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1. Introduction

Consider the equation
(−∆+ V (x))u− au = f, (1.1)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant andV (x)
is a function decaying to0 at infinity. If a ≥ 0, then the essential spectrum of the
operatorA : E → F corresponding to the left side of equation (1.1) contains the
origin. As a consequence, such operator does not satisfy theFredholm property.
Its image is not closed, ford > 1 the dimension of its kernel and the codimension
of its image are not finite. The present article is devoted to the studies of some
properties of the operators of this kind raised to a fractional power. We recall that
elliptic problems with non-Fredholm operators were treated extensively in recent
years (see [18], [21], [19], [23], [20], [22], [24], [25], also [5]) along with their
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potential applications to the theory of reaction-diffusion equations (see [7], [8]).
In the particular case whena = 0 the operatorA satisfies the Fredholm property
in some properly chosen weighted spaces (see [1], [2], [3], [4], [5]). However, the
case witha 6= 0 is significantly different and the method developed in thesearticles
cannot be applied.

One of the important questions concerning problems with non-Fredholm opera-
tors is their solvability. We address it in the following setting. Letfn be a sequence
of functions in the image of the operatorA, such thatfn → f in L2(Rd) asn → ∞.
Denote byun a sequence of functions fromH2(Rd) such that

Aun = fn, n ∈ N.

Because the operatorA does not satisfy the Fredholm property, the sequenceun

may not be convergent. We call a sequenceun such thatAun → f a solution in
the sense of sequences of equationAu = f (see [17]). If such sequence converges
to a functionu0 in the norm of the spaceE, thenu0 is a solution of this problem.
Solution in the sense of sequences is equivalent in this sense to the usual solution.
However, in the case of the non Fredholm operators, this convergence may not hold
or it can occur in some weaker sense. In this case, solution inthe sense of sequences
may not imply the existence of the usual solution. In the present article we will find
sufficient conditions of equivalence of solutions in the sense of sequences and the
usual solutions. In the other words, the conditions on sequencesfn under which
the corresponding sequencesun are strongly convergent. Solvability in the sense
of sequences for the sums of non Fredholm Schrödinger type operators was studied
in [27]. In the work we deal with the situation when a second order differential
operator without Fredholm property is raised to a certain fractional power. The
resulting operator will be defined via the spectral calculus.

Let us consider the equation

(−∆)su− au = f(x), x ∈ R
d, d ∈ N, (1.2)

wheres ∈ (0, 1), a ≥ 0 is a constant and the right side is square integrable. The
operator(−∆)s is actively used, for instance in the studies of the anomalous dif-
fusion problems (see e.g. [28] and the references therein).Anomalous diffusion
can be described as a random process of particle motion characterized by the prob-
ability density distribution of jump length. The moments ofthis density distribution
are finite in the case of normal diffusion, but this is not the case for the anoma-
lous diffusion. Asymptotic behavior at infinity of the probability density function
determines the value of the power of the Laplacian (see [14]). The problem analo-
gous to (1.2) but with the standard Laplacian in the context of the solvability in the
sense of sequences was studied in [26]. The case when the power of the negative

Laplace operators =
1

2
was treated recently in [30]. Evidently, for the operator

(−∆)s−a : H2s(Rd) → L2(Rd) the essential spectrum fills the semi-axis[−a, ∞)
such that its inverse fromL2(Rd) to H2s(Rd) is not bounded.
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Let us write down the corresponding sequence of equations with n ∈ N as

(−∆)sun − aun = fn(x), x ∈ R
d, d ∈ N, (1.3)

where the right sides converge to the right side of (1.2) inL2(Rd) asn → ∞. The
inner product of two functions

(f(x), g(x))L2(Rd) :=

∫

Rd

f(x)ḡ(x)dx, (1.4)

with a slight abuse of notations when these functions are notsquare integrable.
Indeed, iff(x) ∈ L1(Rd) andg(x) is bounded, then clearly the integral in the right
side of (1.4) makes sense, like for instance in the case of functions involved in the
orthogonality relations of Theorems 1 and 2 below. Let us usethe spaceH2s(Rd)
equipped with the norm

‖u‖2H2s(Rd) := ‖u‖2L2(Rd) + ‖(−∆)su‖2L2(Rd). (1.5)

Throughout the article, the sphere of radiusr > 0 in R
d centered at the origin will

be designated bySd
r . Whenr = 1, such unit sphere will be denoted bySd and

|Sd| will stand for its Lebesgue measure. The unit ball inR
d centered at the origin

will be designated byBd and |Bd| will denote its Lebesgue measure. Let us first
formulate the solvability conditions for problem (1.2).

Theorem 1.Letf(x) ∈ L2(Rd), d ∈ N ands ∈ (0, 1).

a) Leta = 0, d = 1. If s ∈
(
0, 1

4

)
and in additionf(x) ∈ L1(R), then equation

(1.2) has a unique solutionu(x) ∈ H2s(R).

Suppose thats ∈
[
1
4
, 3
4

)
and in additionxf(x) ∈ L1(R). Then problem (1.2)

admits a unique solutionu(x) ∈ H2s(R) if and only if the equality

(f(x), 1)L2(R) = 0 (1.6)

holds.
Suppose thats ∈

[
3
4
, 1
)

and in additionx2f(x) ∈ L1(R). Then equation (1.2)

has a unique solutionu(x) ∈ H2s(R) if and only if orthogonality conditions (1.6)
along with

(f(x), x)L2(R) = 0 (1.7)

hold.
b) Leta = 0, d = 2. Then whens ∈

(
0, 1

2

)
and additionallyf(x) ∈ L1(R2),

equation (1.2) admits a unique solutionu(x) ∈ H2s(R2).

Suppose thats ∈
[
1
2
, 1
)

and additionallyxf(x) ∈ L1(R2). Then equation (1.2)

has a unique solutionu(x) ∈ H2s(R2) if and only if

(f(x), 1)L2(R2) = 0 (1.8)
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holds.
c) Leta = 0, d = 3. If s ∈

(
0, 3

4

)
and in additionf(x) ∈ L1(R3), then problem

(1.2) has a unique solutionu(x) ∈ H2s(R3).

Suppose thats ∈
[
3
4
, 1
)

and in additionxf(x) ∈ L1(R3). Then equation (1.2)

admits a unique solutionu(x) ∈ H2s(R3) if and only if

(f(x), 1)L2(R3) = 0 (1.9)

holds.
d) If a = 0, d ≥ 4 with s ∈ (0, 1) and additionallyf(x) ∈ L1(Rd), then

problem (1.2) possesses a unique solutionu(x) ∈ H2s(Rd).
e) Suppose thata > 0, d = 1 with s ∈ (0, 1) and in additionxf(x) ∈ L1(R).

Then equation (1.2) admits a unique solutionu(x) ∈ H2s(R) if and only if
(
f(x),

e±ia
1
2s x

√
2π

)

L2(R)

= 0 (1.10)

holds.
f) Suppose thata > 0, d ≥ 2 with s ∈ (0, 1) and additionallyxf(x) ∈ L1(Rd).

Then problem (1.2) has a unique solutionu(x) ∈ H2s(Rd) if and only if
(
f(x),

eipx

(2π)
d

2

)

L2(Rd)

= 0, p ∈ Sd

a
1
2s

(1.11)

holds.

Then we turn our attention to the issue of the solvability in the sense of se-
quences for our problem.

Theorem 2. Let n ∈ N andfn(x) ∈ L2(Rd), d ∈ N, such thatfn(x) → f(x)
in L2(Rd) asn → ∞.

a) Leta = 0, d = 1. If s ∈
(
0, 1

4

)
and additionallyfn(x) ∈ L1(R), n ∈ N,

such thatfn(x) → f(x) in L1(R) as n → ∞, then equations (1.2) and (1.3)
admit unique solutionsu(x) ∈ H2s(R) andun(x) ∈ H2s(R) respectively, such that
un(x) → u(x) in H2s(R) asn → ∞.

Suppose thats ∈
[
1
4
, 3
4

)
. Let in additionxfn(x) ∈ L1(R), n ∈ N, such that

xfn(x) → xf(x) in L1(R) asn → ∞ and the orthogonality conditions

(fn(x), 1)L2(R) = 0 (1.12)

hold for all n ∈ N. Then equations (1.2) and (1.3) admit unique solutionsu(x) ∈
H2s(R) andun(x) ∈ H2s(R) respectively, such thatun(x) → u(x) in H2s(R) as
n → ∞.
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Suppose thats ∈
[
3
4
, 1
)

. Let in additionx2fn(x) ∈ L1(R), n ∈ N, such that

x2fn(x) → x2f(x) in L1(R) asn → ∞ and the orthogonality conditions

(fn(x), 1)L2(R) = 0, (fn(x), x)L2(R) = 0 (1.13)

hold for all n ∈ N. Then equations (1.2) and (1.3) have unique solutionsu(x) ∈
H2s(R) andun(x) ∈ H2s(R) respectively, such thatun(x) → u(x) in H2s(R) as
n → ∞.

b) Leta = 0, d = 2. If s ∈
(
0, 1

2

)
and additionallyfn(x) ∈ L1(R2), n ∈ N,

such thatfn(x) → f(x) in L1(R2) as n → ∞, then equations (1.2) and (1.3)
possess unique solutionsu(x) ∈ H2s(R2) andun(x) ∈ H2s(R2) respectively, such
thatun(x) → u(x) in H2s(R2) asn → ∞.

Suppose thats ∈
[
1
2
, 1
)

. Let in additionxfn(x) ∈ L1(R2), n ∈ N, such that

xfn(x) → xf(x) in L1(R2) asn → ∞ and the orthogonality relations

(fn(x), 1)L2(R2) = 0 (1.14)

hold for all n ∈ N. Then equations (1.2) and (1.3) admit unique solutionsu(x) ∈
H2s(R2) andun(x) ∈ H2s(R2) respectively, such thatun(x) → u(x) in H2s(R2)
asn → ∞.

c) Let a = 0, d = 3. Suppose thats ∈
(
0, 3

4

)
and additionallyfn(x) ∈

L1(R3), n ∈ N, such thatfn(x) → f(x) in L1(R3) asn → ∞. Then problems
(1.2) and (1.3) possess unique solutionsu(x) ∈ H2s(R3) andun(x) ∈ H2s(R3)
respectively, such thatun(x) → u(x) in H2s(R3) asn → ∞.

Suppose thats ∈
[
3
4
, 1
)

. Let in additionxfn(x) ∈ L1(R3), n ∈ N, such that

xfn(x) → xf(x) in L1(R3) asn → ∞ and

(fn(x), 1)L2(R3) = 0 (1.15)

holds for alln ∈ N. Then equations (1.2) and (1.3) have unique solutionsu(x) ∈
H2s(R3) andun(x) ∈ H2s(R3) respectively, such thatun(x) → u(x) in H2s(R3)
asn → ∞.

d) Leta = 0, d ≥ 4 with s ∈ (0, 1) and additionallyfn(x) ∈ L1(Rd), n ∈ N,
such thatfn(x) → f(x) in L1(Rd) as n → ∞. Then problems (1.2) and (1.3)
possess unique solutionsu(x) ∈ H2s(Rd) andun(x) ∈ H2s(Rd) respectively, such
thatun(x) → u(x) in H2s(Rd) asn → ∞.

e) Leta > 0, d = 1 with s ∈ (0, 1) and in additionxfn(x) ∈ L1(R), n ∈ N,
such thatxfn(x) → xf(x) in L1(R) asn → ∞. Let

(
fn(x),

e±ia
1
2s x

√
2π

)

L2(R)

= 0 (1.16)
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hold for all n ∈ N. Then equations (1.2) and (1.3) admit unique solutionsu(x) ∈
H2s(R) andun(x) ∈ H2s(R) respectively, such thatun(x) → u(x) in H2s(R) as
n → ∞.

f) Let a > 0, d ≥ 2 with s ∈ (0, 1) and additionallyxfn(x) ∈ L1(Rd), n ∈ N,
such thatxfn(x) → xf(x) in L1(Rd) asn → ∞. Let

(
fn(x),

eipx

(2π)
d

2

)

L2(Rd)

= 0, p ∈ Sd

a
1
2s

(1.17)

hold for all n ∈ N. Then problems (1.2) and (1.3) have unique solutionsu(x) ∈
H2s(Rd) andun(x) ∈ H2s(Rd) respectively, such thatun(x) → u(x) in H2s(Rd)
asn → ∞.

Let us note that whena = 0 each of the casesa)−d) above contains the situation
when orthogonality conditions are not required.

We use the hat symbol to denote the standard Fourier transform

f̂(p) :=
1

(2π)
d

2

∫

Rd

f(x)e−ipxdx, p ∈ R
d, d ∈ N, (1.18)

such that

‖f̂(p)‖L∞(Rd) ≤
1

(2π)
d

2

‖f(x)‖L1(Rd). (1.19)

In the second part of the article we consider the equation

(−∆+ V (x))su− au = f(x), x ∈ R
3, a ≥ 0, s ∈ (0, 1), (1.20)

with the square integrable right side. The corresponding sequence of equations for
n ∈ N will be

(−∆+ V (x))sun − aun = fn(x), x ∈ R
3, a ≥ 0, (1.21)

with s ∈ (0, 1) and the right sides converging to the right side of (1.20) inL2(R3)

asn → ∞. Note that the situation when the powers =
1

2
was studied in the recent

work [30]. Let us make the following technical assumptions on the scalar potential
involved in the problems above. Note that the conditions onV (x), which is shallow
and short-range will be analogous to those stated in Assumption 1.1 of [21] (see
also [19], [23]). The essential spectrum of such a Schrödinger operator−∆+V (x)
fills the nonnegative semi-axis (see e.g. [11]).

Assumption 3.The potential functionV (x) : R3 → R satisfies the estimate

|V (x)| ≤ C

1 + |x|3.5+δ
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with someδ > 0 andx = (x1, x2, x3) ∈ R
3 a.e. such that

4
1

9

9

8
(4π)−

2

3‖V ‖
1

9

L∞(R3)‖V ‖
8

9

L
4
3 (R3)

< 1 and
√
cHLS‖V ‖

L
3
2 (R3)

< 4π. (1.22)

Here and further downC will stand for a finite positive constant andcHLS given on
p.98 of [13] is the constant in the Hardy-Littlewood-Sobolev inequality

∣∣∣
∫

R3

∫

R3

f1(x)f1(y)

|x− y|2 dxdy
∣∣∣ ≤ cHLS‖f1‖2

L
3
2 (R3)

, f1 ∈ L
3

2 (R3).

By virtue of Lemma 2.3 of [21], under Assumption 3 above on thepotential
function, the operator−∆+V (x) onL2(R3) is self-adjoint and unitarily equivalent
to−∆ via the wave operators (see [12], [16])

Ω± := s− limt→∓∞eit(−∆+V )eit∆,

where the limit is understood in the strongL2 sense (see e.g. [15] p.34, [6] p.90).
Hence(−∆ + V (x))s on L2(R3) defined via the spectral calculus has only the
essential spectrum

σess((−∆+ V (x))s − a) = [−a, ∞)

and no nontrivialL2(R3) eigenfunctions. By means of the spectral theorem, its
functions of the continuous spectrum satisfy

(−∆+ V (x))sϕk(x) = |k|2sϕk(x), k ∈ R
3, (1.23)

in the integral formulation the Lippmann-Schwinger equation for the perturbed
plane waves (see e.g. [15] p.98)

ϕk(x) =
eikx

(2π)
3

2

− 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕk)(y)dy (1.24)

and the orthogonality relations

(ϕk(x), ϕq(x))L2(R3) = δ(k − q), k, q ∈ R
3. (1.25)

Particularly, when the vectork = 0, we haveϕ0(x). Let us denote the generalized
Fourier transform with respect to these functions using thetilde symbol as

f̃(k) := (f(x), ϕk(x))L2(R3), k ∈ R
3. (1.26)

(1.26) is a unitary transform onL2(R3). The integral operator involved in (1.24) is
being denoted as

(Qϕ)(x) := − 1

4π

∫

R3

ei|k||x−y|

|x− y| (V ϕ)(y)dy, ϕ ∈ L∞(R3).
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We considerQ : L∞(R3) → L∞(R3). Under Assumption 3, via Lemma 2.1 of
[21] the operator norm‖Q‖∞ is bounded above by the quantityI(V ), which is the
left side of the first inequality in (1.22), such thatI(V ) < 1. Corollary 2.2 of [21]
under our assumptions gives us the bound

|f̃(k)| ≤ 1

(2π)
3

2

1

1− I(V )
‖f(x)‖L1(R3). (1.27)

We have the following result concerning the solvability of equation (1.20).

Theorem 4.Let Assumption 3 hold andf(x) ∈ L2(R3).

a) Let a = 0, s ∈
(
0, 3

4

)
and additionallyf(x) ∈ L1(R3). Then equation

(1.20) possesses a unique solutionu(x) ∈ L2(R3).

Let a = 0, s ∈
[
3
4
, 1
)

and in additionxf(x) ∈ L1(R3). Then problem (1.20)

admits a unique solutionu(x) ∈ L2(R3) if and only if

(f(x), ϕ0(x))L2(R3) = 0 (1.28)

holds.
b) Leta > 0, s ∈ (0, 1) and in additionxf(x) ∈ L1(R3). Then equation (1.20)

has a unique solutionu(x) ∈ L2(R3) if and only if

(f(x), ϕk(x))L2(R3) = 0, k ∈ S3

a
1
2s

(1.29)

holds.

Our final main statement is devoted to the solvability in the sense of sequences
of problem (1.20).

Theorem 5. Let Assumption 3 hold,n ∈ N and fn(x) ∈ L2(R3), such that
fn(x) → f(x) in L2(R3) asn → ∞.

a) Let a = 0. If s ∈
(
0, 3

4

)
and additionallyfn(x) ∈ L1(R3), n ∈ N, such

that fn(x) → f(x) in L1(R3) asn → ∞, then equations (1.20) and (1.21) pos-
sess unique solutionsu(x) ∈ L2(R3) andun(x) ∈ L2(R3) respectively, such that
un(x) → u(x) in L2(R3) asn → ∞.

Suppose thats ∈
[
3
4
, 1
)

. Let in additionxfn(x) ∈ L1(R3), n ∈ N, such that

xfn(x) → xf(x) in L1(R3) asn → ∞ and

(fn(x), ϕ0(x))L2(R3) = 0 (1.30)

holds for all n ∈ N. Then equations (1.20) and (1.21) admit unique solutions
u(x) ∈ L2(R3) and un(x) ∈ L2(R3) respectively, such thatun(x) → u(x) in
L2(R3) asn → ∞.
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b) Suppose thata > 0, s ∈ (0, 1). Let in additionxfn(x) ∈ L1(R3), n ∈ N,
such thatxfn(x) → xf(x) in L1(R3) asn → ∞ and

(fn(x), ϕk(x))L2(R3) = 0, k ∈ S3

a
1
2s

(1.31)

holds for alln ∈ N. Then problems (1.20) and (1.21) have unique solutionsu(x) ∈
L2(R3) andun(x) ∈ L2(R3) respectively, such thatun(x) → u(x) in L2(R3) as
n → ∞.

Let us note that (1.28) and (1.29) are the orthogonality relations to the func-
tions of the continuous spectrum of our Schrödinger operator, as distinct from the
Limiting Absorption Principle in which one needs to orthogonalize to the standard
Fourier harmonics (see e.g. Lemma 2.3 and Proposition 2.4 of[9]).

2. Solvability in the sense of sequences in the free Laplacian case

Proof of Theorem 1.Let us note that the case a) of the theorem was stated in Lemma
4.1 of [29] and the case c) in Lemma 5 of [28].

Clearly, if u(x) ∈ L2(Rd) is a solution of (1.2) with a square integrable right
side, it belongs toH2s(Rd) as well. Indeed, in this case from (1.2) we easily deduce
(−∆)su(x) ∈ L2(Rd), such that via norm definition (1.5) we haveu(x) ∈ H2s(Rd).

To prove the uniqueness of solutions for our equation, let ussuppose that (1.2)
has two square integrable solutionsu1(x) andu2(x). Then their differencew(x) :=
u1(x)− u2(x) ∈ L2(Rd) as well. Obviously, it is a solution of the equation

(−∆)sw = aw.

Since the operator(−∆)s has no nontrivial square integrable eigenfunctions in the
whole space, we havew(x) = 0 a.e. inRd.

We apply the standard Fourier transform (1.18) to both sidesof problem (1.2)
with a = 0. This gives us

û(p) =
f̂(p)

|p|2sχ{|p|≤1} +
f̂(p)

|p|2sχ{|p|>1}. (2.32)

Here and further downχA will denote the characteristic function of a setA ⊆ R
d.

Clearly, the second term in the right side of (2.32) can be bounded from above in
the absolute value by|f̂(p)| ∈ L2(Rd) due to the one of our assumptions.

First we consider the case b) of the theorem when the dimension of the problem
d = 2. Let us estimate the first term in the right side of (2.32) fromabove in the

absolute value using (1.19) by
‖f(x)‖L1(R2)

2π|p|2s χ{|p|≤1}. It can be easily verified that

such expression is square integrable whens ∈
(
0, 1

2

)
.
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To treat the case whens ∈
(

1
2
, 1
)

, we use the formula

f̂(p) = f̂(0) +

∫ |p|

0

∂f̂ (s, σ)

∂s
ds.

Here and throughout the articleσ will denote the angle variables on the sphere. This
enables us to express the first term in the right side of (2.32)as

f̂(0)

|p|2sχ{|p|≤1} +

∫ |p|

0
∂f̂(s,σ)

∂s
ds

|p|2s χ{|p|≤1}. (2.33)

Note that by means of the definition of the Fourier transform (1.18), we easily derive
for the space of an arbitrary dimension

∣∣∣∣∣
∂f̂ (p)

∂|p|

∣∣∣∣∣ ≤
‖xf(x)‖L1(Rd)

(2π)
d

2

, d ∈ N. (2.34)

Therefore, the second term in (2.33) can be bounded from above in the absolute
value by

‖xf(x)‖L1(R2)

2π
|p|1−2sχ{|p|≤1} ∈ L2(R2).

It can be easily verified that the first term in (2.33) is squareintegrable if and only
if f̂(0) vanishes, which is equivalent to orthogonality relation (1.8).

Then we turn our attention to the case d) of the theorem. Let usestimate the
first term in the right side of (2.32) from above in the absolute value via (1.19) by
‖f(x)‖L1(Rd)

(2π)
d

2 |p|2s
χ{|p|≤1}, d ≥ 4. It can be easily checked that this expression is square

integrable fors ∈ (0, 1).
Let us apply the standard Fourier transform (1.18) to both sides of equation (1.2)

whena > 0. This yields

û(p) =
f̂(p)

|p|2s − a
.

First of all we consider the case e) of the theorem, namely when the dimension of
the problemd = 1. Fors ∈ (0, 1) we define the following sets on the real line

I+δ := [a
1

2s − δ, a
1

2s + δ], I−δ := [−a
1

2s − δ,−a
1

2s + δ], 0 < δ < a
1

2s , (2.35)

such that
Iδ := I+δ ∪ I−δ , R = Iδ ∪ Icδ .

Here and further downAc ⊆ R
d stands for the complement of the setA ⊆ R

d. This
allows us to expresŝu(p) as the sum

f̂(p)

|p|2s − a
χIc

δ
+

f̂(p)

p2s − a
χI+

δ

+
f̂(p)

(−p)2s − a
χI−

δ

. (2.36)

10



Evidently, we haveIcδ = Ic+δ ∪ Ic−δ , where

Ic+δ := Icδ ∩ R
+, Ic−δ := Icδ ∩ R

−. (2.37)

HereR+ andR− are the nonnegative and the negative semi-axes of the real line
respectively. Clearly,

∣∣∣∣∣
f̂(p)

p2s − a
χIc+

δ

∣∣∣∣∣ ≤ C|f̂(p)| ∈ L2(R)

due to the one of our assumptions. Analogously,
∣∣∣∣∣

f̂(p)

(−p)2s − a
χIc−

δ

∣∣∣∣∣ ≤ C|f̂(p)| ∈ L2(R).

We express

f̂(p) = f̂(a
1

2s ) +

∫ p

a
1
2s

df̂(s)

ds
ds.

(2.34) easily gives us the upper bound

∣∣∣∣∣

∫ p

a
1
2s

df̂(s)
ds

ds

p2s − a
χI+

δ

∣∣∣∣∣ ≤
1√
2π

‖xf(x)‖L1(R)

∣∣∣∣∣
p− a

1

2s

p2s − a

∣∣∣∣∣χI+
δ

≤

≤ C‖xf(x)‖L1(R)χI+
δ

∈ L2(R).

Apparently,
f̂(a

1

2s )

p2s − a
χI+

δ

∈ L2(R)

if and only if f̂(a
1

2s ) vanishes, which is equivalent to the orthogonality condition

(
f(x),

eia
1
2s x

√
2π

)

L2(R)

= 0, s ∈ (0, 1).

To study the singularity of the problem on the negative semi-axis, we apply the
formula

f̂(p) = f̂(−a
1

2s ) +

∫ p

−a
1
2s

df̂(s)

ds
ds.

Via (2.34) we have the upper bound

∣∣∣∣∣

∫ p

−a
1
2s

df̂(s)
ds

ds

(−p)2s − a
χI−

δ

∣∣∣∣∣ ≤
1√
2π

‖xf(x)‖L1(R)

∣∣∣∣∣
p+ a

1

2s

(−p)2s − a

∣∣∣∣∣χI−
δ

≤

11



≤ C‖xf(x)‖L1(R)χI−
δ

∈ L2(R).

Evidently,
f̂(−a

1

2s )

(−p)2s − a
χI−

δ

∈ L2(R)

if and only if f̂(−a
1

2s ) = 0, which is equivalent to the orthogonality relation

(
f(x),

e−ia
1
2s x

√
2π

)

L2(R)

= 0, s ∈ (0, 1).

We complete the proof of the theorem with establishing the part f). When the di-
mensiond ≥ 2, we define the set

Aδ := {p ∈ R
d | a 1

2s − δ ≤ |p| ≤ a
1

2s + δ}, 0 < δ < a
1

2s (2.38)

and express

û(p) =
f̂(p)

|p|2s − a
χAδ

+
f̂(p)

|p|2s − a
χAc

δ
. (2.39)

Obviously, we have the estimate from above
∣∣∣∣∣

f̂(p)

|p|2s − a
χAc

δ

∣∣∣∣∣ ≤ C|f̂(p)| ∈ L2(Rd)

via the one of our assumptions. To treat the first term in the right side of (2.39), we
will use the representation formula

f̂(p) = f̂(a
1

2s , σ) +

∫ |p|

a
1
2s

∂f̂(s, σ)

∂s
ds.

Inequality (2.34) enables us to estimate

∣∣∣∣∣

∫ |p|

a
1
2s

∂f̂(s,σ)
∂s

ds

|p|2s − a
χAδ

∣∣∣∣∣ ≤
‖xf(x)‖L1(Rd)

(2π)
d

2

∣∣∣∣∣
|p| − a

1

2s

|p|2s − a

∣∣∣∣∣χAδ
≤

≤ C‖xf(x)‖L1(Rd)χAδ
∈ L2(Rd).

It can be easily verified that the remaining term

f̂(a
1

2s , σ)

|p|2s − a
χAδ

∈ L2(Rd)

if and only if f̂(a
1

2s , σ) vanishes, which is equivalent to orthogonality relation (1.11)
for the dimensionsd ≥ 2.
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Then we proceed to establishing the solvability in the senseof sequences for our
equation in the no potential case.

Proof of Theorem 2.Supposeu(x) andun(x), n ∈ N are the unique solutions
of equations (1.2) and (1.3) inH2s(Rd), d ∈ N with a ≥ 0 respectively,s ∈ (0, 1)
and it is known thatun(x) → u(x) in L2(Rd) asn → ∞. Thenun(x) → u(x) in
H2s(Rd) asn → ∞ as well. Indeed,

(−∆)s(un(x)− u(x)) = a(un(x)− u(x)) + fn(x)− f(x),

which clearly gives us

‖(−∆)s(un(x)−u(x))‖L2(Rd) ≤ a‖un(x)−u(x)‖L2(Rd)+‖fn(x)−f(x)‖L2(Rd) → 0

asn → ∞ via our assumptions. Norm definition (1.5) yieldsun(x) → u(x) in
H2s(Rd) asn → ∞.

If u(x) andun(x), n ∈ N are the unique solutions of equations (1.2) and (1.3)
in H2s(Rd), d ∈ N respectively witha = 0 as in the cases a)-d) of the theorem, by
applying the standard Fourier transform (1.18) we easily derive

ûn(p)− û(p) =
f̂n(p)− f̂(p)

|p|2s χ{|p|≤1} +
f̂n(p)− f̂(p)

|p|2s χ{|p|>1}. (2.40)

Evidently, the second term in the right side of equality (2.40) can be estimated from
above in the absolute value in the space of any dimension by|f̂n(p) − f̂(p)|, such
that

∥∥∥∥∥
f̂n(p)− f̂(p)

|p|2s χ{|p|>1}

∥∥∥∥∥
L2(Rd)

≤ ‖fn(x)− f(x)‖L2(Rd) → 0, n → ∞

due to the one of our assumptions.
First we treat the case a) of the theorem when the dimensiond = 1. Then, when

s ∈
(
0, 1

4

)
via the part a) of Theorem 1, equation (1.2) and each of equations (1.3)

admit unique solutionsu(x) ∈ H2s(R) andun(x) ∈ H2s(R), n ∈ N respectively.
Clearly, the first term in the right side of equality (2.40) can be bounded from above

in the absolute value via (1.19) by
1√
2π

‖fn(x)− f(x)‖L1(R)

χ{|p|≤1}

|p|2s , such that its

L2(R) norm can be estimated from above by

1√
π
‖fn(x)− f(x)‖L1(R)

1√
1− 4s

→ 0, n → ∞

due to the one of our assumptions and withs ∈
(
0, 1

4

)
. This shows that in this case

un(x) → u(x) in L2(R) asn → ∞.
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Then we turn our attention to the case ofs ∈
[
1
4
, 3
4

)
. Note that by means of

the parts a) and b) of Lemma 6 below, under our assumptions we havefn(x) ∈
L1(R), n ∈ N, such thatfn(x) → f(x) in L1(R) asn → ∞. Then, via (1.12) we
obtain

|(f(x), 1)L2(R)| = |(f(x)− fn(x), 1)L2(R)| ≤ ‖fn(x)− f(x)‖L1(R) → 0

asn → ∞. Thus,
(f(x), 1)L2(R) = 0 (2.41)

holds. By means of the part a) of Theorem 1, whens ∈
[
1
4
, 3
4

)
, equations (1.2) and

(1.3) admit unique solutionsu(x), un(x) ∈ H2s(R), n ∈ N respectively. Orthogo-
nality relations (2.41) and (1.12) yield

f̂(0) = 0, f̂n(0) = 0, n ∈ N

in this case. This allows us to use the expressions

f̂(p) =

∫ p

0

df̂(s)

ds
ds, f̂n(p) =

∫ p

0

df̂n(s)

ds
ds, n ∈ N,

which enables us to write the first term in the right side of equality (2.40) as

∫ p

0

(
df̂n(s)
ds

− df̂(s)
ds

)
ds

|p|2s χ{|p|≤1}. (2.42)

Using inequality (2.34), we easily estimate
∣∣∣∣∣
df̂n(p)

dp
− df̂(p)

dp

∣∣∣∣∣ ≤
1√
2π

‖xfn(x)− xf(x)‖L1(R), (2.43)

such that expression (2.42) can be bounded from above in the absolute value by

1√
2π

‖xfn(x)− xf(x)‖L1(R)|p|1−2sχ{|p|≤1}.

Hence, we arrive at

∥∥∥∥∥

∫ p

0

(
df̂n(s)
ds

− df̂(s)
ds

)
ds

|p|2s χ{|p|≤1}

∥∥∥∥∥
L2(R)

≤ 1√
π
‖xfn(x)− xf(x)‖L1(R) → 0

asn → ∞ due to the one of our assumptions. This implies that

un(x) → u(x) in L2(R), n → ∞

14



when the dimensiond = 1 anda = 0 with s ∈
[
1
4
, 3
4

)
.

Then we proceed to the proof of the theorem when the power of the negative

Laplacians ∈
[
3
4
, 1
)

in dimensiond = 1 with a = 0. By means of the parts c) and

d) of Lemma 6 below under our assumptions we havexfn(x) ∈ L1(R), n ∈ N,
such thatxfn(x) → xf(x) in L1(R) asn → ∞. Then via the parts a) and b) of
Lemma 6 we havefn(x) ∈ L1(R), n ∈ N, such thatfn(x) → f(x) in L1(R) as
n → ∞. Orthogonality condition (2.41) here can be easily obtained via the limiting
argument as above. By means of the second orthogonality relation in (1.13), we
derive

|(f(x), x)L2(R)| = |(f(x)− fn(x), x)L2(R)| ≤ ‖xfn(x)− xf(x)‖L1(R) → 0

asn → ∞. Hence
(f(x), x)L2(R) = 0 (2.44)

holds. By virtue of the part a) of Theorem 1, whens ∈
[
3
4
, 1
)

, equations (1.2) and

(1.3) possess unique solutionsu(x), un(x) ∈ H2s(R), n ∈ N respectively. Via the
definition of the standard Fourier transform (1.18), orthogonality relations (2.41),
(1.13) and (2.44) give us forn ∈ N

f̂(0) = 0, f̂n(0) = 0,
df̂

dp
(0) = 0,

df̂n

dp
(0) = 0,

such that

f̂(p) =

∫ p

0

(∫ s

0

d2f̂(q)

dq2
dq

)
ds, f̂n(p) =

∫ p

0

(∫ s

0

d2f̂n(q)

dq2
dq

)
ds, n ∈ N.

By means of definition (1.18), we easily estimate
∣∣∣∣∣
d2f̂n(p)

dp2
− d2f̂(p)

dp2

∣∣∣∣∣ ≤
1√
2π

‖x2fn(x)− x2f(x)‖L1(R).

This yields the inequality

|f̂n(p)− f̂(p)| ≤ 1√
2π

‖x2fn(x)− x2f(x)‖L1(R)

p2

2
,

which allows us to obtain the upper bound on the absolute value of the first term in
the right side of identity (2.40) by

1

2
√
2π

‖x2fn(x)− x2f(x)‖L1(R)|p|2−2sχ{|p|≤1}.
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Therefore,
∣∣∣∣∣
f̂n(p)− f̂(p)

|p|2s χ{|p|≤1}

∣∣∣∣∣
L2(R)

≤ 1

2
√
π(5− 4s)

‖x2fn(x)− x2f(x)‖L1(R) → 0

whenn → ∞ as assumed. Thus

un(x) → u(x) in L2(R), n → ∞

when the dimensiond = 1 anda = 0 with s ∈
[
3
4
, 1
)

.

In the case of the dimensiond = 2 anda = 0, let us first treat the situation
when s ∈

(
0, 1

2

)
. Due to the part b) of Theorem 1, problem (1.2) and each of

problems (1.3) have unique solutionsu(x) ∈ H2s(R) andun(x) ∈ H2s(R), n ∈
N respectively. Obviously, the first term in the right side of (2.40) can be estimated

from above in the absolute value via (1.19) by
1

2π
‖fn(x)− f(x)‖L1(R2)

χ{|p|≤1}

|p|2s ,

such that itsL2(R2) norm can be bounded from above by

1

2
√

π(1− 2s)
‖fn(x)− f(x)‖L1(R2) → 0, n → ∞

by means the one of our assumptions and withs ∈
(
0, 1

2

)
.

For the higher values of the power of the two dimensional negative Laplacian

s ∈
(

1
2
, 1
)

, the orthogonality relation

(f(x), 1)L2(R2) = 0 (2.45)

can be derived via the easy limiting argument, analogously to (2.41). By virtue of
the part b) of Theorem 1, problems (1.2) and (1.3) possess unique solutionsu(x) ∈
H2s(R2) andun(x) ∈ H2s(R2), n ∈ N respectively. Orthogonality relations (2.45)
and (1.12) imply

f̂(0) = 0, f̂n(0) = 0, n ∈ N

when the dimensiond = 2 anda = 0 with s ∈
(

1
2
, 1
)

. This enables us to express

f̂(p) =

∫ |p|

0

∂f̂(s, σ)

∂s
ds, f̂n(p) =

∫ |p|

0

∂f̂n(s, σ)

∂s
ds, n ∈ N (2.46)

and to write the first term in the right side of identity (2.40)as

∫ |p|

0

(
∂f̂n(s,σ)

∂s
− ∂f̂(s,σ)

∂s

)
ds

|p|2s χ{|p|≤1}. (2.47)
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Inequality (2.34) gives us
∣∣∣∣∣
∂f̂n(p)

∂|p| − ∂f̂ (p)

∂|p|

∣∣∣∣∣ ≤
1

2π
‖xfn(x)− xf(x)‖L1(R2). (2.48)

Thus, expression (2.47) can be bounded from above in the absolute value by

1

2π
‖xfn(x)− xf(x)‖L1(R2)|p|1−2sχ{|p|≤1}.

Hence

∥∥∥∥∥

∫ |p|

0

(
∂f̂n(s,σ)

∂s
− ∂f̂(s,σ)

∂s

)
ds

|p|2s χ{|p|≤1}

∥∥∥∥∥
L2(R2)

≤ ‖xfn(x)− xf(x)‖L1(R2)

2
√
2π(1− s)

→ 0

asn → ∞ via the one of our assumptions. Therefore,

un(x) → u(x) in L2(R2), n → ∞

when the dimensiond = 2 anda = 0 with s ∈
(

1
2
, 1
)

.

Let us proceed to the proof of the part c) of the theorem, when the dimension

d = 3 and a = 0 with s ∈
(
0, 3

4

)
. In such case, by virtue of the part c) of

Theorem 1, problems (1.2) and (1.3) admit unique solutionsu(x) andun(x), n ∈ N

respectively, belonging toH2s(R3). Using (1.19), we obtain the upper bound on the
first term in the right side of (2.40) in the absolute value by

‖fn(x)− f(x)‖L1(R3)

(2π)
3

2 |p|2s
χ{|p|≤1},

such that itsL2(R3) norm can be estimated from above by

1

π
√

2(3− 4s)
‖fn(x)− f(x)‖L1(R3) → 0, n → ∞

via the one of our assumptions. Thus,

un(x) → u(x) in L2(R3), n → ∞

in the case of the dimensiond = 3 anda = 0 with s ∈
(
0, 3

4

)
.

For the higher values of the power of the three dimensional negative Laplacian

s ∈
[
3
4
, 1
)

, the orthogonality condition

(f(x), 1)L2(R3) = 0 (2.49)
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can be obtained via the trivial limiting argument, similarly to (2.41). By means of
the part c) of Theorem 1, equations (1.2) and (1.3) have unique solutionsu(x) ∈
H2s(R3) andun(x) ∈ H2s(R3), n ∈ N respectively. Orthogonality conditions
(2.49) and (1.15) yield

f̂(0) = 0, f̂n(0) = 0, n ∈ N

when the dimensiond = 3 anda = 0 with s ∈
[
3
4
, 1
)

. This allows us to obtain

here the expressions analogous to (2.46). Let us use the three dimensional analog
of inequality (2.48) to derive the upper bound on the first term in the right side of
(2.40) in the absolute value by

‖xfn(x)− xf(x)‖L1(R3)

(2π)
3

2

|p|1−2sχ{|p|≤1},

such that itsL2(R3) norm can be estimated from above by

1

π
√
2(5− 4s)

‖xfn(x)− xf(x)‖L1(R3) → 0, n → ∞

due to the one of our assumptions. Therefore,

un(x) → u(x) in L2(R3), n → ∞

in the case of the dimensiond = 3 anda = 0 with s ∈
[
3
4
, 1
)

.

Then we turn our attention to the case d) of the theorem. By virtue of the part d)
of Theorem 1 equations (1.2) and (1.3) admit a unique solutionsu(x) ∈ H2s(R3)
andun(x) ∈ H2s(R3), n ∈ N respectively. Using inequality (1.19), we estimate
the first term in the right side of (2.40) in the absolute valueby

‖fn(x)− f(x)‖L1(Rd)

(2π)
d

2 |p|2s
χ{|p|≤1}, d ≥ 4,

such that itsL2(Rd) norm can be bounded from above by

1

(2π)
d

2

√
|Sd|

d− 4s
‖fn(x)− f(x)‖L1(Rd) → 0, n → ∞

by virtue of the one of our assumptions. Hence,

un(x) → u(x) in L2(Rd), d ≥ 4, n → ∞

whena = 0 ands ∈ (0, 1).
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If u(x) andun(x), n ∈ N are the unique solutions of equations (1.2) and (1.3)
in H2s(Rd), d ∈ N respectively witha > 0 as in the cases e) and f) of the theorem,
by applying the standard Fourier transform (1.18) we easilyobtain

û(p) =
f̂(p)

|p|2s − a
, ûn(p) =

f̂n(p)

|p|2s − a
, n ∈ N. (2.50)

First of all, we consider the case e) of the theorem, when the dimensiond = 1 and
a > 0. Thus, due to the result of the part e) of Theorem 1, equation (1.3) has a
unique solutionun(x) ∈ H2s(R), n ∈ N. Clearly,fn(x) ∈ L1(R), n ∈ N, such
thatfn(x) → f(x) in L1(R) asn → ∞ via the parts a) and b) of Lemma 6 below.
By means of the limiting argument, analogously to the proof of (2.41) we obtain the
orthogonality relations

(
f(x),

e±ia
1
2s x

√
2π

)

L2(R)

= 0, s ∈ (0, 1). (2.51)

Then by virtue of the result of the part e) of Theorem 1, problem (1.2) admits a
unique solutionu(x) ∈ H2s(R). Using (2.50), we expresŝun(p)− û(p) as

f̂n(p)− f̂(p)

p2s − a
χI+

δ

+
f̂n(p)− f̂(p)

p2s − a
χIc+

δ

+

+
f̂n(p)− f̂(p)

(−p)2s − a
χI−

δ

+
f̂n(p)− f̂(p)

(−p)2s − a
χIc−

δ

, (2.52)

with I+δ , I−δ are given by (2.35) andIc+δ , Ic−δ are defined in (2.37). Evidently,
the second term in (2.52) can be estimated from above in the absolute value by
C|f̂n(p)− f̂(p)|, such that

∥∥∥∥∥
f̂n(p)− f̂(p)

p2s − a
χIc+

δ

∥∥∥∥∥
L2(R)

≤ C‖fn(x)− f(x)‖L2(R) → 0, n → ∞

as assumed. Analogously, the last term in (2.52) can be bounded from above in the
absolute value byC|f̂n(p)− f̂(p)|. Thus

∥∥∥∥∥
f̂n(p)− f̂(p)

(−p)2s − a
χIc−

δ

∥∥∥∥∥
L2(R)

≤ C‖fn(x)− f(x)‖L2(R) → 0, n → ∞

due to the one of our assumptions. Orthogonality relations (2.51) and (1.16) give us

f̂(a
1

2s ) = 0, f̂n(a
1

2s ) = 0, n ∈ N,
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such that

f̂(p) =

∫ p

a
1
2s

df̂(s)

ds
ds, f̂n(p) =

∫ p

a
1
2s

df̂n(s)

ds
ds, n ∈ N,

which enables us to express the first term in (2.52) as

∫ p

a
1
2s

[
df̂n(s)
ds

− df̂(s)
ds

]
ds

p2s − a
χI+

δ

. (2.53)

By means of (2.43), we obtain the upper bound on (2.53) in the absolute value by

1√
2π

‖xfn(x)− xf(x)‖L1(R)

∣∣∣∣∣
p− a

1

2s

p2s − a

∣∣∣∣∣χI+
δ

≤ C‖xfn(x)− xf(x)‖L1(R)χI+
δ

.

Thus, theL2(R) norm of (2.53) can be estimated from above by

C‖xfn(x)− xf(x)‖L1(R) → 0, n → ∞

due to the one of our assumptions. Orthogonality conditions(2.51) and (1.16) yield

f̂(−a
1

2s ) = 0, f̂n(−a
1

2s ) = 0, n ∈ N

with s ∈ (0, 1). Therefore, at the negative singularity

f̂(p) =

∫ p

−a
1
2s

df̂(s)

ds
ds, f̂n(p) =

∫ p

−a
1
2s

df̂n(s)

ds
ds, n ∈ N.

This gives us the upper bound on the third term in (2.52) in theabsolute value by

1√
2π

‖xfn(x)− xf(x)‖L1(R)

∣∣∣∣∣
p+ a

1

2s

(−p)2s − a

∣∣∣∣∣χI−
δ

≤ C‖xfn(x)− xf(x)‖L1(R)χI−
δ

.

Thus, itsL2(R) norm can be estimated from above by

C‖xfn(x)− xf(x)‖L1(R) → 0, n → ∞

as assumed. This shows that in dimensiond = 1, whena > 0 ands ∈ (0, 1) we
have

un(x) → u(x) in L2(R), n → ∞.

We conclude the proof of the theorem with treating the case f)when the dimension
d ≥ 2 anda > 0 with s ∈ (0, 1). Then under our assumptions, by virtue of the part
f) of Theorem 1, problem (1.3) has a unique solutionun(x) ∈ H2s(Rd), n ∈ N. A
trivial limiting argument analogous to the proof of (2.41) gives us

(
f(x),

eipx

(2π)
d

2

)

L2(Rd)

= 0, p ∈ Sd

a
1
2s
. (2.54)
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Then by means of the part f) of Theorem 1, problem (1.2) admitsa unique solution
u(x) ∈ H2s(Rd). Using (2.50), we easily arrive at

ûn(p)− û(p) =
f̂n(p)− f̂(p)

|p|2s − a
χAδ

+
f̂n(p)− f̂(p)

|p|2s − a
χAc

δ
, (2.55)

with the setAδ defined in (2.38). Evidently, the second term in the right side of
(2.55) can be estimated from above in the absolute value byC|f̂n(p)− f̂(p)|. Thus,

∥∥∥∥∥
f̂n(p)− f̂(p)

|p|2s − a
χAc

δ

∥∥∥∥∥
L2(Rd)

≤ C‖fn(x)− f(x)‖L2(Rd) → 0

asn → ∞ via the one of our assumptions. Orthogonality relations (2.54) and (1.17)
imply that

f̂(a
1

2s , σ) = 0, f̂n(a
1

2s , σ) = 0, n ∈ N,

such that

f̂(p) =

∫ |p|

a
1
2s

∂f̂ (s, σ)

∂s
ds, f̂n(p) =

∫ |p|

a
1
2s

∂f̂n(s, σ)

∂s
ds, n ∈ N.

By means of the definition of the Fourier transform (1.18), analogously to inequali-
ties (2.43) and (2.48) in lower dimensions, we easily obtain

∣∣∣∣∣
∂f̂n(p)

∂|p| − ∂f̂ (p)

∂|p|

∣∣∣∣∣ ≤
1

(2π)
d

2

‖xfn(x)− xf(x)‖L1(Rd).

We derive the upper bound in the absolute value on the first term in the right side of
(2.55) by

1

(2π)
d

2

‖xfn(x)− xf(x)‖L1(Rd)

∣∣∣∣∣
|p| − a

1

2s

|p|2s − a

∣∣∣∣∣χAδ
≤ C‖xfn(x)− xf(x)‖L1(Rd)χAδ

.

This implies that
∥∥∥∥∥
f̂n(p)− f̂(p)

|p|2s − a
χAδ

∥∥∥∥∥
L2(Rd)

≤ C‖xfn(x)− xf(x)‖L1(Rd) → 0, n → ∞

as assumed. Therefore, in dimensionsd ≥ 2, whena > 0 ands ∈ (0, 1), we have

un(x) → u(x) in L2(Rd)

asn → ∞.

3. Solvability in the sense of sequences with a scalar potential
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Proof of Theorem 4.Note that the case a) of the theorem is the result of Lemma 7
of [28]. Then we proceed to proving the case ofa > 0.

To prove the uniqueness of solutions of our equation, let us suppose that there
exist bothu1(x) andu2(x) which are square integrable inR3 and solve (1.20). Then
their differencew(x) := u1(x)− u2(x) ∈ L2(R3) is a solution of the problem

(−∆+ V (x))sw = aw, s ∈ (0, 1).

The fact that the operator(−∆ + V (x))s has no nontrivialL2(R3) eigenfunctions
as discussed above yields thatw(x) vanishes a.e. inR3.

Let us apply the generalized Fourier transform (1.26) with the functions of the
continuous spectrum of the Schrödinger operator to both sides of problem (1.20),
which yields

ũ(k) =
f̃(k)

|k|2s − a
, s ∈ (0, 1).

We introduce the spherical layer in the space of three dimensions as

Bδ := {k ∈ R
3 | a 1

2s − δ ≤ |k| ≤ a
1

2s + δ}, 0 < δ < a
1

2s . (3.56)

This allows us to express

ũ(k) =
f̃(k)

|k|2s − a
χBδ

+
f̃(k)

|k|2s − a
χBc

δ
. (3.57)

The second term in the right side of (3.57) can be trivially bounded from above in
the absolute value by

C|f̃(k)| ∈ L2(R3),

becausef(x) is square integrable as assumed. We express

f̃(k) = f̃(a
1

2s , σ) +

∫ |k|

a
1
2s

∂f̃(q, σ)

∂q
dq.

Therefore, the first term in the right side of (3.57) can be written as

f̃(a
1

2s , σ)

|k|2s − a
χBδ

+

∫ |k|

a
1
2s

∂f̃(q,σ)
∂q

dq

|k|2s − a
χBδ

. (3.58)

The second term in sum (3.58) can be easily bounded above in the absolute value
by

‖∇kf̃(k)‖L∞(R3)

∣∣∣∣∣
|k| − a

1

2s

|k|2s − a

∣∣∣∣∣χBδ
≤ C‖∇kf̃(k)‖L∞(R3)χBδ

∈ L2(R3).
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Note that under the stated assumptions∇kf̃(k) ∈ L∞(R3) due to Lemma 2.4 of
[21]. Apparently, the first term in (3.58) is square integrable if and only if f̃(a

1

2s , σ)
vanishes, which yields orthogonality relation (1.29).

Then we proceed to the establishing of our last main statement dealing with the
solvability in the sense of sequences.

Proof of Theorem 5.In the case a) whens ∈
(
0, 3

4

)
problems (1.20) and (1.21)

have unique solutionsu(x), un(x) ∈ L2(R3), n ∈ N respectively due to the part a)
of Theorem 4 above. Let us apply the generalized Fourier transform (1.26) to both
sides of equations (1.20) and (1.21). We obtain

ũ(k) =
f̃(k)

|k|2s , ũn(k) =
f̃n(k)

|k|2s , n ∈ N.

Therefore

ũn(k)− ũ(k) =
f̃n(k)− f̃(k)

|k|2s χ{|k|≤1} +
f̃n(k)− f̃(k)

|k|2s χ{|k|>1}. (3.59)

Obviously, the second term in the right side of (3.59) can be easily estimated from
above in the absolute value by|f̃n(k)− f̃(k)|. Hence

∥∥∥∥∥
f̃n(k)− f̃(k)

|k|2s χ{|k|>1}

∥∥∥∥∥
L2(R3)

≤ ‖fn(x)− f(x)‖L2(R3) → 0, n → ∞

via the one of our assumptions. Using (1.27) we obtain the upper bound for the first
term in the right side of (3.59) in the absolute value by

1

(2π)
3

2

1

1− I(V )
‖fn(x)− f(x)‖L1(R3)

χ{|k|≤1}

|k|2s .

Apparently, this yields
∥∥∥∥∥
f̃n(k)− f̃(k)

|k|2s χ{|k|≤1}

∥∥∥∥∥
L2(R3)

≤

≤ 1√
2(3− 4s)π

1

1− I(V )
‖fn(x)− f(x)‖L1(R3) → 0, n → ∞

due to the one of our assumptions. Therefore,un(x) → u(x) in L2(R3) asn → ∞
in the case when the parametera = 0 ands ∈

(
0, 3

4

)
.
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Then we turn our attention to the situation whena = 0 ands ∈
[
3
4
, 1
)

. By

means of orthogonality relation (1.30) along with the Corollary 2.2 of [21] and the
part b) of Lemma 6 below we obtain

|(f(x), ϕ0(x))L2(R3)| = |(f(x)− fn(x), ϕ0(x))L2(R3)| ≤

≤ 1

(2π)
3

2

1

1− I(V )
‖fn(x)− f(x)‖L1(R3) → 0, n → ∞.

Therefore,
(f(x), ϕ0(x))L2(R3) = 0 (3.60)

holds. Hence equations (1.20) and (1.21) admit unique solutionsu(x), un(x) ∈
L2(R3), n ∈ N respectively via the part a) of Theorem 4. As discussed above,
it is sufficient to consider the first term in the right side of (3.59). Orthogonality
relations (3.60) and (1.30) yield

f̃(0) = 0, f̃n(0) = 0, n ∈ N,

such that

f̃(k) =

∫ |k|

0

∂f̃ (s, σ)

∂s
ds, f̃n(k) =

∫ |k|

0

∂f̃n(s, σ)

∂s
ds, n ∈ N.

This enables us to estimate the first term in the right side of (3.59) from above in
the absolute value by‖∇k[f̃n(k)− f̃(k)]‖L∞(R3)|k|1−2sχ{|k|≤1}. Therefore

∥∥∥∥∥
f̃n(k)− f̃(k)

|k|2s χ{|k|≤1}

∥∥∥∥∥
L2(R3)

≤ C‖∇k[f̃n(k)− f̃(k)]‖L∞(R3) → 0, n → ∞

due to Lemma 3.4 of [26] under the given assumptions. This shows thatun(x) →
u(x) in L2(R3) asn → ∞ whena = 0 ands ∈

[
3
4
, 1
)

.

We complete the proof of the theorem by establishing the result of the part b).
By virtue of the limiting argument similar to the proof of relation we have (3.60)

(f(x), ϕk(x))L2(R3) = 0, k ∈ S3

a
1
2s
, s ∈ (0, 1). (3.61)

holds. Thus by means of the result the part b) of Theorem 4, equations (1.20) and
(1.21) possesses unique solutionsu(x), un(x) ∈ L2(R3). We apply the generalized
Fourier transform (1.26) to both sides of problems (1.20) and (1.21). Hence, we
obtain

ũn(k)− ũ(k) =
f̃n(k)− f̃(k)

|k|2s − a
χBδ

+
f̃n(k)− f̃(k)

|k|2s − a
χBc

δ
(3.62)
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with Bδ defined in (3.56). Obviosly, the second term in the right sideof (3.62) can
be estimated from above in the absolute value byC|f̃n(k)− f̃(k)|, such that

∥∥∥∥∥
f̃n(k)− f̃(k)

|k|2s − a
χBc

δ

∥∥∥∥∥
L2(R3)

≤ C‖fn(x)− f(x)‖L2(R3) → 0, n → ∞

due to the one of our assumptions. By means of orthogonality conditions (3.61) and
(1.31), we have

f̃(a
1

2s , σ) = 0, f̃n(a
1

2s , σ) = 0, n ∈ N.

This gives us the representations

f̃(k) =

∫ |k|

a
1
2s

∂f̃ (s, σ)

∂s
ds, f̃n(k) =

∫ |k|

a
1
2s

∂f̃n(s, σ)

∂s
ds, n ∈ N,

such that the first term in the right side of (3.62) can be expressed as

∫ |k|

a
1
2s

[
∂f̃n(s,σ)

∂s
− ∂f̃(s,σ)

∂s

]
ds

|k|2s − a
χBδ

. (3.63)

Clearly, (3.63) can be trivially estimated from above in theabsolute value by

‖∇k[f̃n(k)− f̃(k)]‖L∞(R3)

∣∣∣∣∣
|k| − a

1

2s

|k|2s − a

∣∣∣∣∣χBδ
≤ C‖∇k[f̃n(k)− f̃(k)]‖L∞(R3)χBδ

.

Therefore, theL2(R3) norm of (3.63) can be bounded from above by

C‖∇k[f̃n(k)− f̃(k)]‖L∞(R3) → 0, n → ∞

by virtue of Lemma 3.4 of [26] under the given assumptions. This yields that
un(x) → u(x) in L2(R3) asn → ∞ whena > 0 with s ∈ (0, 1).

4. Auxiliary results

The following technical lemma is useful for proving the solvability in the sense of
sequences in our theorems. Note that its parts a) and b) were established in Lemma
6 of [30].

Lemma 6. a) Letf(x) ∈ L2(Rd), d ∈ N andxf(x) ∈ L1(Rd). Thenf(x) ∈
L1(Rd).

b) Letn ∈ N, fn(x) ∈ L2(Rd), d ∈ N, such thatfn(x) → f(x) in L2(Rd) as
n → ∞. Letxfn(x) ∈ L1(Rd), such thatxfn(x) → xf(x) in L1(Rd) asn → ∞.
Thenfn(x) → f(x) in L1(Rd) asn → ∞.

c) Letf(x) ∈ L2(Rd), d ∈ N andx2f(x) ∈ L1(Rd). Thenxf(x) ∈ L1(Rd).
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d) Let n ∈ N, fn(x) ∈ L2(Rd), d ∈ N, such thatfn(x) → f(x) in L2(Rd)
asn → ∞. Let x2fn(x) ∈ L1(Rd), such thatx2fn(x) → x2f(x) in L1(Rd) as
n → ∞. Thenxfn(x) → xf(x) in L1(Rd) asn → ∞.

Proof. To prove the part c) of the lemma, we express the norm‖xf(x)‖L1(Rd) as
∫

|x|≤1

|x||f(x)|dx+

∫

|x|>1

|x||f(x)|dx ≤
∫

|x|≤1

|f(x)|dx+

∫

|x|>1

|x|2|f(x)|dx.

This sum can be easily bounded from above via the Schwarz inequality by

‖f(x)‖L2(Rd)

√
|Bd|+ ‖x2f(x)‖L1(Rd) < ∞

as assumed. Let us complete the proof of the lemma with establishing its part d).
Clearly, the norm‖xfn(x)− xf(x)‖L1(Rd) can be written as

∫

|x|≤1

|x||fn(x)− f(x)|dx+

∫

|x|>1

|x||fn(x)− f(x)|dx ≤

≤
∫

|x|≤1

|fn(x)− f(x)|dx+

∫

|x|>1

|x|2|fn(x)− f(x)|dx.

By means of the Schwarz inequality this sum can be trivially estimated from above
by

‖fn(x)− f(x)‖L2(Rd)

√
|Bd|+ ‖x2fn(x)− x2f(x)‖L1(Rd) → 0, n → ∞

due to our assumptions.

References

[1] C. Amrouche, V. Girault, J. Giroire,Dirichlet and Neumann exterior
problems for then-dimensional Laplace operator: an approach in weighted
Sobolev spaces, J. Math. Pures Appl. (9),76 (1997), no. 1, 55–81.

[2] C. Amrouche, F. Bonzom, Mixed exterior Laplace’s problem, J. Math. Anal.
Appl., 338(2008), no. 1, 124–140.

[3] P. Bolley, T.L. Pham,Propriét́es d’indice en th́eorie ḧoldérienne pour des
opérateurs diff́erentiels elliptiques dansRn, J. Math. Pures Appl. (9),72
(1993), no 1, 105–119.

[4] P. Bolley, T.L. Pham,Propriét́e d’indice en th́eorie Höldérienne pour le
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