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Abstract

The article is devoted to the studies of the stationary states of the magnetic Schrédinger-
Poisson system in the repulsive (plasma physics) Coulomb case. Particularly, we prove the
existence and the nonlinear stability of a wide class of stationary states by virtue of the energy-
Casimir method. We generalize the global well-posedness result for the Schrédinger-Poisson
system obtained in [9] to the case when a magnetic field is turned on.
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1 Introduction

In the present article, we establish the existence and the nonlinear stability for a certain class
of stationary solutions of the magnetic Schréodinger-Poisson system in a bounded domain with
Dirichlet boundary conditions. This system describes the mean-field dynamics of non relativistic
quantum particles in the case of plasma in a magnetic field. We consider quantum particles
confined in a domain Q C R® which is an open, bounded set with a C? boundary, such that
|| < oo. The particles are interacting by virtue of the electrostatic field they collectively generate.
In the mean-field limit, the density matrix describes the mixed state of the system and satisfies
the Hartree-von Neumann equation

(1.1)

i0;p(t) = [Ha, v, p(t)], x€Q, t>0
-AV = n(t’ x)’ T’l(t, x) = P(t, X, .X'), P(O) = Po

with Dirichlet boundary conditions, p(t,x,y) = 0 if x or y € 9Q, for t > 0. Our single particle
Hamiltonian is given by
Hy v = (=iV + A)z + V(t,x), (1.2)
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where A(x) € C1(Q, R®) is the magnetic vector potential and divA = 0. In system (1.1) and further
down, (—=iV + A)? denotes the magnetic Dirichlet Laplacian on L?(Q). Let us refer to [5] and
[6] for a derivation of the analogous system of equations in the non magnetic case. Since p(t) is
a nonnegative, self-adjoint and trace-class operator acting on L?(Q), we are able to expand its
kernel, for every t € R, with respect to an orthonormal basis of L*(Q2). Let us designate this
kernel at the initial time ¢t = 0 by py,

po(,y) = D At y). (13)

keN

Here {i/x }xen denotes an orthonormal basis of L?(Q), such that ¢ |sq = 0 for all k € N, and the
coeflicients are given by

A= {ldken €l A 20, > A =1 (1.4)
keN

In Lemma 13 of the Appendix below, we prove that there exists a one-parameter family of complete
orthonormal bases of L*(Q), {¢x(t)}xen, with Y (t)|laq = 0 for all k € N, and for t € R,, such
that the kernel of the density matrix p(t), which satisfies system (1.1), can be expressed as

p(t,x, ) = > Akt )it y). 15)

keN

Consequently of the particular commutator structure of (1.1) (where p(t) and —iH, v satisfy the
conditions of a Lax pair), the corresponding flow of p(t) leaves its spectrum invariant. Therefore,
the coeflicients A are independent of t. This isospectrality is crucial for the stability analysis of
stationary states based on the Casimir energy method used in this article; see also [7, 11, 12, 18, 20].
Similar ideas were exploited recently in the analysis of the semi-relativistic Schrédinger-Poisson
system without a magnetic field in [1], [2], [3] describing the heated plasma.

When substituting expression (1.5) in the system (1.1), one can verify that the one-parameter
family of orthonormal vectors {;(¢)}xen solves the magnetic Schrodinger-Poisson system equi-
valent to (1.1) and given by

iaa—% = (=iV+ AU + V[P, keN, (1.6)
—AV[¥] = n[¥], (17)
Yr(t=0,.) = ¢(0), Vk (1.8)
and

Ur(t,x) =0, V(t,x)=0,1t>0, ¥x € 0Q, Yk e N, (1.9)

where we used the notations
W= ik, and  a[¥(Lx)] = ) Aklg(t Xl (1.10)

k=1

Here {4 (0)};"_, is the initial data, the potential function V[¥] solves the Poisson equation (1.7)
and both V[¥] and ¢, (t), for all k € N, satisfy the Dirichlet boundary conditions (1.9).

The global well posedness for system (1.6)-(1.9) is proved in the Appendix below. Similar
results without a magnetic field were obtained before in a finite volume domain with Dirichlet
boundary conditions in [9], and in the whole space of R® in [9] and [12].



In the article, we are interested in the properties of stationary states occurring when p(t) =
f(Ha, v) for a certain function f. When substituting the latter in (1.1), the commutator on the right
side of the first equation of system (1.1) vanishes, such that the density matrix is time independent.
The exact properties of the distribution function f will be discussed further down. The solution
of the Schrédinger-Poisson system which corresponds to the stationary states is

Yr(t, x) = e Y (x),  keN,

such that the potential function V[¥] is time independent, y; € R are the eigenvalues of the
Hamiltonian (1.2) and . (x) are the corresponding eigenfunctions.

Note that our results are relevant to recent work on stellar dynamics, see [8, 17].

Our article is organized as follows. In Section 2, we describe the class of stationary states we
will study, and state our hypotheses and main results about nonlinear stability and existence of
stationary states. Section 3 is devoted to the derivation of some preliminary results. In Section 4,
we establish the nonlinear stability of the stationary states of the magnetic Schrodinger-Poisson
system via the energy-Casimir functional as a Lyapunov function (see the statement of Theorem 1.
In Section 5 we define the dual functional and in Section 6 study its properties using the methods
of convex analysis, and show that it admits a unique maximizer (see Theorem 2), which implies
the existence of a stationary state for our magnetic Schrodinger-Poisson system. In the Appendix,
we prove the global well-posedness for our magnetic Schrédinger-Poisson system.

2 The Model and Statement of the Main Results

We define the state space for the magnetic Schrodinger-Poisson system as

L:={¥.D|Y={¢x}r, C H& AN Hf‘(Q) is a complete orthonormal system

inL*(Q), A={A}, €I, A >0, keN, Zakf |(=iV + Ay [*dx < oo},
k=1 Q

see [18] in the non magnetic case. The magnetic Sobolev spaces H& 4(Q) and H i(Q) here are the
standard ones.

For the precise definition of the class of stationary states we will study, we introduce the
Casimir class of functions. Let us say that a function f : R — R is of Casimir class C if and only if
it has the following properties:

(i) f is continuous, such that f(s) > 0 for s < sy and f(s) = 0 when s > sy, with some
so €]0, o],

(ii) f is strictly decreasing on | — oo, 5], such that lims_,_« f(s) = co,

(iii) there exist constants ¢ > 0 and C > 0, such that for s > 0 the estimate

f(s)<C(1+5)7" (2.1)

holds.

Throughout the article C will stand for a finite, positive constant. Note that the rate of
decay assumed in (2.1) is the same one as in the non magnetic case treated in [18]. Assumption
(iii) along with Weyl asymptotics for the Laplacian and the comparison of magnetic and non
magnetic Dirichlet eigenvalues following from the result of Lemma 14 of the Appendix, yield that
f((=iV + A)? + V) and F((—iV + A)? + V) are trace-class, for smooth enough and positive V, a
smooth vector potential A and F defined in (2.5) (see Lemma 14 in Section 3).



Let us consider the quadruple (¥, A, p0, Vo) with (Yo, A) € L, pio = {40, }7.., real valued, and
the potential function Vy € Hy(Q)NH?(Q), such that the stationary magnetic Schrodinger-Poisson
system is given by

((=iV + A + Vo) k = pokVok» k€N, (2.2)
—AVo=ng = > Aokloxl, (23)
k=1
with
AO,k = f(,uo,k)’ k € N’ (24)

and f € C. Then, the corresponding density matrix py = f((=iV + A)? + V) satisfies the stationary
state Hartree-von Neumann equation
[Ha, v po] = 0.

Remark. In the semi-relativistic case studied in [3], the Casimir class was defined analogously but
the rate of decay of the distribution function f was assumed to be higher. A good example of f € C
is the function decaying exponentially as s — oo with the cut-off level sy = co. This is precisely the
Boltzmann distribution f(s) := e P, p > 0.

To establish the nonlinear stability of the stationary states, we will rely on the energy-Casimir
method. This method was used in [7] for fluid problems, and in [11, 20] for treating stationary
states of kinetic equations, in particular, Vlasov-Poisson systems. In the present work, we extend
the energy-Casimir functional used in [18] to the magnetic case. For f € C, we define

F(s) := foo f(o)do, seR. (2.5)

Clearly, the function defined via (2.5) is decreasing, continuously differentiable, nonnegative and
is strictly convex on its support. Furthermore, for s > 0

F(s) < C(1 + s)7 2. (2.6)
Its Legendre (Fenchel) transform is given by
F*(s) := sup, cg(As — F(2)), s<0. (2.7)
Let us define the energy-Casimir functional for a fixed f as

Ho(W,0) = )" F(=A) + H(L, D, (T, €L, (2.8)
k=1

where H(¥, 1) is defined as

- 1
H(P, &) = Z/lk L |(—iV +A)¢k|2dx + 5 L nlp,Ale,Adx
k=1

- 1
= > k& f =iV + Ay Pdx + - f YV dx.
k=1 Q 2Ja

Particularly, H¢ is conserved along solutions of our magnetic Schrédinger-Poisson system, due
to the isospectrality of the flow of p(t), which is equivalent to the ¢- independence of A and the
conservation of energy H(¥, A) established in Lemma 19 of the Appendix. The main results of
this work address the existence and stability of stationary states given by (2.2)-(2.4), for f € C.
The stability is established in the first main theorem.

(2.9)



Theorem 1. Let (¥, Ay, pto, Vo) be a stationary state of the magnetic Schrodinger-Poisson system,
where
Aok = f(uok), keN

with some f € C and (¥, A,) € L. Let (¥(t), A) be a solution of the magnetic Schrédinger-Poisson
system, with the initial datum (¥(0),A) € L. Then, for allt > 0, the estimate

1
5||VV¢(t),/1 - V%Hiz@) < He(¥(0), 4) — He (o, 4y) (2.10)

holds, such that the stationary state is nonlinearly stable.

Suppose for some f € C there are two stationary states (¥o, 4., p10, Vo) and (¥1, A,, pi1, V1)
with (¥, 4,), (¥1,4,) € L. Then both sides of (2.10) will vanish and these stationary states will
coincide.

To establish the existence of stationary states, we exploit the dual of the energy-Casimir
functional. For A > 0 fixed, we define G(¥,1,V, o) as

(59 . . 1 [Se]
DUF A+ A [ I+ Al + VigePlax] - 3 [ 9VEax+ o[ Y26 - 4],
Q 2 Ja
k=1 k=1
where o € R is a Lagrange multiplier. The dual functional to Hc¢ is given by
O(V,0) :=infy 2G(¥,A,V,0). (2.11)

We take the infimum in the formula above over all A € I} and all ¥ = {Wele., © H&’ A(QNHA(Q)
complete orthonormal sequences from L(Q). The function ® has an equivalent definition given
in Lemma 11, and we use it in the statement of the theorem below. We consider only non-negative
potential functions and define

H; ,(Q) ={V € Hy(Q)| V > 0}.
Our second main statement deals with the existence of stationary states.

Theorem 2. Let f € C and A > 0 be fixed. The functional @
1
(V,0) e Hy (QXR — -5 f IVV[*dx — THF((=iV + A?* + V + 0)] — oA
Q

is continuous, strictly concave, bounded from above and —®(V, o) is coercive. There exists a unique
maximizer (Vo, 09) of ®(V, o). Let {Yo,k }[., be the orthonormal sequence of eigenfunctions of the
Hamiltonian (—iV + A)? + V, corresponding to the eigenvalues {0k}, and let Ao = f(po,x +
09). Then (%o, Ay, o, Vo) is a stationary state of the magnetic Schrédinger-Poisson system, where
Yoy Aok = Aand (Yo, 4,) € L.

We will prove Theorem 1 in Section 4, and Theorem 2 in Section 6, restricting our attention to
classes of systems most relevant to plasma physics, namely, quantum particles in a magnetic field
in the 3-dimensional space.

3 Preliminaries

Let us establish the following trivial statement.



Lemma 3. For (¥,A) € L we have
ny.a = ) Akl € L3(Q).
keN

Let V5 denote the Coulomb potential induced by ny ;, such that
=AVy  (x) =ny  (x), x€Q; Vyax)=0, xe€dQ.
Then Vy, € Hy(Q) N HX(Q).

Proof. We will use the Sobolev embedding

lpllz=() < celldllz(q) (3-2)

where c, > 0 is the constant of the embedding. Thus, we estimate for ny, 5(x) > 0, x € Q

ny.2(0) < " Aelilleq) < I,
k=1

where the norm ||.||z, is defined in the Appendix by (6.7) picking A = 0. By means of the
equivalence of magnetic and non magnetic norms established in Lemma 14 of the Appendix, the
right side of this inequality can be bounded above by

C”‘I’”ZZOA = CZAkf |(=iV + A [dx < oo.
N k=1 Q

Therefore, ny, ;(x) € L*(Q) in our bounded domain, which yields ny ;(x) € L*(Q). Note that
the particle density ny, ; vanishes on the boundary of the set Q by means of formula (1.10) and
boundary conditions (1.9). Hence, AVy, 1 € L*(Q). Let {1} }rcn designate the eigenvalues of the
Dirichlet Laplacian on L*(Q) and p{ is the lowest one of them. Obviously,

,uZ>O, keN.

Due to the fact that
Vya=(=0)""ny

1

we obtain ||Vy, 1llr2) < —5liny.alliz@) < 0. Moreover, since Vy, » vanishes on the Lipschitz bound-
1

ary of the bounded set Q via (1.9), V is a trace-zero function in H(Q). O

By virtue of the result of Lemma 13 of the Appendix, for every initial state (¥(0), 1) € L, there
exists a unique strong solution of system (1.6)-(1.9), where (¥(¢),A) € L for all t > 0.

The energy H(¥,A) of a state (¥,4) € L, defined by (2.9), is a conserved quantity along
solutions of the magnetic Schrédinger-Poisson system (see Lemma 19 of the Appendix). Let
us assume that 1, > 0 via density arguments. To prove the nonlinear stability for a specified
stationary state, we will use the following auxiliary lemmata.

Lemma 4. Let f € C.
a) For every § > 1 there exists C = C(f) € R, such that for s < 0 we have

F(s) > —-ps+C

b) Let V € Hy(Q) and V(x) > 0 for x € Q. Then both operators f((—iV + A? +V) and
F((=iV + A)? + V) are trace class.



Proof. The part a) of the lemma follows from the fact that function F(s) is smooth with the slope
varying from —oo to 0, and convex; hence, its graph is situated above a tangent line to it.

Let us denote the magnetic Dirichlet eigenvalues of (—iV + A)? on L%(Q), Q C R? as {,uk Yooy
and the corresponding orthonormal sequence of eigenfunctions as {qok (%)} ,- By means of the
equivalence of the appropriate magnetic and non magnetic norms established in Lemma 14, we
have the lower bound

Mz

N N
Dot = D M=V + Al = C ) IV0L R )
k=1 k=1

~
Il

1

By means of the sharp semiclassical result of [13], the right side of this inequality can be estimated
below by CN 2’ such that for each eigenvalue we have

A 2
py =2 CN3, N €N,

with a constant here dependent on |Q| < co (see e.g. [13]). The sharp semiclassical lower bound
on the sum of magnetic Dirichlet eigenvalues when the magnetic field is constant was established
in [10]. Due to the fact that the potential function V(x) > 0 for x € Q as assumed, we easily
estimate from below the eigenvalues y of the Hamiltonian (—iV + A)? + V for k € N as

Ui = ,uf > Ck%. (3-2)
Let us express

Tr (F((—=iV + A + V) = i F(uy) < oo,

because F(s) is decreasing, satisfies bound (2.6), and the series with a general term (1 + Ck3 )‘%‘g

converges. Clearly,

Tr (F((=iV + AP +V)) = > f(ue) < o0,
k=1

since f(s) decreases, obeys estimate (2.1) and the series with a general term (1 + Ck%)‘%_g is

convergent. O

Lemma 5. Let € H, ,(Q) N H4(Q) with |[{|l12q) = 1, the potential function V € Hy(Q) and
V(x) = 0 forx € Q. Then

F((Y, (=iV + A + VIY)12) < (I, F(=iV + AP + V)Y 2q) (3-3)
holds with equality if { is an eigenstate of the Hamiltonian (—iV + A)?> + V.
Proof. The Spectral Theorem gives us
(—=iV+ AP +V = Z L1k Py.
k=1

Here the operators {Py }}_, are the orthogonal projections onto the bound states corresponding
to the eigenvalues {y}}_,. Thus

F( (¥ + AP + V))1e) = F( > uknwnim)).
k=1



We bound above the right side of (3.3) by
" FuiPeyl2 -
k=1

Bound (3.3) comes from Jensen’s inequality. When 1/ is an eigenstate of the operator (—iV +A)*+V
which corresponds to an eigenvalue py, for some k € N, both sides of (3.3) are equal to F(u).
Note that the converse of this statement is not true in general. Indeed, if we consider as i a linear
combination of more than one eigenstate of the Hamiltonian with corresponding eigenvalues py
situated outside the support of F(s), then both sides of (3.3) will vanish. O

In the statement below we prove that a stationary solution belongs to the state space for our
magnetic Schrédinger-Poisson system.

Lemma 6. Let the quadruple (Yo, A, pto, Vo) satisfy equations (2.2), (2.3) and (2.4), where ¥ is a
complete orthonormal system in L*(Q) and the distribution f € C. Then, we have

ZAO’kf [(=iV + A)* Yo k[P dx < oo,
k=1 Q

such that (¥, 4,) € L.

Proof. Let us express the following quantity using identities (2.2) and (2.4) as

> d0sli9 + Aol + [ VWP
k=1 Q
(3.4)

= Z Ao,k ((—iV + A)2 + Vo)V, k. %,k)LZ(Q) = Z f (o, k) o k-
k=1

k=1

The potential function Vy(x) > 0 in Q since it is superharmonic by means of (2.3), and vanishes
on the boundary of Q. Thus, g > 0, k € N and via (2.1) the right side of (3.4) can be estimated
from above by

= _7_
ZC(I + Hok) 2 “Hok < 00,
k=1

by means of the eigenvalue estimate (3.2). Hence, we also have
VW € L(Q), (=i + Ao € LY(Q), k€N, (35)

such that g € Hg 4(Q) for k € N. Note that the standard requirement V, € LY(Q) (see e.g. p.234
of [16]) holds here as well. By virtue of Holder’s inequality, we obtain

1 2
3 3
| |vo|2|¢o,k|2dxs( | |vz)|6dx) ( | |¢o,k|3dx) <o
Q Q Q

due to the Sobolev inequality (see e.g. [16]) along with the equivalence of magnetic and non
magnetic norms proved in Lemma 14 of the Appendix below. Thus, Voo x € L*(Q), k € N.
Equation (2.2) yields that (—iV + A)*y ;. € L*(Q) as well, such that i, x € H4(Q), k € N. By
virtue of (2.4), we have Ao x > 0, k € N. Convergence of the series on the right side of (3.4) yields

D Aok =D flHor) < oo, (3.6)
k=1 k=1



such that A) = {Aox}}, € I'. By means of (2.2), we obtain

o [ N9+ APosPds
k=1 Q

= > Aokk =2 ) Aoktok f Volyo.xl?dx + > Ao kllVoto k22 -
k=1 k=1 Q k=1

Let us prove that the first term in the right side of (3.7) is convergent. Indeed, (2.1) yields

(o) o0 _Z_
Z/lo,k#g,k < CZ(l + oK) 2 o < o0,

k=1 k=1

via the eigenvalue estimate (3.2). For the third term in the right side of (3.7) via Holder’s inequality

we obtain 1 ,
S 2 6,.\° S 3 ;
E Ao, koo, kll7 2 o) < [Vol”dx g Ao,k [Yo,kdx) ,
@) Q Q
k=1 k=1

with Vy(x) € L%(Q) as discussed above. By means of the Schwarz inequality

f o xlPdx < fQ Wo.xledx VI,

The Sobolev inequality (see e.g. [16]) along with the equivalence of magnetic and nonmagnetic
norms (see Lemma 14) yield

ZAO el kliZs ) < CZAO el VY0 kll2 g < czao Kl =iV + Ao el ) < o0
k=1

via the estimate (3.4). The second term in the right side of (3.7) can be estimated above by applying
the Schwarz inequality to it twice, namely

f VolvoxPdx < [Vovoxlliecon
Q

and
Z Ao, cko, koo k2@ < J D Aokt kJ D AosllVora sl g, <
k=1
as it was proven above. a

Remark. In the stationary situation, our magnetic Schrodinger-Poisson problem can be easily ex-
pressed as
—AVy = f((—iV + AP + Vo)(x,x), x€Q,
Vo(x) =0, xe€dQ.
We turn our attention to defining the corresponding Casimir functional for a fixed f € C. The
following trivial lemma proved in [3] (see also [18]) yields the alternative representation for the

Legendre transform of our integrated distribution function. Evidently, f € C considered on the
(=00, 9] semi- axis has an inverse 1.

Lemma 7. For the function F(s) defined in (2.5) and s < 0 we have

0
Fo = [ fios (38)

In the following section, we establish the nonlinear stability of stationary states, by virtue of
the energy-Casimir functional defined above.



4 Stability of stationary states

In the present section, we prove Theorem 1, which gives us the lower bound in terms of the
electrostatic field. The technical lemma below is crucial for establishing this nonlinear stability
result.

Lemma 8. LetV € Hj(Q) and V > 0.
(i) Then, for (¥,A) € L, the lower bound

(o)

> {F*(—m on fg [(—iV + Ayl + V|¢k|2]dx} > ~THF((=iV + AP + V)] (41)

k=1

holds.

(ii) Equality is attained for (¥, A) = (¥v, A,,), where Yy ;. € H1 AQ)N i(Q), k € N denotes
the orthonormal sequence of eigenfunctions of the Hamiltonian (— lV + A)? + V with corresponding
eigenvalues py ;. and Ay ;. = f(pv, ), k € N.

Proof. By means of definition (2.7), we have
F*(s) > ps—F(u), peR, s<0,

which yields
F* (=) + Aepe > —F(ue), k€ N, (4.2)

Then let

fk = fg {l(—iV + Al + V|¢klz}dx = Wi, (HIV + A + V))rzi), k€N

Let us note that after summation, using Lemma 5 we obtain

(o)

> {F*(—Ak) + A fQ {|(—iV + Al + V|¢k|2}dx}

k=1

8

> = > F( (<Y + A + Vi) ()

=1

> = 3 Wi F(=1V + AP + Vi) ().

=1

=~

8

>~

The definition of trace yields that the right side of the inequality above is given by
~Tr (F((=iV + A)® + V),

which completes the proof of part (i) of the lemma. To establish part (ii), we suppose that
(¥,4) = (v, ), where . are eigenfunctions of the Hamiltonian (-iV + A)* + V and
defined above are the corresponding eigenvalues py ., k € N. Thus, on the right side of lower
bound (4.1) we have

“Tr (F(=iV + AP + V) = Z Fluy, ).

Next, let us use the identity Ay, = f(uv,.) = —F'(uv,;). Then, via Lemma 7, F*'(-Ay, ) =
' (Av, ) = pv, > k € N. With the argument of Lemma 7 of [3], we arrive at

F*(=Av,}) = sup,; cg(=Adv, ;. = F(D) = =f ' (Av, )Av., = F(F T (Av. ) = =Av s = Fuv, )
Thus, the left side of (4.1) will be equal to — >3, F(uy, ) as well. m]

10



Armed with the technical statement above, we proceed to prove our first main result.

Proof of Theorem 1. Let (¥, 1) € £ and the potential function V = Vg , induced by this state. We
will use the following identity for the energy of the electrostatic field

1 1 1
—[IVV = VVoI%, =—flVV|2dx+—f|VVO|2dx+fVOAde.
2 ©@ 2 Jq 2Ja Q

By virtue of the definition of the energy-Casimir functional, this can be expressed as

Hc(‘P,/_l)—{kZ:;(F*(—Ak)+Ak j; |(—iV+A)1//k|2dx)—% fQ VVolPdx - fg VoAVdsx},

which equals to

S [ . 1
He(E.2) = { Y [F-20+ da [ (=17 + AP + Valgelras] - 5 [ (9Wifa)
P Q 2 Jo
Applying first Lemma 8 part (i), and then Lemma 8 part (ii), we obtain that the expression above
is estimated from above by

He(¥. ) = { = THF(=7 + 47 + Vo)l - 5 [ VW)

=He(W, )~ { ) [F'(~Aox) + ok fQ <|<—iv+A>¢o,k|2+vo|¢o,k|2>dx]—§ fQ VVol dx}

k=1
— 1

= HoW2) = { ) [F2000+ dos [ 19+ Aualax] + 5 | (VW)
k=1

=Hc(¥, 1) — He (Yo, 4y)-

Due to the fact that the Casimir functional is constant along the solutions of our magnetic
Schrodinger-Poisson system, which is globally well-posed as proved in Lemma 13 of the Appendix
below, for an initial condition (¥(0), 1) € L, we can use Hc(¥(0), A) in the estimate above instead
of He(¥(t),A). o

Having proved the nonlinear stability of the stationary states of the magnetic Schrédinger-
Poisson system, our main goal is to establish the existence of such states which satisfy the
assumptions of the stability theorem.

5 Dual functionals

For each distribution function f € C we will obtain a corresponding stationary state as the unique
maximizer of a functional defined below. We use the energy-Casimir functional from the stability
result to derive such a dual functional. The tool below will be the saddle point principle. Let us
recall that, for A > 0 fixed G(¥, A, V, o) is defined as

0 ) . , , 1 ) )

DUF (- 2k) + A f[|(—lv + Ail? + VIgalPldx] - - f VVPdx + o[ ) Ak = Al

k=1 Q 2Ja k=1
Here as above ¥ = {yy}; C H& 4(Q) N H%(Q) is a complete orthonormal system in L*(Q)
and A € I} = {(&) € I' | A4x > 0, k € N}. Now we allow the function V € Hj(Q) to vary
independently of ¥ and A. The parameter ¢ € R here plays the role of a Lagrange multiplier.

The following lemma shows how the functional defined above is related to our energy-Casimir
functional.
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Lemma 9. For arbitrary ¥, A, o,
supyG(¥, AV, 0) = Ho(¥, ) + o[ D e - A
k=1
The supremum is attained atV =V ;.
Proof. Let us express the functional defined above as

G(¥.2.V.0) = Y [F'(-20) + 2 [ I(=17 + AP+ 32x [ WaPVy,ad
Q 2 Q

k=1

+k2,1kaV|¢k|2dx—Efngw,ﬁdx—Efgwwzdxm[ZAk—A].
=1

k=1
By virtue of the definition of the energy-Casimir functional (2.8) we obtain
1 1 =
He(¥, 1) - f VAV jdx — - f IVVyal%dx — = f IVV|2dx + G[Z A = A].
Q 2Ja 2Jo p
To complete the proof of the lemma, we write the expression above as

1 [0
He(¥.2) = Vi = VWil + o > A - A
k=1

O

In the following Section, we will prove that the functional ®(V, o) defined in (2.11) admits a
unique maximizer, which is a stationary state of our magnetic Schrédinger-Poisson system. We
first prove the following technical statement, which is the generalization of Lemma 8 above.

Lemma 10. Let V € Hj(Q) and V > 0. Then for (¥, 1) € L and o € R, the estimate from below
DU F (2 + A f =iV + A)i* + Vigil*ldx + o) | 2 ~THF((=iV + A + V + 0)]  (5)
k=1 Q

is valid. Equality in it is achieved when (¥, A) = (¥v, A,,), where Yy i € H&’A(Q) N Hi(Q), keN

is the orthonormal sequence of eigenfunctions of the operator (—iV + A)? + V which correspond to
eigenvalues . . Furthermore, Ay . = f(uy x +0), k € N.

Proof. Let us use inequality (4.2) with

ik = j; (=19 + Ail? + VIga?)dx + o = (W ((=iV + A + V + o)) k €N

Hence,

F* (=) + A ( fg [[(=iV + Aygil* + Viysl* | dx + o)
> —F(Yr, (=iV + A + V + 0)i)r2q), k€N

Obviously,
(-iV+A?+V+o= f (A + 0)dE;,
0

12



where E, denotes the spectral family associated with the Hamiltonian (—iV + A)? + V. Hence
dvi(A) == (Y, dEaYi)12(q) is a probability measure for k € N. Jensen’s inequality yields

F(f, (=iV + A +V + o)) 1) = F( fo (A + 0)dvi(2))
< foo F(A + o)dvi(A) = (Y, F((—iV + A)z +V+ O')I//k)LZ(Q).
0

This estimate from above along with (5.2) and summation over k € N yield the desired inequality

(5.1).

Then let us consider {yv x}3., € Hy ,(Q) N H5(Q), which form a complete orthonormal
system in L*(Q). Thus ((=iV + A)? + V)yv.x = pv.x¥v.k and Ay x = f(uy.x + o), k € N. In such
case the right side of (5.1) equals to

= Y (F(=iV + A + V + Wk Yv.i)rxey = — . Flpv i +0).
k=1 k=1
We have for k € N
F'(=Av k) = sup, (=M. = F) = =f (v )y ik = F(F v ),

since the supremum above is achieved at the maximal point A* := f~'(Ay ). The equality
Avk = f(pv.k + o) gives us f 1 (Av.x) = pv.x + 0. Hence

F'(=Av,k) = —(pv,k + 0)Av,k — Flpv i + 0).
An easy calculation yields that the left side of (5.1) is equal to — »;°, F(uy « + o). O

Having proved the technical lemma above, we are able to obtain the expression for the dual
functional for our problem.

Lemma 11. The infimum in definition (2.11) is achieved at ¥ = {yy x};"_,, an orthonormal sequence
of eigenfunctions of the Hamiltonian (—iV + A)? + V, V > 0, which correspond to the eigenvalues
py. .k with Ay x = f(uy.k + o) for k € N. Moreover, the dual functional is given by

o(V,0) = -% fQ IVV2dx — THF(=iV + A2 + V + 0)] - oA. (5.3)

Proof. We prove that the operator F((—iV + A)? + V + o) is trace class. We have
Tr[F((=iV + A2+ V + 0)] = Z Fluy  + 0).
k=1

Because the potential function V' > 0 as assumed, we use bounds (3.2) and (2.6) and obtain the
2 5

series with the general term (1 + Ck3 + 0)~27¢. This series is clearly convergent. Let us conclude

the proof of the lemma by referring to the statement of Lemma 10 above. O

6 Existence of stationary states

In the present section we establish, for each distribution function f € C and each value of A > 0,
the existence of a unique maximizer of our functional ®, which will be a stationary state of our
magnetic Schréodinger-Poisson system.
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Proof of Theorem 2. We first prove that the inequality

Tr[F((=iV + A% + a(V; + 01) + (1 — @)(Vy + 03))]

< aTr[F((—=iV + A? + Vi + 01)] + (1 — @) Tr[F((=iV + A)? + Vy + 03)] (6.

is valid for any @ € (0,1) and (V}, 0;) € H&Jr(Q) XR, j=1,2 Let ¢ € H(}’ 4(Q) N H3(Q) and
ll¢llz2() = 1. Let us make use of the spectral decompositions

(—iV+A)2+Vl=f ydP,, (—iV+A)2+Vz=f BdQg,
0 0

where P, and Qp are the spectral families associated with the operators (=iV + A)? + V; and
(=iV + A)? + V;, respectively. Therefore, we are in position to introduce the probability measures

dv(y) := (¢, dPy¢)12),  du(p) := (¢, dQpd)12() (62)

and express
F((, [(=iV + A + a(Vi + 1) + (1 = a)(V; + 02)])12(0)

= F(a fow(y +o)dv(y) + (1 - ) fow(ﬂ + o2)du(p)).

Due to the fact that F is strictly convex on its support, we derive the upper bound for the expression
above via Jensen’s inequality as

af F(y + op)dv(y) + (1 — a)f F(B + a2)du(p).
0 0
By virtue of definition (6.2) we obtain

a($, F(—iV + A + Vi + 01)@)12(q) + (1 — a)(¢, F(=iV + A)® + Va + 02)P) 12(0)-

Assume {yx }}_, to be the set of eigenfunctions of the operator (=iV+A?+a(Vi+01)+(1-a)(Va+0,)
forming a complete orthonormal system in L?(Q2). Then the argument above yields

TR [(=1V + A + a(Vi + 01) + (1 - @)(Va + o) i) ()
k=1

sa Z(I//k, F((—iV + A + Vi + o)V 120
k=1

+(1=a) Y (e F(=iV + A + Vs + o)) 1)
k=1

Hence we obtain inequality (6.1). Suppose equality here holds. Since the function F is strictly
convex on its support, we conclude that the operators (—iV + A)? + V; + o1 and (—=iV + A)? + V, + 0
with potential functions V; and V;, which vanish on the boundary of Q, have the same set of
eigenvalues and the corresponding eigenfunctions are {{x};"_,. Thus, Vi(x) = V2(x) in Q and
o1 = 03, and Tr[F((—iV + A)* + V + 0)] is strictly convex. Because —1 fQ [VV[?dx and —cA are
concave, we obtain that our functional given by (5.3) is strictly concave.

Now we proceed to the proof of its boundedness from above and coercivity. Evidently, the
Poincaré inequality implies that

1 2 C1 e
EL'V‘/' dx = VI
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with a constant C; > 0. Denote as py the lowest eigenvalue of the Hamiltonian (—iV + A)? + V.
Obviously, we have the estimate with a trial function ¢ as

< fQ 1=V + AP + VIgPYdx. il = 1.

We fix gi; as the ground state of the magnetic Dirichlet Laplacian (—iV + A)? on L*(Q). Note that
the lowest eigenvalue of such operator can be compared with the smallest eigenvalue of the
negative Dirichlet Laplacian on L?(Q) by means of the comparison of magnetic non magnetic
norms proved in Lemma 14 of the Appendix. Thus

f |(=iV + A)p[2dx = p.
Q

Cy = 1 ’L |¢|4dx > 0.

Such constant is finite. Indeed, the comparison of magnetic and non magnetic norms established in
Lemma 14 of the Appendix along with the Sobolev inequality yield ¢ € L5(Q). We have ¢ € L*(Q)
by virtue of the Holder’s inequality. The Schwarz inequality yields

Let us introduce

f Vigldx < CallVllva < CollV e
Q

Hence
py < pit+ ColVllg()-

This gives us the estimate from above

G
o(V,0) < —?”V“Z&(Q) - Fui + CollVllg @) + 0) — oA (6.3)
We use the convexity property, namely

F(x) = —fx + G,

where f > A > 0 is suffiently large. Thus we arrive at the inequality

G
®(V,0) < =—IVIiGs o) + (B = Mo + BCallVgy() + B’ = C.

A straightforward computation gives us

C
B(V.0) < = WVl + Cot (B= Mo+ pyi! = Cs.

We choose f = 2A and introduce the nonnegative constant k := max{Cy + ZA,uf‘ — C3,0}. Thus

Ci o
WV.0) <~V o) + Ao +E. (6.4)

Inequalities (6.3) and (6.4) yield

C 9
o(V,0) < _Z”V”H(}(Q) — Alo| + k.

This proves that our functional ®(V, o) is bounded above and —®(V, o) is coercive. Hence,
®(V, o) has a unique maximizer (Vy, 0y). Let the hamiltonian (—iV + A)? + V; have the sequence of
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eigenvalues {4,k }7. , and the correspondent orthonormal sequence of eigenfunctions is {0, }7.
namely

((=iV + A + Voo k = po,xVo,k» Kk €N
and denote Ao := f(uo k + 0p). We arrive at

(Vi 0) = - fQ S f - on,

k=1 Y Ho,kt0O

and o = oy is its critical point. Thus,

o N N
0= G, 0lomy = A+ Flhok + o) = D Aok = A
k=1 k=1

such that ;> | Ao.x = A. The first variation of ®(V, gy) at V = V; vanishes as well. Hence, a trivial
calculation yields

—AVy(x) = Z)to,k|¢0,k(x)|2-
k=1

By direct substitution, the functions ¥ (x,t) = e 'Hoklyy 1 (x), k € N satisfy the magnetic
Schrodinger equation

iaa—wtk =[(=iV+A? +Vln, x€Q, t>0.
The density matrix
polt,x,9) = D Aok, Oy, 1) = ) Ao ko k(0o k(B)-
k=1

k=1

0
Hence % = 0 and the particle concentration ny(t, x) = po(t, x, x).

Therefore, (¥o, 4,, 10, Vo) is a stationary state of our magnetic Schrédinger-Poisson system.
Finally, we are able to prove that (¥, ;) € £, which can be established analogously to the proof
of Lemma 6 above. i

We have the following statement relating the functionals ® and Hc.

Proposition 12. Let the assumptions of Theorem 2 hold, such that (¥y, A, jt0, Vo) is the corresponding
stationary state of our magnetic Schrédinger-Poisson system. Then ®(Vy, o) = Hc (%o, 4,).

Proof. We have, from Lemma 11,
1
d(Vy, ) = -5 f [VVol?dx — Tr[F((=iV + A)? + V, + 0y)] — 0oA
Q

and
(o) . (o8] 1
Heltdg) = 3 P20+ Y s [ 109+ Ao+ [ [WWifa.
k=1 k=1 Q Q

By virtue of Lemma 10,

i [F*(=Ao.x) + Ao ( fQ =iV + A)o l* + Vol k*1dx + o) |
k=1

= —Tr[F((=iV + A)* + Vo + 09)],
which gives us the statement of the proposition. O

Acknowledgements V.V. thanks C. Sulem for the support and stimulating discussions.
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Appendix: Global well-posedness

In this Appendix, we extend the global well-posedness result of [9] proved for the Schrédinger-
Poisson system in a bounded domain with the Dirichlet boundary conditions to the case when a
smooth magnetic field is turned on.

We introduce the magnetic Sobolev norms for functions

1 g = 11z + =¥ + A (65)
1 = W1y + =19 + AP fl g (6.6)

The usual Sobolev norms || f1|g1(q) and || f||g2(q) will be used when the magnetic vector potential
vanishes. Let us define the inner product for fixed A € I', Ax > 0, and for sequences of square
integrable functions @ := {¢¢};°_, and ¥ := {Yx }}"_, as

(@, %)xq = ) Al Yi)r2()-

k=1

Clearly, it induces the norm
1
19lxg = O Aellgelogy)?
k=1
Let us introduce the corresponding Hilbert space
Xg = {(I) = {¢k}zo:1 | ¢k € LZ(Q)’ VkeN, ”q)”XO < OO}
We have the following result.

Lemma 13. For every initial state (¥(x,0),A) € L, there exists a unique mild solution ¥(x,t),
t € [0,00), of (1.6)-(1.9) with (¥(x, t),A) € L. This is also a unique strong global solution in Xq.

Proving the global well-posedness of the Schrédinger-Poisson system plays a critical role in
establishing the existence and nonlinear stability of stationary states, i.e. the nonlinear bound
states of the Schrédinger-Poisson system, which was done in the non magnetic case in [9, 18].
These issues in the semi-relativistic regime were addressed recently in [1], [2], [3]. The
corresponding one dimensional problem was studied in [21]. The existence of solutions for a
single Nonlinear Schrédinger (NLS) equation with a magnetic field was established in [15], see
also [14].

Let us make a fixed choice of 4 = {1}, € €', with Ax > 0 and 337, A = 1, denoting the
sequence of coefficients determined by the initial data p, of the Hartree-von Neumann equation
(1.1) via (1.5), for t = 0. Let us introduce the inner products (-, )y, , and (-, ")z, , inducing the
generalized inhomogeneous magnetic Sobolev norms

1
2

[ 1 0
2
— 2 — 2
1@l o= ( ;:1 Aknmnwm) and |@llz, , = ( k§:1 Ak||¢k||Hi(Q)) . 6.7)
We define the corresponding Hilbert spaces

YQ,A = {(D = {¢k}:’:1 |¢k € H(}’ A(Q)’ VkeN, ||(I)||YOA < OO}

and
Zoa =A{® ={$x}5, | dx € Hy oA(Q)NH5(Q), VkeN, [[®]lz,, < oo}
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respectively. Let us also introduce the generalized homogenous magnetic Sobolev norms

1

00 , 2

@y, , = (Z All(=i9 + A)¢k||L2(Q)) , (6.8)
k=1

@l , = (Z A1V + A)quknim)) . (6.9)
k=1

The notations ||®[ly,, [[®lly,, [®llzy, [Pl will be used when the magnetic vector potential
vanishes, similarly to Section 3 of [9]. We have the following equivalence of magnetic and non
magnetic norms.

Lemma 14. Assume that the vector potential A(x) € C}(Q, R*) and the Coulomb gauge is chosen,
namely
divA = 0. (6.10)

a) Let f(x) € H, ,(Q). Then the norms
1=V + A flle), 1V Fllz@y 1l I llm @

are equivalent.
b) Let f(x) € H5(Q). Then the norms

I(=iV + A fllrz)y 1Az, I lEz@) If1lz2 o)

are equivalent.
c) Let &(x) € Yo a. Then the norms

1Bllvor I8l o e Il

are equivalent.
d) Let ®(x) € Zo 4. Then the norms

I®llzgas N9l > Pllze, (1Dl
are equivalent.

Proof. We will make use of the diamagnetic inequality (see e.g. p.179 of [16])

f (=iV + A) fl2dx > f VI£|Pdx (6.11)
Q Q

along with the Poincaré inequality

f|Vg(x)|2dx2cpf|g(x)|2dx, (6.12)
Q Q

where the constant ¢, > 0 depends upon our domain Q with Dirichlet boundary conditions. In
the argument below, with a slight abuse of notations C will denote a finite, positive constant.
Since the vector potential A(x) is bounded in Q, as assumed, we easily obtain

I(=iV + A) fllrz) < IVfllzz) + Cllfllzz (o)

which can be trivially bounded above by CI|V f||;2(q) by virtue of inequality (6.12). Evidently,
IVfllzz@) < =iV + A) fllzzq) + 1Af 2 < I(=iV + A fllr2@) + Cllfllzz),
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which can be easily estimated from above by virtue of inequalities (6.11) and (6.12) by C||(-iV +
A)fll2(q)- Using the definition of the norm (6.5), we obtain

Il @) < Clflla),  1flla @) < Cllflla @)-

Obviously, [|V fllzzq) < Ifllf1(@)- Inequality (6.12) yields || f1|g1(q) < CIIV fllz2(q), which completes
the proof of the part a) of the lemma.
Since the vector potential A(x) satisfies (6.10), we have

(=iV + A)? = —A — 2iAV + A%

such that
I(=iV + A fllz2q) < IAfllzz) + 2MAY flliz) + 1A% fllrzo)-

Using the Schwarz inequality along with (6.12) we estimate the right side of the inequality above
by Cl|Afll12(q)- Evidently,

IAfllzz 0y < =iV + AY fllzzq) + I2IAV f = A% fllr2q)
< =iV + A fllz(o) + 21AY fllzzq) + 1A% fllrzo)-

The result of the part a) of the lemma yields

1AV fllz2) < ClIV fllze) < CI(=IV + A)fllL2(q),

which can be bounded above by means of the Schwarz inequality along with (6.11) and (6.12) by
Cll(=iV + A)*fllL2(q)- Similarly,

1A% fllz2() < Cllfllzz) < Cl(=iV + A) fllz) < CI(=iV + A fll2(0)-
Hence,
IAfllzz ) < C(=iV + A fll2()- (6.13)

Clearly, ||Afllr20) < Ifllg2@)- By means of (6.12), we have ||f||g2q) < ClIAfllr2(q). Evidently,
inequality (6.12) yields

1l < AJCIASIEs gy + =TV + ARSI

which can be easily estimated from above by CJ|(—=iV + A)f]| 12()- By means of definition (6.6),
we have [|(=iV + A)* fll12q) < ”f”fo(Q)’ which completes the proof of the part b) of the lemma.
The results of parts c) and d) of the lemma follow easily from the definitions of the corresponding
norms involved in (6.7), (6.8) and (6.9). O

Let ¥ = {n}),_, be a wave function and the magnetic kinetic energy operator acts on it
(=iV + A)?¥ componentwise. We have the following two auxiliary lemmas.

Lemma 15. The domain of the magnetic Dirichlet kinetic energy operator is given by
D((=iV + A)*) = Zg. 4 € Xa.

Proof. Let ¥ € Zg 4. Hence

1

00 , 3
¥z, (Zak||¢k||L2(m) = ¥llxg.
k=1
such that ||¥||x, < co as well. O
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Lemma 16. The operator (—iV + A)? generates the group eIV e R, of unitary operators
on Xgq.

Let us rewrite the Schrodinger-Poisson system for x € Q into the form

(Z—\f = —i(=iV + A)?*¥ + F[¥(x,t)], where F[¥] := i 'V[¥]¥, (6.14)

—AV[¥] = n[¥], where V|sq = 0 and (¢, .)|oq = 0,

and trivially obtain the following auxiliary result.
Lemma 17. The map defined in (6.14) F : Zo o — Zq, a is locally Lipschitz continuous.

Proof. In the proof of Lemma 3.1 of [9] dealing with the non magnetic case it was proven that for
®,¥ € Z, we have

IF(®) — F(¥)llz, < CIIIF, + IIT )P — Pz,

with @ = {¢r}7 . ¥ = {¢x};_, and t € [0,T). By virtue of Lemma 14 above we have the
equivalence of magnetic and non magnetic norms, such that

IF(®) = F(¥)llzo 4 < CUIDIIT, , + 115, P~ iz, ,- (6.15)

Yo, A Yo, a

O

Standard arguments (see for instance [19, Theorem 1.7 §6]) yield, using Lemma 17, that the
magnetic Schrodinger-Poisson system above possesses a unique mild solution ¥ in Zg 4 on a
time interval [0, T), with some T > 0, which satisfies the integral equation

t
P(t) = e (I g (0) 4+ f e~ {CIVHA (=) 1y (5)]ds (6.16)
0
in Zq, 4. Furthermore,

lim, ~7|[¥(t)l| 2 = o
if T is finite. Let us also note that ¥ is a unique strong solution in Xq. Below we are going to
prove that this solution is in fact global in time. First we establish the following lemma.

Lemma 18. Suppose for the unique mild solution (6.16) of the magnetic Schrodinger-Poisson system
(1.6)-(1.9) at t = 0 functions {yx(x,0)};"_, form a complete orthonormal system in L%(Q). Then, for
anyt € [0,T), the set {yx(x,t)};_, remains a complete orthonormal system in L%(Q). Furthermore,
the Xq-norm is preserved, such that ||¥(x, t)||x, = [|¥(x,0)|lx,. t € [0, T).

Proof. For the given solution ¥(¢) of the magnetic Schrédinger-Poisson system on [0, T), we
obtain the time-dependent magnetic one-particle Hamiltonian

HA,VW(t) =(-iV+ A)z + V\y(t, x),
where the potential Vi satisfies —AVy(t,x) = n[¥(t)] with Dirichlet boundary conditions, see
(1.2).

Thus the components of ¥(¢) solve the non-autonomous magnetic Schrodinger equation
i0: Y (t, x) = Ha v, (t)Yi(t, x), for k € N, on the time interval [0, T). Hence we obtain for ¢t € [0, T),

PG, 1) = e I Havs @y o 0) ke N, (617)
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such that

Wi (o, 1), Y (o, 1) r2(q) = (e o Have@dry, (c 0) 7 ho Have@dzy, (o 0))12(q)
= (‘bk(x’ O)v l//l(xa O))LZ(Q) = 5k,lv kal € N3

where Jy ; denotes the Kronecker symbol. Therefore, for k € N,

||¢k(x’ t)lliZ(Q) = ||¢k(x’ O)“iZ(Q)a

such that for t € [0, T), the Xo-norm is preserved,

NG, )l = O Akl D22 0)? = O Akllgie(x, 002, )7 = INGx, )l
k=1

k=1

We consider an arbitrary function f(x) € L?(Q). Obviously, we have the expansion
flx) = i(f ) V(Y. 0)r2(0) Yk (x, 0)
k=1
and analogously
R O i(e"fo’ Fa DT £y, iy, 0)) 2y Vi (., 0).
k=1
Thus, by virtue of (6.17) we arrive at the expansion

£ = > (F@) Yy, D)oyl )

k=1
fort € [0,T). O

Below we derive the conservation of energy for the solutions to the magnetic Schrédinger-
Poisson system in the following sense.

Lemma 19. For the unique mild solution (6.16) of the magnetic Schrodinger-Poisson system (1.6)-(1.9)
and for any value of time t € [0, T) we have the identity

1 1
GOl + SIVVIEG Ol g, = I2G00E, + SITVIE 0l gy (618)
Proof. Complex conjugation of the magnetic Schrodinger-Poisson system (1.6) gives us

—iaa—gik = (iV + A + V[¥(x, )], ke N. (6.19)

o9
By adding the k-th equation of (1.6) multiplied by % and the k-th equation in (6.19) multiplied

k .
by —, we d
y —; » We derive

0 0
G + AWl + [ VI OLTPdx =0, keN.

Multiplying by Ag, and summing over k, we trivially obtain
ﬁ||‘I’(x DI + f V[¥(x t)]gn[‘l’(x Hldx =0 (6.20)
TR CUY T ot ’ e '
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It can be easily verified that

0 0
allVV[‘P(x, t)]||i2(Q) = ZLV[‘P(x, t)]an[‘lf(x, t)]dx.

By substituting this identity in (6.20) we complete the proof of the lemma. O

Armed with the auxiliary statements established above, we now proceed to the proof of the
main result of the Appendix.

Proof of Lemma 13. From (6.16) we easily obtain

(=iV + AP¥(D) = e V(T + A)9(0) + f VAR (7 4 APF[Y(s)]Ns.
0

Let us apply the norm ||.||x,, to both sides of the identity above, to arrive at

125, , < IO, + f EEGI, s
By virtue of result (6.15) of Lemma 17 above, we have
IF[¥]llzo 4 < CINEI,, ,I1¥ll20, -
Lemma 19 gives us the boundedness of the ||‘If||§,Q,A by the right side of identity (6.18), such that

IFI¥Oll;, , < Coll¥@®lz, ,»

with the constant Cy proportional to the initial energy. Thus

t
¥z, , < %Oz, , +f Coll¥(9)llz,, , ds.
0
Gronwall’s lemma implies that
(@), , < IOz, e telo,T).

By virtue of the blow-up alternative, this yields that our magnetic Schrédinger-Poisson system is
globally well-posed in Zg 4. ]
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