.F,P.R),
where P.F is a nonnegative integer, P.R = ρ, and P.C is an array(0..D) of Ball. The
corresponding set in 〈Taylor1, Tρ〉 is defined as

〈P, Tρ〉 =
m−1
∑

n=0

〈

P.C(n),R
〉

pn +

D
∑

n=m

〈

P.C(n), Tρ
〉

pn , pn(t) = tn , (6.11)

where m = min(P.F, D + 1). For the operations that we need in our proof, this type of
enclosure allows for simple and efficient bounds.

For reference later on, consider the problem of iterating a bound F on a continuous
linear map A : Tρ → Tρ. The representation (6.11) should make it clear that it is possible
to use F to construct an enclosure for A in terms a (D+1)× (D+1) Matrix with entries of
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type Ball. Then 2n iterations of F can be reduced to n iterations of a bound Sqr(A1: in

Matrix; A2: out Matrix) on the map A 7→ A2.

6.3. Integration

Let us first comment on our choice of the triple (c, h, δ) satisfying (5.11). Given a pair (α, u)
as described in Theorem 1.1, we first compute an enclosure on the function α−2

(

3u2 + κ
)

.
This enclosure consists of a Fourier polynomial g and some error terms. Then we choose
h = g − c where c is the average value of g. For the value of δ in (5.11) we choose a
suboptimal upper bound on the norm on the left hand side of this equation.

Instead of ΦHK
(2π) we compute the operator Φ̃HK

(2π) = UΦHK
(2π)U−1 which is

somewhat better behaved. We regard HK(t) and Φ̃HK
(t) as linear operators on the finite-

dimensional spaces H = PKH0 and H2, respectively. So for all practical purposes these
are matrices.

Our goal is to integrate the equation d
dt Φ̃HK

(t) = X̃HK
(t)Φ̃HK

(t) with initial condition

Φ̃H(0) = I, where X̃H is the vector field given by (4.6). To this end we choose intermediate
times 0 = t0 < t1 < . . . < tm = 2π and integrate the equation in steps j = 1, 2, . . . ,m
from time tj−1 to time tj . At step j of this procedure we use the Duhamel formula (4.8),
adapted to initial time tj−1. Defining a curve Vj by setting

Φ̃HK
(t) = Φ̃0(t− tj−1)

[

Φ̃HK
(tj−1) + Vj(t− tj−1)

]

, tj−1 ≤ t ≤ tj , (6.12)

where Φ̃0 is the trivial flow (4.7), the equation for Vj becomes

Vj(τ) =

∫ τ

0

Bj(s)
[

Φ̃HK
(tj−1) + Vj(s)

]

ds . (6.13)

Here

Bj(s) = Φ̃0(−s)
[

X̃HK
(tj−1 + s)− X̃0

]

Φ̃0(s) , (6.14)

which is the operator (4.12) but with H̃(s) replaced by H̃K(tj−1 + s).
Up to trivial factors sin(yks) and cos(yks), the matrix elements for Bj(s) are linear

combinations of two coefficients hk(t) from the cosine series h(x, t) =
∑

k hk(t) cos(kx),
where t = tj−1 + s. After expanding Bj(s) into a Taylor series about s = 0, the equation
(6.12) can be used to compute the Taylor series for Vj(s) = O(s) recursively, order by
order.

This is of course the well-known “Taylor method” of integration. In our programs,
we compute a finite number of Taylor coefficients for Vj explicitly, and the remainder is
estimated by using Lemma 5.1 in [10].

The data types used to represent matrices whose coefficients are Taylor series in t, or
Taylor series in t whose coefficients are matrices, are defined in the package MultiTaylors1.
The integration steps are organized in MultiTaylors1.Phi, with LinFlow being the main
integration procedure.
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6.4. Eigenvalues

Consider one of the symplectic operators Φ̃HK
(2π) whose construction was described above.

After restricting to one of the subspaces (PKHσ
0 )

2 of fixed parity σ and using the function
[

1
0

]

sin(k.) and
[

0
1

]

sin(k.) as basis vectors, for k ≡ σ (mod 2), we end up with a symplectic
matrix A. To be more precise, we have an enclosure for A, meaning that each matrix
element Ai,j is in effect a Ball over R. The procedures described below are implemented
in the package ScalVectors, which uses PolyRoots for finding roots of polynomials.

As a first step we use QR factorization to obtain a matrix B = QAQ⊤ that is in lower
Hessenberg form, where Q is a product of Householder reflections and thus orthogonal.
It suffices to determine the eigenvalues and eigenvectors of B. The coefficients of the
characteristic polynomial p0(z) = det(zI−B) for a lower Hessenberg n× n matrix B can
be computed via a simple recursion relation. In fact, there are polynomials p1, p2, . . . , pn
that can be computed recursively as well [16], such that if all roots λi of p0 are simple,
then pj(λi) it the j-th component of the eigenvector associated with the eigenvalue λi.

So our task is reduced to finding the roots of p0. For each root λ ∈ (0, 1) we divide
p0 by the polynomial z 7→ (z − λ)

(

z − λ−1
)

. The resulting polynomial p is of even degree
2m ≤ n and can be written as

p(z) =

m
∑

k=−m

ckz
m+k = c0z

m + zm
m
∑

k=1

ck
(

zk + z−k
)

. (6.15)

In the second equality we have used that c−k = ck for all k, due to the fact that the
spectrum of A is invariant under z 7→ z−1. Next we write

p(z) = zm
[

c0 + 2

m
∑

k=1

ckTk(ω)

]

, ω = 1
2

(

z + z−1
)

, (6.16)

where Tk is the k-th Chebyshev polynomial. The factor [· · ·] in this equation is a polynomial
P in ω. Its coefficients are computed using the Clenshaw algorithm.

In the cases considered, we find at most one root of p0 in (0, 1), and m simple roots
of P in (−1, 1). This is done first numerically, using bisection and then Newton’s method.
(This is the only step in our procedure that involves iteration.) Then the approximate zeros
are verified rigorously using the contraction mapping principle. Notice that, if ω = cos(η)
is a zero of P , then λ = e2πiη is an eigenvalue of A. The corresponding eigenvector of A is
used (only) to compute the Krein signature for λ.

6.5. Separation

The separating set Z for Φ̃HK−D(2π), and the primary points in Z, are determined in
ScalVectors.Phi.Separating Eta.

The numbers dk in (5.4) are computed by estimating the right hand side of this
equation and choosing dk to be an upper bound, with δ > 0 as described earlier. Recall
that the argument of Rk in (5.4) is represented as a cosine series in t. We overestimate
the value at t by replacing each term ck cos(k.) by |ck|. Doing this for H instead of Hℓ
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yields a bound (5.4) that holds for all t and all ℓ > K. For details, we refer to the package
Fouriers2.FlokD.

The main goal now is to implement the steps described in Subsection 3.2. The bounds
used in this part can be found in the package Fouriers2.FlokM.

In the case considered here, X̂s = θ(β2k2 + c)θ + ĤK + sD̂, where ĤK = θHKθ. First
we choose a finite-dimensional subspace ȞK of HK by truncating the Fourier series in t
to frequencies |n| ≤ N for some N > 0. Then we define ȞK = PĤKP , where P is the
orthogonal projection onto ȞK . The corresponding operator X̌0 is defined in the obvious
way, so that X̂0 − X̌0 is equal to A = ĤK − ȞK . The constant C in Lemma 5.6 is now
obtained by computing an upper bound the operator norm of A. Since the Hilbert norm
on HK is inconvenient for such estimates, we first compute the operator norm of Am with
respect to a different norm on (a dense subspace of) HK and then take the m-th root of the
result. Here m is a power of 2. The powers of A are estimated by using a matrix enclosure
(type HMatrix) on the operator A, of the type described at the end of Subsection 6.2.

The points −1 = s0 < s1 < . . . < sm mentioned in Lemma 5.6 are chosen in such a
way that (3.16) holds for all j. To prove that M̌sj (η) has no eigenvalues in [−C,C], we
first compute A = M̌sj (η)

−1 and then verify that the operator norm of A is less than C−1.
This is done for each η ∈ [0, 1) that corresponds to a primary value e2πiη in Z. To be more
specific, the restriction of A to ȞK is given by a matrix (type CMatrix), so computing its
norm is straightforward. The restriction of M̌s(η) to the orthogonal complement of ȞK is
diagonal, with entries

b(n,k) =
(n+ η)2 − β2k2 − c− sdk

(n+ k)2
, k ≤ K n > N . (6.17)

By our choice of N > 0, all these entries are positive. Using that n 7→ bn,k is increasing, it
suffices to check that bN+1,k > C for s = 1 and all k ≤ K.

6.6. Putting it all together

To see how the various steps are organized, it is best to look at the main program Run All.
This program calls five standalone procedures, each taking care of one or two of the main
tasks described in the preceding subsections. The necessary parameters, such as the value
of α, the parity σ, as well as several degrees and array dimensions, are passed to the
standalone procedures via an argument of type Pars. These parameters are then used to
instantiate the necessary packages. After that, the procedures defined in these packages
are called to do the main work.

For the set of representable numbers (Rep) we choose either standard [19] extended
floating-point numbers (type LLFloat) or high precision [20] floating-point numbers (type
MPFloat), depending on the precision needed. Both types support controlled rounding.
Radius is always a subtype of LLFloat. Our programs were run successfully on a standard
desktop machine, using a public version of the gcc/gnat compiler [18].

By default, our programs run the “computationally minimal” version of the proof,
as described in Remark 2. Instructions on how to run the other versions mentioned in
Remark 2 can be found in the file README. For further details, we refer to [13].
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