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Abstract

We investigate the existence of local holomorphic solutions of linear q-difference-differential equations in
two variables t, z whose coefficients have poles or algebraic branch points singularities in the variable t.
These solutions are shown to develop poles or algebraic branch points along half q-spirals. We also give
bounds for the rate of growth of the solutions near the singular points. We construct these solutions
with the help of functions of infinitely many variables that satisfy functional equations that involve q-
difference, partial derivatives and shift operators. We show that these functional equations have solutions
in some Banach spaces of holomorphic functions in C∞ having sub-exponential growth.
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1 Introduction

In this paper, we study linear partial q-difference-differential equations of the form

(1) ∂Sz u(t, z) =
∑

h=(h1,h2)∈S

bh(t, z)(∂h1t ∂
h2
z u)(qm0,ht, zq−m1,h)

where S is a subset of N2, q is a complex number with modulus |q| > 1 and S,m0,h,m1,h are
positive integers which satisfy the constraints (49). The coefficients bh(t, z) are holomorphic
functions with singularities in the t variable and polynomial in the z variable for given initial
data (∂jzu)(t, 0) = ϕj(t), 0 ≤ j ≤ S − 1.

Our goal is the construction of local holomorphic solutions of (1) and the study of their
behaviour near the singular points of the coefficients bh(t, z) and initial data ϕj(t).

∗The author is partially supported by the french ANR-10-JCJC 0105 project.
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In the framework of linear partial differential equations (i.e m0,h = m1,h = 0), there exists a
huge litterature on the study of complex singularities and analytic continuation of their holomor-
phic solutions starting from the fundamental contributions of J. Leray in [18]. Several authors
have considered Cauchy problems a(x,D)u(x) = 0, where a(x,D) is a differential operator of
some order m ≥ 1, for initial data ∂hx0u|x0=0 = wh, 0 ≤ h < m. Under specific hypotheses on the
symbol a(x, ξ), precise descriptions of the solutions of these problems are given near the singular
locus of the initial data wh. For meromorphic initial data, we may refer to [8], [23], [24] and for
more general ramified multivalued initial data, we may cite [7], [13], [29], [33], [34].

In the real shrinking setting (i.e q ∈ R, |q| < 1 and m1,h < 0) general results concerning the
construction of local solutions and their regularity have been achieved, see for instance [2], [14],
[16], [17].

These recent years many authors focused on the case of mixed type q-difference-differential
equations with |q| > 1. This subject is now of great interest from both algebraic and analytic
point of view, see for instance [5], [9], [11], [25], [26], [27], [35], [36].

The kind of problem (1) we consider in this work enters this new trend of research and
extends aspects of both of the previous situations studied in [19], [20].

In the paper [19], we considered differential equations in the variable z with dilations and
contractions in both variables t,z, whose coefficients are polynomial in t,z and a function e(t)
satisfying some q-difference equation having meromorphic singularities along unions of half q-
spirals (which are sets of the form q−Na, for some a ∈ C∗). We constructed local holomorphic
solutions with respect to t near the points of the half q-spirals, entire for z in C and showed that
their growth rate is at most sub-exponential with bounds of the form C exp(M(log |t−t0|)2) near
the singularities t0 ∈ q−Na for some constants C,M > 0. In the classical situation of systems
of q-difference equations with rational coefficients of the form Y (qz) = A(z)Y (z), we refer to [6]
for the construction of local meromorphic solutions near the origin and the point at infinity on
the Riemann sphere but it is worthwhile saying that the construction of local solutions near the
singularities of A(z) outside 0 and ∞ remains an unsolved problem.

In the work [20], the authors investigated the construction and behaviour of local holomorphic
solutions to linear partial differential equations in C2 near the singular locus of the initial data.
These initial data are assumed to be polynomial in t,z and a function u(t) satisfying some
nonlinear differential equation of first order and owning an isolated singularity t0 on some domain
D ⊂ C, which is, by a result of P. Painlevé, either a pole or an algebraic branch point. Following
the principle of the classical tanh method introduced in [21], they have considered formal series
solutions of the form

(2) u(t, z) =
∑
l≥0

ul(t, z)(u(t))l

where ul are holomorphic functions on D ×D where D ⊂ C is a small disc centered at 0. They
have given suitable conditions for these series to converge for t in a sector S with vertex t0 and
to have at most exponential bounds estimates of the form C exp(M |t− t0|−µ) for all t ∈ S near
t0 for some constants C,M, µ > 0.

Like in the work [20], the coefficients bh(t, z) of (1) and the initial data are polynomials in t,z
and a solution u(t) of some nonlinear differential equation of first order. We require the function
u(t) to be bounded at 0 and ∞ (see Section 3.1). For a suitable choice of u(t), one can choose
for instance bh(t, z) to be some rational function in t and polynomial in z (see Example 1 from
Section 3.1).

In our setting, one cannot content oneself with formal expansions in the function u(t) like
(2) due to the presence of the dilation operator t 7→ qt. In order to get suitable recursion
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formulas, it turns out that we need to deal with series expansions that take into account all the
functions u(qjt), j ≥ 0. This is the reason why the construction of the solutions will follow the
one introduced in a recent work of H. Tahara and will involve Banach spaces of holomorphic
functions with infinitely many variables.

In the paper [30], H. Tahara has studied a new equivalence problem between given two
non-linear partial differential equations of first order in the complex domain. He showed that
the equivalence maps have to satisfy so called coupling equations which are non linear partial
differential equation of first order but with infinitely many variables. In a more general setting,
within the framework of mathematical physics, spaces of functions of infinitely many variables
play a fundamental role in the study of nonlinear integrable partial differential equations known
as solitons equations as described in the theory of M. Sato, see [22] for an introduction. Impor-
tant contributions have been obtained these recent years to the study of higher order Painlevé
equations, see for instance [15], [31], and applications to quantum field theory, see [1], [32].

In the first part of this paper we construct Banach spaces of formal power series of infinitely
many variables as sums of entire functions of finite numbers of variables having at most a
polynomial growth. We show that these power series are convergent and define holomorphic
functions on every polydiscs of finite radii in C∞. Moreover, we prove that these functions have
q-exponential growth rate (in the terminology of [28]) as one makes one radius of the polydisc
increase (Proposition 1).

In the section 3, we construct holomorphic functions of the form u(t, z) = φ(t, z, (u(qjt))j≥0)
where φ(t, z, (uj)j≥0) is a holomorphic function of infinitely many variables that belongs to the
Banach spaces constructed in the previous section. Under suitable conditions on the function
u(t), these functions u(t, z) are defined on product sets q−NS × C where S is some open sector
having finite radius and with vertex t0 in C∗. Moreover, these functions u(t, z) are shown to
have at most sub-exponential growth with bounds of the form C exp(M(log |qkt − t0|)2) for all
t ∈ q−kS near the singularity q−kt0, for all k ≥ 0, for some constants C,M > 0.

It turns out that such a function u(t, z) satisfies the equation (1) for the given initial condi-
tions if φ satisfies a functional equation (43) which involves partial derivatives and shift operators
in the variables (uj)j≥0. In the proof we use a Faà di Bruno formula in several variables obtained
in [3] (see Proposition 3).

In Proposition 4, we give sufficient conditions for the linear operators involved in this func-
tional equation (43) to be continuous maps on the Banach spaces constructed above. This is
the most technical part in the proof of our main result. In Section 3.4, we show that the func-
tional equation (43) has a unique solution φ in the Banach space introduced in the first part.
Finally, we use this function φ to construct a solution u(t, z) of the problem (1) with given initial
conditions ϕj(t), 0 ≤ j ≤ S − 1, having the upper-mentioned sub-exponential growth estimates
(Theorem 1).

2 Weighted Banach spaces of holomorphic functions with in-
finitely many variables

Definition 1 Let c, c0 > 0 be two positive real numbers. For all integers β ≥ 0, we denote
by A(Cβ+1) the vector space of entire functions on Cβ+1 and SEβ(Cβ+1) the vector subspace of
A(Cβ+1) of entire functions f((uj)0≤j≤β) : Cβ+1 → C such that

||f ||β := sup
(uj)0≤j≤β∈Cβ+1

|f((uj)0≤j≤β)|
β∏
j=0

(1 + |uj |)−cβ−c0
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exists.

In the following, we will denote by C[[t, z, u]] the vector space of formal series φ in the infinitely
many variables t, z, u = (uj)j≥0 with coefficients in C which can be written in the form

φ(t, z, u) =
∑
l,β≥0

φl,β((uj)0≤j≤β)
tl

l!

zβ

β!

where φl,β((uj)0≤j≤β) are formal series in the variables uj , 0 ≤ j ≤ β, with coefficients in C, for
all l, β ≥ 0. For general facts about formal series and holomorphic functions of infinitely many
variables, we refer to the book [4].

Definition 2 Let q > 1, T,X > 0 be real numbers. Let P (l, β) be the polynomial lβ − β2 − l2.
We denote by SE(T,X, q, c, c0) the subspace of C[[t, z, u]] of formal series in the variables t, z, u =
(uj)j≥0,

φ(t, z, u) =
∑
l,β≥0

φl,β((uj)0≤j≤β)
tl

l!

zβ

β!

where φl,β ∈ SEβ(Cβ+1), for all l, β ≥ 0, such that

||φ(t, z, u)||(T,X) :=
∑
l,β≥0

||φl,β((uj)0≤j≤β)||β
qP (l,β)

T l

l!

Xβ

β!

converges. It is easy to see that SE(T,X, q, c, c0) is a Banach space for the norm ||.||(T,X).

In the next proposition, we analyse the convergence of the series in the Banach space constructed
above.

Proposition 1 We define the functions

H1,c(r) =
1

4 log(q1/2/(1 + r)c)
, H2,c0(r) = 2(1 + r)c0

for all r ≥ 0. Let φ(t, z, u) ∈ SE(T,X, q, c, c0). Then, there exists a constant Cφ > 0 such that,
for all integers ν ≥ 0, for all T0, X0 > 0 and all R,Rν > 0 such that (1+R)c < q1/2 and Rν ≥ R,
we have

(3) |φ(t, z, u)| ≤ Cφ exp(
1

2 log(q)
(log(2T0/T ))2)

× (1 +Rν)c0 exp(H1,c(R)(log(H2,c0(R)(1 +Rν)c
X0

X
))2)

for all t, z ∈ C, with |t| < T0, |z| < X0, all u = (uj)j≥0 with |uj | ≤ R, for all j 6= ν and
|uν | ≤ Rν .

Proof Let φ(t, z, u) ∈ SE(T,X, q, c, c0). By definition, there exists a constant C0 > 0 such that

(4) |φl,β((uj)0≤j≤β)| ≤ C0(

β∏
j=0

(1 + |uj |)cβ+c0)qP (l,β)(
1

T
)l(

1

X
)βl!β!
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for all l, β ≥ 0. From the fact that P (l, β) ≤ −l2/2− β2/2, for all l, β ≥ 0, we deduce that there
exists C1 > 0 such that

(5) |φ(t, z, u)| ≤ C1A1(|t|)A2(R,Rν , |z|)

where

A1(|t|) =
∑
l≥0

q−l
2/2(
|t|
T

)l

and

A2(R,Rν , |z|) = (1 +Rν)c0
∑
β≥0

(
(1 +R)c

q1/2
)β

2
(
(1 +Rν)c(1 +R)c0 |z|

X
)β,

for all t, z ∈ C, all u = (uj)j≥0 with |uj | ≤ R, for all j 6= ν and |uν | ≤ Rν . Now, we give estimates
for A1(|t|) and A2(R,Rν , |z|). We will use the next lemma which is given in [28] (Lemma 2.2).

Lemma 1 There exists a constant M > 0 such that

(6)
∑
n≥0

q−n
2/(2s)rn ≤M exp(

s

2 log(q)
(log(2r))2)

for all r > 0, all s > 0.

Using Lemma 1, for s = 1 and s = log(q)

2 log(q1/2/(1+R)c)
, we get a constant M > 0 such that

(7) A1(|t|) ≤ A1(T0) ≤M exp(
1

2 log(q)
(log(2T0/T ))2),

A2(R,Rν , |z|) ≤ A2(R,Rν , X0) ≤M(1 +Rν)c0 exp(H1,c(R)(log(H2,c0(R)(1 +Rν)c
X0

X
))2)

for all t, z ∈ C with |t| < T0, |z| < X0. The estimates (3) follow. 2

3 Linear operators on SE(T,X, |q|, c, c0) and a functional equation

3.1 Some nonlinear differential equations

We consider the following first order nonlinear differential equation

(8) u′(t) =

d∑
j=0

pj(u(t))j ,

where d ≥ 2 is an integer, with constant coefficients pj ∈ C, 0 ≤ j ≤ d, with pd 6= 0. As
a consequence of a result of P. Painlevé (see [10], Theorem 3.3.2), we know that the only
singularities in C of the solutions u(t) of (8) are poles or algebraic branch points. In the
following, we denote by Dθ(t, r) an open disc D(t, r) centered at t ∈ C with radius r > 0 minus
the half line [t, reiθ), for θ ∈ R. We make the following assumptions.

Assumption 1. There exist θ0 ∈ R, 0 < r0 < 1, t0 ∈ C∗ and a function u(t) which is
holomorphic and a solution of (8) on Dθ0(t0, r0) which admits the following puiseux convergent
expansion

(9) u(t) =
∑
l≥−m

ul(t− t0)µl
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for all t ∈ Dθ0(t0, r0), where µ > 0 is a real number and m ≥ 1 is an integer such that u−m 6= 0.
If µ is a positive integer, the point t0 is called a pole of order mµ and in this case the function
u(t) is holomorphic on D(t0, r0) \ {t0}, otherwise, the point z0 is called an algebraic branch of
order mµ.

Assumption 2. There exists q ∈ C with |q| > 1 such that, for all j ∈ Z∗, the function t 7→ u(qjt)
is well defined and holomorphic on Sd0,r0,δ0(t0) and moreover, there exists a constant M > 0
such that |u(qjt)| ≤M for all t ∈ Sd0,r0,δ0(t0), all j ∈ Z∗, where

Sd0,r0,δ0(t0) = {t ∈ C \ {t0}/|arg(t− t0)− d0| < δ0/2, |t− t0| < r0} ⊂ Dθ0(t0, r0)

is an open sector centered at t0 contained in Dθ0(t0, r0).

Example 1: For all c ∈ C∗, the function u(t) = −1/(t − c) is a solution of u′(t) = (u(t))2 on
C \ {c}. Then, one checks that the assumptions 1. and 2. are satisfied for t0 = c, any q ∈ C
with |q| > 1 and r0 small enough.

Example 2: Let Sd0,r0,δ0(1/2) be an open sector centered at 1/2, not containing the origin.
For all j ∈ Z, we fix a determination of the logarithm t 7→ log(1− 2t) on qjSd0,r0,δ0(1/2). Then,
the function u(t) = exp(−(1/2) log(1 − 2t)) is a holomorphic solution of u′(t) = (u(t))3 on
qjSd0,r0,δ0(1/2), for all j ∈ Z. One checks that the assumptions 1. and 2. are satisfied for every
q ∈ C with |q| > 1.

3.2 Composition series

In the next proposition, we construct holomorphic functions in two variables defined on open
q-spirals using holomorphic functions with infinitely many variables constructed in the previous
section and a solution of a nonlinear differential equation satisfying the assumptions 1. and 2..

Proposition 2 Let u(t) be a holomorphic solution of a nonlinear differential equation (8) sat-
isfying the assumptions 1. and 2. from the section 3.1. Let φ(t, z, u) ∈ SE(T,X, |q|, c, c0). We
make the assumption that (1 +M)c < |q|1/2 (for the constant M > 0 defined in Assumption 2.).
Then, the function

w(t, z) =
∑
l,β≥0

φl,β((u(qjt))0≤j≤β)
tl

l!

zβ

β!

is holomorphic on q−NSd0,r0,δ0(t0)× C. Moreover, the following estimates hold: there exist two
constants M ′ > 0 (depending on u(t) and q) and Cφ (depending on φ) such that

(10) |w(t, z)| ≤ Cφ exp(
1

2 log(|q|)
(log(2(|t0|+ r0)/T ))2)

× (1 +M ′|qkt− t0|−mµ)c0 exp(H1,c(M)(log(H2,c0(M)(1 +M ′|qkt− t0|−mµ)c
X0

X
))2)

for all X0 > 0, for all t ∈ q−kSd0,r0,δ0(t0), for all k ≥ 0, for all |z| < X0, where the functions
H1,c(r) and H2,c0(r) are defined in the proposition 1.

Proof Let k ≥ 0, let t = q−k t̃ ∈ q−kSd0,r0,δ0(t0), where t̃ ∈ Sd0,r0,δ0(t0). From the assumption
2., there exists a constant M > 0 such that |u(qj−k t̃)| ≤ M , for all j 6= k, all t̃ ∈ Sd0,r0,δ0(t0).
From the assumption 1., there exists a constant M ′ > M such that

(11) |u(t̃)| ≤M ′|t̃− t0|−mµ
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for all t̃ ∈ Sd0,r0,δ0(t0). Using the estimates (3) for ν = k, T0 = |t0| + r0, X0 > 0, R = M ,
Rk = M ′|t̃− t0|−mµ, we get that the function w(t, z) is holomorphic on q−kSd0,r0,δ0(t0)×C and
satisfies moreover the estimates (10). 2

We state a lemma concerning the n-th derivative of the function u(t), which can be easily checked
by induction on n ≥ 1, see [20].

Lemma 2 For all n ≥ 1, there exists Qn(X) ∈ C[X] with deg(Qn) = n(d− 1) + 1 such that

u(n)(t) = Qn(u(t))

for all t ∈ Sd0,r0,δ0(t0).

In the following, we define the operator ∂−1
z of integration by ∂−1

z w(z) :=
∫ z

0 w(z)dz, for all entire
functions w(z) on C. In the next proposition we compute the n-th derivative of the function
w(t, z) with respect to t.

Proposition 3 Let w(t, z) be the holomorphic function constructed in Proposition 2 with the
help of a function φ ∈ SE(T,X, |q|, c, c0). Let k = (k1, k2) ∈ N2, α = (α0, α1, α2) ∈ N3 and
m0,k,m1,k ≥ 0. We have that

(12) (u(t))α0tα1zα2(∂k1t ∂
−k2
z w)(qm0,kt, zq−m1,k) =

∑
κ11+κ21=k1,κ11≥1

k1!

κ1
1!κ2

1!

∑
l≥α1,β≥k2+α2

 ∑
(λ0,...,λβ−α2−k2 )∈A

β−α2−k2+1,κ11

{(u(t))α0∂λ0u0 · · · ∂
λβ−α2−k2
uβ−α2−k2

φl−α1+κ21,β−α2−k2((u(qj+m0,kt))0≤j≤β−α2−k2)×Al−α1,β−α2,u(t)}

×qm0,k(l−α1)q−m1,k(β−α2) l!

(l − α1)!

β!

(β − α2)!

)
tl

l!

zβ

β!

+
∑

l≥α1,β≥k2+α2

((u(t))α0φl−α1+k1,β−α2−k2((u(qj+m0,kt))0≤j≤β−α2−k2)

×qm0,k(l−α1)q−m1,k(β−α2) l!

(l − α1)!

β!

(β − α2)!

)
tl

l!

zβ

β!

for all (t, z) ∈ q−NSd0,r0,δ0(t0)× C, where

Aβ−α2−k2+1,κ11
= {(λ0, . . . , λβ−α2−k2) ∈ Nβ−α2−k2+1 / 1 ≤ λ0 + . . .+ λβ−α2−k2 ≤ κ1

1}

and

Al−α1,β−α2,u(t) =
∑

(khj )
1≤j≤κ11,0≤h≤β−α2−k2

∈B
β−α2−k2+1,κ11

κ1
1!q(

∑κ11
j=1

∑β−α2−k2
h=0 jhkhj )

×
κ11∏
j=1

∏β−α2−k2
h=0 (Qj(u(qh+m0,kt)))k

h
j

k0
j ! · · · k

β−α2−k2
j !(j!)

∑β−α2−k2
h=0 khj

where

Bβ−α2−k2+1,κ11

= {(khj )1≤j≤κ11,0≤h≤β−α2−k2 ∈ Nκ1(β−α2−k2+1)/

κ11∑
j=1

khj = λh,

κ11∑
j=1

j(

β−α2−k2∑
h=0

khj ) = κ1
1}
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Proof From the Leibniz formula, we have that

(13)

∂k1t ∂
−k2
z w(t, z) =

∑
l≥0,β≥k2

(
∑

κ11+κ21=k1,0≤κ21≤l

k1!

κ1
1!κ2

1!
∂
κ11
t (φl,β−k2((u(qjt))0≤j≤β−k2))

tl−κ
2
1

(l − κ2
1)!

zβ

β!
)

=
∑

κ11+κ21=k1

k1!

κ1
1!κ2

1!
(
∑

l≥0,β≥k2

∂
κ11
t (φl+κ21,β−k2((u(qjt))0≤j≤β−k2))

tl

l!

zβ

β!
)

Now, we recall the Faà di Bruno formula in several variables, obtained in [3], Corollary 2.11.

Lemma 3 Let g1(x), . . . , gm(x) ∈ O(Ωx0) be m ≥ 1 holomorphic functions on some neigh-
borhood Ωx0 of x0 ∈ C and let f(y) ∈ O(Ωy0) be a holomorphic function on some neighbor-
hood Ωy0 of y0 = (g1(x0), . . . , gm(x0)) ∈ Cm. Then, for all n ≥ 1, the n-th derivative of
h(x) = f(g1(x), . . . , gm(x)) is given by the following formula:

∂nxh(x) =
∑

(λ1,...,λm)∈Am,n

(∂λ1y1 · · · ∂
λm
ym f)(g1(x), . . . , gm(x))

× (
∑

(khj )1≤j≤n,1≤h≤m∈Bm,n

n!
n∏
j=1

(∂jxg1(x))k
1
j · · · (∂jxgm(x))k

m
j

k1
j ! · · · kmj !(j!)

∑m
h=1 k

h
j

)

where

Am,n = {(λ1, . . . , λm) ∈ Nm / 1 ≤ λ1 + . . .+ λm ≤ n},

Bm,n = {(khj )1≤j≤n,1≤h≤m ∈ Nmn/
n∑
j=1

khj = λh,
n∑
j=1

j(
m∑
h=1

khj ) = n}

From the Lemma 2 and 3, we deduce that

(14) ∂
κ11
t (φl+κ21,β−k2((u(qjt))0≤j≤β−k2))

=
∑

(λ0,...,λβ−k2 )∈A
β−k2+1,κ11

∂λ0u0 · · · ∂
λβ−k2
uβ−k2

φl+κ21,β−k2((u(qjt))0≤j≤β−k2)

× (
∑

(khj )
1≤j≤κ11,0≤h≤β−k2

∈B
β−k2+1,κ11

κ1
1!q(

∑κ11
j=1

∑β−k2
h=0 jhkhj )

κ11∏
j=1

∏β−k2
h=0 (Qj(u(qht)))k

h
j

k0
j ! · · · k

β−k2
j !(j!)

∑β−k2
h=0 khj

)

for all κ1
1 ≥ 1, for all l ≥ 0, all β ≥ k2. Finally, from (13) and (14), multiplying by the function

(u(t))α0tα1zα2 , we get the expansion (12). 2

3.3 Linear operators on SE(T,X, |q|, c, c0)

We first define some linear operators that will be useful in the sequel.

Definition 3 For any tuples k = (k1, k2) ∈ N2, α = (α0, α1, α2) ∈ N3, for non negative integers
m0,k,m1,k ≥ 1 which satisfy the assumption that

1 ≤ m0,k ≤ α2 + k2,
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we define the following linear operator Hq,α,k,m0,k,m1,k
from C[[t, z, u]] into C[[t, z, u]] by

(15)

Hq,α,k,m0,k,m1,k
(φ(t, z, u)) :=

∑
κ11+κ21=k1,κ11≥1

k1!

κ1
1!κ2

1!

∑
l≥α1,β≥α2+k2

 ∑
(λ0,...,λβ−α2−k2 )∈A

β−α2−k2+1,κ11

{(u0)α0∂λ0u0 · · · ∂
λβ−α2−k2
uβ−α2−k2

φl−α1+κ21,β−α2−k2((uj+m0,k
)0≤j≤β−α2−k2)Al−α1,β−α2,u}

×qm0,k(l−α1)q−m1,k(β−α2) l!

(l − α1)!

β!

(β − α2)!

)
tl

l!

zβ

β!

+
∑

l≥α1,β≥k2+α2

((u0)α0φl−α1+k1,β−α2−k2((uj+m0,k
)0≤j≤β−α2−k2)

×qm0,k(l−α1)q−m1,k(β−α2) l!

(l − α1)!

β!

(β − α2)!

)
tl

l!

zβ

β!

where

Al−α1,β−α2,u =
∑

(khj )
1≤j≤κ11,0≤h≤β−α2−k2

∈B
β−α2−k2+1,κ11

κ1
1!q(

∑κ11
j=1

∑β−α2−k2
h=0 jhkhj )

×
κ11∏
j=1

∏β−α2−k2
h=0 (Qj(uh+m0,k

))k
h
j

k0
j ! · · · k

β−α2−k2
j !(j!)

∑β−α2−k2
h=0 khj

and where Qj(X), j ≥ 0, are the polynomials introduced in the lemma 2.

In the next proposition, we show that the linear operators constructed above are continuous
on the spaces SE(T,X, |q|, c, c0).

Proposition 4 We make the assumptions that

(16) α0 ≤ c0 , dk1 ≤ c(α2 + k2) , 1 ≤ m0,k < α2 + k2 − 2α1,

− α1 + k1 + 2(α2 + k2) +
ck1 log(3/2)

log(|q|)
< m1,k

Then, there exists a constant C1 > 0 (depending on |q|,c,c0,k,α,m0,k,m1,k and Qj(X), 1 ≤ j ≤
k1) such that

(17) ||Hq,α,k,m0,k,m1,k
(φ(t, z, u))||(T,X) ≤ C1(1 +

1

T
)k1Tα1Xα2+k2 ||φ(t, z, u)||(T,X)

for all φ ∈ SE(T,X, |q|, c, c0).

Proof Let

φ(t, z, u) =
∑
l,β≥0

φl,β((uj)0≤j≤β)
tl

l!

zβ

β!

be a formal series in SE(T,X, |q|, c, c0). First a all, we start the proof with an important lemma.
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Lemma 4 I) There exists a constant C0 > 0 (depending on c0,α0,κ1
1 and Qj(X), 1 ≤ j ≤ κ1

1)
such that

(18) ||(u0)α0(∂λ0u0 · · · ∂
λβ−α2−k2
uβ−α2−k2

φl−α1+κ21,β−α2−k2)((uj+m0,k
)0≤j≤β−α2−k2)

×
κ11∏
j=1

∏β−α2−k2
h=0 (Qj(uh+m0,k

))k
h
j

k0
j ! · · · k

β−α2−k2
j !(j!)

∑β−α2−k2
h=0 khj

||β ≤ C0||φl−α1+κ21,β−α2−k2((uj)0≤j≤β−α2−k2)||β−α2−k2

× (
3

2
)cκ

1
1β

for all l ≥ α1, β ≥ α2 + k2, all (λ0, . . . , λβ−α2−k2) ∈ Aβ−α2−k2+1,κ11
and all

(khj )1≤j≤κ11,0≤h≤β−α2−k2 ∈ Bβ−α2−k2+1,κ11
.

II) We have

(19) ||(u0)α0φl−α1+k1,β−α2−k2((uj+m0,k
)0≤j≤β−α2−k2)||β

≤ ||φl−α1+k1,β−α2−k2((uj)0≤j≤β−α2−k2)||β−α2−k2

for all l ≥ α1, β ≥ α2 + k2.

Proof We first show the part I).
From the Cauchy formula in several variables, see [12], we have that

(20) (∂λ0u0 · · · ∂
λβ−α2−k2
uβ−α2−k2

φl−α1+κ21,β−α2−k2)(um0,k
, . . . , uβ−α2−k2+m0,k

)

= (
1

2iπ
)β−α2−k2+1

∫
C(um0,k

,am0,k
)
· · ·
∫
C(uβ−α2−k2+m0,k

,am0,k+β−α2−k2 )

λ0! . . . λβ−α2−k2 !
φl−α1+κ21,β−α2−k2(ξ0, . . . , ξβ−α2−k2)

(ξ0 − um0,k
)λ0+1 · · · (ξβ−α2−k2 − uβ−α2−k2+m0,k

)λβ−α2−k2+1
dξ0 · · · dξβ−α2−k2

for all l ≥ α1, all β ≥ α2 + k2, all (um0,k
, . . . , uβ−α2−k2+m0,k

) ∈ Cβ−α2−k2+1, where C(u, r)
denotes the positively oriented circle centered at u with radius r > 0 and where am0,k+h, 0 ≤
h ≤ β − α2 − k2, are arbitrary positive real numbers. Introducing the term

β−α2−k2∏
j=0

(1 + |ξj |)−c(β−α2−k2)−c0

and it’s inverse under the integrals of the representation (20), we deduce that

(21) |(∂λ0u0 · · · ∂
λβ−α2−k2
uβ−α2−k2

φl−α1+κ21,β−α2−k2)(um0,k
, . . . , uβ−α2−k2+m0,k

)|

≤ ||φl−α1+κ21,β−α2−k2(u0, . . . , uβ−α2−k2)||β−α2−k2

×
λ0! . . . λβ−α2−k2 !

aλ0m0,k · · · a
λβ−α2−k2
m0,k+β−α2−k2

×
β−α2−k2∏
j=0

(1 + |uj+m0,k
|+ aj+m0,k

)c(β−α2−k2)+c0
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From the inequality (21), we get that

(22) |(u0)α0(∂λ0u0 · · · ∂
λβ−α2−k2
uβ−α2−k2

φl−α1+κ21,β−α2−k2)(um0,k
, . . . , uβ−α2−k2+m0,k

)|

× |
κ11∏
j=1

∏β−α2−k2
h=0 (Qj(uh+m0,k

))k
h
j

k0
j ! · · · k

β−α2−k2
j !(j!)

∑β−α2−k2
h=0 khj

| ×
β∏
j=0

(1 + |uj |)−cβ−c0

≤ ||φl−α1+κ21,β−α2−k2(u0, . . . , uβ−α2−k2)||β−α2−k2E(β, u)

where

(23) E(β, u) =
λ0! . . . λβ−α2−k2 !

aλ0m0,k · · · a
λβ−α2−k2
m0,k+β−α2−k2

|
κ11∏
j=1

∏β−α2−k2
h=0 (Qj(uh+m0,k

))k
h
j

k0
j ! · · · k

β−α2−k2
j !(j!)

∑β−α2−k2
h=0 khj

|

× |u0|α0 ×
m0,k−1∏
j=0

(1 + |uj |)−cβ−c0 ×
β∏

j=β−α2−k2+m0,k+1

(1 + |uj |)−cβ−c0

×
β−α2−k2+m0,k∏

j=m0,k

(1 + |uj |+ aj)
c(β−α2−k2)+c0 ×

β−α2−k2+m0,k∏
j=m0,k

(1 + |uj |)−cβ−c0

for all β ≥ α2 + k2, all (u0, . . . , uβ) ∈ Cβ+1. In the rest of the proof, we will give estimates for
the expression E(β, u).

Lemma 4.1 We put

(24) Aβh(uh+m0,k
, ah+m0,k

) =
1

aλhh+m0,k

|
κ11∏
j=1

(Qj(uh+m0,k
))k

h
j |

× (1 + |uh+m0,k
|+ ah+m0,k

)c(β−α2−k2)+c0 × (1 + |uh+m0,k
|)−cβ−c0

for all 0 ≤ h ≤ β − α2 − k2.
1) If λh = 0, then we put ah+m0,k

= 0, and

(25) Aβh(uh+m0,k
, ah+m0,k

) ≤ 1

for all uh+m0,k
∈ C, all β ≥ α2 + k2.

2) There exists a constant C0,1 > 0 (depending on c0,κ1
1 and Qj(X), 1 ≤ j ≤ κ1

1) with the
following properties: for all λh 6= 0, there exists a radius ah+m0,k

> 0 such that

(26) Aβh(uh+m0,k
, ah+m0,k

) ≤ C0,1(
3

2
)cβ

for all uh+m0,k
∈ C, all β ≥ α2 + k2..

Proof
Case 1) If we have λh = 0, then by construction of the set Bβ−α2−k2+1,κ11

we have that khj = 0,

for all 1 ≤ j ≤ κ1
1. We can put ah+m0,k

= 0. Then, we get that

Aβh(uh+m0,k
, 0) = (1 + |uh+m0,k

|)−c(α2+k2) ≤ 1
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for all uh+m0,k
∈ C, all β ≥ α2 + k2.

Case 2) Assume that λh > 0. From the lemma 2, we get two constants E0 > 0 and R0 > 1
such that

(27) |Qj(x)| ≤ E0|x|j(d−1)+1

for all |x| > R0, for all 1 ≤ j ≤ κ1
1. Moreover, by construction of the set Bβ−α2−k2+1,κ11

, we have
the following inequalities

(28)

κ11∑
j=1

khj = λh ≤ κ1
1 ,

κ11∑
j=1

khj j(d− 1) + khj ≤ dκ1
1.

In the following, we put ah+m0,k
= 1/2. From (27) we deduce that

Aβh(uh+m0,k
, ah+m0,k

) ≤ 1

aλhh+m0,k

E
∑κ11
j=1 k

h
j

0 |uh+m0,k
|
∑κ11
j=1 k

h
j (j(d−1))+khj

× (1 + |uh+m0,k
|+ ah+m0,k

)c(β−α2−k2)+c0(1 + |uh+m0,k
|)−cβ−c0 ,

for all uh+m0,k
∈ C with |uh+m0,k

| > R0. From (28), we get that

Aβh(uh+m0,k
, ah+m0,k

) ≤ 2κ
1
1E

κ11
0 ×

|uh+m0,k
|dκ11

(1 + |uh+m0,k
|+ 1/2)c(α2+k2)

× (
1 + |uh+m0,k

|+ 1/2

1 + |uh+m0,k
|

)cβ+c0

for all uh+m0,k
∈ C with |uh+m0,k

| > R0. From the hypotheses (16), we have in particular that
dκ1

1 ≤ c(α2 + k2). So that

(29) Aβh(uh+m0,k
, ah+m0,k

) ≤ (2E0)κ
1
1(

3

2
)cβ+c0

for all uh+m0,k
∈ C with |uh+m0,k

| > R0. On the other hand, we have

Aβh(uh+m0,k
, ah+m0,k

) ≤ 2κ
1
1

Π
κ11
j=1(sup|z|≤R0

|Qj(z)|)k
h
j

(1 + |uh+m0,k
|+ 1/2)c(α2+k2)

× (
1 + |uh+m0,k

|+ 1/2

1 + |uh+m0,k
|

)cβ+c0

for all uh+m0,k
∈ C with |uh+m0,k

| ≤ R0. So that

(30) Aβh(uh+m0,k
, ah+m0,k

) ≤ 2κ
1
1Π

κ11
j=1( sup

|z|≤R0

|Qj(z)|)k
h
j (

3

2
)cβ+c0

for all uh+m0,k
∈ C with |uh+m0,k

| ≤ R0. Finally, from (29) and (30), we get the inequality (26).
2

From the expression (23), we have that

(31) E(β, u) ≤ λ0! . . . λβ−α2−k2 !

κ11∏
j=1

1

k0
j ! · · · k

β−α2−k2
j !(j!)

∑β−α2−k2
h=0 khj

×
β−α2−k2∏
h=0

Aβh(uh+m0,k
, ah+m0,k

)× |u0|α0

(1 + |u0|)c0
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On the other hand, from the construction of the sets Aβ−α2−k2+1,κ11
, we have that

(32) λ0! . . . λβ−α2−k2 ! ≤ (λ0 + . . .+ λβ−α2−k2)! ≤ κ1
1! ,

card{h ∈ {0, . . . , β − α2 − k2}/λh 6= 0} ≤ κ1
1

From the hypotheses (16), we have α0 ≤ c0, and from the inequalities (32) and the lemma 4.1,
we deduce from (31) that

(33) E(β, u) ≤ κ1
1!(C0,1)κ

1
1(

3

2
)cκ

1
1β

for all β ≥ α2 +k2, all (u0, . . . , uβ) ∈ Cβ+1. Finally, from the estimates (22) and (33), we deduce
that the inequality (18) holds.

We show the part II).
Introducing the term

β+m0,k−α2−k2∏
j=m0,k

(1 + |uj |)−c(β−α2−k2)−c0

and it’s inverse in the definition of the norm ||.||β, we get that

(34) ||(u0)α0φl−α1+k1,β−α2−k2((uj+m0,k
)0≤j≤β−α2−k2)||β
≤ ||φl−α1+k1,β−α2−k2((uj)0≤j≤β−α2−k2)||β−α2−k2F(β, u)

where

(35) F(β, u) =

β+m0,k−α2−k2∏
j=m0,k

(1 + |uj |)c(β−α2−k2)+c0−cβ−c0

× |u0|α0

m0,k−1∏
j=0

(1 + |uj |)−cβ−c0 ×
β∏

j=β+m0,k−α2−k2+1

(1 + |uj |)−cβ−c0

for all β ≥ α2 + k2, for all (u0, . . . , uβ) ∈ Cβ+1. From the hypothesis α0 ≤ c0 (see (16)), we get
that

(36) F(β, u) ≤ 1

for all β ≥ α2 + k2, for all (u0, . . . , uβ) ∈ Cβ+1. From the estimates (34) and (36), we deduce
that the inequality (19) holds. 2

In the following, we put

P1,κ11,k2,α2
(β) =

κ11∑
h=1

(h+ β − α2 − k2)h

h!
, P2,κ11,k2,α2

(β) =

κ11∑
h=1

(h+ κ1
1(β − α2 − k2 + 1)− 1)h

h!

for all β ≥ α2 + k2. Using the classical fact that the number of k-tuples (a1, . . . , ak) ∈ Nk,
solutions of the equation a1 + . . .+ ak = n is equal to (n+ k − 1)!/((k − 1)!n!), for all k, n ≥ 1,
we get that

(37) Card(Aβ−α2−k2+1,κ11
) ≤ P1,κ11,k2,α2

(β) , Card(Bβ−α2−k2+1,κ11
) ≤ P2,κ11,k2,α2

(β)
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for all β ≥ α2 + k2. We also have that

(38)

κ11∑
j=1

β−α2−k2∑
h=0

jhkhj ≤ βκ1
1

for all β ≥ α2 + k2, all (khj )1≤j≤κ11,0≤h≤β−α2−k2 ∈ Bβ−α2−k2+1,κ11
. From the Lemma 4 I) and the

estimates (37), (38), we deduce that

(39) ||
∑

(λ0,...,λβ−α2−k2 )∈A
β−α2−k2+1,κ11

{(u0)α0∂λ0u0 · · · ∂
λβ−α2−k2
uβ−α2−k2

φl−α1+κ21,β−α2−k2((uj+m0,k
)0≤j≤β−α2−k2)Al−α1,β−α2,u}

× qm0,k(l−α1)q−m1,k(β−α2) × l!

(l − α1)!

β!

(β − α2)!
||β

≤ C0||φl−α1+κ21,β−α2−k2((uj)0≤j≤β−α2−k2)||β−α2−k2 × P1,κ11,k2,α2
(β)P2,κ11,k2,α2

(β)(
3

2
)cκ

1
1β

× |q|κ11β+m0,k(l−α1)−m1,k(β−α2) × lα1βα2

for all l ≥ α1, all β ≥ α2 + k2. From (39) and Lemma 4 II), we get that

(40) ||Hq,α,k,m0,k,m1,k
(φ(t, z, u))||(T,X) ≤

∑
κ11+κ21=k1,κ11≥1

k1!

κ1
1!κ2

1!

×

 ∑
l≥α1,β≥α2+k2

{
||φl−α1+κ21,β−α2−k2((uj)0≤j≤β−α2−k2)||β−α2−k2

|q|P (l,β)
C0

× P1,κ11,α2,k2(β)P2,κ11,α2,k2(β)(
3

2
)cκ

1
1β × |q|κ11β+m0,k(l−α1)−m1,k(β−α2) × lα1βα2}T

l

l!

Xβ

β!
)

+
∑

l≥α1,β≥α2+k2

{
||φl−α1+k1,β−α2−k2((uj)0≤j≤β−α2−k2)||β−α2−k2

|q|P (l,β)

× |q|m0,k(l−α1)−m1,k(β−α2) × lα1βα2}T
l

l!

Xβ

β!

From (40), we deduce that

(41) ||Hq,α,k,m0,k,m1,k
(φ(t, z, u))||(T,X) ≤

∑
κ11+κ21=k1,κ11≥1

k1!

κ1
1!κ2

1!

×

 ∑
l≥α1,β≥α2+k2

Ml,β

||φl−α1+κ21,β−α2−k2((uj)0≤j≤β−α2−k2)||β−α2−k2

|q|P (l−α1+κ21,β−α2−k2)

T l−α1+κ21

(l − α1 + κ2
1)!

Xβ−α2−k2

(β − α2 − k2)!

)

+
∑

l≥α1,β≥α2+k2

M1
l,β

||φl−α1+k1,β−α2−k2((uj)0≤j≤β−α2−k2)||β−α2−k2
|q|P (l−α1+k1,β−α2−k2)

T l−α1+k1

(l − α1 + k1)!

Xβ−α2−k2

(β − α2 − k2)!
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where

Ml,β =
C0P1,κ11,k2,α2

(β)P2,κ11,k2,α2
(β)(3

2)cκ
1
1β

|q|P (l,β)−P (l−α1+κ21,β−α2−k2)+m1,k(β−α2)−m0,k(l−α1)−κ11β

× lα1βα2
(l − α1 + κ2

1)!

l!

(β − α2 − k2)!

β!
Tα1−κ21Xα2+k2

and

M1
l,β =

lα1βα2

|q|P (l,β)−P (l−α1+k1,β−α2−k2)+m1,k(β−α2)−m0,k(l−α1)

× (l − α1 + k1)!

l!

(β − α2 − k2)!

β!
Tα1−k1Xα2+k2

for all l ≥ α1, all β ≥ α2 + k2. From the assumptions (16), we get some constants A,B,C > 0
(depending on |q|,c,α,k,m0,k,m1,k) with 0 < A < 1, 0 < B < 1, such that

(3
2)cκ

1
1β

|q|P (l,β)−P (l−α1+κ21,β−α2−k2)+m1,kβ−m0,kl−κ11β

= (|q|−α2−k2−2(−α1+κ21)+m0,k)l(|q|−m1,k−α1+k1+2(α2+k2)+
cκ11 log(3/2)

log(|q|) )β

× |q|−(α2+k2)(κ21−α1)−(α2+k2)2−(κ21−α1)2 ≤ CAlBβ

and

1

|q|P (l,β)−P (l−α1+k1,β−α2−k2)+m1,kβ−m0,kl
= (|q|−α2−k2−2(−α1+k1)+m0,k)l

× (|q|−m1,k−α1+k1+2(α2+k2))β|q|−(α2+k2)(k1−α1)−(α2+k2)2−(k1−α1)2 ≤ CAlBβ

for all l ≥ α1, all β ≥ α2 + k2. So that we get a constant C1,1 > 0 (depending on the
constants |q|,c,c0,α,k,m0,k,m1,k and Qj(X), 1 ≤ j ≤ κ1

1) and a constant C1,2 > 0 (depending on
α,k,m0,k,m1,k) such that

(42) Ml,β ≤ C1,1T
α1−κ21Xα2+k2 , M1

l,β ≤ C1,2T
α1−k1Xα2+k2

for all l ≥ α1, all β ≥ α2 + k2. Finally, from (41) and (42), we deduce (17). 2

3.4 A functional equation in SE(T,X, |q|, c, c0)

Proposition 5 We consider the following functional equation

(43) φ(t, z, u) =
∑

k=(k1,k2)∈L

∑
α∈Jk

aα,kHq,α,k,m0,k,m1,k
(φ(t, z, u)) + b(t, z, u)

where q ∈ C with |q| > 1, L is a finite subset of N2, Jk are subsets of N3 and m0,k,m1,k ≥ 1 are
positive integers. We assume that there exist two real numbers c, c0 > 0 such that

(44) α0 ≤ c0 , dk1 ≤ c(α2 + k2) ,

1 ≤ m0,k < α2 + k2 − 2α1 , −α1 + k1 + 2(α2 + k2) +
ck1 log(3/2)

log(|q|)
< m1,k,
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for all k = (k1, k2) ∈ L, all α = (α0, α1, α2) ∈ Jk. We assume that aα,k ∈ C for all k ∈ L, all
α ∈ Jk and that b(t, z, u) ∈ SE(T0, X0, |q|, c, c0), for some T0, X0 > 0.

Then, for X sufficiently small such that 0 < X ≤ X0 (depending on T0,|q|,c,c0,k ∈ L,α ∈
Jk,aα,k,m0,k,m1,k,Qj(X), 1 ≤ j ≤ k1) the equation (43) has a unique solution φ is the Banach
space SE(T0, X, |q|, c, c0).

Proof We consider the map N from C[[t, z, u]] into itself defined by

N (φ) =
∑

k=(k1,k2)∈L

∑
α∈Jk

aα,kHq,α,k,m0,k,m1,k
(φ)

for all φ ∈ C[[t, z, u]]. Under the assumption (44), we deduce from the proposition 4, that N is
a linear map from SE(T0, X, |q|, c, c0) into itself satisfying the estimates

(45) ||N (φ)||(T0,X) ≤ (C1

∑
k=(k1,k2)∈L

∑
α=(α0,α1,α2)∈Jk

|aα,k|(1 +
1

T0
)k1Tα1

0 Xα2+k2)||φ||(T0,X)

for all 0 < X ≤ X0, for all φ ∈ SE(T0, X, |q|, c, c0). From the assumptions (44), we have that
α2 + k2 ≥ 1, for all k ∈ L, all α ∈ Jk. So that if we choose X sufficiently small such that
0 < X ≤ X0 (depending on C1,T0, aα,k, for all k ∈ L, all α ∈ Jk), we get that

(46) ||N (φ)||(T0,X) ≤
1

2
||φ||(T0,X)

for all φ ∈ SE(T0, X, |q|, c, c0). If Id denotes the identity map on SE(T0, X, |q|, c, c0) defined by
Id(φ) = φ, we get that the map Id − N is invertible from SE(T0, X, |q|, c, c0) into itself. By
construction, we have that b ∈ SE(T0, X, |q|, c, c0). So that finally φ = (Id−N )−1b is the unique
solution of (43) in SE(T0, X, |q|, c, c0). 2

4 Linear q-difference-differential equations

In this section, we state the main result of this paper.

Theorem 1 Let u(t) be a solution of a nonlinear differential equation (8) satisfying the as-
sumptions 1. and 2. from the section 3.1. We consider the following linear Cauchy problem

(47) ∂Sz v(t, z) =
∑

h=(h1,h2)∈S

ah(u(t), t, z)(∂h1t ∂
h2
z v)(qm0,ht, zq−m1,h)

for initial conditions

(48) (∂jzv)(t, 0) = ωj(u(t), t) , 0 ≤ j ≤ S − 1,

where S ≥ 1 is an integer, S is a finite subset of N2,

ah(u, t, z) =
∑

α=(α0,α1,α2)∈Jh

aα,hu
α0tα1zα2 ∈ C[u, t, z],
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ωj(u, t) ∈ C[u, t], for 0 ≤ j ≤ S − 1, and m0,h,m1,h ≥ 1 are integers, for all h ∈ S. We assume
that there exists a constant c > 0 such that

(49) (1 +M)c < |q|1/2 , dh1 ≤ c(α2 + S − h2) ,

S > h2 , m0,h ≤ α2 , 1 ≤ m0,h < α2 + S − h2 − 2α1,

− α1 + h1 + 2(α2 + S − h2) +
ch1 log(3/2)

log(|q|)
< m1,h,

for all h = (h1, h2) ∈ S, all α = (α0, α1, α2) ∈ Jh (with the constant M defined in the assumption
2.). If one writes

ωj(u, t) =
∑

(l,β)∈Ωj

ωj,l,βu
ltβ,

where Ωj are finite subsets of N2, we consider the polynomials

|ω|j(u, t) =
∑

(l,β)∈Ωj

|ωj,l,β|ultβ,

for all 0 ≤ j ≤ S − 1.
Then, there exists a holomorphic function v(t, z) on q−NSd0,r0,δ0(t0) × C which solves the

problem (47), (48). Moreover, the function v(t, z) satisfies the following estimates :

i) There exist a constant M ′ > 0 (depending on u(t) and q), a constant c0 > 0 (depending on
ah(u, t, z), ωj(u, t) for h ∈ S, 0 ≤ j ≤ S − 1) and Cv > 0 (depending on v) such that, for all
X0 > 0, all T0 > 0, there exists 0 < X ≤ X0 such that

(50) |v(t, z)| ≤
S−1∑
j=0

|ω|j(M ′|t− t0|−mµ, |t0|+ r0)
X0

j

j!

+ CvX
S
0 exp(

1

2 log(|q|)
(log(2(|t0|+ r0)/T0))2)

× (1 +M ′|t− t0|−mµ)c0 exp(H1,c(M)(log(H2,c0(M)(1 +M ′|t− t0|−mµ)c
X0

X
))2)

for all t ∈ Sd0,r0,δ0(t0), for all |z| < X0, where the functions H1,c(r) and H2,c0(r) are defined in
the proposition 1.
ii) There exist a constant M ′ > 0 (depending on u(t) and q), a constant c0 > 0 (depending on
ah(u, t, z), ωj(u, t) for h ∈ S, 0 ≤ j ≤ S − 1) and Cv > 0 (depending on v) such that, for all
X0 > 0, all T0 > 0, there exists 0 < X ≤ X0 such that

(51) |v(t, z)| ≤
S−1∑
j=0

|ω|j(M, |t0|+ r0)
X0

j

j!
+ CvX

S
0 exp(

1

2 log(|q|)
(log(2(|t0|+ r0)/T0))2)

× (1 +M ′|qkt− t0|−mµ)c0 exp(H1,c(M)(log(H2,c0(M)(1 +M ′|qkt− t0|−mµ)c
X0

X
))2)

for all t ∈ q−kSd0,r0,δ0(t0), for all k ≥ 1, for all |z| < X0.

Proof Let us consider the function

I(t, z) =

S−1∑
j=0

ωj(u(t), t)
zj

j!
,
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for all (t, z) ∈ q−NSd0,r0,δ0(t0)× C. Using Lemma 2 we get that

(∂h1t ∂
h2
z I)(qm0,ht, z/qm1,h) =

S−1−h2∑
j=0

ω̃j(u(qm0,ht), t)
zj

j!

for all h = (h1, h2) ∈ S, where ω̃j(u, t) ∈ C[u, t], for 0 ≤ j ≤ S − 1− h2. Now, we choose c0 > 0
large enough such that c0 ≥ α0, for all α = (α0, α1, α2) ∈ Jh, all h ∈ S and such that

bh(t, z, u0, um0,h
) = ah(u0, t, z)(

S−1−h2∑
j=0

ω̃j(um0,h
, t)

zj

j!
) ∈ SE(T0, X0, |q|, c, c0)

for all T0, X0 > 0, for all h ∈ S. In the following, we put

b(t, z, u) :=
∑

h=(h1,h2)∈S

bh(t, z, u0, um0,h
).

We consider now the functional equation

(52) φ(t, z, u) =
∑

h=(h1,h2)∈S

∑
α∈Jh

aα,hHq,α,(h1,S−h2),m0,h,m1,h
(φ(t, z, u)) + b(t, z, u).

From the assumptions (49), we get that the assumptions (44) are fulfilled for the equation (52).
From the proposition 5, we deduce that for 0 < X ≤ X0 small enough, the equation (52) has
a unique solution φ is the Banach space SE(T0, X, |q|, c, c0). Now, we consider the function
w(t, z) = φ(t, z, (u(qjt))j≥0), which is, from Proposition 2, holomorphic on q−NSd0,r0,δ0(t0)× C.
From the proposition 3, we have that the function w solves the equation

(53) w(t, z) =
∑

h=(h1,h2)∈S

ah(u(t), t, z)(∂h1t ∂
h2−S
z w)(qm0,ht, zq−m1,h) + b(t, z, (u(qjt))j≥0)

for all (t, z) ∈ q−NSd0,r0,δ0(t0)×C. We consider the function v(t, z) = I(t, z) + ∂−Sz w(t, z) which
is holomorphic for all (t, z) ∈ q−NSd0,r0,δ0(t0) × C. Using (53), one checks that v(t, z) solves
the problem (47), (48). Moreover, from the proposition 2, w(t, z) satisfies estimates of the form
(10). We deduce that the function ∂−Sz w(t, z) satisfies the following estimates : there exist two
constants M ′ > 0 (depending on u(t) and q) and Cφ (depending on φ) such that

(54) |∂−Sz w(t, z)| ≤ XS
0 Cφ exp(

1

2 log(|q|)
(log(2(|t0|+ r0)/T0))2)

× (1 +M ′|qkt− t0|−mµ)c0 exp(H1,c(M)(log(H2,c0(M)(1 +M ′|qkt− t0|−mµ)c
X0

X
))2)

for all X0 > 0, for all t ∈ q−kSd0,r0,δ0(t0), for all k ≥ 0, for all |z| < X0, where the functions
H1,c(r) and H2,c0(r) are defined in the proposition 1. On the other hand, we have that

(55) |I(t, z)| ≤
S−1∑
j=0

|ω|j(|u(t)|, |t0|+ r0)
Xj

0

j!

for all X0 > 0, for all t ∈ q−kSd0,r0,δ0(t0), for all k ≥ 0, for all |z| < X0. Finally, from (54) and
(55), we get the estimates (50), (51). 2
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