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I. INTRODUCTION

The idea to investigate quantum mechanics of systems the configuration space of which is a metric graph dates
back to the 1930’s but it attracted a substantial attention only in the last three decades. Quantum graphs, from the
mathematical point of view families of ODE’s coupled by appropriate conditions, provide nowadays a simple model
to numerous physical systems, small as well as large. For a thorough description of state of art in this field we refer
the reader to the monograph [BK13] and the references therein.

Quantum graphs having semiinfinite edges are useful to study resonance effects. As it is well known, the notion
of resonance can bear different meanings. One has, in particular, resolvent resonances understood as poles of the
meromorphic continuation of the resolvent to an ‘unphysical’ sheet of the energy surface, or scattering resonances
understood as poles of the meromorphic continuation of the determinant of the scattering matrix. It was proven in
[EL07] that in the present context the two notions coincide, hence we further speak about resonances with adjectives.
We note that sometimes it is useful to consider together with these ‘true’ resonances also the eigenvalues, including
embedded ones, with eigenfunctions supported only on the internal part of the graph [DEL10, DP11].

The said embedded eigenvalues give also often rise to (true) resonances when being exposed to a perturbation; this is
one of the most common mechanisms behind this effect. A natural way to perturb a graph consists of varying lengths
of its edges; such resonances originating from an embedded eigenvalue are sometimes called topological resonances.
They were studied recently in [EL10, GSS13, LZ]; in the last named paper Lee and Zworski found a formula for the

second derivative Im k̈ with respect to the edge length in the case of the standard (Kirchhoff) coupling in the graph
vertices; here k is the square root of energy.

Since the standard coupling is not the only possibility, and in fact, every self-adjoint vertex coupling can be given
a physical meaning [EP13], we investigate in this paper the corresponding Taylor expansion of the resonance pole
positions in this more general setting. The method we use is based on pseudo-orbit expansion introduced recently in
[Lip16]. We will derive the expression for Im k̈ and Re k̈ in the case graphs with a general vertex coupling. We will see

that the real part of k̈ is needed in general to express the asymptotics of the resonances trajectories in the vicinity of
the eigenvalue; instead of the parabolic curves Im k = c(Re k)2 appearing, e.g., in Figure 4 in [LZ] we obtain ‘slanted’
parabolas – see Figure 2 below. The general result will be illustrated by two examples in Section V.

In the second part of the paper we address a different question; we ask about the high-energy asymptotic behavior
of resonances in the situation when the leads are attached to the inner part of the graph by either δ or δ′s coupling
while the other vertex conditions may be in general arbitrary self-adjoint. In the δ case we find that the resonances
are asymptotically distributed as the ones for the standard coupling. On the other hand, the resonances for δ′s-
coupling converge in the high-energy limit to the eigenvalues of a decoupled graph with Neumann conditions and
their imaginary parts behave as (Re k)−2. We again illustrate this result on simple examples in the last section.

II. PRELIMINARIES

Suppose we have a metric graph Γ which consists of a set of vertices V = {Xj}, a set of N internal edges Ei =
{ej}Nj=1 which we parametrized identifying them with intervals (0, `j), and a set of M external semiinfinite edges

Ee = {ej}N+M
j=N+1 identified with the halflines (0,∞). The graph is equipped with the second order differential operator

H acting as − d2

dx2 . The latter is regarded as Hamiltonian of a quantum particle provided we use the units in which
the mass of the particle and the reduced Planck constant satisfy ~ = 2m = 1. To make it a self-adjoint operator we
have to choose the domain properly; this is achieved by restricting it to functions in W 2,2(Γ) = ⊕N+M

j=1 W 2,2(ej) which
fulfill the coupling conditions

(Uj − I)Ψj + i(Uj + I)Ψ′j = 0 (1)

at the vertices, where Uj is d × d unitary matrix, d is the degree of the vertex, I is the d × d identity matrix, Ψj is
the vector of limits of the functional values from the edges to the j-th vertex, and Ψ′j is the vector of limits of the
outgoing derivatives.

A useful trick when dealing graphs having external edges is to consider the inner part only replacing the leads by
an effective energy-dependent coupling Ũj(k) at the vertices where the leads were attached. Let a vertex connect n

internal edges and m halflines and let the corresponding matrix Uj consist of blocks Uj =

(
U1 U2

U3 U4

)
, where the n×n

matrix U1 corresponds to the coupling between the internal edges, m×m matrix U4 between the external edges and
the rectangular matrices U2 and U3 to the mixed coupling. The matrix Ũj(k) has the form [EL10]

Ũj(k) = U1 − (1− k)U2[(1− k)U4 − (k + 1)I]−1U3
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and the boundary value vectors Ψ̃j and Ψ̃′j with n entries corresponding to the internal edges satisfies the condition

(Ũj − I)Ψ̃j + i(Ũj + I)Ψ̃′j = 0 ,

There are several classes of vertex conditions which will play a role later in the paper and it is useful to list them now:

• δ-conditions are in the (n+m)× (n+m)-parameter family the only ones with the wave functions continuous
at the vertex. They can be written as

f(X ) ≡ fi(X ) = fj(X ) for all i, j ∈ {1, . . . , n+m}
n+m∑
j=1

f ′j(X ) = αf(X )

corresponding to the unitary matrix is U = 2
n+m+iαJ − I, where J is (n + m) × (n + m) matrix with all the

entries equal to one.

• δ′s-conditions have the roles and the functions and derivatives interchanged:

f ′(X ) ≡ f ′i(X ) = f ′j(X ) , for all i, j ∈ {1, . . . , n+m}
n+m∑
j=1

fj(X ) = βf ′(X ) .

They can be regarded as a generalization of δ′ condition on the line which preserves the permutation symmetry;
the coupling matrix is U = I − 2

n+m−iβJ in this case.

• standard conditions (sometimes called Kirchhoff, free, or even Neumann) represent a special case of δ-
condition for α = 0, i.e. the functional values are continuous at the vertex and the sum of the outgoing
derivatives vanishes. The corresponding unitary matrix is U = 2

n+mJ − I.

• Dirichlet conditions means that all the functional values are zero at the vertex, the unitary matrix is U = −I.

• Neumann conditions, on the other hand, mean that all the derivatives vanish at the vertex, and U is now
the identity matrix.

To conclude the preliminaries, let us make precise the concept of resonance mentioned in the introduction.

Definition II.1. By the a resonance we mean a complex k2 for which there exists a generalized eigenfunction in
L2

loc(Γ), f 6≡ 0, which satisfies the Schrödinger equation −f ′′(x) + k2f(x) = 0 on all the edges together with the
coupling conditions (1) at the vertices, and on all the external edges it has the form cj eikx.

III. PSEUDO-ORBIT EXPANSION FOR THE RESONANCE CONDITION

In this section we review the method of pseudo-orbit expansion for the resonance condition, which was developed
recently in [Lip16]; for illustrating examples see [Lip15]. First, we define the effective vertex-scattering matrix σ̃(v)(k).
Suppose again that we have a vertex v which connects n internal and m external edges. All the internal edges are
parametrized by (0, `j) with the point x = 0 corresponding to v; the leads are parametrized by (0,∞) with x = 0
corresponding to v. The generalized eigenfunctions components are fj(x) = ain

j e−ikx + aout
j eikx, j = 1, . . . , n, on the

internal edges and gs(x) = bs eikx, s = 1, . . . ,m, on the external edges.

Definition III.1. The effective vertex-scattering matrix σ̃(v)(k) is the n× n matrix which maps the vector of coeffi-
cients of the amplitudes of the incoming waves into the vector of the amplitudes of the outgoing waves aout

v = σ̃(v)ain
v ,

where ain
v = (ain

1 , . . . , a
in
n )T and aout

v = (aout
1 , . . . , aout

n )T.

There is a simple connection between the matrices σ̃(k) and Ũ(k), see Theorem 4.2 in [Lip16]. For simplicity, we
drop the subscript v specifying the vertex in question.

Theorem III.2. The effective vertex-scattering matrix is σ̃(k) = −[(1−k)Ũ(k)−(1+k)In]−1[(1+k)Ũ(k)−(1−k)In],
where In is n× n identity matrix.
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Next we introduce matrices we shall need to state the resonance condition. To this purpose we associate with the
graph Γ an oriented graph Γ2 in which the external edges of Γ are removed and each internal edge is replaced by two

oriented edges (conventionally called bonds) bj , b̂j of the lengths `j and opposite orientations. We use a permutation,
not unique of course, between the list of bonds grouped according to the vertices to which they are directed and that
that grouped by their orientation.

Definition III.3. For a fixed permutation indicated above, we define the energy-dependent 2N × 2N matrix Σ̃(k) as
a matrix similar to the block diagonal matrix with blocks σ̃v(k), the similarity transformation being determined by the
bijective map between the bases

~α = (αin
b1 , . . . , α

in
bN , α

in
b̂1
, . . . , αin

b̂N
)T

and

(αin
bv11

, . . . , αin
bv1d1

, αin
bv21

, . . . , αin
bv2d2

, . . . )T ,

where bv1j is the j-th edge with the endpoint at the vertex v1. We also introduce three other 2N × 2N matrices, the

matrix Q =

(
0 IN
IN 0

)
, the scattering matrix S(k) = QΣ̃(k), and

L = diag (`1, . . . , `N , `1, . . . , `N ) .

These notions allow us to state the resonance condition for the proof of which we refer to Theorem 4.5 in [Lip16].

Theorem III.4. Resonances of the graph in question are given a solutions to the equation

det (eikLQΣ̃(k)− I2N ) = 0 .

Next we reformulate this resonance condition using pseudo-orbits. To begin with, we again need some definitions.

Definition III.5. A periodic orbit γ on the graph Γ2 is a closed path which starts and ends at the same vertex. We
denote it using the involved subsequent bonds, γ = (b1, b2, . . . , bn) noting that a cyclic permutation of bonds does not
change the orbit. A pseudo-orbit is a collection of periodic orbits (γ̃ = {γ1, γ2, . . . , γm}). An irreducible pseudo-orbit
γ̄ is a pseudo-orbit, which contains no bond more than once. The metric length of a periodic orbit is defined as
`γ =

∑
bj∈γ `bj ; the length of a pseudo-orbit is the sum of the lengths of all periodic orbits from which it is composed.

By Aγ we denote the product Sb2b1Sb3b2 . . . Sb1bn of scattering amplitudes along the periodic orbit γ = (b1, b2, . . . bn);
here Sbibj denotes the entry of the matrix S in the row corresponding to the bond bi and column corresponding to
the bond bj. For a pseudo-orbit we define Aγ̃ =

∏
γj∈γ̃ Aγj . By mγ̃ we denote the number of periodic orbits in the

pseudo-orbit γ̃. By definition, the set of irreducible pseudo-orbits contains also irreducible pseudo-orbit on zero bonds
with mγ̄ = 0, `γ̄ = 0 and Aγ̄ = 1.

Armed with these notions we can formulate the theorem on the resonances in terms of the pseudo-orbits which was
stated as Theorem 4.7 in [Lip16] and the proof of which followed from Theorem 1 in [BHJ12].

Theorem III.6. The resonance condition of Theorem III.4 can be restated as∑
γ̄

(−1)mγ̄Aγ̄(k) eik`γ̄ = 0 , (2)

where the sum runs over all the irreducible pseudo-orbits γ̄.

IV. RESONANCE BEHAVIOR NEAR THE EIGENVALUE

Let us consider a quantum graph with a general vertex coupling and attached halflines as described above. The
resonance condition is given by the pseudo-orbit expansion as (2); we denote its left-hand side by F (k(t), t) where t
will be the parameter governing variation of the graph edge lengths.

Theorem IV.1. Let the internal graphs edge lengths `j = `j(t) depend on the parameter t as C2 functions. Suppose
that at least some of them are non-constant in the vicinity of t = 0 and that at that point the system has an eigenvalue
k2

0 > 0 embedded in the continuous spectrum. Then for small enough t the condition (2) has a unique solution k2,
either an embedded eigenvalue or a resonance, and the following holds:
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(i) k̇ ∈ R, where dot signifies the derivative with respect to t.

(ii) Furthermore, we have

k̇
∑
γ̄

(
`γ̄Aγ̄(k)− i∂Aγ̄(k)

∂k

)
(−1)mγ̄ eik`γ̄ + k

∑
γ̄

˙̀
γ̄(−1)mγ̄Aγ̄(k) eik`γ̄ = 0 , (3)

and

k̈
∑
γ̄

(
`γ̄Aγ̄(k)− i∂Aγ̄(k)

∂k

)
(−1)mγ̄ eik`γ̄ + 2k̇

∑
γ̄

(
ik`γ̄ ˙̀

γ̄Aγ̄(k) + ˙̀
γ̄Aγ̄(k) + k ˙̀

γ̄
∂Aγ̄(k)

∂k

)
(−1)mγ̄ eik`γ̄

+(k̇)2
∑
γ̄

(
2`γ̄

∂Aγ̄(k)

∂k
− i∂

2Aγ̄(k)

∂k2
+ i`2γ̄Aγ̄(k)

)
(−1)mγ̄ eik`γ̄ + k

∑
γ̄

(῭̄
γ + ik( ˙̀

γ̄)2)Aγ̄(k)(−1)mγ̄ eik`γ̄ = 0 . (4)

Proof. (i) By the implicit function theorem, the condition (2) is for small t solved by

k = k0 + k̇t+O(t2) .

Suppose that Im k̇|k0
= c holds with |c| > 0. Then we have two possibilities, either the solution corresponds to a

wavefunction localized on the inner part of Γ, or it has components on the leads. In the latter case, however, there
is an ε > 0 such that Im k > 0 for either t ∈ (0, ε) or t ∈ (−ε, 0). Since |k0| > 0 and the wavefunction components
on the leads are then square integrable, in both cases we conclude that there is a non-real eigenvalue at k2 which
contradicts, of course, to self-adjointness of the Hamiltonian.

(ii) The left-hand side of eq. (3) is obtained from (2) as −idF (k(t),t)
dt , the relation (4) then follows by taking the

derivative of (3) with respect to t.

This result has the following corollary, which simplifies the computation of k̇ and Im k̈ for a certain family of
coupling conditions which contains, in particular, the standard coupling.

Corollary IV.2. Let all the Aγ̄ be k-independent and real. Then we have

k̇ = −k
∑
γ̄

˙̀
γ̄(−1)mγ̄Aγ̄ cos k`γ̄∑

γ̄ `γ̄(−1)mγ̄Aγ̄ cos k`γ̄
,

Im k̈ = −
∑
γ̄ `γ̄(−1)mγ̄Aγ̄ cos k`γ̄

d

[
2k̇
∑
γ̄

(k ˙̀
γ̄`γ̄ cos k`γ̄ + ˙̀

γ̄ sin k`γ̄)Aγ̄(−1)mγ̄

+(k̇)2
∑
γ̄

`2γ̄(−1)mγ̄ Aγ̄ cos k`γ̄ + k
∑
γ̄

(k( ˙̀
γ̄)2 cos k`γ̄ + ῭̄

γ sin k`γ̄)(−1)mγ̄Aγ̄

]

+

∑
γ̄ `γ̄(−1)mγ̄Aγ̄ sin k`γ̄

d

[
2k̇
∑
γ̄

(−k ˙̀
γ̄`γ̄ sin k`γ̄ + ˙̀

γ̄ cos k`γ̄)Aγ̄(−1)mγ̄

−(k̇)2
∑
γ̄

`2γ̄(−1)mγ̄ Aγ̄ sin k`γ̄ + k
∑
γ̄

(῭̄
γ cos k`γ̄ − k( ˙̀

γ̄)2 sin k`γ̄)(−1)mγ̄Aγ̄

]
,

Re k̈ = −
∑
γ̄ `γ̄(−1)mγ̄Aγ̄ sin k`γ̄

d

[
2k̇
∑
γ̄

(k ˙̀
γ̄`γ̄ cos k`γ̄ + ˙̀

γ̄ sin k`γ̄)Aγ̄(−1)mγ̄

+(k̇)2
∑
γ̄

`2γ̄(−1)mγ̄ Aγ̄ cos k`γ̄ + k
∑
γ̄

(k( ˙̀
γ̄)2 cos k`γ̄ + ῭̄

γ sin k`γ̄)(−1)mγ̄Aγ̄

]

−
∑
γ̄ `γ̄(−1)mγ̄Aγ̄ cos k`γ̄

d

[
2k̇
∑
γ̄

(−k ˙̀
γ̄`γ̄ sin k`γ̄ + ˙̀

γ̄ cos k`γ̄)Aγ̄(−1)mγ̄

−(k̇)2
∑
γ̄

`2γ̄(−1)mγ̄ Aγ̄ sin k`γ̄ + k
∑
γ̄

(῭̄
γ cos k`γ̄ − k( ˙̀

γ̄)2 sin k`γ̄)(−1)mγ̄Aγ̄

]
,
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ℓ1

ℓ2

δ δ

FIG. 1. A circle with two leads considered in subsection V A.

where

d :=

(∑
γ̄

`γ̄(−1)mγ̄Aγ̄ cos k`γ̄

)2

+

(∑
γ̄

`γ̄(−1)mγ̄Aγ̄ sin k`γ̄

)2

.

Proof. The expression for k̇ follows from real part of eq. (3), where we take to account that k̇, Aγ̄ ∈ R. The second

equation is obtained from (4) with k̇, Aγ̄ ∈ R and
∂Aγ̄
∂k = 0 taken into account.

V. EXAMPLES

A. Circle with two leads and a δ coupling

Consider first the same example which appeared in Figure 2 of [LZ], cf. Figure 1). The graph consists of two
vertices and two internal edges of lengths `1(t), `2(t), where `1(0) = `2(0) = `, which connect the two vertices. In
each vertex there is one lead attached. Unlike [LZ] we consider δ-coupling of the same strength α at both the vertices.
Let the function on both internal edges be f1(x) and f2(x), on the external edges g1(x), g2(x). Then the coupling
conditions are

f1(0) = f2(0) = g1(0) , f ′1(0) + f ′2(0) + g′1(0) = αf1(0) ,

f1(`1) = f2(`2) = g2(0) , −f ′1(`1)− f ′2(`2) + g′2(0) = αf1(`1) .

The resonance condition can be derived as in [Lip16]. The effective vertex-scattering matrix is

σ̃(k) =
1

3− α
ik

(
α
ik − 1 2

2 α
ik − 1

)
,

which yields

1 +

(
α
ik − 1

)2(
α
ik − 3

)2 (e2ik`1 + e2ik`2
)

(−1) + 2
22(

α
ik − 3

)2 eik(`1+`2)(−1) +

(
α
ik + 1

)2(
α
ik − 3

)2 e2ik(`1+`2) = 0 .

This can be further rewritten by redefining the coefficients Aγ̄(k) as

F (k(t), t) = (α− 3ik)2 − (α− ik)2
(
e2ik`1 + e2ik`2

)
+8k2eik(`1+`2) + (α+ ik)2e2ik(`1+`2) = 0 .

Using Theorem IV.1, or alternatively computing the derivatives of the resonance condition at t = 0 directly, we get

−16k̇k`(α− ik) + 8( ˙̀
1 + ˙̀

2)k2(−α+ ik) = 0 ,

k̈2k`(α− ik) + k̇k( ˙̀
1 + ˙̀

2)(α2`+ 3k2`+ 4α+ 6ikα`− 6ik) + (k̇)2(α2`2 + 3k2`2 + 4α`− 8ik`+ 6ik`2α)

+(῭
1 + ῭

2)k2(α− ik) + ( ˙̀2
1 + ˙̀2

2)k3(k + 2iα) + ˙̀
1

˙̀
2k

2(α2 + k2 + 2ikα) = 0 .



7

6.5 7 7.5 8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-0.2

-0.1

0

0.1

0.2

FIG. 2. The resonance trajectory for the graph in subsection V A coming from the eigenvalue with k0 = 2π, `1 = 1−t, `2 = 1+2t,

α = 10. The trajectory is shown for t ∈ (−0.2, 0.2) and it is approximated by the dashed curve k = k0 + tk̇+ t2

2
Re k̈+ it2

2
Im k̈

with k̇ = −π, Re k̈ = 75.61, Im k̈ = −44.41. (Color online.)

D
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ℓ1

ℓ2

S

FIG. 3. The cross-shaped resonator considered in subsection V B.

From these equations we find

k̇ = − ( ˙̀
1 + ˙̀

2)k

2`
,

Re k̈ = − 1

2k`(α2 + k2)

[
k̇k( ˙̀

1 + ˙̀
2)(α3`+ 4α2 + 6k2 − 3k2α`) + (k̇)2(α3`2 + 4α2`− 3k2α`2 + 8k2`)+

+(῭
1 + ῭

2)k2(α2 + k2)− ( ˙̀2
1 + ˙̀2

2)k4α+ ˙̀
1

˙̀
2k

2α(α2 − k2)
]
.

Im k̈ = − 1

2k`(α2 + k2)

[
k̇k2( ˙̀

1 + ˙̀
2)(7α2`+ 3k2`− 2α)

(k̇)2k(7α2`2 + 3k2`2 − 4α`) + ( ˙̀2
1 + ˙̀2

2)k3(2α2 + k2) + ˙̀
1

˙̀
2k

3(3α2 + k2)
]
.

These formulæ determine the weak-perturbation asymptotics of the resonance trajectory in Figure 2. This plot shows
that unlike the case with standard coupling the knowledge of Re k̈ is needed to approximate the resonance trajectory.

B. Cross-shaped resonator

Consider next the example analyzed in subsection 4.2 of [EL10], cf. Figure 3, but with different vertex conditions.
The graph consists of two internal edges and two leads connected at one central vertex with the standard coupling.
There is Dirichlet condition at the loose end of the internal edge of length `1 and Robin condition f ′(0) = αf(0) at
the loose end of the second internal edge of length `2. We choose the Ansatz f1(x) = a1 sin kx at the first internal
edge and f2(x) = a2 sin kx + b2 cos kx at the second one. From the Robin condition we have a2k = αb2 and hence
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FIG. 4. The resonance trajectory for the graph in subsection V B coming from the eigenvalue with k0 = π, `1 = 1 − t,
`2 = 0.74266 + t, α = 3. The trajectory is shown for t ∈ (−0.2, 0.2) and it is approximated by the dashed curve k =

k0 + tk̇ + t2

2
Re k̈ + it2

2
Im k̈ with k̇ = 0, Re k̈ = 0, Im k̈ = −20.76. (Color online.)

f2(x) = b2
(
α
k sin kx+ cos kx

)
. On the leads we choose the Ansatz gj = cj eikx, j = 1, 2. The coupling condition in

the central vertex gives

a1 sin k`1 = b2

(α
k

sin k`2 + cos k`2

)
= c1 = c2 ,

−a1k cos k`1 − b2 (α cos k`2 − k sin k`2) + ik(c1 + c2) = 0 .

From this system of equations we obtain the resonance condition as the condition of solvability of this system.

k cos k`1 cos k`2 + (α− 2ik) sin k`1 cos k`2 + α cos k`1 sin k`2 − (2iα+ k) sin k`1 sin k`2 = 0 .

The system has a real eigenvalue if the wavefunction components on the leads are zero and the components on the
internal edges vanish at the central vertex. From that we obtain sin k`1 = 0, and therefore k`1 = nπ, n ∈ Z. From
the second edge we have α

k sin k`2 + cos k`2 = 0. Hence the lengths of the edges must satisfy

`2 = − `1
nπ

arccot
α`1
nπ

.

The resonance trajectory is shown in Figure 4 for α = 3 and the starting values `1 = 1, `2 = 0.74266, k0 = π.

VI. HIGH-ENERGY ASYMPTOTICS OF RESONANCES FOR THE δ AND δ′s COUPLING

Let us now address the second problem mentioned in the introduction, namely the asymptotics of the resonances
for δ and δ′s-coupled leads in the high-energy regime. The resonances form an infinite sequence which we order with
respect to the real parts of the pole positions in the ascending order; we will ask about its limiting behavior. For the
sake of brevity we shall speak of the limits as the real parts tend to infinity.

Theorem VI.1. Consider a graph Γ with a δ-coupling at all the vertices. Its resonances converge to the resonances
of the same graph with the standard conditions as their real parts tend to infinity.

Proof. First, we consider a vertex which connects n internal and m external edges. We will find the effective vertex-
scattering matrix. We parametrize the internal edges by (0, `j) and the external edges by (0,∞), in both cases zero
corresponds to this vertex. We will choose the Ansatz fj(x) = aout

j eikx + ain
j e−ikx, j = 1, . . . , n on the internal edges
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and gs(x) = bs eikx, s = 1, . . . ,m on the external edges. The coupling conditions yield

aout
j + ain

j = aout
i + ain

i = bs , i, j = 1, . . . , n , s = 1, . . . ,m ,

ik

n∑
j=1

(aout
j − ain

j ) + ik

m∑
s=1

bs = α(aout
i + ain

i ) ,

where α is the strength of the interaction. Substituting bs = aout
i + ain

i and aout
j = aout

i + ain
i − ain

j to the second
equation we obtain

(n+m)(aout
i + ain

i )− 2

n∑
j=1

ain
j =

α

ik
(aout
i + ain

i ) ,

and hence

aout
i =

2

n+m− α
ik

n∑
j=1

ain
j − ain

i ,

which gives the effective vertex-scattering matrix

σ̃δ(k) =
2

n+m− α
ik

J − I −→ 2

n+m
J − I = σ̃st(k)

as |k| → ∞. Hence in the limit, where k goes to infinity in modulus the effective vertex-scattering matrix for δ-coupling
tends to the effective vertex-scattering matrix for the standard condition.

Since the coefficient Aγ̄ in the pseudo-orbit expansion is a product of the entries of the effective vertex-scattering
matrices, we have

Aγ̄,δ(k) = Aγ̄,st(k) +O
(
|k|−1

)
,

where Aγ̄,δ is the coefficient for the δ-coupling and Aγ̄,st is the coefficient for the respective standard condition.
Consequently, by Theorem 4 in [Lan31] the resonances coming from the δ-coupling coincide asymptotically with those
of the same graph with the standard coupling conditions.

Theorem VI.2. The resonances of the graph with a δ′s coupling conditions at the vertices converge to the eigenvalues
of the graph with Neumann (decoupled) conditions as their real parts tend to infinity.

Proof. The proof is similar to that of Theorem VI.1. First, we find the effective vertex-scattering matrix for δ′s-
condition. We use the same Ansatz as there; from the coupling condition we obtain

aout
j − ain

j = aout
i − ain

i = bs , i, j = 1, . . . , n , s = 1, . . . ,m ,
n∑
j=1

(aout
j + ain

j ) +

m∑
s=1

bs = ikβ(aout
i − ain

i ) ,

where β is the strength of the interaction. Substituting bs = aout
i − ain

i and aout
j = aout

i − ain
i + ain

j to the second
equation we obtain

ikβ(aout
i − ain

i ) = 2

n∑
j=1

ain
j + (n+m)(aout

i − ain
i ) ,

and hence

aout
i = ain

i +
2

ikβ − n−m

n∑
j=1

ain
j .

Therefore, the effective vertex-scattering matrix is

σ̃δ′s =
2

ikβ − n−m
J + I −→ I = σ̃N
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as |k| → ∞, where σ̃N is the effective vertex-scattering matrix for (decoupled) Neumann condition. The coefficients
in the pseudo-orbit expansion Aγ̄,δ′s corresponding to the δ′s-conditions and Aγ̄,N for the Neumann condition satisfy

Aγ̄,δ′s(k) = Aγ̄,N(k) +O
(
|k|−1

)
.

Invoking again Theorem 4 of [Lan31] we conclude that the resonances of δ′s-coupling asymptotically coincide with
those of the same graph with Neumann conditions.

In fact, the above argument can be extended to the situations where the leads are attached by a δ′s-coupling and
the other vertex conditions in the graph are arbitrary self-adjoint.

Theorem VI.3. In the described situation the resonances of the graph satisfy

Im k → 0 as |k| → ∞ .

Proof. By the same reasoning as in the proof of Theorem VI.2 one can verify that the resonances of Γ converge as
|k| → ∞ to resonances of the same graph with the δ′s-coupling replaced by the (decoupled) Neumann conditions.
Since all the leads are decoupled from the rest of the graph with Neumann condition, the solutions to the resonances
condition for the inner part of the graph are eigenvalues with Im k = 0, and consequently all the resonances of Γ
approach the real axis in the asymptotic regime.

To conclude this section we find the convergence rate of the resonance poles for a particular graph class. We note
that a similar behavior was observed for resonances of the generalized Winter model discussed in [EF06].

Theorem VI.4. Let the internal part of Γ be equilateral with all the internal edges of lengths `0 and let Γ have at
least one lead. Assume further that there is the same δ′s-coupling at all the vertices. Denote k0n = nπ/`0, then the
resonances k2

n satisfy

Im kn = O
(
(Re kn)−2

)
, Re (kn − k0n) = O

(
(Re kn)−1

)
as Re kn →∞.

Proof. The effective vertex scattering at the s-th vertex is σ̃(k) = psJ + I with ps = 2
ikβ−ns−ms , where ns and ms is

the number of internal and external edges in this vertex, respectively. We have ps = − 2i
βRe k +O((Re k)−2). We can

see that the irreducible pseudo-orbits which contain at least one non-diagonal term of σ̃ correspond to the resonance
condition with the terms of order O((Re k)−2) or smaller. Hence the resonance condition is

0 = F (k) =
∑
γ̄∈V

(
1 +

∑
vs∈γ̄

ps

)
eik`γ̄ (−1)mγ̄ +O

(
(Re k)−2

)
,

where vs is the s-th vertex and V is the set of irreducible pseudo-orbits which contain only periodic orbits on two
bonds (e.g., periodic orbits which use only diagonal terms of σ̃). Using the Taylor expansion around k0n = nπ/`0 we
find (having dropped the subscript n)

0 = F (k) = F (k0) + (k − k0)
∂F

∂k

∣∣∣∣
k0

+O((k − k0)2) =
∑
γ̄∈V

eik0`γ̄ (−1)mγ̄ − 2i

βRe k

∑
γ̄∈V

`γ̄eik0`γ̄ (−1)mγ̄

+[iRe (k − k0)− Im k]
∑
γ̄∈V

`γ̄eik0`γ̄ (−1)mγ̄
(
1 +O

(
(Re k)−1

))
+O

(
(Re k)−2

)
+O((k − k0)2) . (5)

The first term
∑
γ̄∈V eik0`γ̄ (−1)mγ̄ is zero since eik0`γ̄ = 1 and

∑N
j=0

(
N
j

)
(−1)j = 0. Comparing the imaginary and

real part of equation (5) using the fact that eik0`γ̄ ∈ R we obtain the sought claim.

VII. EXAMPLES

A. Loop with two halflines and a δ-coupling

We consider the same graph as in subsection V A, but now we suppose that there are δ-couplings of strengths α1

and α2 at its vertices. The resonance condition is in this case

(α1 − ik)(α2 − ik) sin k`1 sin k`2 − 4k2 sin2 k(`1 + `2)

2
+ k(α1 + α2 − 2ik) sin k(`1 + `2) = 0 .

Positions of the resonances of this graph are shown in Figures 5 and 6; for simplicity, we use α1 = α2.
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FIG. 5. Illustration to example in subsection VII A with the parameters `1 = 1; `2 = 1; α1 = 1; α2 = 1. Resonances for
δ-condition denoted by blue dots, resonances for standard condition by red crosses. (Color online.)
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FIG. 6. Illustration to example in subsection VII A with the parameters `1 = 1; `2 = 1.2137; α1 = 1; α2 = 1. Resonances for
δ-condition denoted by blue dots, resonances for standard condition by red crosses. (Color online.)

B. Loop with two halflines and a δ′s-coupling

Let us consider the same graph as in subsections V A and VII A but now with δ′s-conditions in both the vertices.
The strengths of these interactions are β1 and β2. We choose the Ansatz fj(x) = aj eikx + bj e−ikx, j = 1, 2, on both
internal edges with x = 0 in the left vertex, while on the leads we have gj(x) = cj eikx, j = 1, 2. This yields

a1 − b1 = a2 − b2 = c1 , ikβ1c1 = a1 + b1 + a2 + b2 + c1 ,

−a1 eik`1 + b1 e−ik`1 = −a2 eik`2 + b2 e−ik`2 = c2 , ikβ2c2 = a1 eik`1 + b1 e−ik`1 + a2 eik`2 + b2 e−ik`2 + c2

and the resonance condition is equivalent to the requirement of solvability of the above system,

[(β1 + β2)k + 2i] sin k(`1 + `2) + 2(1− cos k`1 cos k`2) + (3− β1β2k
2 − ik(β1 + β2)) sin k`1 sin k`2 = 0 .

The corresponding resonance positions are shown in Figures 7, 8 and 9.

C. Loop with two leads and a combination of δ and δ′s-couplings

We consider the same graph again with the δ-coupling of the strength α in the left vertex and δ′s-coupling of the
strength β in the right vertex. We choose the same Ansatz as in subsection VII B. The coupling conditions yield

a1 + b1 = a2 + b2 = c1 , ik(a1 − b1 + a2 − b2 + c1) = αc1 ,

c2 + a1 eik`1 − b1 e−ik`1 = c2 + a2 eik`2 − b2 e−ik`2 = 0 , βikc2 = a1 eik`1 + b1 e−ik`1 + a2 eik`2 + b2 e−ik`2 + c2

and the resonance condition is

(βk2 + ikαβ + 3ik − α) cos k`1 cos k`2 + (−iβk2 + iα+ 2k) sin k(`1 + `2)− 2ik sin k`1 sin k`2 + 2ik = 0 .
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FIG. 7. Illustration to example in subsection VII B with the parameters `1 = 1; `2 = 1; β1 = 1; β2 = 1.
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FIG. 8. Illustration to example in subsection VII B with the parameters `1 = 1; `2 = 1.2137; β1 = 1; β2 = 1.

Positions of the resonances are shown in Figures 10 and 11.
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FIG. 10. Illustration to example in subsection VII C with the parameters `1 = 1; `2 = 1; α = 1; β = 1. Resonances for δ-
condition and δ′s-condition denoted by blue dots, resonances for δ replaced by standard condition and δ′s replaced by Neumann
condition denoted by red crosses. (Color online.)

10 20 30 40
Re k

-0.5

-0.4

-0.3

-0.2

-0.1

Im k

FIG. 11. Illustration to example in subsection VII C with the parameters `1 = 1; `2 = 1.2137; α = 1; β = 1. Resonances for
δ-condition and δ′s-condition denoted by blue dots, resonances for δ replaced by standard condition and δ′s replaced by Neumann
condition denoted by red crosses. (Color online.)
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