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1. Introduction

Consider the equation
(—A+V(x)u—au = f, (1.1)

whereu € F = H*(RY) andf € F = L*(RY), d € N, a is a constant an#{ ()

is a function decaying t6 at infinity. If « > 0, then the essential spectrum of the
operatorA : £ — F corresponding to the left side of equation (1.1) contaies th
origin. As a consequence, such operator does not satisfifrétholm property.
Its image is not closed, fat > 1 the dimension of its kernel and the codimension
of its image are not finite. The present article is devotecheodtudies of some
properties of the operators of this kind raised to a fractiggower. We recall that
elliptic problems with non-Fredholm operators were trdagtensively in recent
years (see [18], [21], [19], [23], [20], [22], [24], [25],0 [5]) along with their
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potential applications to the theory of reaction-diffusiequations (see [7], [8]).
In the particular case when = 0 the operatord satisfies the Fredholm property
in some properly chosen weighted spaces (see [1], [2], 43]]%]). However, the
case witha # 0 is significantly different and the method developed in theasieles
cannot be applied.

One of the important questions concerning problems withi@idholm opera-
tors is their solvability. We address it in the followingtheg. Let f,, be a sequence
of functions in the image of the operatdr such thatf,, — fin L?(R%) asn — oc.
Denote byu,, a sequence of functions froft?(R?) such that

Au, = fn, n € N.

Because the operatot does not satisfy the Fredholm property, the sequence
may not be convergent. We call a sequengesuch thatdu,, — f a solution in
the sense of sequences of equation= f (see [17]). If such sequence converges
to a functionu, in the norm of the spacg, thenu, is a solution of this problem.
Solution in the sense of sequences is equivalent in thissderthe usual solution.
However, in the case of the non Fredholm operators, thisexgewnce may not hold
or it can occur in some weaker sense. In this case, solutitheisense of sequences
may not imply the existence of the usual solution. In the gmearticle we will find
sufficient conditions of equivalence of solutions in thesseof sequences and the
usual solutions. In the other words, the conditions on secgf,, under which
the corresponding sequencesare strongly convergent. Solvability in the sense
of sequences for the sums of non Fredholm Schrodinger typeators was studied
in [27]. In the work we deal with the situation when a secondeordifferential
operator without Fredholm property is raised to a certaactfonal power. The
resulting operator will be defined via the spectral calculus

Let us consider the equation

(—A)u —au = f(z), v € R d €N, (1.2)
wheres € (0,1), a > 0 is a constant and the right side is square integrable. The
operator(—A)® is actively used, for instance in the studies of the anonsathfi
fusion problems (see e.g. [28] and the references ther@dinpmalous diffusion
can be described as a random process of particle motionatbered by the prob-
ability density distribution of jump length. The momentdloik density distribution
are finite in the case of normal diffusion, but this is not tlase for the anoma-
lous diffusion. Asymptotic behavior at infinity of the prdilty density function
determines the value of the power of the Laplacian (see [I4i¢ problem analo-
gous to (1.2) but with the standard Laplacian in the conté#tt@solvability in the
sense of sequences was studied in [26]. The case when the pbthe negative

1 . .
Laplace operatos = 3 was treated recently in [30]. Evidently, for the operator

(—A)* —a: H*(RY) — L*(R?) the essential spectrum fills the semi-axis, oo)
such that its inverse fromh?(R?) to H?$(R¢) is not bounded.
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Let us write down the corresponding sequence of equatiotiewe N as
(—=A)u, — au, = fo(x), v € R? d €N, (1.3)

where the right sides converge to the right side of (1.2)3(R?) asn — co. The
inner product of two functions

() gt = [ Fa)ata)ds (1)

with a slight abuse of notations when these functions aresguoare integrable.
Indeed, iff(x) € L'(R?) andg(z) is bounded, then clearly the integral in the right
side of (1.4) makes sense, like for instance in the case atifums involved in the
orthogonality relations of Theorems 1 and 2 below. Let ustheespace7?*(R?)
equipped with the norm

[l 2 ay = [l F2ray + (=) ullZ2gay- (1.5)

Throughout the article, the sphere of radius 0 in R¢ centered at the origin will
be designated bg?. Whenr = 1, such unit sphere will be denoted I and
|S?| will stand for its Lebesgue measure. The unit balRthcentered at the origin
will be designated by3? and|B¢| will denote its Lebesgue measure. Let us first
formulate the solvability conditions for problem (1.2).

Theorem 1.Let f(x) € L?*(R?), d € Nands € (0, 1).

a)leta=0,d=1.1fs e <0, i) and in additionf(x) € L'(R), then equation
(1.2) has a unique solution(z) € H?*(R).

Suppose that € [i, %) and in additionz f(z) € L'(R). Then problem (1.2)
admits a unique solution(z) € H**(R) if and only if the equality

(f(x), 1) 2@y =0 (1.6)

holds.

Suppose that [%, 1) and in additionz? f(z) € L'(R). Then equation (1.2)

has a unique solution(z) € H*(R) if and only if orthogonality conditions (1.6)
along with

(f(@),2)2my =0 (1.7)
hold.
b) Leta = 0, d = 2. Then whens € (o, g) and additionallyf(z) € L'(R?),
equation (1.2) admits a unique solutiofir) € H?**(R?).
Suppose that € [%, 1) and additionallyz f (z) € L*(R?). Then equation (1.2)
has a unique solution(z) € H*(R?) if and only if

(f(2),1)r2m2y = 0 (1.8)
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holds.
c)Leta=0,d=3.1Ifse (0, %) and in additionf(z) € L'(R?), then problem

(1.2) has a unique solutiom(z) € H?*(R3).
Suppose that [%, 1) and in additionz f(z) € L*(R?). Then equation (1.2)
admits a unique solution(z) € H**(R?) if and only if

(f(2),1)2ms)y =0 (1.9)

holds.

d)If a = 0, d > 4 withs € (0,1) and additionallyf(z) € L'(R%), then
problem (1.2) possesses a unigque solutign) € H2*(R).

e) Suppose that > 0, d = 1 with s € (0,1) and in additionz f(z) € L'(R).
Then equation (1.2) admits a unique solutigy) € H*(R) if and only if

( eiia?l_sz

f(@), =0 (1.10)
van L2(R)

holds.

f) Suppose that > 0, d > 2 with s € (0, 1) and additionallyz f (x) € L*(R?).
Then problem (1.2) has a unique solutiofx) € H?*(R?) if and only if

1pT
<f(x), ‘ d) =0, pes’y (1.11)
>/ L2 ra o

holds.

Then we turn our attention to the issue of the solvabilityhie sense of se-
quences for our problem.

Theorem 2. Letn € Nand f,(z) € L*(R%), d € N, such thatf, (z) — f(z)
in L2(RY) asn — oo.

a)leta =0, d=1.Ifs e <0, i) and additionallyf, (z) € L'(R), n € N,
such thatf,(z) — f(z) in L'(R) asn — oo, then equations (1.2) and (1.3)
admit unique solutions(z) € H*(R) andu,(z) € H*(R) respectively, such that
un,(z) — u(z) in H*(R) asn — oo.

Suppose that € [i,%) Let in additionz f,,(z) € L'(R), n € N, such that
zfn(z) — zf(x)in L'(R) asn — oo and the orthogonality conditions

hold for all » € N. Then equations (1.2) and (1.3) admit unique solutiofs <
H?*(R) andu,(z) € H*(R) respectively, such that,(z) — u(z) in H?*(R) as
n — OQ.



Suppose that € [%, 1). Let in additionz?f,,(z) € L'(R), n € N, such that
22 f.(x) — 22 f(z) in L}(R) asn — oo and the orthogonality conditions

(fn(x)ﬂ 1>L2(R) =0, (fn(x)ﬂ x)LQ(R) =0 (113)

hold for all n € N. Then equations (1.2) and (1.3) have unigue solutiofng €
H?(R) andu,(z) € H*(R) respectively, such that,(z) — u(z) in H?*(R) as
n — oQ.

b) Leta = 0, d = 2. If s € (0,1) and additionally, () € L'(R?), n € N,
such thatf,(z) — f(x) in L'(R?) asn — oo, then equations (1.2) and (1.3)
possess unique solutiongr) € H*(R?) andu,(z) € H*(R?) respectively, such
thatu, (z) — u(x) in H**(R?) asn — oo.

Suppose that € [%, 1). Let in additionz f,,(z) € L'(R?), n € N, such that
zfo(z) — xf(x)in LY(R?) asn — oo and the orthogonality relations

(fa(2),1)12@2) = 0 (1.14)

hold for all » € N. Then equations (1.2) and (1.3) admit unique solutiefs <
H?(R?) andu,(z) € H*(R?) respectively, such that,(z) — u(x) in H?*(R?)
asn — oo.

c) Leta = 0, d = 3. Suppose that € <O, %) and additionally f,,(x) €
L'(R3), n € N, such thatf,(z) — f(z) in L}*(R3) asn — oo. Then problems
(1.2) and (1.3) possess unique solutiaris) € H*(R?) andu,(z) € H?*(R?)
respectively, such that,(x) — u(z) in H*(R3) asn — occ.

Suppose that € [%, 1). Let in additionz f,,(z) € L'(R?), n € N, such that

rfo(z) — xf(x)in LY(R?) asn — oo and

(fa(2),1)2@@3) = 0 (1.15)

holds for alln € N. Then equations (1.2) and (1.3) have unique solutiang €
H?*(R?®) andu,(x) € H*(R?) respectively, such that,(z) — u(z) in H?*(R?)
asn — oo.

d) Leta = 0, d > 4 with s € (0, 1) and additionallyf, (z) € L*(RY), n € N,
such thatf,(z) — f(x) in L'(R?) asn — oo. Then problems (1.2) and (1.3)
possess unique solutiongr) € H*(RY) andu,(z) € H*(R?) respectively, such
thatu, (z) — u(x) in H**(R%) asn — oo.

e) Leta > 0, d = 1 with s € (0,1) and in additionz f,,(z) € L'(R), n € N,
such thate f,,(z) — xf(z) in L*(R) asn — oo. Let

(fn(x), eﬂam> —0 (1.16)
V2 )




hold for all » € N. Then equations (1.2) and (1.3) admit unique solutiefs <
H?*(R) andu,(z) € H*(R) respectively, such that,(z) — u(x) in H*(R) as
n — oQ.

f) Leta > 0, d > 2 with s € (0,1) and additionallyz f,,(z) € L*(RY), n € N,
suchthatr f,(z) — o f(z) in L*(RY) asn — oo. Let

1pT
<fn(x)7 ‘ ) =0, pe S:TI.S (117)
(27T) L2(Rd)

[NJisY

hold for all n € N. Then problems (1.2) and (1.3) have unique solutiefx§ <
H?*(RY) andu,(x) € H*(R?) respectively, such that,(z) — u(z) in H?*(R?)
asn — oo.

Let us note that whem = 0 each of the caseg —d) above contains the situation
when orthogonality conditions are not required.
We use the hat symbol to denote the standard Fourier transfor

flp) = ! — | f(x)e " dx, pe R, d €N, (1.18)
(2m)z Jra

such that

1F ()| o e dllf( )z ray- (1.19)

(2)

In the second part of the article we consider the equation
(=A+V(@)u—au=f(z), z€R> a>0 sc(0,1), (1.20)

with the square integrable right side. The correspondiggeece of equations for
n € N will be

(—A +V(2)*u, — au, = fo(z), z€R} a>0, (1.21)

with s € (0,1) and the right sides converging to the right side of (1.20}4R?)

asn — oo. Note that the situation when the powet E was studied in the recent
work [30]. Let us make the following technical assumptiongloe scalar potential
involved in the problems above. Note that the condition¥¢n), which is shallow
and short-range will be analogous to those stated in Assamftl of [21] (see
also [19], [23]). The essential spectrum of such a Schgetioperator A+ V' (x)
fills the nonnegative semi-axis (see e.g. [11]).

Assumption 3. The potential functio® (z) : R® — R satisfies the estimate

C

Vi) < ————
| ( )‘ — 1+‘x|3.5+5
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with some) > 0 andx = (z1, 72, x3) € R3 a.e. such that

19 _2 1 8
49§(47r) 3 HVHEOO(RS)HVH;%(W) <1 and ‘/CHLSHVHL%(Rg) <A4rm. (1.22)

Here and further dowty’ will stand for a finite positive constant aig ;s given on
p.98 of [13] is the constant in the Hardy-Littlewood-Sohaleequality

(y) .
)/RS R3 |5U—y\2 T dr dy <CHLSHf1||L?(R5) fl GLQ(R )

By virtue of Lemma 2.3 of [21], under Assumption 3 above on plogential
function, the operator A + V' (z) on L*(R?) is self-adjoint and unitarily equivalent
to —A via the wave operators (see [12], [16])

Q:I: =g — |imt_>:F006Zt(_A+V)€ZtA,

where the limit is understood in the strond sense (see e.g. [15] p.34, [6] p.90).
Hence(—A + V(x))® on L*(R3) defined via the spectral calculus has only the
essential spectrum

Oess((—A +V(2))* — a) = [-a, o0)

and no nontrivialZL?(R?) eigenfunctions. By means of the spectral theorem, its
functions of the continuous spectrum satisfy

(—A+V(2)pr(x) = [k[®or(z), keR? (1.23)

in the integral formulation the Lippmann-Schwinger eqoiatfor the perturbed
plane waves (see e.g. [15] p.98)

ikx

. L[ eilklle—yl
mm»:@mg—zgéygjgﬁv%xw@ (1.24)

and the orthogonality relations

(or(®), (@) 22y = 0(k — q), k,q € R, (1.25)

Particularly, when the vectdr = 0, we havep,(x). Let us denote the generalized
Fourier transform with respect to these functions usingittle symbol as

Flk) = (f(2), o(2)) r2s), k € R (1.26)

(1.26) is a unitary transform oh*(R?). The integral operator involved in (1.24) is
being denoted as

1 etlkllz—yl

(Qe)(x) == — (Vo) (y)dy, ¢ € L>(R?).

4 R3 |$—y‘
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We considerQ : L>(R3?) — L>(R?). Under Assumption 3, via Lemma 2.1 of
[21] the operator nornj@||, is bounded above by the quantityl’), which is the
left side of the first inequality in (1.22), such thafl”) < 1. Corollary 2.2 of [21]
under our assumptions gives us the bound

|f (k)| < 1 ()l 2 es) - (1.27)

1 1
(2r)2 1 = 1(V)
We have the following result concerning the solvability gtiation (1.20).

Theorem 4.Let Assumption 3 hold anfiz) € L?(R3).

a) Leta = 0, s € (0,%) and additionallyf(z) € L'(R®). Then equation
(1.20) possesses a unigue solutidm) € L*(R?).

Leta =0, s € [%, 1) and in additionz f(z) € L*(R?). Then problem (1.20)
admits a unique solution(x) € L*(R?) if and only if

(f(z), o)) L2@msy = 0 (1.28)

holds.
b) Leta > 0, s € (0,1) and in additionz f (z) € L'(R?). Then equation (1.20)
has a unique solution(z) € L*(R?) if and only if

(f (@), o0(2)) 2y =0, k€S, (1.29)
holds.

Our final main statement is devoted to the solvability in thiese of sequences
of problem (1.20).

Theorem 5. Let Assumption 3 holdy € N and f,,(z) € L?*(RR?), such that
fo(z) = f(z)in L2(R3) asn — oo.
a)Leta = 0. If s € <0, %) and additionallyf,,(z) € L*(R?), n € N, such

that f,,(z) — f(z) in L'(R3) asn — oo, then equations (1.20) and (1.21) pos-
sess unique solutiongz) € L*(R3) andu, (z) € L*(R?) respectively, such that
un(7) — u(x) in L*(R?) asn — oo.

Suppose that € [%, 1). Let in additionz f, () € L'(R?), n € N, such that
rfn(x) — xf(x)in L'(R?) asn — oo and

holds for alln € N. Then equations (1.20) and (1.21) admit unique solutions
u(z) € L*(R3) andu,(zr) € L*(R3) respectively, such that,(z) — u(z) in
L*(R?) asn — oo.



b) Suppose that > 0, s € (0,1). Letin additionzf,(z) € L'(R*), n € N,
such thate f,(z) — = f(z) in L*(R®) asn — oo and
)

(fal@), 9rle)) 2y =0, k€S, (131)

holds for alln € N. Then problems (1.20) and (1.21) have unique solutidn$
L*(R3) andu,(z) € L*(R?®) respectively, such that,(z) — u(z) in L*(R?) as

n — Q.

Let us note that (1.28) and (1.29) are the orthogonalityticela to the func-
tions of the continuous spectrum of our Schrodinger operas distinct from the
Limiting Absorption Principle in which one needs to orthogtize to the standard
Fourier harmonics (see e.g. Lemma 2.3 and Proposition 2[9]pf

2. Solvability in the sense of sequences in the free Laplacizase

Proof of Theorem 1Let us note that the case a) of the theorem was stated in Lemma
4.1 of [29] and the case c) in Lemma 5 of [28].

Clearly, ifu(x) € L*(R?) is a solution of (1.2) with a square integrable right
side, it belongs td7?¢(R?) as well. Indeed, in this case from (1.2) we easily deduce
(—A)*u(x) € L2(R?), such that via norm definition (1.5) we haver) € H?$(R?).

To prove the uniqueness of solutions for our equation, letuppose that (1.2)
has two square integrable solutiangz) andus(z). Then their differences(z) :=
ui(z) — up(z) € L?(R?) as well. Obviously, it is a solution of the equation

(—A)’w = aw.

Since the operatqi—A)® has no nontrivial square integrable eigenfunctions in the
whole space, we have(z) = 0 a.e. inR¢.

We apply the standard Fourier transform (1.18) to both sadgsoblem (1.2)
with a = 0. This gives us

u(p) = ﬁgg X{pl<1} + ‘J;f—|€z><{|p|>1}~ (2.32)

Here and further dowry 4 will denote the characteristic function of a sétC R<.
Clearly, the second term in the right side of (2.32) can bended from above in
the absolute value by (p)| € L*(R¢) due to the one of our assumptions.
First we consider the case b) of the theorem when the dimewsithe problem
d = 2. Let us estimate the first(te)r|r|n in the right side of (2.32) frabove in the
T)|| L1 (R2)

absolute value using (1.19) 27l X{lpl<13- It can be easily verified that
|p|*® -

such expression is square integrable when <0, %) .
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To treat the case whene <§, 1), we use the formula

R R Pl 9F(s. o
Foy = oy + [ 2L

Here and throughout the artictewill denote the angle variables on the sphere. This
enables us to express the first term in the right side of (2282)

Iy p| 3]?(3,0)
f(0) —SdS
FE X{lpl<1} T %X{mg}. (2.33)

Note that by means of the definition of the Fourier transfatru§), we easily derive
for the space of an arbitrary dimension

iaf(p) < | f(x )HLl Rd) _ deN. (2.34)

dlp| (27T)

Therefore, the second term in (2.33) can be bounded fromealothe absolute

value by
2 f (@)l @2)| 1o
TL(R)IPP “Xqpi<1y € L*(R?).
It can be easily verified that the first term in (2.33) is squategrable if and only
if £(0) vanishes, which is equivalent to orthogonality relatior8)1
Then we turn our attention to the case d) of the theorem. Letstimate the
first term in the right side of (2.32) from above in the absehalue via (1.19) by

1S @)l 21 (may
(2m)2|p|>
integrable fors € (0, 1).

Let us apply the standard Fourier transform (1.18) to batessof equation (1.2)
whena > 0. This yields

pl<1}, d > 4. It can be easily checked that this expression is square

o~

o[
W= —a

First of all we consider the case e) of the theorem, namelynwthe dimension of
the problem{ = 1. Fors € (0, 1) we define the following sets on the real line
I = [a% — 0, az +4], Iy = [—a% — 5, —a +4], 0<d< a%, (2.35)
such that
Iy:=IUly, R=I;UI.

Here and further dowr® C R¢ stands for the complement of the set_ R<. This
allows us to express(p) as the sum

o e ( ) (2.36)

> —a I P2 —




Evidently, we havdg = I U I, where
[H=IENRY, I =INR". (2.37)

HereR* andR~ are the nonnegative and the negative semi-axes of the neal li
respectively. Clearly,

f(p)

p2s_a

< C|f(p)| € L*(R)

Xret+

due to the one of our assumptions. Analogously,

< CO|f(p)| € L*(R).

f(p)
(—p)* — axlg_

We express R
s w7 df(s)
Flo) = Flaty+ [ “as
(2.34) easily gives us the upper bound

fp As

a?2s

p2s —

1 D —
\/%H f( )HLI(R) p23

< Cllzf(@)ll@x;s € LA(R).

9(15+ <

Apparently, R
f(az)

pQS_a

XI;’ € L2(R)

if and only if f( ) vanishes, which is equivalent to the orthogonality conditi

f(x),emm> =0, se(0,1).
( Vor L2(R)

To study the singularity of the problem on the negative sexms; we apply the

formula ~
- . . P
Fio) = feat)+ [ s

—a3Zs ds

Via (2.34) we have the upper bound

fp (s)

( p) XI_

p+a2_1s

L||93J‘7(93)HL1(1R> )% —a

_\/ﬁ

11
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< Ollaf(@)lm@x;- € L*(R).
Evidently,
f(=az)
(—=p)* —a
if and only if f(—a%) = 0, which is equivalent to the orthogonality relation

f(x),e_mm> —0, se(0,1).
( Vor L2(R)

We complete the proof of the theorem with establishing th f)a When the di-
mensiond > 2, we define the set

Xis € L*(R)

As={peR|ax —d<|p|<a%+6}, 0<bé<a>  (2.38)

and express

S £ () H (239)
pl* —a p* —a

u(p)

Obviously, we have the estimate from above

f(p)

Ip|* —a

X Ag

via the one of our assumptions. To treat the first term in thletiside of (2.39), we
will use the representation formula

. P Pl 5
f(p> = (a%70)+/1 aff‘;; U)dS‘

a?2s

Inequality (2.34) enables us to estimate

e

a?2s
Ip|?* —a

1 f ()| 1 ey | [p] — a2
= d
2

(27)

X As Xa; <

Ip|* —a

< Cllzf (@)l g rayxa, € L*(R?).
It can be easily verified that the remaining term

flaz,0)

P —a X% © L*(R)

if and only if f(az—ls ,0) vanishes, which is equivalent to orthogonality relatiod ()
for the dimensiong > 2. [ |
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Then we proceed to establishing the solvability in the sefisequences for our
equation in the no potential case.

Proof of Theorem 2Suppose:(x) andu,(x), n € N are the unique solutions
of equations (1.2) and (1.3) iH?*(R?), d € N with a > 0 respectivelys € (0, 1)
and it is known thati,,(z) — u(z) in L?*(R?) asn — co. Thenu,(z) — u(z) in
H?(R%) asn — oo as well. Indeed,

(=8)(un(2) = u(z)) = alun () — u(x)) + fulz) — f(z),

which clearly gives us

1(=4)*(un(z) —u(@))l 2@y < allun(@) —u(@)| L2 @)+ ful2) = f (@) 2@a) = O

asn — oo via our assumptions. Norm definition (1.5) yields(z) — wu(z) in
H?(R%) asn — oo,

If u(x) andu,(z), n € N are the unique solutions of equations (1.2) and (1.3)
in H2*(R%), d € N respectively withu = 0 as in the cases a)-d) of the theorem, by
applying the standard Fourier transform (1.18) we easitivee

~ ~ An p)— Ap An p)— Ap

Un(p) — u(p) = %X{msu + %X{Ipbl}- (2.40)
Evidently, the second term in the right side of equality (3 éan be estimated from
above in the absolute value in the space of any dimensigriffy) — f(p)|, such

that

~ ~

fn(p) = f(p)

BB < | ful®) = f(@)||l2ay = 0, n — o0

L2(R4)

X{lp/>1}

due to the one of our assumptions.
First we treat the case a) of the theorem when the dimemsioni. Then, when

s € <0, i) via the part a) of Theorem 1, equation (1.2) and each of egumfil.3)
admit unique solutions(z) € H*(R) andu,(z) € H**(R), n € Nrespectively.
Clearly, the first term in the right side of equality (2.40hd# bounded from above

: : 1 X{lpl<1}
in the absolute value via (1.19 () —
(119) Y=l fuw) = (@)l

L?*(R) norm can be estimated from above by

, such that its

) !
VT o V1—14s

due to the one of our assumptions and with <0, i) . This shows that in this case
un,(z) = u(z) in L2(R) asn — oo.

(#) = f(@) |l @)

—0, n—o0

13



Then we turn our attention to the casesot [i, %) Note that by means of

the parts a) and b) of Lemma 6 below, under our assumptionsawe fy(z) €
L'(R), n € N, such thatf,(z) — f(z) in L'(R) asn — oo. Then, via (1.12) we
obtain

(f (@), Dzl = [(f () = ful@), V2@ < 1 fal@) = f(@) 1) — 0

asn — oo. Thus,

(f(x), 1) 2@ =0 (2.41)
holds. By means of the part a) of Theorem 1, when [4, Z)’ equations (1.2) and

(1.3) admit unique solutions(z), u,(x) € H*(R), n € N respectively. Orthogo-
nality relations (2.41) and (1.12) yield

f(O)zO, J?n(O)ZO, neN

in this case. This allows us to use the expressions

. P JF . i
fo = [ s, fuw = [ Las wen,

which enables us to write the first term in the right side ofadigqy (2.40) as

fo <dfns B ];(38)>d8

FE X{lp|<1}- (2.42)
Using inequality (2.34), we easily estimate
dfa(p)  df(p)
— < — 1 2.4
o | S k@ - e @)le, (2.43)

such that expression (2.42) can be bounded from above irb8wude value by

1 _9s
\/—Q—Wfon(x) — . f(@) || )Pl X qpi<1}-

Hence, we arrive at

asn — oo due to the one of our assumptions. This implies that

dfn ]’0\5
fO ( ds d(s))ds
p[*

X{lpl<1} < —llzfu(z) —2f(2)|| 1@ — 0

L*(R)

un(z) = u(xr) in L*(R), n— oo

14



when the dimensiod = 1 anda = 0 with s € |1, 3).

Then we proceed to the proof of the theorem when the powereohégative

Laplacians € [%, 1) in dimensiond = 1 with « = 0. By means of the parts c) and
d) of Lemma 6 below under our assumptions we hayez) € L'(R), n € N,
such thate f,,(z) — zf(z) in L'(R) asn — oo. Then via the parts a) and b) of
Lemma 6 we have, () € L'(R), n € N, such thatf,(z) — f(x) in L}(R) as
n — oo. Orthogonality condition (2.41) here can be easily obtaivia the limiting
argument as above. By means of the second orthogonalityorelia (1.13), we

derive

[(f(2), ) 2@| = |(f(x) = ful2), 2) 2| < ||l ful@) — 2 f(2)]|L1@) = 0

asn — oo. Hence
(f(x),2) 2@y =0 (2.44)

holds. By virtue of the part a) of Theorem 1, wher [%, 1), equations (1.2) and

(1.3) possess unique solution&e), u,(r) € H*(R), n € N respectively. Via the
definition of the standard Fourier transform (1.18), oribragjity relations (2.41),
(1.13) and (2.44) give us for € N

A
(0) =0, %(0) =0,

0o oo U
dp

such that

o~

]?(P) = /Op </05 diﬁ?dq) ds, ]?n(p) = /OP (/05 d2CJ2§Q)dq> ds, mn € N.

By means of definition (1.18), we easily estimate

o~ o~

@f.(p)  &f(p)
dp? dp?

< \/12_7r||132fn(11) =2’ f(@)l ).

This yields the inequality
p2

Fulo) = Fio)l < (@) = @) |y

1
NG [E
which allows us to obtain the upper bound on the absoluteevafithe first term in

the right side of identity (2.40) by

1 _2s
ﬁ“ffn(ﬂ?) — 2 f ()| L) [P 2 X (1pl<1}-

15



Therefore,

1

falp) = F(p)
2y/7(5 — 4s)

i l2° fu(@) — 2* f(@)]] 22y — O

X{lpl<1}

L2(R)

whenn — oo as assumed. Thus
un(z) = u(x) in L*R), n— oo

when the dimensiod = 1 anda = 0 with s € [%, 1).

In the case of the dimensiaoh= 2 anda = 0, let us first treat the situation
whens € <0, %) Due to the part b) of Theorem 1, problem (1.2) and each of
problems (1.3) have unique solution&) € H*(R) andu,(z) € H*(R), n €

N respectively. Obviously, the first term in the right side 2#(0) can be estimated
X{lp|<1}

) p|2s '

from above in the absolute value via (1.19) lé)lnyn(x) — f(@)]| 21 (m2
s

such that itg.?(R?) norm can be bounded from above by

1

me”(x) — f@)||pr 2y = 0, n — o0

by means the one of our assumptions and with ( 0, % .
For the higher values of the power of the two dimensional tiegid.aplacian
5 € <%, 1), the orthogonality relation

(f(2), 1) p2@ey = 0 (2.45)

can be derived via the easy limiting argument, analogows(2#41). By virtue of
the part b) of Theorem 1, problems (1.2) and (1.3) possesgiarsiolutions:(z) €
H?(R?) andu, (z) € H**(R?), n € N respectively. Orthogonality relations (2.45)
and (1.12) imply R R

f(0)=0, f,(00=0, neN

when the dimensiod = 2 anda = 0 with s € <%, 1). This enables us to express

N ol 57 R ol 57
f(p)z/O %d& fn(p):/O st, neN (2.46)

and to write the first term in the right side of identity (2.4(3)

Il (9fn(s,0)  9f(s,0)
0 ( 0s - 0s dS

FE X{lp|<1}- (2.47)

16



Inequality (2.34) gives us

‘éﬁn(p) _ af(p) < %fon(l") _ xf(x)HLl(RQ), (2.48)

d|p| o\

Thus, expression (2.47) can be bounded from above in théuabs@lue by

1 25
%llen(ﬂf) — zf (@)l @2 p) 2 X i<y

Hence

asn — oo Via the one of our assumptions. Therefore,

ol (0fn(s,0)  8F(s,0)
0 < Os - 0s dS

|p|?s

_ lefu@) = 2/ (@) e

L2(®2) N 2/2m(1 — s)

— 0

X{lpI<1}

un(x) = u(z) in L*(R*), n— oo

when the dimensiod = 2 anda = 0 with s € <%, 1).
Let us proceed to the proof of the part c) of the theorem, wherdtmension
d = 3anda = 0 with s € <0, %) In such case, by virtue of the part c) of

Theorem 1, problems (1.2) and (1.3) admit unique solutidn$ anduw,,(x), n € N
respectively, belonging t&/**(R3). Using (1.19), we obtain the upper bound on the
first term in the right side of (2.40) in the absolute value by

1fn(2) = F@)ll21 @)
(27)2|p|>

{lpl<1}>

such that its.?(R?) norm can be estimated from above by

1

= @~ @l =0, e

via the one of our assumptions. Thus,
Un(z) = u(z) in L*R*), n— oo

in the case of the dimensieh= 3 anda = 0 with s € (0,2 ).
For the higher values of the power of the three dimensiongaiiee Laplacian
s € [%, 1), the orthogonality condition

(f(@), 1) p2@sy = 0 (2.49)

17



can be obtained via the trivial limiting argument, simijaib (2.41). By means of
the part c) of Theorem 1, equations (1.2) and (1.3) have ensqlutionsu(z) €
H?*(R?®) andu,(z) € H*(R3), n € N respectively. Orthogonality conditions
(2.49) and (1.15) yield

F(0)=0, f.(0)=0, neN

when the dimensiod = 3 anda = 0 with s € [%, 1). This allows us to obtain
here the expressions analogous to (2.46). Let us use thedhmensional analog
of inequality (2.48) to derive the upper bound on the firstntén the right side of

(2.40) in the absolute value by

||xfn(l’) - xf(x)HLl(R?’) 1-92s
Y; Pl = X pl<1y

such that its.?(R?) norm can be estimated from above by

1

=iy @ 2@l > 0. n oo

due to the one of our assumptions. Therefore,
un(x) = u(z) in L*(R®), n— oo

in the case of the dimensioh= 3 anda = 0 with s € %, 1).

Then we turn our attention to the case d) of the theorem. Byeinf the part d)
of Theorem 1 equations (1.2) and (1.3) admit a unique salstidr) € H?**(R?)
andu,(z) € H*(R3), n € N respectively. Using inequality (1.19), we estimate
the first term in the right side of (2.40) in the absolute vdiye

1fn (@) = f(@)l| 21 @)

(2m)2 [p[**

X{pl<1}y, d =4,

such that its.>(R?) norm can be bounded from above by

1 | 54|
(2m)2 V d —4s

[fn(z) = f(@)||lpr ey = 0, n— 00

by virtue of the one of our assumptions. Hence,
un(x) = u(x) in L*R?), d>4, n— oo

whena = 0 ands € (0,1).

18



If uw(z) andu,(z), n € N are the unique solutions of equations (1.2) and (1.3)
in H**(R%), d € N respectively with: > 0 as in the cases e) and f) of the theorem,
by applying the standard Fourier transform (1.18) we eaxibain

@n(p) . fn(p)

Cpl*—a

a(p) , neN. (2.50)

- P2 —a’

First of all, we consider the case e) of the theorem, when ithemkiond = 1 and

a > 0. Thus, due to the result of the part e) of Theorem 1, equatid) pas a
unique solutionu, (r) € H*(R), n € N. Clearly, f,,(z) € L'(R), n € N, such
that f,,(x) — f(z) in L'(R) asn — oo via the parts a) and b) of Lemma 6 below.
By means of the limiting argument, analogously to the prd¢2at1) we obtain the
orthogonality relations

eiia%x
(f(x), N )LQ(R) =0, se(0,1). (2.51)

Then by virtue of the result of the part e€) of Theorem 1, probl@.2) admits a
unique solution:(z) € H*(R). Using (2.50), we express,(p) — u(p) as

Fnp) = F ) Jalp) = T )
p25 —a ngr p2s —a
fol0) = F0)  Falp) = F ()

B I S
with I;7, Iy are given by (2.35) and™, I{~ are defined in (2.37). Evidently,
the second term in (2.52) can be estimated from above in thelatle value by
C|fn(p) — f(p)|, such that

as assumed. Analogously, the last term in (2.52) can be lgolindm above in the

o~

absolute value b¢'|f,.(p) — f(p)|. Thus

due to the one of our assumptions. Orthogonality relati@risl) and (1.16) give us

XI§++

(2.52)

Fu(p) — F(p)

2 a < C|fulz) = f(@)|2@) = 0, n— o0

L*(R)

+
ng

Fu(p) — f(p)

—p)® —a X1 < COllfu(z) = f(2)l|22@) — 0, n— 00

L*(R)

o~

fla¥) =0, fu(a%)=0, neN,
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such that

~

fo = [, s fu= [, L wen

which enables us to express the first term in (2.52) as

fp [—dfn(s) — m}ds

a = ds ds

p2s . XI;" (253)

By means of (2.43), we obtain the upper bound on (2.53) inliselate value by
p—ax
p2s

1
V2r
Thus, theL?(R) norm of (2.53) can be estimated from above by

[ fn(@) — 2 f ()]

\ir < Cllzfule) = af @)

Cllefu(z) — 2 f(z)|| 1w =0, n — 00
due to the one of our assumptions. Orthogonality condit{@rtsl) and (1.16) yield
f(=az)=0, fu(—az)=0, neN

with s € (0, 1). Therefore, at the negative singularity

~

~ P d N P d:L
f(p):/ . J;is)ds, fn(p):/ . fdis)ds, n € N.

—a?2s —a?2s

This gives us the upper bound on the third term in (2.52) iretbsolute value by

1 p+ai
V2r (=p)* —a

Thus, itsL?(R) norm can be estimated from above by

[z fn(x) = 2 f ()]l Xi; < Cllafu(z) = 2 f (@)l L@, -

Cllefu(z) =2 f(z)|| @ =0, n— o0

as assumed. This shows that in dimensioa 1, whena > 0 ands € (0,1) we
have
un(x) = u(z) in L*(R), n — oco.
We conclude the proof of the theorem with treating the caseéngn the dimension
d > 2 anda > 0 with s € (0,1). Then under our assumptions, by virtue of the part

f) of Theorem 1, problem (1.3) has a unique solutigifiz) € H**(R¢), n € N. A
trivial limiting argument analogous to the proof of (2.41ye&p us

ol

ipT
(f(x), ¢ ) =0, pes,. (2.54)
(27T) LQ(Rd)
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Then by means of the part f) of Theorem 1, problem (1.2) adanitsique solution
u(r) € H*(R?). Using (2.50), we easily arrive at

Fulp) — fp) Fulp) — f(p)
TP T

with the setA; defined in (2.38). Evidently, the second term in the righesid
(2.55) can be estimated from above in the absolute valug|By(p) — f(p)|. Thus,

‘ Fu(p) — f(p)

p[** —a
asn — oo viathe one of our assumptions. Orthogonality relations4pand (1.17)
imply that

un(p) —u(p) = X Ag (2.55)

< Ol ful@) = f(@) || 200y — O

L2(R4)

X Ag

~

f(afls,a) =0, fn(afls,a) =0, neN,
such that

~ lpl 97 N lp| 57
7o) :/1 8]"1(8,0)&97 Fulp) :/1 Md& n e N.

b Js b Js

By means of the definition of the Fourier transform (1.18glagously to inequali-
ties (2.43) and (2.48) in lower dimensions, we easily obtain

of.(p)  9f(p)
I|p| d|p|

We derive the upper bound in the absolute value on the finst itethe right side of
(2.55) by

< (2;% |2 fu(2) = 2f ()] 1 -

p| — az
Ip|* —a

P ORI

This implies that

‘ Fulp) — ()

pl** —a
as assumed. Therefore, in dimensidns 2, whena > 0 ands € (0, 1), we have

XAs < Ofon(x) - ‘Tf(x)HLl(Rd)XAé'

< Ollzfu(z) —2f(2)| p1@ay = 0, n— 00
L2(R4)

XAs

U (x) = u(x) in  L*(R?)
asn — oo. u

3. Solvability in the sense of sequences with a scalar potesit
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Proof of Theorem 4Note that the case a) of the theorem is the result of Lemma 7
of [28]. Then we proceed to proving the case:af 0.

To prove the uniqueness of solutions of our equation, leuppase that there
exist bothu, (z) andu,(x) which are square integrablelR¥ and solve (1.20). Then
their differencew(z) := u;(x) — us(z) € L*(R?) is a solution of the problem

(—A+V(x)’w=aw, sec(0,1).

The fact that the operatdrA + V(z))* has no nontrivialL?(R?) eigenfunctions
as discussed above yields thatr) vanishes a.e. i3,

Let us apply the generalized Fourier transform (1.26) withfunctions of the
continuous spectrum of the Schrodinger operator to batbssof problem (1.20),
which yields .
f(k)

|25_a’

(k) = % s e (0,1).

We introduce the spherical layer in the space of three dirneasis
Bs:={keR|az —§ < |k| <a® +5}, 0< 5 < az. (3.56)
This allows us to express

%‘J;E%XB[S + %XB;- (3.57)

(k) =
The second term in the right side of (3.57) can be trivialluhded from above in
the absolute value by

C|f (k)| € L*(R?),

becauség (z) is square integrable as assumed. We express

o M af(q, o
f) = fat o)+ [ %dq

a2s

Therefore, the first term in the right side of (3.57) can bdtemi as

~ k| of(q,o
flat.o)  Jo 2P
‘k’PS _ aXBé _'_

|k7|25 —a XB(S' (358)

The second term in sum (3.58) can be easily bounded above iab$olute value
by

k] — a®

kP —a

IV 5 f (k)| oo (i) X85 < C|Vif(k)|| L@ x5, € L2(R?).
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Note that under the stated assumptidnsf (k) € L>(R?) due to Lemma 2.4 of
[21]. Apparently, the first term in (3.58) is square intededband only if f (a3, o)
vanishes, which yields orthogonality relation (1.29). [ |

Then we proceed to the establishing of our last main statedeating with the
solvability in the sense of sequences.

Proof of Theorem 5In the case a) when e <0, %) problems (1.20) and (1.21)

have unique solutions(z), u,(z) € L*(R*), n € N respectively due to the part a)
of Theorem 4 above. Let us apply the generalized Fouriestoam (1.26) to both
sides of equations (1.20) and (1.21). We obtain

. fk) fu(k)
u(k) = (k) = , N.
( ) ‘sz? ( ) ‘k‘Qs c
Therefore
Un(k) —a(k) = —fn(k|>k|_gsf(k)><{|kg1} + —f”(k‘)kﬁsf(k)xw»}. (3.59)

Obviously, the second term in the right side of (3.59) candmlg estimated from
above in the absolute value b, (k) — f(k)|. Hence

fnk) = f(F)

TR ke < lfu(x) = f(@)l2@s) = 0, n— o0

L2(R3)

via the one of our assumptions. Using (1.27) we obtain theuppund for the first
term in the right side of (3.59) in the absolute value by

1 1
@mi L 1(V)

Apparently, this yields

X
1) = 7@ sy

<

(k)
25 X{|k|<1}
||
L2(R3)

< 1 1
2(3 —4s)m 1 —1(V)
due to the one of our assumptions. Therefargyx) — u(z) in L?(R?) asn — oo
in the case when the parametes 0 ands € (O, %)

[ fo(z) = f(@) 21 ms) = 0, n— o0
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Then we turn our attention to the situation when= 0 ands € %, 1). By

means of orthogonality relation (1.30) along with the Clangl 2.2 of [21] and the
part b) of Lemma 6 below we obtain

[(f(2), po(®)) 23| = [(f(2) = fu(®), po(2)) L2 (re)| <

- 1 1
T (2m)z - I1(V)

| fu(x) = f(2)|| 13y = 0, n — oo,

Therefore,
(f(), o)) 2@msy = 0 (3.60)

holds. Hence equations (1.20) and (1.21) admit unique isolsit.(x), w,(z) €
L*(R?), n € N respectively via the part a) of Theorem 4. As discussed gbove
it is sufficient to consider the first term in the right side 8f59). Orthogonality
relations (3.60) and (1.30) yield

such that

_ Ikl g F N M OF (s,
f(lf):/0 %ds, fn(l«l:):/0 %U)ds, n € N.

This enables us to estimate the first term in the right sid8&9) from above in
the absolute value bYWV [f. (k) — f(k)]| Lo @2 k] **X (k<13 Therefore

fn(k) = f(F)

Tpm XK= < C||Vilfalk) = F(R)]llpo@s — 0, n— o0

L2 (RZS)

due to Lemma 3.4 of [26] under the given assumptions. This/shbatu,,(x) —
u(z) in L*(R3?) asn — oo whena = 0 ands € [%, 1).

We complete the proof of the theorem by establishing theltre$the part b).
By virtue of the limiting argument similar to the proof of ation we have (3.60)

(f(.CE), ng(x))LQ(RS) = 0, k’ € Sji’ S € (0, 1) (361)

holds. Thus by means of the result the part b) of Theorem Zateams (1.20) and
(1.21) possesses unique solutiais), u,(z) € L*(R?). We apply the generalized
Fourier transform (1.26) to both sides of problems (1.2@) @n21). Hence, we

obtain - . _ _
fa(k) = f(k) fa(k) = f(k)

(k) —u(k) = H% —a XBs + 5% —a X B¢ (3.62)
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with B;s defined in (3.56). Obviosly, the second term in the right sitig3.62) can
be estimated from above in the absolute valu€ty, (k) — f(k)|, such that

|k|2s —a S Can(x) — f(x)HLQ(R3) — O, n — oo

L2(R3)

X B

due to the one of our assumptions. By means of orthogonalitglitions (3.61) and
(1.31), we have

flaz,0) =0, fu(a®,0)=0, neN.

This gives us the representations

- K| 8.]?(8’0.) - |k| afn(870_>
Foo = [, e as = [ 2 as e,

such that the first term in the right side of (3.62) can be esgwd as

ds ds

kP —a

XBs- (3.63)

Clearly, (3.63) can be trivially estimated from above in #fbsolute value by

k| — az ~ ~
™ | b < CIVALFulh) — F(8) e

IVl Fo (k) = FOR oo es) kF—a

Therefore, thel?(R?) norm of (3.63) can be bounded from above by
CIVi[fulk) = F (k)| L@y = 0, n— o0

by virtue of Lemma 3.4 of [26] under the given assumptions.isTelds that
un(z) — u(z) in L?(R3) asn — oo whena > 0 with s € (0, 1). u

4. Auxiliary results

The following technical lemma is useful for proving the sadility in the sense of
sequences in our theorems. Note that its parts a) and b) weelished in Lemma
6 of [30].

Lemma 6. a) Let f(z) € L*(R?), d € Nandxzf(z) € L'(R?). Thenf(z) €
LY(RY).

b) Letn € N, f.(z) € L*(R?), d € N, such thatf, (z) — f(z)in L?(R?) as
n — oo. Letxf,(x) € L'(R?), such thatef,, () — zf(z) in L'(R?) asn — oo.
Thenf,(x) — f(x)in L*(R%) asn — cc.

c) Letf(z) € L*(R?), d € Nandz?f(x) € L'(R?). Thenz f(x) € L' (R?).
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d) Letn € N, f.(z) € L*(RY), d € N, such thatf,(z) — f(z) in L*(R?)
asn — oo. Letz’f,(z) € L'(RY), such thatz?f,(z) — z*f(z) in L'(R?) as
n — oo. Thenz f,(z) — xf(x) in L*(R?) asn — occ.

Proof. To prove the part c) of the lemma, we express the norif(z)|| 11 (ra) as

[ elsas+ [ el < [ s [ el

This sum can be easily bounded from above via the Schwarnaliégby

1 @)l 2y V1B + 12 f (@) [ 3 ey < 00

as assumed. Let us complete the proof of the lemma with éstaly its part d).
Clearly, the normj|z f,.(z) — 2 f ()| 11 (re) CaN be written as

[ bl — f@lds+ [ pallfate) - foldo <
|z|<1 |z|>1

< [ in@ - f@ldrs [ el - 1w

|z|>1
By means of the Schwarz inequality this sum can be triviadlyneated from above
by

1fa(2) = f@)l| 2@y V1B + [l2* fulz) — 2 (@) | prgey = 0, n— 00

due to our assumptions. [ |
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