
The GHSZ argument: a gedankenexperiment

requiring more denken

Frank Lad
University of Canterbury, Department of Mathematics and Statistics

September 30, 2016

Abstract

The wonderful gedankenexperiment of Greenberger, Horne, Shimony and Zeilinger has
received only partial analysis in their seminal presentation. The analysis is completed here,
yielding the consistent EPR model for which they searched. The fatal error leading to their
flawed conclusion arises from the incompleteness of their analysis, an error of neglect.

1 Prelude

Please continue reading, with an open mind. The surprising results of this note defy the influen-
tial conclusions of Greenberger, Horne, Shimony and Zeilinger (1990) who expounded a version
of Bell’s theorem without involving inequalities. Their argument, in tandem with experimental
developments culminating in the empirical work of Hensen, Bernien, Drau et al.(2015) have led
Wiseman (2015) to advise the physics community of the “death by experiment for local realism”
in a recent issue of Nature. Aware of the popularity of this conclusion, I ask you to continue
nonetheless, if only out of intrigue. However, I do hope you find my analysis of the situation to
be enjoyable, insightful, and convincing. I shall make some further comments in a concluding
section. This edition revises minor errors in a previous submission.

I presume any reader’s detailed familiarity with the work of GHSZ. I use their notation
fastidiously, and I often refer to their equations by number, without reprinting them. This will
spare me any further repetitive introduction. It would be best if you have pages 1134-1135
in front of you as you read this. To distinguish their equation numberings from a few that I
will require for my own introduced equations here, I shall number mine with lower case Roman
numerals i, ii, iii, and iv. We shall begin directly with discussion of the developments presented
in their Section III which is the exclusive subject of this note. I mention only in passing that
the persuasive exposition of Bell’s original Theorem appearing in their Section II continues to
embed an error which Bell and subsequent advocates of the supposed violation have missed. But
that is another story. By Section 2.2 I will have identified a fatal error involved in the analysis
of GHSZ Section III, and will have resolved it, completing the analysis in Section 2.3. Let’s get
right to the quick.

2 Let’s go!

To begin, I request you to review Section III of GHSZ to refresh your memory of the notation
and the details of their argument. I am in complete agreement with their analysis through equa-
tion (16). For clarification of a central aspect of the situation which will be relevant to all that
follows, I display below the realm matrix of all measurement vectors that can possibly arise in
the conduct of a specific Stern-Gerlach experiment on four entangled particles in the quantum
state |Ψ〉 corresponding to any specific experimental design for which φ1 + φ2 − φ3 − φ4 = 0.
This condition is a supposition (“If clause”) of their equation (11a) which does not stand on its
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own without this clause. Notice that their companion equation (11b) relies on an alternative
condition that φ1 + φ2 − φ3 − φ4 = π. Contradictory to each other, both of these conditions
cannot be satisfied in any specific experimental run. Throughout this text I shall refer to these
conditions as “condition (11a)” and “condition (11b)”, for brevity, without repeating them in
full at each instance.

In displaying the realm matrix below, I denote the specific experimental quantity measure-
ment vector as (Aλ(0), Bλ(0), Cλ(0), Dλ(0))T , signifying that each of the four angles φi is equal
to 0 radians. Of course this design of the angles does satisfy condition (11a). This constitutes
no loss of generality in representing the realm matrix for any quantity vector resulting from a
design that meets this angle condition.

Since this restriction on φ1+φ2−φ3−φ4 implies via equation (9) of GHSZ that the expected
spin product Aλ(0)Bλ(0)Cλ(0)Dλ(0) equals −1, it would be impossible to achieve any exper-
imental spin results that allow the vector of these multiplicands to imply a positive product.
Thus, the realm matrix for the column vector of these four-particle measurements is

R


Aλ(0)
Bλ(0)
Cλ(0)
Dλ(0)

 =


1 1 1−1−1−1−1 1
1 1−1 1−1−1 1−1
1−1 1 1−1 1−1−1
−1 1 1 1 1−1−1−1

 ≡ R−1 . (i)

In the entangled state of the four-particle system specified by |Ψ〉 in equation (7), the columns
of this matrix exhaust the vector values of measurements that can arise from such an experiment.

Notice the concluding definition of the denotation R−1 in equation (i). This is to distinguish
it from a companion matrix I denote by R+1 which specifies the realm matrix corresponding
to the possible outcomes of a different experiment in which the magnet angles satisfy instead
condition (11b), that φ1 + φ2 − φ3 − φ4 = π . Again, without loss of generality, an exem-
plar experiment would generate an observable result (Aλ(π), Bλ(0), Cλ(0), Dλ(0))T , with realm
matrix

R


Aλ(π)
Bλ(0)
Cλ(0)
Dλ(0)

 =


1−1−1−1 1 1 1−1
1−1 1 1−1−1 1−1
1 1−1 1−1 1−1−1
1 1 1−1 1−1−1−1

 ≡ R+1 . (ii)

The restrictions of the measurement vector possibilities embedded in the realm matrices
R−1 and R+1 derive from equation (9) of GHSZ, which specifies that Eψ(n̂1, n̂2, n̂3, n̂4) =
−cos(φ1 + φ2 − φ3 − φ4). At the two extreme angle restrictions we have entertained, that
φ1 + φ2 − φ3 − φ4 equal 0 or π, this negative cosine value equals −1 and +1 respectively. This
is what restricts the measurement realms to be R−1 and R+1 in these extreme cases. If the
combination of experiment angles in this equation equals some other value, say, θ ∈ (0, π), then
the realm matrix of possibilities for the measurements of the four electron spins would be the
concatenation of these two realms, [R−1 R+1]. With the recognition of this situation clearly in
mind, we are ready to face the wall.

2.1 Hitting a wall at equation (16)

GHSZ regard their conclusion (16), that Aλ(2φ) = Aλ(0) = const for any angle φ, as surprising,
for reasons they well explain. Recognizing that nonetheless this equation is not mathematically
contradictory in itself, they pursue a contradiction by recourse to their equation (11b) which
had not yet been brought into play in the derivation of (16).
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We shall indeed join GHSZ in this pursuit, but we should recognise at the outset that the
results of (11a) and (11b) pertain to contradictory experimental designs of the Gerlach-Stern
magnet settings. The former result pertains to settings for which φ1 + φ2 − φ3 − φ4 equals 0,
while the latter pertains when φ1 + φ2 − φ3 − φ4 equals π. Enough said for now, but note that
it is contradictory and thus impossible for both of these conditions to hold in any experiment on
any quartet of particles. Wondering ourselves now, how might the angle φ1 at station A equal
both 2φ and equal 0 so as to instantiate equation (16)? What could such notation mean?

2.1.1 Filling out the notation

GHSZ might well have first thought a bit further about the consequences and meaning of equa-
tion (16). To begin, we ought recognize this equation to imply that all measurements A(φ)
need equal A(0) for every angle φ under design conditions pertinent to (11a). It is irrelevant
whether one refers to an arbitrary angle as φ or as 2φ. Recall that in the shorthand notation of
GHSZ being used here, A(0) initially represents the value of the measurement A when all four
design angles equal 0, as per equation (12a) where it first appears. This equation denotes that
the directions of all four Stern Gerlach magnet orientations displayed in Figure 2 are identically
aligned with the x-axis.

Now it may sound surprising as a boldly stated result, to hear further that the physical sym-
metry of the experimental setup also requires that B(φ) = B(0), that C(φ) = C(0), and that
D(φ) = D(0) for every angle φ as well! (Note that each of these equalities must be understood
in the context that both sides of the equations are pertinent to designs in which φ1+φ2−φ3−φ4
equal 0. An exemplar setting would be that each angle φi equals the same arbitrary angle φ.)
However, these results are not really surprising either. There is surely nothing special about the
component A of the four measurements playing the role that it does in the derivation of (16).
Algebraically, the angles associated with the A’s in derivational lines of equations (12) could be
permuted with those of the B’s to achieve the corresponding equalities. Then if the angles A and
B in these lines were permuted with those in the lines of C and D, we would again achieve the
corresponding equalities for the C’s and the D’s, even allowing permutation of the C’s and D’s.
For geometrical motivation, one could merely imagine flipping the image in Figure 2 by 180◦

in the y-direction and/or in the z-direction, relabeling the locations A,B,C, andD appropriately.

Thus, we can understand A(φ) in equation (16) to represent the measurement value of A
in an experiment in which all four of the angles φ1, φ2, φ3 and φ4 are identically equal to an
arbitrary angle φ. That is why the numerical subscripts are removed from φ.

2.1.2 Recognizing rotational symmetry

Understood in this way, the stated conclusion (16) which we write as A(φ) = A(0) for all φ can
be expanded to say (Aλ(0), Bλ(0), Cλ(0), Dλ(0)) = (Aλ(φ), Bλ(φ), Cλ(φ), Dλ(φ)) . In this fully
expressive form, this is evidently a condition of rotational symmetry. Identical direction vectors
n̂i at the four observation stations determining a common angle φi = φ can be rotated together
in the (x,y) plane of the experiment however one might wish, without changing the experimental
result. Importantly, notice that this is not merely a restriction on the expectation of the spin
products at an equi-angular experiment. We knew this before the derivation of equation (16)
began in equations (12a−12d). Result (16) is a condition on the actual results of an experiment
on a specific set of particles designed to meet the angle condition (11a). The actual result on a
specific quartet of particles must be invariant with respect to the rotation of the (x, y) axis.

In the context of the locality presumption of EPR, this restriction of all equal angles in the
understanding of A(φ) and A(0) shall be found unduly severe, but it is worth considering this
situation to begin this discussion. What is relevant, and continues to be relevant to under-
standing this conclusion of symmetry, is that A(φ) need equal A(0) whenever the angle φ1 = φ
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or φ1 = 0 in the contexts of specified experimental designs for which the designed magnet angle
combination φ1+φ2−φ3−φ4 equals 0 . Some further (but not all) instances of this more general
understanding of the notation appear in equations (12b, 12c, 12d).

With this recognition of its shorthand expressiveness, equation (16) is not surprising at
all, on account of the rotational and permutation symmetries of the experiment as designed!
Algebraically, several symmetries are evident in the QM-motivated stipulations of equations (8)
and (9), which show that the expected 4-spin-product is a function only of the angle combination
φ1+φ2−φ3−φ4 . Rotational symmetry of the experimental conditions would be exhibited in the
transformation of the vector of angles Φ4 by the addition of any vector of constants t4 = (t, t, t, t),
which would surely preserve this angle combination. In fact, preservation would continue under
the addition of any angle vector t4 for which t1 + t2 = t3 + t4. Furthermore, permutations of
either or both of φ1 with φ2 and/or φ3 with φ4 in the specification of Φ4 would preserve this
condition as well. Geometrically, the former would be exhibited by rotating the (x, y) planes
containing the directional vectors (n̂1, n̂2, n̂3, n̂4) in Figure 2 around the orthogonal −z ↔ z
axes, all at the same rate. Permutation symmetry would be exhibited by flipping the z-axis
systems of either angular pair (φ1, φ2) or (φ3, φ4) at the source node shown in Figure 2.

2.1.3 The bottom line on equation (16)

All this means is that if one were to evaluate the four spin measurements of a single instance of
the four entangled electrons (finding the measurements to equal, say, 1, -1, 1, 1 ) at any angles
Φ4 whatsoever that satisfy the conditions of (11a) the measurements would be the same as they
would if the angles were transformed to another configuration that satisfies the same conditions!
Be clear on what this means. It does not mean that all the four spin measurements are equal.
(In the case of φ1+φ2−φ3−φ4 = 0 which we are considering, this would indeed be impossible.)
However, suppose as a special case, that one perform the experiment with the orientations of the
various axes as depicted in Figure 2, and with all four angles designed to equal 0. This means all
four of the directional vectors n̂i would align with the x-axis in their respective quadrants. Then
observing the results, say, Aλ(0) = 1, Bλ(0) = −1, Cλ(0) = 1, and Dλ(0) = 1 , one could be cer-
tain (in the context of the EPR paradigm) that the same results would be achieved using these
same four electrons if the experimental setup had been flipped or rotated into any one of the ro-
tated or flipped directions we have just considered. Conducting such a transformed experiment
would be equivalent to changing the perspective from which we are viewing the same experiment.

As a companion clarification, notice too that the same result of (1,−1, 1, 1) would not nec-
essarily be observed if we conducted the experiment on a different quartet of electrons prepared
in the same way at any one of the orientations of the setup considered. The result of this sub-
sequent and distinct experiment could yield as the measurement vector any one of the columns
of the realm matrix R−1. This observational result too, whatever it may be, would remain
constant with respect to rotational and permutation transformations of the apparatus.

Up to this point, I believe everyone who concurs with the GHSZ analysis through equation
(16), including me, should be in complete agreement. All that my discussion till now has done
is highlight some further implications of the analysis which has led to what they consider to be
their surprising conclusion (16). I did at first share their surprise, for the good reasons they
mention: “For if Aλ(φ) is intended, as EPR’s program suggests, to represent an intrinsic spin
quantity, the values of Aλ(0) and Aλ(π) would be expected to have opposite signs.” (They were
alluding to an instantiation of (16) in which φ = π/2.) We have now learned, to the contrary,
these measurement are required to be equal instead! Something needs to give. [As a hint for
your intuiting the resolution, remember the condition on this equality of Aλ(0) with Aλ(π): the
angles 0 and π in the arguments on the two sides of this equality must each be presumed to be
embedded in a configuration of the angle vector Φ4 that satisfies the condition of (11a) .]
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2.2 Pushing on to a resolution of the impasse ! What is “the contradiction” ?

GHSZ continue: “The trouble becomes manifest, and an actual contradiction emerges, when we
use (11b) — which until now has not been brought into play — to obtain

Aλ(θ + π)Bλ(0)Cλ(θ)Dλ(0) = 1 , (17)

which in combination with Eq. (12b) yields

Aλ(θ + π) = −Aλ(θ) . (18) ”

Let’s think about our situation some more. The locality presumption of EPR stipulates that
the value of any specific measurement, such as Aλ(θ+π) should result, for a specific experimental
setup on a quartet of electrons prepared in the entangled state |Ψ >, in a numerical outcome that
does not depend on the other three angles concurrent in the experiment. In combination with the
symmetry results we have just derived from (11a), viz., Aλ(θ + π) = Aλ(0) and Cλ(θ) = Cλ(0),
this would seem to imply straightforwardly that

Aλ(θ + π)Bλ(0)Cλ(θ)Dλ(0) = Aλ(0)Bλ(0)Cλ(0)Dλ(0) = −1 , not + 1 ! (iii)

In light of GHSZ equation (17), this would indeed be a surprise ! What is happening here?

We could merely remark that equation (12b) holds only because it satisfies the condition
(11a) as opposed to (11b) which contradicts it. Presuming that both (11b) and (12b) hold at the
same time would embed a contradiction into the argument, easily yielding nonsensical results.
However, we might profitably discuss the situation further.

Remember, our understanding of the results derived from (11a), viz., Aλ(θ + π) = Aλ(0)
and Cλ(θ) = Cλ(0), presumes the denotations Aλ(θ+ π) and C(θ) pertain to the outcome of an
experiment in which φ1 = (θ + π) and φ3 = θ in the context of four angles Φ4 satisfying (11a).
With this understood, it would be a direct application of our symmetry result to write

Aλ(θ + π)Bλ(0)Cλ(θ)Dλ(π) = Aλ(0)Bλ(0)Cλ(0)Dλ(0) = −1 . (iv)

Notice the difference in the arguments of the multiplicand D’s in the left-hand-side products of
equations (iii) and (iv). Equation (iii) might then be thought to hold on account of (iv) via
the mechanical substitution of Dλ(0) for Dλ(π) in (iv), using the result that Dλ(π) = Dλ(0)
under condition (11a). However, making this substitution alone without further accompanying
substitutions on angles φ1 = (θ + π) and φ3 = θ to ensure the overt subscription of the angles’
settings to the conditions of (11a) would necessitate a very contorted understanding of the
left-hand side of (iii).

2.2.1 On shorthand notation

One need be very careful in the use of shorthand notation. The denotation A(φ) could be mean-
ingful in itself. It could represent merely the numerical result of an experiment on a quartet
of photons in which the angle φ1 = φ. However, when the notation A(φ) is defined casually as
such a designation in the context of a non-universally-necessary result which holds only under a
condition on all four angle settings such as (11a), one must keep a watchful eye for the encroach-
ment of surreptitious errors in interpretation. This required attention is further exacerbated in
the situations we are addressing here, which involve the stipulation of the EPR locality premise.
On account of the quantum mechanical stipulation of equations (8) and (9), the locality pre-
sumption must be carefully specified in the context of the four-particle electron experiment. For
the system behavior of electron quartets explicitly does depend on the joint setting of all four
angles. The magnetic spin behavior of an electron with respect to a magnet angle setting at
station A explicitly does depend on the magnet angle settings at stations B,C, and D. This
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is the substance of equations (8) and (9). In this context, the premise of locality regarding
experimental behavior must be understood to insist that no real change can take place in the
behavior of any one of the electrons, at angle φ1 say, in consequence of what is done in the other
three, presuming that the angles of the other three still ensure that all four angles yield the same
value of the combination φ1 + φ2 − φ3 − φ4. (My wording here closely modifies the wording of
GHSZ in their statement of the Locality premise at the top right hand column of page 1134.)

It may seem that locality could be specified merely as relevant to an individual observation
station angle, without reference to this qualification. However, if this specification were implied
separately to all four angles without reference to the others, we would arrive in an impossible
tangle of contradiction.

2.2.2 Thinking logically about contradictions

The problem is that the symmetry conditions yielding my equation (iv) pertain to experimental
designs in which the linear combination of four magnet angles φ1+φ2−φ3−φ4 equals 0, whereas
the angle combination proposed in equation (17) of GHSZ equals π, not equal to 0. In the first
place, it is physically impossible to conduct a second experiment on the same quartet of electrons
with the magnet orientations different from the conditions pertaining to the first. This cannot
be done because those specific electrons have seen their day. It would be physically impossible
even to isolate them together again. Of course we could think about what might have been the
outcome of such a second experiment on the same electrons in a gedankenexperiment. That is
the setting in which considerations of Bell’s inequality are appropriate. However, even in such
an imagined composite of experiments it would be a contradictory operation to set the angle
combination to equal both 0 and to equal π in a single component experiment. Simultaneous
application of (11a) and (11b) to the same component experiment would be contradictory.

Scientists and logicians are comfortable with the notion that presuming something which is
logically impossible to be true can yield further contradictions, and also with the real aware-
ness that it is impossible to perform a prescribed action whose operational description entails
a contradiction. It is impossible to perform simultaneously a Stern-Gerlach quadruple electron
experiments on a quartet of electrons with the angle settings satisfying two contradictory con-
ditions. The restriction of the angle combination φ1 + φ2 − φ3 − φ4 to equal π is contradictory
to the restriction that it equal 0. It is not surprising then that presuming them both will yield
a contradiction.

Well, what then is the status of GHSZ equation (11b)?

2.3 The status of equation (11b)

Suppose we consider some implications of (11b) in a way comparable to the way GHSZ assess
implications of (11a), line by line, even numbering our lines here identically to the GHSZ num-
berings and even using their wording. Remember that statement (11b) includes the premise
that “If φ1 + φ2 − φ3 − φ4 = π”, an alternate condition to that of the premise of (11a). Four
instances of (11b) are

Aλ(π) Bλ(0) Cλ(0) Dλ(0) = 1, (12a)

Aλ(π + φ) Bλ(0) Cλ(φ) Dλ(0) = 1, (12b)

Aλ(π + φ) Bλ(0) Cλ(0) Dλ(φ) = 1, (12c)

Aλ(π + 2φ) Bλ(0) Cλ(φ) Dλ(φ) = 1. (12d)

From equations (12a) and (12b) we obtain

Aλ(π)Cλ(0) = Aλ(π + φ)Cλ(φ), (13a)
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and from equations (12a) and (12c) we obtain

Aλ(π)Dλ(0) = Aλ(π + φ)Dλ(φ). (13b)

A consequence of these is

Cλ(φ)/Dλ(φ) = Cλ(0)/Dλ(0), (14a)

or equivalently,

Cλ(φ)Dλ(φ) = Cλ(0)Dλ(0), (14b)

since both Cλ(.) and Dλ(.) each equal ±1, and thus equal their multiplicative inverses.

We then obtain from (12d) and (14b) the result

Aλ(π + 2φ)Bλ(0)Cλ(0)Dλ(0) = 1,

which in combination with (12a) yields

Aλ(π + 2φ) = Aλ(π) = const for all φ .

Again, as the denomination of an arbitrary angle by φ or by 2φ is irrelevant, this is equivalent
to writing

Aλ(π + φ) = Aλ(π) = const for all φ . (16b)

This result can be seen as companion to result (16) of GHSZ which is pertinent to the premise
of the alternative condition (11a). Intentionally provocatively, I label this as equation (16b).
GHSZ propose no equation (16b). It defies the result they portray as equation (18) which they
derived by presuming contradictory premises. As a pair, the pleasing results (16) and (16b) beg
for further discussion.

Assessing an experiment pertinent to (16b)

Remember again our agreement to support the entire theoretical development of GHSZ through
equation (16). As to experimental considerations, let us forget for the moment the experi-
ments we have assessed heretofore, and begin again afresh. Suppose we now design to perform
the Stern-Gerlach experiment of GHSZ with a new quartet of electrons, prepared in the same
entangled way as was the previous quartet. However, we shall now design the magnet direc-
tions (n̂1, n̂2, n̂3, n̂4) so to specify the angle settings (π, 0, 0, 0), motivating the assessment of
Eψ(n̂1, n̂2, n̂3, n̂4) = −cos(π) = +1 . Now since cos(−θ) = cos(θ) for any angle θ, the
realm restrictions on this experimental design are equivalent to those on the design (0, 0, π, 0),
and since the angle 0 is equivalent to the angle 2π, these restrictions are equivalent to those
on the design (2π, 0, π, 0) as well. Thus, this experimental design (π, 0, 0, 0) is equivalent to an
instantiation of GHSZ’s equation (11b) as Aλ(2π)Bλ(0)Cλ(π)Dλ(0) = 1 .

The purpose of these machinations becomes apparent when we examine again the realm
matrix for the measurement vector (Aλ(π), Bλ(0), Cλ(0), Dλ(0)) which will be recognisable as
the matrix R+1 that we have already seen in equation (ii):

R


Aλ(π)
Bλ(0)
Cλ(0)
Dλ(0)

 =


1−1−1−1 1 1 1−1
1−1 1 1−1−1 1−1
1 1−1 1−1 1−1−1
1 1 1−1 1−1−1−1

 ≡ R+1 .
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The observed outcome of our experiment must equal one of the columns of this matrix. Finally,
suppose that we consider still another design which would adjust the angle φ1 = π at station A
of the design above to an angle φ1 = π+ θ for some arbitrary angle θ, while adjusting the angle
φ3 at station C from 0 to θ. The proposition of locality would ensure that the results of the spin
measurements Bλ(0) and Dλ(0) would not be affected by this adjustment of the angles φ1 and φ3
in their distant localities. Concomitantly, equation (16b) assures that the value of A(π+θ) would
remain equal to A(π), and C(θ) would remain equal to C(0), the results of the initial experiment.

Thus, EPR locality requires that whatever the observed results Bλ(0), Cλ(0), and Dλ(0)
might be in our initial experiment, exhibited in one of the columns of R+, the value of Aλ(π+φ)
would necessarily equal Aλ(π) if the angle π at station A were switched to π+ θ in the adjusted
experiment on the same quartet of electrons ! Of course making such a switch would necessitate
switching the angle φ3 at station C to θ to preserve the satifaction of (11b). The conclusion of
(16b) would force the value of C(θ) in the adjusted experiment to remain equal to C(0) in the
initial one as well. This requirement derives from the fact that the product of any four column
elements of the two relevant realm matrices must equal 1. Not only are the realm matrices iden-
tical for the original experiment and the adjusted one, but the actual result of the experiment
on a specific electron quartet must be identical to that of the adjusted experiment. That is a
consequence of locality, ensuring the spherical symmetry of the result of experiments satisfying
(11b) on the same quartet of electrons.

Similar to the contradiction we discovered in Section 2.2 when we tried to presume the
contradictory conditions of both φ1 + φ2 − φ3 − φ4 = 0 and φ1 + φ2 − φ3 − φ4 = π on our
experimental apparatus, we would achieve a matching contradiction if we now tried to presume
both of these conditions here, and investigate their implications in the manner of GHSZ.

3 Technical conclusion

Quite to the contrary of the GHSZ conclusion that the premises of EPR pose a contradiction
to a quantum experiment involving four (and even only three) particles, we can conclude that
such experiments indeed do allow the premises of EPR. Furthermore, the conditions of such
an experiment exemplify well the EPR premise of “Perfect correlation”, in both the case of
conditions of (11a) and that of (11b). ... though not at the same time! Smile.

4 Concluding comments

The results of this discussion have layed bare the claims of GHSZ who denigrate the logical
consistency the EPR version of “local realism”. However, I would not like a reader to think
that I am in any way an advocate of the propositions that premise entails. I find it embedded
in a view of physical experience that is seriously out of date. My investigations of the past two
and a half years have been oriented, quite narrowly, to a resolution of the conundrum posed by
the purported violation of Bell’s inequality in the theory of quantum mechanics, in any of the
forms in which it has been promoted. At a deeper level, I conclude that the so-called mysterious
properties of the quantum world, involving a structure of “quantum probabilities” which inhere
different structures than the mundane probabilities of the world at the classical scale, have been
misconstrued. A discussion of larger implications relevant to a reconstruction of physical theory
awaits a confirmation of my narrow concerns.

As to the definitive empirical work of Hensen et al. (2016), I do not doubt their experimental
results. However, their statistical analysis suffers from the same mistake as does that of Aspect.
Readers still impressed by it might review again Section 6 of Lad (2016).
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I am indebted to several unnamed physicists who have graciously engaged with me in intense
and detailed discussion of any number of technical issues about which we have disagreed. No
one has heretofore seen the analysis which I have presented here. I have been challenged several
times over the past year to address the GHSZ construct by colleagues who have been puzzled
by my assessment of Aspect/Bell.
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Hensen, B., Bernien, H, Dréau, A.E., and a list (2015) Loophole-free Bell inequality
violations using electron spins separated by 1.3 kilometers, Nature, 526, 682-686.

Lad, F. (2016) On the mathematical error of Aspect/Bell, and its resolution, Unpublished MS,
University of Canterbury, 16 pp. Available at ResearchGate.

Wiseman, H. (2015) Death by experiment for local realism, Nature, 526, 649-650.

9


