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Abstract

We investigate the existence of local holomorphic solutions of linear g-difference-differential equations in
two variables ¢, z whose coefficients have poles or algebraic branch points singularities in the variable ¢.
These solutions are shown to develop poles or algebraic branch points along half g-spirals. We also give
bounds for the rate of growth of the solutions near the singular points. We construct these solutions
with the help of functions of infinitely many variables that satisfy functional equations that involve g¢-
difference, partial derivatives and shift operators. We show that these functional equations have solutions
in some Banach spaces of holomorphic functions in C*° having sub-exponential growth.

Key words: functional differential equations, g-difference equations, partial differential equations with
infinitely many variables, entire functions with g-exponential growth, entire functions with infinitely
many variables, singularity analysis. 2000 MSC: 35C10, 35C20.

1 Introduction

In this paper, we study linear partial g-difference-differential equations of the form

(1) afu(t, z) = Z bn(t, 2)(01{“ 322u)(qm07ht’ zq MR
h=(h1,h2)€S

where S is a subset of N2, ¢ is a complex number with modulus |g| > 1 and S, Mok, M1, are
positive integers which satisfy the constraints (49). The coefficients by (¢, z) are holomorphic
functions with singularities in the ¢ variable and polynomial in the z variable for given initial
data (92u)(t,0) = ;(t),0<j < S —1.

Our goal is the construction of local holomorphic solutions of (1) and the study of their
behaviour near the singular points of the coefficients by, (¢, z) and initial data ¢;(t).

*The author is partially supported by the french ANR-10-JCJC 0105 project.



In the framework of linear partial differential equations (i.e mqp = my 5 = 0), there exists a
huge litterature on the study of complex singularities and analytic continuation of their holomor-
phic solutions starting from the fundamental contributions of J. Leray in [18]. Several authors
have considered Cauchy problems a(z, D)u(x) = 0, where a(z, D) is a differential operator of
some order m > 1, for initial data ajfou‘xozo = wp, 0 < h < m. Under specific hypotheses on the
symbol a(z, £), precise descriptions of the solutions of these problems are given near the singular
locus of the initial data wy,. For meromorphic initial data, we may refer to [8], [23], [24] and for
more general ramified multivalued initial data, we may cite [7], [13], [29], [33], [34].

In the real shrinking setting (i.e ¢ € R, |¢| < 1 and m; ;, < 0) general results concerning the
construction of local solutions and their regularity have been achieved, see for instance [2], [14],
[16], [17].

These recent years many authors focused on the case of mixed type g-difference-differential
equations with |¢| > 1. This subject is now of great interest from both algebraic and analytic
point of view, see for instance [5], [9], [11], [25], [26], [27], [35], [36].

The kind of problem (1) we consider in this work enters this new trend of research and
extends aspects of both of the previous situations studied in [19], [20].

In the paper [19], we considered differential equations in the variable z with dilations and
contractions in both variables ¢,z, whose coefficients are polynomial in ¢,z and a function e(t)
satisfying some ¢-difference equation having meromorphic singularities along unions of half g-
spirals (which are sets of the form ¢ Na, for some a € C*). We constructed local holomorphic
solutions with respect to ¢ near the points of the half ¢-spirals, entire for z in C and showed that
their growth rate is at most sub-exponential with bounds of the form C exp(M (log |t —to|)?) near
the singularities tg € ¢ Na for some constants C, M > 0. In the classical situation of systems
of g-difference equations with rational coefficients of the form Y (¢z) = A(2)Y (2), we refer to [6]
for the construction of local meromorphic solutions near the origin and the point at infinity on
the Riemann sphere but it is worthwhile saying that the construction of local solutions near the
singularities of A(z) outside 0 and oo remains an unsolved problem.

In the work [20], the authors investigated the construction and behaviour of local holomorphic
solutions to linear partial differential equations in C? near the singular locus of the initial data.
These initial data are assumed to be polynomial in ¢,z and a function u(t) satisfying some
nonlinear differential equation of first order and owning an isolated singularity ¢y on some domain
D C C, which is, by a result of P. Painlevé, either a pole or an algebraic branch point. Following
the principle of the classical tanh method introduced in [21], they have considered formal series
solutions of the form

(2) ult,z) = Y ult,2)(u(t))

1>0

where u; are holomorphic functions on D x D where D C C is a small disc centered at 0. They
have given suitable conditions for these series to converge for ¢ in a sector S with vertex ty and
to have at most exponential bounds estimates of the form Cexp(M|t — to|™#) for all ¢ € S near
to for some constants C, M, u > 0.

Like in the work [20], the coefficients by, (t, z) of (1) and the initial data are polynomials in ¢,z
and a solution u(t) of some nonlinear differential equation of first order. We require the function
u(t) to be bounded at 0 and oo (see Section 3.1). For a suitable choice of u(t), one can choose
for instance by (t, z) to be some rational function in ¢ and polynomial in z (see Example 1 from
Section 3.1).

In our setting, one cannot content oneself with formal expansions in the function u(t) like
(2) due to the presence of the dilation operator ¢ — gt. In order to get suitable recursion



formulas, it turns out that we need to deal with series expansions that take into account all the
functions u(g’t), j > 0. This is the reason why the construction of the solutions will follow the
one introduced in a recent work of H. Tahara and will involve Banach spaces of holomorphic
functions with infinitely many variables.

In the paper [30], H. Tahara has studied a new equivalence problem between given two
non-linear partial differential equations of first order in the complex domain. He showed that
the equivalence maps have to satisfy so called coupling equations which are non linear partial
differential equation of first order but with infinitely many variables. In a more general setting,
within the framework of mathematical physics, spaces of functions of infinitely many variables
play a fundamental role in the study of nonlinear integrable partial differential equations known
as solitons equations as described in the theory of M. Sato, see [22] for an introduction. Impor-
tant contributions have been obtained these recent years to the study of higher order Painlevé
equations, see for instance [15], [31], and applications to quantum field theory, see [1], [32].

In the first part of this paper we construct Banach spaces of formal power series of infinitely
many variables as sums of entire functions of finite numbers of variables having at most a
polynomial growth. We show that these power series are convergent and define holomorphic
functions on every polydiscs of finite radii in C*°. Moreover, we prove that these functions have
g-exponential growth rate (in the terminology of [28]) as one makes one radius of the polydisc
increase (Proposition 1).

In the section 3, we construct holomorphic functions of the form u(t, 2) = ¢(t, z, (u(¢’t))j>0)
where ¢(t, z, (u;);>0) is a holomorphic function of infinitely many variables that belongs to the
Banach spaces constructed in the previous section. Under suitable conditions on the function
u(t), these functions u(t, z) are defined on product sets ¢~.S x C where S is some open sector
having finite radius and with vertex ¢o in C*. Moreover, these functions u(t,z) are shown to
have at most sub-exponential growth with bounds of the form C exp(M (log |¢*t — to|)?) for all
t € ¢ %S near the singularity ¢ *tg, for all k& > 0, for some constants C, M > 0.

It turns out that such a function u(t, z) satisfies the equation (1) for the given initial condi-
tions if ¢ satisfies a functional equation (43) which involves partial derivatives and shift operators
in the variables (u;);>0. In the proof we use a Faa di Bruno formula in several variables obtained
in [3] (see Proposition 3).

In Proposition 4, we give sufficient conditions for the linear operators involved in this func-
tional equation (43) to be continuous maps on the Banach spaces constructed above. This is
the most technical part in the proof of our main result. In Section 3.4, we show that the func-
tional equation (43) has a unique solution ¢ in the Banach space introduced in the first part.
Finally, we use this function ¢ to construct a solution u(t, z) of the problem (1) with given initial
conditions ¢;(t), 0 < j < .S — 1, having the upper-mentioned sub-exponential growth estimates
(Theorem 1).

2 Weighted Banach spaces of holomorphic functions with in-
finitely many variables
Definition 1 Let ¢,cog > 0 be two positive real numbers. For all integers > 0, we denote

by A(CPTY) the vector space of entire functions on CP+1 and SEg(CPHY) the vector subspace of
A(CP*Y) of entire functions f((uj)o<j<p) : CPt1 — C such that

»

I fllg = sup | f((uj)o<j<p) H + uyl) —ehmeo
(uj)o<;j<p€CHT =0



exists.

In the following, we will denote by CI[¢, z, u]] the vector space of formal series ¢ in the infinitely
many variables ¢, z,u = (u;);>0 with coefficients in C which can be written in the form

th 2P

o(t, 2,u) = Z¢lﬁ u; 0<]<5)l!ﬁ

1,8>0

where ¢; g((uj)o<j<p) are formal series in the variables u;, 0 < j < 3, with coefficients in C, for
all [, 8 > 0. For general facts about formal series and holomorphic functions of infinitely many
variables, we refer to the book [4].

Definition 2 Let ¢ > 1, T, X > 0 be real numbers. Let P(l,3) be the polynomial 13 — 3% — I2.
We denote by SE(T, X, q, ¢, co) the subspace of C[[t, z, u]] of formal series in the variables t,z,u =
(uj)5>0,

th 28

o(t, z,u) = Z¢lﬁ ((uy 0<7<B)l!ﬁ

1,8>0

where ¢y 5 € SEg(CPTY), for all 1,8 >0, such that

Z Hflslﬁ 0<J<B)HBT Xx°

l6(t, 2z, w)||(r.x) = P(,5) I B

1,>0

converges. It is easy to see that SE(T, X, q,c, co) is a Banach space for the norm ||.|[(1 x)-

In the next proposition, we analyse the convergence of the series in the Banach space constructed
above.

Proposition 1 We define the functions
1
4log(q"/2/(1 + 1))

for all v > 0. Let ¢(t,z,u) € SE(T,X,q,c,co). Then, there exists a constant Cy > 0 such that,
for all integers v > 0, for all Ty, Xo > 0 and all R, R, > 0 such that (1+R)° < ¢'/? and R, > R,
we have

H (r) = . Hoco(r) =2(14r)®

(3) lo(t, z,u)| < Cgexp( (log(2To/T))?)

1
21og(q)

X (14 Ry exp(Hic(R)(log(Ha e (R)(1 + R,)® ))((O)) )

for all t,z € C, with |t| < Tp, |2| < Xo, all v = (uj)j>0 with |uj| < R, for all j # v and
luy| < R,.

Proof Let ¢(t,z,u) € SE(T, X, q,c,cp). By definition, there exists a constant Cy > 0 such that

5
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for all [, 3 > 0. From the fact that P(l,8) < —1?/2— 32/2, for all I, 3 > 0, we deduce that there
exists C1 > 0 such that

(5) ’(b(tuZ?y)’ < ClAl(’t’)AQ(Rv Ry, ’ZD

where

(i) = a2y

>0

and

As(R, Ry, |2|) = (1 + R, Z((l;/f)c)ﬁz((l + R,,)C(; + R)%|z| o

B=0

I

forallt,z € C, all u = (u;);>0 with |u;| < R, for all j # v and |u,| < R,. Now, we give estimates
for A1(|t|) and A2(R, Ry, |z|). We will use the next lemma which is given in [28] (Lemma 2.2).

Lemma 1 There exists a constant M > 0 such that

(6) S g )m < M expl
n>0

S

2
STog(q) (520

for allr >0, all s > 0.

log(q)

Using Lemma 1, for s =1 and s = Tog@ 2/ (1T R)%)

, we get a constant M > 0 such that

(1) Ax(|t]) < Ar(To) < M exp( (log(2T0/T))?),

1
2log(q)
As(R, Ry, [2]) < A2(R, Ry, Xo) < M(1+ Ry)® exp(Hy o(R)(log(Ha,c,(R)(1 + Rv)c%))z)

for all ¢,z € C with |t| < Ty, |z| < Xo. The estimates (3) follow. O

3 Linear operators on SE(T, X, ||, ¢, cy) and a functional equation

3.1 Some nonlinear differential equations

We consider the following first order nonlinear differential equation

(8) d(t) =) pu(t)y,

where d > 2 is an integer, with constant coefficients p; € C, 0 < j < d, with pg # 0. As
a consequence of a result of P. Painlevé (see [10], Theorem 3.3.2), we know that the only
singularities in C of the solutions u(t) of (8) are poles or algebraic branch points. In the
following, we denote by Dy(t,r) an open disc D(t,r) centered at ¢ € C with radius r > 0 minus
the half line [t, re?), for § € R. We make the following assumptions.

Assumption 1. There exist ) € R, 0 < 79 < 1, tg € C* and a function u(t) which is
holomorphic and a solution of (8) on Dy, (to, o) which admits the following puiseux convergent
expansion

(9) u(t) = Z w(t — o)

>—m



for all t € Dg,(to,r0), where 1 > 0 is a real number and m > 1 is an integer such that u_,, # 0.
If p is a positive integer, the point g is called a pole of order my and in this case the function
u(t) is holomorphic on D(tg,79) \ {to}, otherwise, the point zg is called an algebraic branch of
order my.

Assumption 2. There exists ¢ € C with |q| > 1 such that, for all j € Z*, the function t + u(q’t)
is well defined and holomorphic on Sy, »,.5,(t0) and moreover, there exists a constant M > 0
such that |u(¢’t)| < M for all t € Sgy 0.5, (t0), all j € Z*, where

Sdo.ro.60(to) = {t € C\ {to}/larg(t —to) — do| < 0/2, |t —to| < 0} C Dy, (to,70)
is an open sector centered at to contained in Dy, (to,70).

Example 1: For all ¢ € C*, the function u(t) = —1/(t — ¢) is a solution of u'(¢) = (u(t))? on
C\ {c}. Then, one checks that the assumptions 1. and 2. are satisfied for tg = ¢, any g € C
with |¢| > 1 and 7y small enough.

Example 2: Let Sy, ,,5,(1/2) be an open sector centered at 1/2, not containing the origin.
For all j € Z, we fix a determination of the logarithm ¢ — log(1 — 2t) on ¢’ S, ry.6,(1/2). Then,
the function u(t) = exp(—(1/2)log(1 — 2t)) is a holomorphic solution of u/(t) = (u(t))® on
@ Siy.r0.5,(1/2), for all j € Z. One checks that the assumptions 1. and 2. are satisfied for every
g € C with |g| > 1.

3.2 Composition series

In the next proposition, we construct holomorphic functions in two variables defined on open
g-spirals using holomorphic functions with infinitely many variables constructed in the previous
section and a solution of a nonlinear differential equation satisfying the assumptions 1. and 2..

Proposition 2 Let u(t) be a holomorphic solution of a nonlinear differential equation (8) sat-
isfying the assumptions 1. and 2. from the section 3.1. Let ¢(t,z,u) € SE(T, X, |q|,c,cp). We
make the assumption that (1+M)° < |q|'/? (for the constant M > 0 defined in Assumption 2.).
Then, the function

tl 2P
Z ¢1,8((u(g It)) 0<J<B)l, il

1,8>0

is holomorphic on q*NSdO,TO,(;O (to) x C. Moreover, the following estimates hold: there exist two
constants M’ > 0 (depending on u(t) and q) and Cy (depending on ¢) such that

(10)  fw(t, 2)| < Cg exp( (log(2(|to| +70)/T))?)

1
21og(|q|)
_ X
x (14 M'|gFt — to| ™) exp(Hy o(M)(log(Ha,co (M)(1 + M'|q"t — 1o m“)cyo))Q)

for all Xo > 0, for allt € ¢~ %Sy, ro.6,(to), for all k > 0, for all |z| < Xo, where the functions
H, () and Ha ¢, (1) are defined in the proposition 1.

Proof Let k > 0, let t = ¢ %t € q_k5d077«0750 (to), where t € Sy 0.5, (to). From the assumption
2., there exists a constant M > 0 such that |u(¢/~*)| < M, for all j # k, all £ € Sgy.ry.5(t0)-
From the assumption 1., there exists a constant M’ > M such that

(11) u(f)] < M[E—to] ™™



for all ¢ € Sdo.ro,00(to). Using the estimates (3) for v = k, Ty = [to| + ro, Xo > 0, R = M,
Ry, = M|t — to| =™, we get that the function w(t, z) is holomorphic on ¢ =¥Sy, s, (to) x C and
satisfies moreover the estimates (10). O

We state a lemma concerning the n-th derivative of the function wu(t), which can be easily checked
by induction on n > 1, see [20].

Lemma 2 For all n > 1, there exists Qn(X) € C[X] with deg(Qyn) = n(d — 1) + 1 such that
u™(t) = Qu(ul(t))
for allt € Sqy rq.50(t0)-

In the following, we define the operator 9, ! of integration by 9, lw fo z)dz, for all entire
functions w(z) on C. In the next proposition we compute the n- th der1vat1ve of the function
w(t, z) with respect to t.

Proposition 3 Let w(t,z) be the holomorphic function constructed in Proposition 2 with the
help of a function ¢ € SE(T,X,|q|,c,co). Let k = (ki,k2) € N2, a = (ag,a1,00) € N and
mo k, M1k > 0. We have that

(12)  (u(t))*0t*1z2 (851 a;bw)(qmovkt, 27 =

>
mie DS >
H%—‘rﬁ%:kl,l{% 1 Ki-K1- I>a1,8>ka+as ()\0""7)\/B_a2_k2)6A37a27k2+1,m%

A AB—ag— j
{(w()®0920 - - 0uy 2272 1oy 42 5y (W@ T4 ) )02 <500 —h) X Al—ay 6—azu ()}

l
quovk(lfo‘l)q*ml,k(ﬁfaz) ! B! th 2B
(I—a)! (B—ag)) 1! B!

+ Z ((u(t))aogbl—al-&-khﬁ—az—k’z((u(qﬁ—mo’kt))USjﬁﬁ—Oéz—kz)
1>a1,8>ke+az

l
quo,k(l*al)q*ml,k(ﬁ*m) I! B! th 2P
(I —a)! (B—a2)!) 1! B!

for all (t,2) € ¢7NS4y 1050 (to) X C, where
Aﬁ az—kptl el = {( Aoy -+ )\ﬂ_a2_k2) e NA—az—ka+l / 1<X+...+ AB—ao—ky < H&}

and
Ai—ay,B—asu(t) = > rlg(Zit 1 somoaka jppny
(kﬂh)lﬁjﬁﬁ%’oﬁhﬁf@*arkzeBﬂfagkaH,m%
ot T 02~ RZ(Q]( (h+m0kt)))kh
jl_Ilk'O' kﬁ @2 k2|(jl)zﬁ 527" kh
where

Bﬁ—az—k2+1,l€%

K1 —ag—ks

= {(k?hgjgn},oghgﬁ—az—kz € Nri(frex—hatl) Z Kl = A, Z] Z k) = k1)
=1 j=



Proof From the Leibniz formula, we have that
(13)
k1 9k Fy! ; fort B
oo Fw(t,z) = > ( > TP O (15— kz((U(qjt))ogs&—kz))mﬁ)
1>0,8>ks n}+n§=k1,o<n§<l R e
th 28

-2 mlwv YDRTACHEPS (u(@Dozi<s-12)) 77

sitnd=k 1L 120,62k

Now, we recall the Faa di Bruno formula in several variables, obtained in [3], Corollary 2.11.

Lemma 3 Let g'(z),...,9"(z) € O(Q4,) be m > 1 holomorphic functions on some neigh-
borhood 0y, of xo € C and let f(y) € O(Sy,) be a holomorphic function on some neighbor-
hood Qy, of yo = (g'(x0),...,9™(z0)) € C™. Then, for all n > 1, the n-th derivative of

h(z) = f(g'(x),...,g"(x)) is gwen by the following formula:

oph(x) = Y (9O N (@), 9" (x)

(Alv---vAm)eAm,n

T (9 - (Dg™ (= ))km
X( Z 1;[ km'( )Zh L 7 )

SN, lsns

where

Apn={(A1,...,An) eN" /[ 1< AN +...+ A\ <n},
B = {(k})1<j<ni<nem € N/ Y ki =X, Y (Y k) =
j=1 j=1 h=1

From the Lemma 2 and 3, we deduce that

. .
(14) O (Bt ot (U@ oo -12))
A As— '
_ Z aug . 8u§_f§§ ¢Z+H%’5_k2((U(q]t))oéjéﬁsz)
(Aoy.‘.,AB—kQ)EAﬁ7k2+1,n%

K k h
o 3 g5 T T [Ty’ (@ <<qht>>>’“ )
j=1 k:?' k:ﬂ k2 (5 )Z Ky

h
(k)1 <j<nt 0<n<p—ky SBa—hyt1nl

for all Kk} > 1, for all [ > 0, all B > ko. Finally, from (13) and (14), multiplying by the function
(u(t))*0t* 222 we get the expansion (12). O

3.3 Linear operators on SE(7, X, |q|, ¢, ¢)

We first define some linear operators that will be useful in the sequel.

Definition 3 For any tuples k = (k1, ko) € N2, a = (o, a1, a) € N3, for non negative integers
Mok, M1k > 1 which satisfy the assumption that

1 <mox < as + ke,



we define the following linear operator Hy o kmg my ., from Cl[t, z,u]] into C[[t, z,u]] by

(15)
kq!
Hy,oksmo joma i (o(t,z,u)) == Z ol1:21 Z Z
n%—i—n%:kl,ﬁ% kiK1 I>a1,B>as+ko (>\07"'7Aﬂ_0‘2_k2)6A57a27k2+1,n%
A AB—ag—k
{(Uo)ao 8u8 ce (9”&7042271@22 ¢l—a1+m§,6—a2—k2 ((uj+m0,k)Oéjﬁﬁfaszz)Al*ahﬁ*az,@}
quo,k(l*al)q*ml,k(b’*w) ! p! > t' 27
(I—a) (B—ax)!) 1l p!
+ Y (W)™ Brman kB (U mo 4 )0<i<B—as—ks)
1>a1,8>ka+az
l
quo,k(l*al)q*mLk(ﬁ*az) I p! t' 2’
(l—al)!(ﬁ—ag) l' ﬁ'
where
1 (Z Zﬁ ag—kg hkh)
Ai—ayp-azu = Z kylg'#i=1

h
(k§)1<j<nl 0<hgp—ag—ko EBa—ag—koy+1,nl
h

n% H a2 kQ(Qj(uh—i-mOk))kj

k
i=1 k';)' . kffaszgl( )Zﬁ Qg —rRQ k}h

X

and where Q;(X), j > 0, are the polynomials introduced in the lemma 2.

In the next proposition, we show that the linear operators constructed above are continuous
on the spaces SE(T, X, |q|, ¢, co).

Proposition 4 We make the assumptions that

(16) ag <cy , dki < C(az + kg) , 1< mo g < g+ ko — 20,

k1 log(3/2

ckilog(3/2) < i
log(|q])

Then, there exists a constant Ci1 > 0 (depending on |q|,c,co,k,cc,mo f,m f, and Q;(X), 1 < j <
k1) such that

— a1+ k1 +2(a2 + ko) +

1 [e% (e
(17) [Ha,aemo ema (@ 2,0)||(rx) < C1(1 + f)le LX) 6(t, 2, w) || o7 x)

for all ¢ € SE(T, X, |q|, ¢, co)-

Proof Let
l Zﬂ

o(t, z,u) = Z¢lﬁ ((uy o<;<g)“ﬁ

1,3>0

be a formal series in SE(T, X, |q|, ¢, ¢p). First a all, we start the proof with an important lemma.
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Lemma 4 I) There exists a constant Co > 0 (depending on co,ap,k] and Q;(X), 1 < j < ki)
such that

A AB— o —
(18)  [1(u0)** (D38 -+ Dy — a2 42 D1y 42 B—crg ) (Wb 1 J0<j<B—an—k)

”% B—az—k2 kh

h=0 (Qj(uh—l—m(),k)) J

x U 0. ey et 8 < Colldr—ay +r2,8-as—k, ((U5)0<j<B—an—ka )| B—as—k:
j=1 k- K 1(5!)

3\ exl
X (5) 1h

Jor alll > ay, B> ag+ kg, all (Ao, ..., As—as—kz) € Ag_ay—kys1,x1 and all
(k?hgjgﬁ},oghgﬁ—az—kz € Bs_ay kyt1ml-
IT) We have

(19)  [1(10)™ P1—c+k1,8—az—ks (Ujtmg 1 )0<j<B—an—k2)l|p

< | P1—cn+k1,8—an—ks (U5)0<j<B—an—ks)|| -z —k»
foralll > ay, B> as + ks.

Proof We first show the part I).
From the Cauchy formula in several variables, see [12], we have that

A AB—as—k
(20) (8u8 o 8%,&2271922 ¢l—a1+n§,ﬁ—a2—k2)(umo,ka s a“ﬁ—ag—k2+mo,k)
1

= (= )5—02—k2+1/ /
2im C(Um()’k,am()’k) C(uﬁfa27k2+'m07k7am0’k+ﬁfa27k2)

¢l7a1+n?,57a27k2 (§07 e ’gﬁ_OCQ_kQ)

Aol .. )\/3,&2,]62! N—ag—hy+1 d§0 . dgﬁ—a27k'2

(50 - umo,k))\O—H T (55*042*’62 - uﬁ*a2*k2+mo,k)

for all I > ay, all 8 > ag + ko, all (Umg ;- Us—as—kotmoy,) € CB—e2=ketl \where C(u,r)
denotes the positively oriented circle centered at u with radius 7 > 0 and where apg , 4+h, 0 <
h < B — ag — ko, are arbitrary positive real numbers. Introducing the term

B—az—ks

[T rlgh et

J=0

and it’s inverse under the integrals of the representation (20), we deduce that

A AB—an—k
(21) (928 - - 02272 D1y w2 v —hy) (U es - > W=z —p b )|
= ||¢l70‘1+”%’6*a2*k2 (UO’ ce ’uﬁ—az—kz)Hﬁ—az—kz
B—az—ks
Aol A B — ko !
X - 0 )\57 aikkg X H (1 + |uj+m0,k| + aj+m0Yk)C(ﬁ—a2—k2)+CO
0 ag 2

amO,k e amo}k+5*a2*k2 ]:O
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From the inequality (21), we get that

A AB—ag—
(22) (o)™ (@ Oy 0353 Bu s 442,z —ka) (Umo s -+ UB—cr kb 1. )|
1

K1 B— 042 k2 Qi(u k;‘ B
h —cB—
T e O T gl

=1 k! kﬁ eaha(inTasot U H
< H(pl—al-i-n%,ﬁ—ag—kg (qu s 7“5*0427162”’5*042*/625(57 Q)
where
1 k K
Mol Ascant! 1y Ilizo® " (Q) (himy )"
(23) £(B,u) = Ao AB—ag—kg | H 01... gPaz—kz ZB ozhe kh‘
amo,k U amoyk+ﬁ—a2—k2 Jj=1 k] k (]l) 0
mo,k—1 B
cuofx [T @efuhox [ Gl
7=0 j:ﬁ—ocz—k2+mo7k+1
B—az—ka+mg i B—az—ka+mg i
x I Gyl Fay)Preemhronc TT (14 [yl

J=mg,k J=mo
for all § > ag + ko, all (ug,...,ug) € CP*L. In the rest of the proof, we will give estimates for
the expression £(5,u).
Lemma 4.1 We put

1
1 kP
(24) A Wm0 @ntmo ) =~ [1(Q; (hymo )|
ht+mor j=1

X (1 + ‘uh+m0,k| + ah+m0,k)0(ﬁia27k2)+co X (1 + |uh+mo,k‘)7CBico

for all0 < h < B —ay—ks.
1) If Ay =0, then we put apim,, =0, and

(25) Ag(thrmo,k?athmo,k) <1

for all Uhtmg, € C, all B> ag + ko.
2) There exists a constant Co1 > 0 (depending on co,ki and Q;(X), 1 < j < ki) with the
Jollowing properties: for all A, # 0, there exists a radius apim,, > 0 such that

§)cﬁ

(26) Ay (Wnmg > Ohtmo ) < Coa

Jor all upymy, € C, all B> ag + ks..

Proof
Case 1) If we have \j, = 0, then by construction of the set By kyy1,xt We have that k:;l =0,
for all 1 < j < x}. We can put Ahtmg, = 0. Then, we get that

Ag(uh"'mo,k’ 0) = (1 + |uh+m0,k|)_c(a2+k2) <1
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for all Uh+myg g e C, all B> as + ko.

Case 2) Assume that A;, > 0. From the lemma 2, we get two constants Fy > 0 and Ry > 1
such that

(21) 1)) < Bolap @141

for all |z| > Ry, for all 1 < j < x}. Moreover, by construction of the set Bj_ay—kyt1,x1> We have
the following inequalities

k1
(28) S K=<k Zkh d—1)+ kI < dki.
In the following, we put apym,, = 1/2. From (27) we deduce that

l h
8 1 Sl k] U RR (G (d—1))+ K"
Ah(uhﬁ*mo,ka ah+m0,k) S M 7E0 =t |Uh+m ’ZJ 1%y (i ) J

h+m0,k

C(ﬂ—a2—k2)+00( —cB—co

X (1 + ‘uh+mo,k| + ah—i—m()’k) 1+ ‘uh-f-mo,k |)

for all upym,, € C with [upym, | > Ro. From (28), we get that

1
|uh+mo,k |dﬁ1
(1 + ’uh+m0,k| + 1/2)C(a2+k2)

X (

B Rl okl
Ah(uh+mo,k’ah+mo,k) <2ME)’ x

1+ |Uh+m07k| + 1/2

)C/J’+CO
1+ ’uh+m0,k |

for all upym,, € C with |upim,,| > Ro. From the hypotheses (16), we have in particular that

dr} < c(ag + k2). So that
8 W13
(29) Ah(uh'i'mo,k’ah'i'mo,k) < (2E0) 1(5

for all upym,, € C with [upym,| > Ro. On the other hand, we have

)66—1—60

1 k:h
o 0L 5 QDT 1 gy | +1/2

AP (u ,a < X ch+eo
h( h+mg h+m0,k) —= (1 + |uh+m0,k‘ + 1/2)c(a2+k2) ( 1+ |uh+mo7k| )
for all wupym,, € C with [upym, | < Ro. So that
1 1 h,3
(30) Ao mo) < 2L sup 1Q5(2)D ()7
z|<Rgy

for all upimy, € C with |upym,,| < Ro. Finally, from (29) and (30), we get the inequality (26).
(]

From the expression (23), we have that

1

Fq
1
31) E£(B,u) < Aol Ag_ao—kn!
) 26,0 <0 Aot [ R
- J
B—oaz—k2
|ug|*°
X H A/igz(uh-&-mo,k»ah—&-mo,k) X W

h=0
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On the other hand, from the construction of the sets Ag_,, , 1 .1, we have that

(32) Aol .. )‘5—042—]62! < ()\0 + ...+ )‘ﬁ—az—kz)! < H%' ,
card{h € {0,...,8 — ag — ko} /A, # 0} < K}

From the hypotheses (16), we have ag < ¢p, and from the inequalities (32) and the lemma 4.1,
we deduce from (31) that

(33) £(8) < w1(Co)H (5)H7

for all B > an +k, all (ug, . ..,us) € CPFL. Finally, from the estimates (22) and (33), we deduce
that the inequality (18) holds.

We show the part IT).

Introducing the term
B+mo, g —a2—k2

[T Gyt

J=mo,k

and it’s inverse in the definition of the norm ||.||g, we get that

(34) | | (uo)a0¢l—al+k1,ﬁ—a2—k2 ((ujero,k)OSjSﬁ—OéQ—kz ) | |5
< || P1—ay +k1,8-an—ka (U )o<j<B—ar—ko )| 5—az—ka F (B, 1)

where
B+mg —az—k2
(35) ]:(Baﬂ) = H (1 + |uj|)c(5—a2—k2)+co—cﬁ—c0
J=mo,k
mo,k—l B
X |ug|* H (1+ ‘uj|)_cﬁ_co X H (1+ ]uj‘)_cﬁ_c(’
3=0 j:ﬁ'f‘mo,k—az—kz—i-l

for all 8 > ag + ko, for all (uo,...,ug) € CA+1. From the hypothesis ag < ¢y (see (16)), we get
that

(36) F(Byu) <1

for all B > ag + ke, for all (ug,...,us) € CATL. From the estimates (34) and (36), we deduce
that the inequality (19) holds. O

In the following, we put

1 1
K1 h K1 1 h
(h+ B —az — k) (h+ K{(B—ag — ke +1)—1)
GETSNOEDS o » Pastkran () = E—
h=1 ’ h=1 :

for all 3 > ag + ko. Using the classical fact that the number of k-tuples (ag,...,a;) € NF,
solutions of the equation a; + ...+ ax = n is equal to (n +k — 1)!/((k — 1)In!), for all k,n > 1,
we get that

(37) Card(Aﬁfa27k2+l,R%) S Pl,l{%,kz,ag (/8) ’ Card(Bﬂfa27k2+l,H%) S 732,/@%,’62,042 (/8)
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for all B > as + ko. We also have that

1
K1 B—ag—ks

(38) o> jhkl < Bri

j=1  h=0

for all B > ag + ko, all (k?)lgjgn%,oghgﬁ—ag—kg € Bg_ay kyt1,x!- From the Lemma 4 I) and the
estimates (37), (38), we deduce that

(39) | >
(Ao,...,)\gfaszQ)GA@7a27k2+1,n%

AB— o —
{(U0>a0 838 Tt aug_zj—:g ¢l—o¢1+m§,ﬂ—a2—k2 ((uj+mo,k>0Sj§ﬁ*a2*k2)Al*mﬁ*amy}

X qmov’“(l_al)q—ml,k(ﬂ—w) x ! B!

(I —a) (B — aQ)!”ﬂ

3.
< Colld1—a, 412 8—an—ky (U5)0<j<B—as k)| 8—az—kz X Pl ky a0 (B)Pasl ks o (ﬁ)(?mlﬂ

> ’q‘fi%ﬁ-i-mo,k(l—al)—ml,k(ﬁ—az) x (1 302

for all I > ay, all B > ag + ko. From (39) and Lemma 4 II), we get that

kq!
(40) HHq,a,k7mo,k,m1,k(¢<t’Z7ﬂ))H(T:X) < Z k1121
kitr2=ky,k1>1 1
y Z {"¢l—a1+n%,ﬁ—a2—k2((uj>0§j§,3*042*k2)|’,3*042*]62 C
PQB 0
1>a1,8>a0-+k> g2
3 1 1 1— _ _ Tl X/B
X P s (8Pt s () 3)749 g3 Hmaslizen) mata-au) o o) T2
P11 +k1,8—as—ks ((U5)0<j <B—as—ks || B—as—ks
+ Z { 7 P(3)
I>a1,8>a0-+ks g2
1
« |q‘mo,k(l*a1)*m1,k(ﬁ*02) x 11 322 jlﬂl);lﬁ
From (40), we deduce that
kq!
(41) H,Hq7a7k7m0,k7ml,k(¢(t7 Z7E))H(T,X) S Z K/l‘/ﬁ2'
kltr2=ky,ki>1 1
y T M D1 +52 8ok (U5)0<j<Bas—ko)||B—ag—ky ~ Tlm0atst  xF-02—k
l:
[>a1,8Zaz+ks ’ |q| PU-artnifaz—ks) (I =1+ KD (B — a2 — ko)!

+ Z Ml Hd)l*Oqukle*aQ*kQ((uj)0§j§5*a2*k2)"5*042*]62 Ttk XPoa—k
LB ’q|P(l7a1+k1,ﬁfa27k2) (l — o + ]{;1)| (B — a9 — k2)|

1>a1,8>as+ks2
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where

Copl,nl ko, (5)7)2,/{1 ko, (B) (%)CH%/B

Ml /B — 1 1)
’ |q|P(lﬁ)—P(l—a1+f€§,ﬁ—a2—k2)+m1,k(5—a2)—mo,k(l—a1)—ﬁiﬁ

(l—()él—FI{%)!(ﬁ—OéQ—k‘g
Il 31

|
% lalﬁag )'TQI*H%XCQ‘FICZ

and

jor goz
’q‘P(l,ﬂ)*P(l*OﬂlJrkl,5*a2*k2)+m1,k(/3*042)4"0,1@(1*041)

Mllyﬁ =
y (l — o1 + kl)‘ (6 — Qg — kQ)!Ta1—k1Xaz+k2
l! p!

for all I > aq, all B > ay + k2. From the assumptions (16), we get some constants A, B,C > 0
(depending on |q|,c,a.k,mq ,m1 k) with 0 < A <1, 0 < B < 1, such that

()t

‘q,P(l,B)fP(lfal+/~e%,ﬁfazfk2)+m1,kﬁfmo,klfniﬁ

Cﬂl O,
(’q| —ag—k2—2(—o¢1+;€%)+m0’k )l(|q|*ml,k*al+k1+2(a2+k2)+$¢(ﬁ;2) ),8

x |g|~ (@2 tka) (] —an)~(az+ha)? ~(si-a1)* < (1 4l BB

and

1
|q|P(lw8)_P(l—061+k1,,3—(12—k’2)+m1,k6—m07kl = (‘q

|7a27k272(*a1+k1)+m0,k )l
x (|g| =ik orHhi2aztk) 8| g (a2 the) (k1 —an)—(az+he)* ~(k1—01)” < 1Al BB

for all [ > aq, all B > ag + k2. So that we get a constant C7; > 0 (depending on the
constants |g|,c,co,a,k,mq g,m1k and Q;(X), 1 < j < ki) and a constant C 2 > 0 (depending on
a,k,mo i,mq i) such that

(42) Ml,ﬁ < CLlTal—H%XCQ-&-/Q , Mll,ﬁ < 01’2Ta1—k1Xa2+k2

for all I > ay, all B > ag + ko. Finally, from (41) and (42), we deduce (17). O

3.4 A functional equation in SE(T, X, |q|, ¢, co)

Proposition 5 We consider the following functional equation

(43) ¢(t7 2, @) = Z Z aoz,k/Hq,oz,k,mO’k,ml,k (¢(ta Z’ﬂ)) + b(ta Zaﬂ)

k::(k'l,k?Q)E[: acJyg

where ¢ € C with |q| > 1, L is a finite subset of N, Ji are subsets of N® and mok, M1k > 1 are
positive integers. We assume that there exist two real numbers c,co > 0 such that

(44) ap<co , dki <clag+ks) ,
ck1log(3/2)

1<moy <op+ky—201 , —ar+ki+2(ax+k)+
log(|ql)

mik,
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for all k = (k1,ko) € L, all o = (o, a1, 2) € J,. We assume that aq, € C for all k € L, all
a € Ji and that b(t, z,u) € SE(To, Xo, |ql, ¢, co), for some Ty, Xo > 0.

Then, for X sufficiently small such that 0 < X < X (depending on Ty,|q|,c,co,k € L, €
Jis@a kom0 kM k@5 (X), 1 < j < ki) the equation (43) has a unique solution ¢ is the Banach
space SE(Ty, X, |q|, ¢, o).

Proof We consider the map N from C[[t, z, u]] into itself defined by

N((Z)) = Z Z aa,k/Hq,a,k,mO’k.,ml,k ((Z))

k‘:(kl,kz)eﬁ acJy

for all ¢ € C[[t, z,u]]. Under the assumption (44), we deduce from the proposition 4, that A is
a linear map from SE(7Ty, X, |q|, ¢, co) into itself satisfying the estimates

1
)T X)) oy )

45)  IN@lmx) < (€1 Y > |ao k| (1 + fo

k=(k1,k2)€L a=(ao,01,a2)EJ)

for all 0 < X < Xy, for all ¢ € SE(Tp, X, |q|,c,co). From the assumptions (44), we have that
as + ko > 1, for all k € L, all o € Jg. So that if we choose X sufficiently small such that
0 < X < Xy (depending on C1,Tp, aq,, for all k € £, all a € Jy), we get that

1
(46) N (D) (1, x) < §||¢||(TO,X)

for all ¢ € SE(Ty, X, |q|,c,co). If Id denotes the identity map on SE(Ty, X, |q|, ¢, co) defined by
Id(¢) = ¢, we get that the map Id — N is invertible from SE(Ty, X, |q|,¢, co) into itself. By
construction, we have that b € SE(Tp, X, |q, ¢, cp). So that finally ¢ = (Id —N')~!b is the unique
solution of (43) in SE(Tp, X, |q|, ¢, co). O

4 Linear ¢-difference-differential equations
In this section, we state the main result of this paper.

Theorem 1 Let u(t) be a solution of a nonlinear differential equation (8) satisfying the as-
sumptions 1. and 2. from the section 3.1. We consider the following linear Cauchy problem

7 o)=Y an(ult), 2@ o) (g, g )
h=(h1,h2)€S

for initial conditions
(48) (820)(t,0) = wj(u(t),t) , 0<j<S—1,
where S > 1 is an integer, S is a finite subset of N?,

ap(u,t, z) = Z Ao p 0t 2%? € Clu, t, 2],

a=(ao,a1,02)EJp
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wj(u,t) € Clu,t], for 0 < j <8 —1, and mop, myp > 1 are integers, for all h € S. We assume
that there exists a constant ¢ > 0 such that

(49) (1 + M) < |g|"? | dhy < claa+ 8 —hy)

S>hy , mop<az , 1<mgp<as+S—hs—2a,
hylog(3/2
chilog3/2)
log(|q])

orallh = (h1,hs) €S, alla = (g, a1, an) € J, (with the constant M defined in the assumption
f ; ) p

2.). If one writes
Z OJ] 1 gult’g,

(1,B)EQ;

—a1+h1+2(a2+s—h2)+

where Q; are finite subsets of N?, we consider the polynomials

’w‘j(%t) = Z ‘wj,lyﬁ‘ultﬁﬂ
(1,B)eQ;

forall0<j<S5—1.

Then, there exists a holomorphic function v(t,z) on ¢ NS4y.r.5,(to) X C which solves the
problem (47), (48). Moreover, the function v(t,z) satisfies the following estimates :
i) There exist a constant M' > 0 (depending on u(t) and q), a constant ¢y > 0 (depending on
ap(u,t,2), wj(u,t) forhe S, 0<j<85—1)and C, > 0 (depending on v) such that, for all
Xo >0, all Ty > 0, there exists 0 < X < Xg such that

S—1

X, 7
(50) ot )] < 3 Ll ('}t = o] ™, o] +70) -
Jj=0 )
s 1 2
+ O expl0 s (log(2tol +70)/T5)?)
X
X (L Mt = to] )% exp(Hy (M) (log(Ha,eo (M) (1 + M|t — to] ™)°=2) )

for allt € Sq, ry.60(t0), for all |z| < Xo, where the functions Hy (r) and Ha,(r) are defined in
the proposition 1.

ii) There exist a constant M' > 0 (depending on u(t) and q), a constant co > 0 (depending on
ap(u,t, z), wj(u,t) forh e S, 0<35<85—1) and C, > 0 (depending on v) such that, for all
X >0, all Ty > 0, there exists 0 < X < Xy such that

S—1

X 1
< .,
(51) |v(t,2)| <Y |wl;(M, yt0\+r0) + O X5 exp(gy—r Tiog(dl)
Jj=0 9
X0

X (14 M'|q"t — to] ™) exp(H1,o(M) (log(Ha,co (M)(1 + M'|q"t — to| 7™)¢ <))

(log(2(|to| +0)/Tv))?)

for allt € ¢7%Suy ro.50(to), for all k > 1, for all |2| < Xo.

Proof Let us consider the function

ij

J"
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for all (¢, z) € q*NSdo,ro,(;O (to) x C. Using Lemma 2 we get that

S—1—hy

@ al2 D) (gmont 2 /g™ ) = Y @(ulgmor ) ) S

j=0

for all h = (h1,hg) € S, where @;(u,t) € Clu,t], for 0 < j < S —1— hy. Now, we choose ¢y > 0
large enough such that ¢y > ag, for all @ = (ag, a1, a2) € Jp, all h € S and such that

S—1—hs :
. 2

bh(tv <, U0, U’mO,h) = ah(u(b t, Z)( Z wj(umo,m t)?) € SE(T(]a Xo, |Q‘> c, CO)
Jj=0 '

for all Ty, Xg > 0, for all h € S. In the following, we put

b(t,z,u) == Z bh(t,z,uo,umo’h).
h=(h1,h2)€S

We consider now the functional equation

(52) gb(tv Z, Q) = Z Z aa,th,a,(hl,S—hg),moyh,ml,h (¢(t7 Z, @)) + b(t7 Z, Q)

h=(h1,h2)eS acJy

From the assumptions (49), we get that the assumptions (44) are fulfilled for the equation (52).
From the proposition 5, we deduce that for 0 < X < X small enough, the equation (52) has
a unique solution ¢ is the Banach space SE(Tpy, X, |q|,c,co). Now, we consider the function
w(t, z) = ¢(t, 2, (u(¢’t)) j>0), which is, from Proposition 2, holomorphic on ¢~ NSy, ,, 5 (to) x C.
From the proposition 3, we have that the function w solves the equation

(53) w(t7 Z) = Z anp (u(t), L, Z)(athl 6227Sw)(qm0’ht7 Zqiml’h) + b(t, 2, (u(qjt))jzo)
h=(h1,h2)ES

for all (¢,2) € ¢ NS4y re.6,(to) x C. We consider the function v(t,z) = I(t, z) + 05 Sw(t, z) which
is holomorphic for all (t,2) € ¢ NSy, ro.6,(to) x C. Using (53), one checks that v(t, 2) solves
the problem (47), (48). Moreover, from the proposition 2, w(t, z) satisfies estimates of the form
(10). We deduce that the function 9, w(t, z) satisfies the following estimates : there exist two
constants M’ > 0 (depending on u(t) and ¢q) and Cy (depending on ¢) such that

(54) 0= 5w(t, 2)| < X5 Cyexp( (log(2(|to| +70)/T0))?)

1
21og(|q|)
X,
< (14 M'|g"t — to| ™) exp(Hy,o(M)(log(Ha,co (M)(1 + M'|¢t — t0|_mu)c?0))2)

for all Xy > 0, for all t € q_deO,m,(sO (to), for all k£ > 0, for all |z| < Xp, where the functions
Hi (r) and Hy,(r) are defined in the proposition 1. On the other hand, we have that

S—1 Xj
(55) 1(t,2)] <> lwlj(Ju®)], [to] + 7“0)7,0
Jj=0 '

for all Xo > 0, for all t € ¢~*Sy, 1.6, (t0), for all k > 0, for all |z| < Xo. Finally, from (54) and
(55), we get the estimates (50), (51). O
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