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1. Introduction

In the article we consider the following system/®f(/NV € N is fixed) nonlocal nonlinear equations
in R% with 1 < d < 3, the parametek € R, the oscillation frequencies, > 0 andl < k < N :

N
i = A [ Gt =) [Fe( 0 1l OF )l 0+ U)o ) -+ e
R¢ s=1

(1.1)
Our primary interest in (1.1) is not based on any particutacpcal applications of this system,
but is due to its resemblance to the system of forced, nohldtanlinear Schrodinger (NLS)
equations. Precise conditions on other terms involved.it) @ill be specified further down. Let
us look for a solution of the system above in the form of theomponent standing solitary wave

Yr(w,t) = gp(z)e ™ 1<k <N. (1.2)

The sign under the exponent in (1.2) is negative, which acouthe case of so-called embedded
solitons (see e.g. [5]), as distinct from the standard 8andsee e.g. [1], [7]). We substitute (1.2)
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into (1.1) and easily obtain the following system of nonlaaptic equations withl < k£ < N

~ad—wdn A [ Gula—y) [Fk(Zm 2)on(y) + V() én(w)|dy + () = 0. (1.3

The absolute valug\| here is assumed to be small enough and the solvability dondifor the
system of equations (1.3) whenvanishes are given by Lemmas 5 and 6 of [15]. Let us re-
call that a linear operator acting from a Banach sp&dato another Banach spaceis said to
possess the Fredholm property if its image is closed, theewon of its kernel and the codi-
mension of its image are finite. In our case system (1.3) wvesthe non Fredholm operators
—A —wy : H2(RY) — L*(RY). When these operators are considered.6(R?) their essential
spectrac,s(—A — wy) = [—wg,0), 1 < k < N contain the origin. Solvability conditions for
nonhomogeneous elliptic problems with operators of thadl kiere studied extensively in recent
years. While linear equations with and without externalaagaotentials were covered in the num-
ber of works (see e.g. [6], [8]- [12], [14], [15]), nonline@wn Fredholm problems were treated
in a few examples as well (see e.g. [2]-[4], [13], [15], [16[he results for the single equation
analogous to system (1.1) were obtained in [15]. Let us aeti@ inner product of two functions
as

(@) Lol e = [ F)falo)da

with a slight abuse of notations when these functions arsauadre integrable, like those involved
in the orthogonality conditions of Theorem 1 below. Indesten f1(x) € LY(R?) and f,(z) is
bounded, the integral in the right side of the formula abowakes sense. The sphere of radius
r > 0in R¢ centered at the origin will be designated¥s The functional space used in the article
will be equipped with the norms

el e cvy = Z O Z{HukHLz we) T [ Au] 72 ga b

k=1
N
lulZegacy = D llunlZae
k=1
for a vector functionu(x) := (uy (), us(x), ..., un(z)) € H*(R4, CN). We will use the closed unit

ball centered at the origin in the Sobolev space of vectoetfans with the norm defined above:
B(H*R?,CY)) == {u(z) € H*(RY,C") | ||ul| gro(gacyy < 1} (1.4)

The norm of a complex-valued vector df components will be denoted as

N
[ulgn = Jurl.
k=1

Our main result is as follows.



Theorem 1.Let for1 < k < N the following properties holdt/,. (z) € L>(R?), the functions
hi(z) € L*(RY) and are nontrivial for at least one value bf  F(z) : R — R are continuously
differentiable, the kernel§',(z) € L'(R?), 1 < d < 3. Let the oscillation frequencies, > 0 for
I1<k<Mandw,=0for M +1< k< Nwithagivenl <M <N -1, M € N.

I) When the dimensiah=1and1 < k < M, letaGy(x), zhy(x) € L'(R) and

+i/wrx +iy/wrT
Gi(z), =0, |hu(a), S — 0. (1.5)
V2T L®) V2T @)

For M +1 <k < N, letz?G(z), 2*hi(z) € L'(R) and

(Gr(2), D@ =0, (Grl(x),2)2) =0, (ha(2), D2y = 0, (hw(2), 2)12®) = 0. (1.6)
I1) When the dimensiah= 2,3 and1 < k < M, letxGy(z), zhi(x) € L*(RY) and

ipT ipT
<Gk(:v), ‘ g) =0, (hk(:c), ‘ ) =0 for pe Sfl/@ ae.  (1.7)
(27m)2 / r2may (27m)2 ) 12may

[V][~%

ForM +1 <k < N, letz?h;(z) € L'(R?*) whend = 2 and

(hi(x), Drzme) =0, (hi(),25)r2@e) =0, 1<s<2. (1.8)
WhenM + 1 < k < N andd = 3 assumerhy(z) € L'(R?) and
(hi(2), 1) r2Rs) = 0. (1.9)
Moreover, let us assume that fof + 1 < k& < N andd = 2, 3 that2?Gy(x) € L*(R?) and
(Gr(2), Drzway =0,  (Gr(x),25)12e) =0, 1 <5 < d. (1.10)

Then there exists > 0 such that for all\ € R, || < ¢ the system of equations (1.3) possesses a
unique nontrivial solutions(z) € H?(R%, CV).

2. Standing waves of the system of nonlocal, forced equatisn

Proof of Theorem 1Under the assumptions of the theorem stated above by meahes oésults
of Lemmas 5 and 6 of [15] system (1.3) with the vanishing patam\ admits a unique solution
(b(](]?) = ((b(],l(ﬂf), Qboz(]?), R QbO,N(x)) € HZ(Rd’ CN), 1 < d < 3, such that

—A¢pop — wippor = —hy, 1<k <N,

Let us look for the solution of the system of equations (In3hie form¢(x) = ¢o(z) + n(z) in
the case when # 0. For1l < k < N we easily obtain

~n—wn A [ Gula =y [Fk(ZwoS £ 0)) (G0sy) + i)+

3



U () (Go(y) + me(y)) | dy = 0.
For technical purposes we will be using the auxiliary systémquations withl < £ < N

Mgt =A [ Gula—y Vﬂ}]%s Fn)P) Gosly) +m)t @)

UL () (G0.() + m1(9) | dy.

Below we will prove that for small enough values [off the system of equations (2.1) defines
a mapT : B(H*(R4,CY)) — B(H*RY,CY)). Let us first assume that for a certajf) €
B(H?(R4,CN)) there exist two solutiong)-)(x) € B(H?*(R? C")) of system (2.1). Clearly,
the difference vector functioti(z) = ¢W(x) — (@ (z) € H%(R? CV) solves the system of
equations

—A, = wik, 1<k N

But the negative Laplacian considered in the whole space doe have any nontrivial square
integrable eigenfunctions. Therefotgr) = 0 a.e. inR.

Let us choose arbitrarily a vector functigfir) € B(H?*(R?, C")). Evidently, via the Sobolev
embedding theoremy ; (), ni(z) € L®(R?), 1 < d < 3for1 < k < N. Therefore, using the
assumptions of the theorem as well, we obtain the boundseotetins of the system of equations
(2.1), such that

Us(Go + )| < [Uelliqa (160l + ) € LA(RY) 2.2)
and N
15 (D 190(w) + nw)) (G0.y) +me(w)] < (2:3)

< SUBFR(2) Lo, 5500, (60,0t el 21 (| P06 )]+ 0(01)]) € L*(R)

as well. We apply the standard Fourier transform (denotethé&yhat” symbol) to the system of
equations (2.1) and far < £ < N arrive at

Gr(p)

&.(p) = A(2n)? HF) + G}, (2.4)

Wp —

with F.(p) andgy.(p) denoting the transforms @, ( SN 0.5 (y)+1s(y) |2> (dox(y)+nk(y)) and

Ur(y)(0x(y) + ni(y)) respectively. Estimates (2.2) and (2.3) imply tfatp), Gi(p) € L*(R).
Obviously

2
~ G
PE(p) = A2m)? %k(kf<>+%@n- (25)
For technical purposes we will be using the following quigegifor1 < k£ < N, namely
. oA
Noa = max{ k(p) 2 Grlr) } wp>0,1<d<3.  (26)
TP e ey TP ez
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Orthogonality conditions (1.5), (1.6), (1.7) and (1.10raj with Lemmas Al and A2 of [13]
imply that forl < k£ < N we haveN,, ; < oo. Hence,

1€(p)| < [A(27)2 Noy af | Fi(p)] + 1G(p) [} € L*(RY),

P%6k(p)] < IN(2m)2 Noy a{ | F0(p)] + |Gi(p)|} € L (RY).
Therefore, we easily obtain the upper bound on the norm

1811772 e ey = Z{H&c 2@y + 1P°E ) 7 2ma)} <

< 2)2(27) Z 2 dlll Pk (0)] + Gk (D)7 2

Thus¢ € B(H?(RY,CY)) for all the values of the parametex| sufficiently small andl'y =

¢. Finally, we need to show that the mdp: B(H?(R¢,CV)) — B(H?*(R4,CY)) defined by
system (2.1) is a strict contraction. To achieve this gadluk choose arbitrariby, (z), n2(z) €
B(H?(R4,CN)). EvidentlyTn,, = &2 € B(H*(R? CY)) via the system of equations (2.1)
when|\| is small enough. Obviously far< £ < N

d Gk(pzzz {.7:1k( ) — .7:2k( )+ gl,k(p) — gz,k(p)}-

E.1(p) — E24(p) = A(27)

HereF; »(p) andg; ;(p) denote the Fourier images of expressions

Fk(ZwoS + 1@ (Bor(@) + (@) and Un(@)(Gon(@) + ()

respectively withj = 1, 2. Thus

dszk( )
Wi — P

PPEK(D) — PPEan(p) = A2m) 2 =L Fy 4 (p) — Faue(p) + Gra(p) — Go()}-

We easily arrive at the upper bound 1 . (7) — &ox(2) || 2(re) @S

N N
M) E N || Z 60,5+ 10,512 (G0 1) = Fi Z 90,5+ 1251%) (G4 + 12, .

Uk = o) e -
The analogical estimate from above is valid fldx{, i (z) — A&y k()| 12(ra). ObViously
Uk (k= 2.6l 22y < Ukl zoo@ay 116 — M2kl 22 Ry
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We express

N N
Fy, ( Z |¢o,s + 771,s|2> (Pok +mk) — Fi ( Z |$o.s + 772,3\2) (Pok + M2k) =
s=1 s=1

= {Fk(Z‘(bOs—i_nls ) Fk<2‘¢03+7728| )}(¢O,k+772,k)+

+ 5y ( Z |05 + 771,s|2> (Mg — N2)-
s=1
The Sobolev embedding theorem applie®ihwith 1 < d < 3 yields

|00, + Nj,s| < celll@o,sll ey + 1)l 2 (ra)),
wherec, denotes the constant of the embedding; s < N andj = 1, 2. Hence, we arrive at

N
S 10, + il < 221+ [bollZeacny)s 4= 1.2,

s=1

such that

< SURFR(2) 200, 2621+ o2 e —n2.kl L2 ey

L2(R4) H2(®re,CN)

N
HFk ( Z |Po,s +771,s\2) (M6 —M2.k) ‘
s=1
Let us make use of the identity
Zé\il ‘¢0,s+771,s|2

FK(ZWOSMM) Fk(2|¢os+nzs|)=/ ) Fi(=)dz.

Zé\rzl |bo,s+m2,s]?

For technical purposes via the Sobolev embedding theoregstimate

N N N
} D b0+ sl =D Idos + 772,s|2‘ <20 Y s — M8l (1+ 6ol mrorey) <
s=1 s=1 s=1

N N
< 2oy | D e = 12y | D (1 G0l mraray)? < 2V 2¢e|m — malen \/N + | Poll32ma ey
s=1 =1

which enables us to obtain

’{FR(Z|¢03+7HS ) Fk(ZWomLﬁzs )}(¢0,k+772,k)’ < 2\/503\/]\74- H¢0|’§{2(Rd7cN)X



XSUHFIQ( )|z€[0 2c2(1+|\¢>0|\H2<Rd CN) (||¢o,k||H2(Rd) + ||772,k||H2(Rd))|771 - 772|<CN-

Therefore, we manage to derive the upper bound

H{Fk<z |Po,s + 11,5 ) Fk(z |Po,s + 12,s] )}(¢O,k + 772,k)} L) <
< 2v2¢] \/N @0l g0 or) SUREL(2) 20,220 416012 5 g v, )1 ¥
X (160, | 2 ay + M2,k |2 may) 170 — M2]] L2(Ra 0N -
Collecting the estimates obtained above we arrive at
d
1616 — ol L2ay < [A(27) 2 Ny al | Ukl oo ey + SURFE(2)|¢po, 22014160012 2 g cv)) T 2v2¢]

\/NJr ||¢0||H2(Rd CN)(1+ [P0l rr2(ra,cvy)SUBFL(2) | efo,2¢2(1-4(1 o2

Finally, we have

)]}||771 - 772||L2(Rd’(cN).

H2(®d,cN)

1T =T peme,cny < V2(2)2 W[Z 2 e d U Ukl oo ety +SUB Fi(2) 0,262 (14160 2

HQ(Rd (CN))}
k=1

1
2
+2v/2¢2 \/N + G0/l ga ovy (1 + [ Dol |2 (ra,on) ) SURFR (2) e po, 22014160112 3 s cv,) ]}2]

X|lm = mall 2 ra,cny.-
Therefore, for all the values of the parameétgrsufficiently small, the map : B(H*(R?, CV)) —
B(H?*(R? C")) generated by system (2.1) is a strict contraction, suchitipassesses a unique
fixed pointy € B(H?(R%,C")). The unique solution of system (1.3) belonging{é(R?, CV) is
nontrivial by means of our assumption that for at least oeevaf 1 < k£ < N the functioniy(x)
does not vanish iR, [
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