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Abstract

Spectral and scattering theory at low energy for the relativistic Schrödinger operator are
investigated. Some striking properties at thresholds of this operator are exhibited, as for
example the absence of 0-energy resonance. Low energy behavior of the wave operators and
of the scattering operator are studied, and stationary expressions in terms of generalized
eigenfunctions are proved for the former operators. Under slightly stronger conditions on
the perturbation the absolute continuity of the spectrum on the positive semi axis is demon-
strated. Finally, an explicit formula for the action of the free evolution group is derived. Such
a formula, which is well known in the usual Schrödinger case, was apparently not available
in the relativistic setting.
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1 Introduction

The aim of this paper is to study the spectral and scattering theory of the operator H =
√−∆+V

in L2(R3) with a special emphasize on low but positive energies. Various properties of this
so-called relativistic Schrödinger operator have already been exhibited in [5, 19, 21], but its
corresponding wave operators and scattering operator still deserved investigations. Obviously,
the natural comparison operator is the free operator H0 :=

√−∆, while for the perturbation it
will be assumed that V is a measurable real function on R3 satisfying

|V (x)| ≤ Const. 〈x〉−σ (1.1)
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for some σ > 1 and almost every x ∈ R3. Here, we have used the standard notation 〈x〉 :=
(1 + x2)1/2.

Now, note that similar investigations for the scattering theory in the usual Schrödinger case
(i.e. for the operator −∆+V ) are part of a piece of folklore. Indeed, based on the seminal work
[8], the low energy behavior of the wave operators and of the scattering operator can be derived
from stationary expressions for these operators. As for the relativistic Schrödinger operator,
on the other hand, the absence of existing information on the behavior of (H − λ ∓ i0)−1 as
λ ↘ 0 prevented such a study. For that reason, part of the present work is dedicated to the
study of various properties at low energy of the resolvent of the free operator as well as of the
perturbed operator. Only once these preliminary results are obtained, further investigations on
the scattering theory can be performed.

So, let us be more precise about the framework and about the results. By assuming that V
satisfies Condition (1.1), then both H0 and H are self-adjoint operators with domain equal to the
Sobolev space of order 1 on R3. In addition, the spectrum of H0 consists only of an absolutely
continuous part on [0,∞), while H possesses absolutely continuous spectrum on [0,∞) together
with a possible discrete set of eigenvalues on R which can accumulate only at 0 or at ∞. These
results follow from limiting absorption principles which have already been derived in [5].

Now, our first task is the study of the 0-energy threshold. In particular, one shows that in
suitable spaces the operator (H0−λ∓ i0)−1 admits an explicit limit as λ ↘ 0. Then, one proves
that 0 is generically not an eigenvalue for H, and that this operator does not possess 0-energy
resonance, see Lemma 2.7 for a precise statement. In the same vein, one also shows that if 0
is not an eigenvalue of H, then 0 cannot be an accumulation point of positive eigenvalues of
H. One should note that such a property has no analog for usual Schrödinger operators. These
various spectral results are all derived in Section 2.

Our next task is the derivation of a particular stationary expression for the wave operators
W±; the definition of W± can be found at the beginning of Section 3. In fact, such a formula
was already announced in [19] but the full proof was lacking. The construction is based on
generalized eigenfunctions which can be proved to exist if V satisfies Condition (1.1) for σ > 2.
The entire Section 3 is devoted to this proof and the main result expressing the wave operators
in terms of generalized eigenfunctions is contained in Proposition 3.4.

Section 4 contains our main new results on the wave operators. Obviously, since W± can
not be diagonalized in the spectral representation of H0 or of H, studying the low energy
behavior of W± has to be suitably defined. In fact, our approach relies on the use of the
unitary dilation group, which has often been at the root of investigations on rescaled Schrödinger
operators, see for example [1]. So, let us recall the action of the dilation group {Uτ}τ∈R on any
f ∈ L2(R3), namely [Uτf ](x) = e3τ/2f(eτx) for any x ∈ R3. Then, the following two relations
are of importance, namely U−τH0Uτ = eτH0 and

U−τ W±(H0 + V, H0) Uτ = W±(H0 + e−τVτ ,H0), (1.2)

where Vτ (x) = V (e−τx) for all x ∈ R3. Note that for clarity, the dependence of W± on both
self-adjoint operators used to define them is mentioned. In that setting, our investigations are
concentrating on the behavior of the r.h.s. term of (1.2) as τ → −∞. As we shall see in Section
5, this study has a direct consequence on the behavior of the scattering operator at low energy,
which is well defined since the scattering operator is diagonal in the spectral representation of
H0.
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Now, as already mentioned above, asymptotic properties of W± can only be derived once
suitable information on the resolvent of H are obtained. For that purpose, we provide a rather
detailed analysis of the operator

(
1 + u0(H0 − λ ∓ i0)−1v0

)−1, with v0 = |V |1/2 and u0 =
|V |1/2sgn(V ), as λ ↘ 0, see Proposition 4.8 where

(
1 + u0(H0 − λ ∓ i0)−1v0

)−1 is denoted by
B(λ± i0). Note that our analysis holds if 0 is not an accumulation point of positive eigenvalues.
A comment on this implicit assumption is formulated below. Then, with this information at
hand, the main result of Section 4 states that the strong limit s − limτ→−∞ U−τW±(H, H0)Uτ

is equal to 1.
The main consequence of this statement concerns the low energy behavior of the scattering

operator S defined by W ∗
+W−. In that setting, this corollary states that s− limτ→−∞ U−τSUτ =

1. Additionally, one also proves a uniform convergence of the scattering operator in the spectral
representation of H0, namely u − limλ↘0 S(λ) = 1, where S(λ) is the scattering matrix. This
result indicates that there is a significant difference between usual Schrödinger operators and
relativistic Schrödinger operators in terms of the low energy asymptotics of the scattering ma-
trices: compare the result of the present paper with the corresponding ones of [8]. What causes
this difference is the absence of 0-energy resonances for relativistic Schrödinger operators. These
statements and their proofs correspond to the content of Section 5.

Now, the non-existence of embedded eigenvalues should certainly deserve more attention
for the present model. However, since investigations on this question for Schrödinger operators
always involve a rather heavy machinery, we do not expect that this question can be easily
solved for the present relativistic model. On the other hand, by assuming stronger conditions
on V , one can rather easily deduce from an abstract argument that the spectrum of H on [0,∞)
is purely absolutely continuous. Section 6 is devoted to such a result. We clearly suspect that
the assumptions on V are much too strong for the non-existence of positive eigenvalues, but
since the argument is rather simple we have decided to present it for completeness. The proof
is based on an abstract result obtained in [16]

Finally, in an appendix, we derive an explicit formula for the action of the unitary propagator
e−itH0 . Such a formula, which is well known in the Schrödinger case, was apparently not known
in the relativistic case.

In summary, this work contains various results on the low energy behavior of the spectral and
the scattering theory of relativistic Schrödinger operators. A similar study for the high energy
behavior of these operators would certainly be valuable, and accordingly, a better understanding
of the existence or the absence of positive eigenvalues should also deserve some attention. Only
once these pre-requisites are fulfilled, a rather complete picture of the scattering theory for
relativistic Schrödinger operators would be at hand.

Notations: We introduce the notations which will be used in the present paper.
We shall mainly work in the Hilbert space H := L2(R3) with norm and scalar product

denoted by ‖ · ‖H and 〈·, ·〉H. Our convention is that the scalar product is linear in its first
argument. The weighted Sobolev spaces of order t ∈ R and weight s ∈ R are denoted by Ht

s.
Note that if s or t is equal to 0, we simply omit it. A norm on Ht

s is provided by the expression
∥∥f

∥∥
Ht

s
=

∥∥〈X〉s〈D〉tf∥∥
H,

where X is the position operator and D = −i∇ is its conjugate operator in H. With these
notations, the usual Laplace operator −∆ is equal to D2.
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The notation C0(R3) denotes the set of continuous functions on R3 which vanish at infinity.
The Schwartz space on R3 is denoted by S(R3) while C∞

c (R3) defines the set of smooth functions
on R3 with compact support.

By extension, for any s ∈ R we denote by 〈·, ·〉s,−s the pairing between Hs and H−s, namely
for f ∈ Hs and g ∈ H−s:

〈f, g〉s,−s =
∫

f(x)g(x) dx .

If f belongs to S(R3) and g is a tempered distribution, we shall use the notation 〈f, g〉S,S′ for
their pairing. The usual Fourier transform of f is denoted both by f̂ and Ff and is defined
explicitly on any f ∈ S(R3) by

[Ff ](k) = (2π)−3/2

∫

R3

f(x)e−ix·k dx .

The same notation is used for its standard extension to tempered distributions. As well known,
this map is a unitary operator in H, and its inverse is denoted by F∗.

For a pair of Hilbert spaces G and H, B(G;H) denotes the Banach space of all bounded and
linear operators from G to H, and K(G;H) the subset of compact operators. We set B(H) for
B(H;H) and K(H) for K(H;H).

For complex numbers, we use the standard notation C± := {z ∈ C | ±=z > 0}.

2 0-energy threshold

In this section, we derive various results about the behavior of the resolvent of H0 at 0. We
also provide information about the 0-energy eigenvalue of H and about the absence of 0-energy
resonance for this operator. Finally, we show that if 0 is not an eigenvalue of H, then this
operator can not have an accumulation of positive eigenvalues at 0.

We start by studying an auxiliary operator which will be related to the behavior of the
resolvent of H0 at 0. Following [21, Sec. 2], let us set G0 for the operator defined for f ∈ C∞

c (R3)
by

[G0f ](x) :=
1

2π2

∫

R3

1
|x− y|2 f(y)dy.

Clearly, this corresponds to the operator of convolution by the function

g0 : R3 → R with g0(x) :=
1

2π2
|x|−2. (2.1)

It has been shown in [21, Lem. 5.1] that this operator continuously extends to an element of
B(Hs,H) as well as an element of B(H,H−s) for any s > 3/2. The following statement is a
slight improvement of this result.

Lemma 2.1. For any s > 3/2, the operator G0 belongs to K(Hs,H) and to K(H,H−s).

Proof. Let us set % for 〈·〉−s with s > 3/2. Clearly, one has to show that the operators G0%(X)
and %(X)G0 belong to K(H). We first concentrate on the operator G0%(X). Recall that for any
f ∈ C∞

c (R3), G0%(X)f = g0 ∗ (%(X)f). Now, as shown in [21, Eq. (5.6)], g0 can be rewritten
as the sum of two functions g1 := χb(0,1) g0 and g2 := (1 − χb(0,1)) g0 with g1 ∈ L1(R3) and
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g2 ∈ L2(R3). Here χb(0,1) denotes the characteristic function on the the unit ball in R3. Thus,
one has

g0 ∗ (%(X)f) = g1 ∗ (%(X)f) + g2 ∗ (%(X)f) = ĝ1(D)%(X)f + ĝ2(D)%(X)f

where ĝj is the Fourier transform of gj . Then, since ĝ1 and % belong to C0(R3), the product
ĝ1(D)%(X) defines a compact operator. Similarly, since ĝ2 and % are in L2(R3), ĝ2(D)%(X)
defines a Hilbert-Schmidt operator. Thus, one deduces that the operator G0%(X) is compact.

The similar proof for the operator %(X)G0 is omitted.

It clearly follows from this result that G0 belongs to K(Hs,H−s) for any s > 3/2. In fact,
by real interpolation one also obtains that the operator G0 belongs to K(H(1−θ)s,H−θs) for any
θ ∈ [0, 1]. Indeed, this result follows from [6] together with the identification of the interpolation
spaces S(θ, 2;Hs,H), resp. S(θ, 2;H,H−s), introduced in that reference with H(1−θ)s, resp. H−θs

(see also [2, Sec. 2.8.1] for additional information on real interpolation). In particular, by
choosing s = 2 and θ = 1/2, one deduces that G0 belongs to K(H1,H−1).

Now, it is shown in [5] that the resolvents (H0−λ∓iε)−1 admit limits as ε ↘ 0 in B(Hs,H−s)
for any s > 1/2 and λ > 0. In the next statement, we extend this result up to λ = 0 by imposing
a stronger condition on the parameter s.

Lemma 2.2. For any s > 1 and λ ∈ (0,∞), the operators (H0−λ∓i0)−1 belong to K(Hs,H−s).
Furthermore, the maps (0,∞) 3 λ 7→ (H0 − λ ∓ i0)−1 ∈ K(Hs,H−s) are continuous in norm
and converge to G0 as λ ↘ 0.

Proof. Recall from [21, Eq. (5.3)] that for any λ > 0 the following formal equalities hold:

R0(λ± i0) := (H0 − λ∓ i0)−1 = G0 + K±
λ + Mλ, (2.2)

where the definitions of K±
λ and of Mλ are going to be recalled below. Thus, the present proof

consists first in introducing the rigorous meaning of (2.2) and then in showing that for s > 1 the
operators K±

λ and Mλ belong to K(Hs,H−s), that they are continuous in norm as functions of λ,
and that they converge in norm to 0 as λ ↘ 0. Equivalently, one can show the same properties
for the operators 〈X〉−sK±

λ 〈X〉−s and 〈X〉−sMλ〈X〉−s in K(H).
It has been proved in [21, Eq. (4.14)] that R0(λ ± i0)f = G±

λ f for any f ∈ C∞
c (R3), where

G±
λ are the integral operators defined by

[G±
λ f ](x) :=

∫

R3

g±λ (x− y)f(y)dy

with
g±λ (x) :=

1
2π2|x|2 + k±λ (x) + mλ(x) (2.3)

and

k±λ (x) :=
λ

2π
· e±iλ|x|

|x| ,

mλ(x) :=
λ

2π2|x|
(
sin(λ|x|) ci(λ|x|) + cos(λ|x|) si(λ|x|)), (2.4)
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where ci and si are respectively the cosine integral and the sine integral functions. Note that
these expressions explicitly define each term in (2.2).

Now, let us observe that K±
λ = 2λ(−∆ − λ2 ∓ i0)−1. It is well known (see for example [8])

that the map z 7→ (−∆− z)−1 ∈ B(H−1
s ,H1

−s′) is continuous for z ∈ C± and for any s, s′ > 1/2
with s+s′ > 2. In particular, this resolvent is continuous as z → 0 in C±. Then, by an adequate
choice of s and s′, one infers that the maps R 3 λ 7→ 〈X〉−sK±

λ 〈X〉−s ∈ K(H) are continuous in
norm and that limλ↘0〈X〉−sK±

λ 〈X〉−s = 0 in norm.
For the compactness of the operator 〈X〉−sMλ〈X〉−s for λ > 0, let us set %(·) for 〈·〉−s for

some s > 3/2. By taking the estimate [21, Eq. (5.16)] into account, namely
∣∣ sin(r) ci(r) + cos(r) si(r)

∣∣ ≤ Const. (1 + r)−1, 0 < r < ∞, (2.5)

it is easily seen that the function mλ belongs to L2(R3) and thus the operator %(X)Mλ is a
Hilbert-Schmidt operator. Then, let us observe that the relation mλ(x) = λ2m1(λx) holds for
any λ > 0. One deduces that

‖%(X)Mλ − %(X)Mλ′‖B(H) ≤ ‖%(X)Mλ − %(X)Mλ′‖HS

= ‖%‖L2(R3) ‖mλ −mλ′‖L2(R3)

= ‖%‖L2(R3)

∥∥λ2m1(λ·)− (λ′)2m1

(
λλ′

λ ·
)∥∥

L2(R3)
(2.6)

and that (2.6) vanishes as λ′ → λ because of the continuity of the dilation group in L2(R3).
Finally, from the equality ‖m1(λ·)‖L2(R3) = λ−3/2‖m1‖L2(R3) one infers that

‖%(X)Mλ‖HS = ‖%‖L2(R3) ‖mλ‖L2(R3)

= λ2‖%‖L2(R3) ‖m1(λ·)‖L2(R3)

= λ1/2‖%‖L2(R3) ‖m1‖L2(R3)

which implies that ‖%(X)Mλ‖B(H) ≤ Const. λ1/2.
Clearly, the same estimates and results hold for the operator Mλ%(X). Thus, one has ob-

tained that Mλ ∈ K(Hs,H) ∩ K(H,H−s) for any s > 3/2, and that the norm of this operator
is continuous in λ and vanishes as λ1/2 when λ ↘ 0 in both norms. By a real interpolation
argument, one obtains that the same result holds in K(H1,H−1). Note that the control on the
dependence on λ for the norm in K(H1,H−1) can be obtained by taking [2, Eq. (2.6.2)] into
account.

In Propositions 2.5 and 2.6 below, we show that 0 is generically not an eigenvalue of the
operator H. To this end, we follow the arguments presented in [3] in the context of Weyl-Dirac
operators. For that purpose, we introduce the set L3(R3;R) as a natural class for the potential
V . Note that any measurable and real function V satisfying Condition (1.1) with σ > 1 belongs
to L3(R3;R).

Lemma 2.3. If V ∈ L3(R3;R), then V is H0-bounded with relative bound 0. In particular,
H := H0 + V is a self-adjoint operator in H with domain H1.

The proof of Lemma 2.3 can be mimicked from the proof of [3, Lem. 2].
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Lemma 2.4. If V ∈ L3(R3;R), then (−∆)−1/4V (−∆)−1/4 is a compact operator in H satisfying
∥∥(−∆)−1/4V (−∆)−1/4

∥∥
B(H)

≤ 2−1/3π−2/3 ‖V ‖L3(R3). (2.7)

Proof. We only prove the inequality (2.7), the proof of the compactness can be mimicked directly
from the proof of [3, Lem. 1].

To prove the inequality (2.7), we first borrow the Sobolev inequality for
√−∆ from [13,

Sec. 8.4] or from [18, p.119, Thm. 1], namely that for any f ∈ H:

‖f‖L2(R3) ≥ 21/6π1/3
∥∥(−∆)−1/4f

∥∥
L3(R3)

. (2.8)

Now let f , g ∈ S(R3). We then see that (−∆)−1/4f ∈ H1, hence V (−∆)−1/4f ∈ H by Lemma
2.3 and (−∆)−1/4V (−∆)−1/4f ∈ L3(R3) by (2.8). Therefore, one can appeal to the definition
of the Fourier transform of tempered distributions, and gets

〈
g, (−∆)−1/4V (−∆)−1/4f

〉
S,S′ =

〈Fg, F [(−∆)−1/4V (−∆)−1/4f ]
〉
S,S′

=
∫

R3

|k|−1/2 (Fg)(k)F(
V (−∆)−1/4f

)
(k) dk

=
∫

R3

(
(−∆)−1/4g

)
(x) V (x)

(
(−∆)−1/4f

)
(x) dx. (2.9)

By applying Hölder inequality twice to (2.9), one obtains
∣∣〈g, (−∆)−1/4V (−∆)−1/4f

〉
S,S′

∣∣ ≤ ∥∥(−∆)−1/4g
∥∥

L3(R3)
‖V ‖L3(R3)

∥∥(−∆)−1/4f
∥∥

L3(R3)

≤ 2−1/3π−2/3‖g‖L2(R3) ‖V ‖L3(R3) ‖f‖L2(R3).
(2.10)

In the second inequality of (2.10), we have used (2.8). Since S(R3) is dense in H, we find that
the inequality (2.10) is valid for all g ∈ H. Hence, it follows that (−∆)−1/4V (−∆)−1/4f ∈ H,
and the estimate (2.7) is then obtained by density argument.

For the next statements, we need the notation HV := H0 +V to indicate the dependence on
V . Let us also denote by σp(HV ) the point spectrum of HV , by Ker(HV ) the subset {f ∈ H1 |
HV f = 0} and by Nul(HV ) the dimension of this subset.

Proposition 2.5. Let V be in L3(R3;R). Then 0 6∈ σp(H0 + aV ) for all a ∈ R except for a
discrete subset of R.

Proof. Let us define a B(H)-valued analytic function on C by

Kz := (−∆)−1/4zV (−∆)−1/4 = z(−∆)−1/4V (−∆)−1/4.

By Lemma 2.4, Kz is a compact operator for each z ∈ C. Therefore, one can apply the analytic
Fredholm theorem (see for example [15, p. 201]) and deduce that (I + Kz) is invertible in B(H)
for all z ∈ C except for a discrete subset of C. In particular, one infers that (I + Ka)−1 ∈ B(H)
for all a ∈ R except for a discrete subset of R.

Now, let a ∈ R such that (I + Ka)−1 ∈ B(H), and let us assume that there exists f ∈
Ker(HaV ). Clearly, one has H0f = −aV f . Then, let us set g := (−∆)1/4f ∈ H which satisfies

g = −(−∆)−1/4aV (−∆)−1/4g. (2.11)

It is obvious that (2.11) is equivalent to (I +Ka)g = 0. This implies that g = 0, because (I +Ka)
is invertible in B(H). Since (−∆)1/4 is an injective mapping from H1 to H, it follows that f = 0,
and we can conclude that Nul(HaV ) = 0 whenever (I + Ka) is invertible in B(H).
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Proposition 2.6. The set V := {V ∈ L3(R3;R) | 0 6∈ σp(H0 + V )} contains an open and dense
subset of L3(R3;R).

Proof. Let us now set
KV := (−∆)−1/4V (−∆)−1/4

for any V ∈ L3(R3;R). In the sequel, we show that the set Ṽ defined by

Ṽ :=
{
V ∈ L3(R3;R) | Ker(I + KV ) = {0}}

is open and dense in L3(R3;R). Then, the statement of the Proposition is a consequence of the
inclusion Ṽ ⊂ V which has already been proved in the second half of the previous proof.

Let V ∈ Ṽ. Since KV is a compact operator in H by Lemma 2.4, we observe that (I +
KV ) is invertible in B(H). Now choose a real number δ > 0 small enough such that ‖(I +
KV )−1‖ 2−1/3π−2/3δ < 1. If V ′ ∈ L3(R3;R) satisfies ‖V − V ′‖L3(R3) < δ, then the identity

I + KV ′ = (I + KV )
(
I + (I + KV )−1(KV ′ −KV )

)
,

together with (2.7), enables one to construct the inverse of I +KV ′ by a Neumann series. Hence,
V ′ ∈ Ṽ, and then Ṽ is an open subset of L3(R3;R).

To prove the density of Ṽ, let ε > 0 and V ∈ L3(R3;R) be given. It then follows from the
proof of Proposition 2.5 that (I + KaV ) is invertible in B(H) for all a ∈ R except for a discrete
subset of R. This means that one can choose a ∈ R so that ‖V − aV ‖L3(R3) < ε and that
Ker(I + KaV ) = {0}. Therefore aV ∈ Ṽ, and then Ṽ is dense in L3(R3;R).

We now derive two results about the absence of 0-energy resonance. Before this, we recall
from [20, Thm. 4.6] that if f ∈ H−s for some s < 5/2, then H0f is a tempered distribution.

Lemma 2.7. Assume that V satisfies Condition (1.1) with σ > 3/2. Assume that there exists
f ∈ H−s for some s ∈ (

0, min{σ − 3/2, 5/2}) satisfying Hf = 0 in the sense of distributions.
Then f ∈ H1, i.e. f is a 0-energy eigenfunction.

Proof. By assumption, the equality H0f = −V f holds in the sense of distributions. Since the
r.h.s. belongs to Hσ−s with σ − s > 3/2, this already implies that H0f ∈ H. In addition, it
follows from the regularity properties of G0 that G0V f ∈ H, see Lemma 2.1 and the paragraph
before it. Now, let g ∈ S(R3) and observe that

−〈G0g, V f〉H = 〈G0g,H0f〉H = 〈FG0g,FH0f〉H = 〈|X|−1Fg, |X|Ff〉H = 〈g, f〉H.

Consequently, −〈g,G0V f〉H = 〈g, f〉H, and by density, it follows that −G0V f = f in H. In
conclusion, both f and H0f belong to H. Since the domain of H0 is H1, it follows that f ∈
H1.

We remark that 0-energy resonances are often understood as states behaving at infinity in a
prescribed way, as described by (2.12) below (cf. [14, p. 123505-5], [17, Sec. 6], [23, Sec. 1]). We
can also show the absence of such 0-energy resonances if σ > 2.

Lemma 2.8. Assume that V satisfies Condition (1.1) with σ > 2. Suppose also that there exist
f ∈ L2

loc(R3) and c1, c2 ∈ L∞(S2) such that Hf = 0 in the sense of distributions and that

f(x) = c1(ω)|x|−1 + c2(ω)|x|−2 + o(|x|−2), (2.12)

where the convergence is uniform on ω ∈ S2 as |x| → ∞. Then c1 = 0 and f ∈ H1.
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Proof. It is easy to see that there exist two constants C > 0 and R > 0 such that |f(x)| ≤ C|x|−1

for all x with |x| ≥ R. This fact, together with the assumption, implies that f ∈ H−s for any
s > 1/2. Since σ − 3/2 > 1/2, it follows from Lemma 2.7 that f ∈ H1.

We prove that c1 = 0 by contradiction. To this end, we suppose that c1 6= 0. Then there
exist a constant d > 0 and a measurable subset Ω of S2 such that |Ω| > 0 and |c1(ω)| ≥ d on Ω.
This easily implies that the first term on the right hand side of (2.12) is not square-integrable on
the set |x| ≥ R, while the second and third terms are square-integrable on the same set. Since
f ∈ H, this is a contradiction.

We conclude this section with a theorem, which asserts that if 0 is not an eigenvalue of H,
then 0 cannot be an accumulation point of positive eigenvalues of H.

Theorem 2.9. Assume that V satisfies Condition (1.1) with σ > 5/2, and that 0 6∈ σp(H).
Then there exists a constant λ0 > 0 such that [0, λ0) ∩ σp(H) = ∅.

To prove this assertion, we need two preliminary lemmas.

Lemma 2.10. Assume that V satisfies Condition (1.1) with σ > 5/2, and that 0 6∈ σp(H).
Then, the operator I + V G0 is invertible in B(Hs) for any s ∈ (1, σ/2].

Proof. In view of Lemma 2.2, V G0 is a compact operator in Hs for any s ∈ (1, σ/2]. Therefore,
it is sufficient to show that −1 is not an eigenvalue of V G0.

Let f ∈ Hs satisfy V G0f = −f . Here we may assume, without loss of generality, that s
is sufficiently close to 1. Putting g := G0f , we find that g ∈ H−s and H0g = f in the sense
of distributions. It follows that Hg = (H0 + V )g = 0 in the sense of distributions. To apply
Lemma 2.7, we note that σ − 3/2 > 1, hence that g ∈ H−s for some s ∈ (1,min{σ − 3/2, 5/2}).
Thus we can conclude from Lemma 2.7 that g ∈ H1. This implies that g = 0, because 0 6∈ σp(H)
by assumption of the lemma. Finally, we see that f = −V g = 0.

Lemma 2.11. Assume that V satisfies Condition (1.1) with σ > 1. Let λ > 0 and let f ∈ H1

satisfy Hf = λf . Then R0(λ± i0)V f = −f .

Proof. Let us set g := V f ∈ Hs for any s ≤ σ, and note that g = −(H0 − λ)f . Then for any
ε > 0, we see that

R0(λ± iε)g = −F∗
[ |X| − λ

|X| − λ∓ iε

]
Ff =: −fε. (2.13)

As was shown in [5], R0(λ ± iε)g → R0(λ ± i0)g in H−s as ε ↘ 0. On the other hand, the
Lebesgue dominated convergence theorem shows that fε → f in H as ε ↘ 0. Combining these
two facts with (2.13), we see that R0(λ±i0)g = −f , which gives the conclusion of the lemma.

Proof of Theorem 2.9. Let us first recall that in any unital Banach algebra, the set of invertible
elements is an open set. Then, for each fixed s ∈ (1, σ/2], it follows from Lemmas 2.2 and
2.10 that there exists a positive constant λ0 such that for each λ ∈ [0, λ0), the operators
I + V R0(λ± i0) are invertible in B(Hs).

To prove the proposition, let λ ∈ [0, λ0) and suppose that f ∈ H1 satisfies Hf = λf . Then by
Lemma 2.11, we find that R0(λ±i0)g = −f with g := V f . This means that g = −V R0(λ±i0)g,
or in other words that

(
I + V R0(λ ± i0)

)
g = 0. Since g ∈ Hs, it follows from the previous

paragraph that g = 0, and then f = −R0(λ±i0)g = 0. We have thus shown that λ 6∈ σp(H).
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3 Stationary expression for the wave operators

In this section we derive stationary expressions for the wave operators which were already
announced in [19]. Since the limiting absorption principle and the generalized eigenfunction
expansions for the operator H was established in [21], we can follow the line of [11, Sec. 2],
where the discussions were made in an abstract setting, and the line of [12, Chapt. 5], where the
discussions were given for the three-dimensional Schrödinger operator.

For z ∈ C \ R, let us recall that R0(z) and R(z) are used respectively for the resolvents
(H0 − z)−1 and (H − z)−1. The notation E0(·) is used for the spectral measure of H0. We also
recall that the following limiting absorption principle has been proved in [5], namely for s > 1/2
and λ ∈ (0,∞) \ σp(H) the operators R(λ ± i0) := limε↘0 R(λ ± iε) belong to B(Hs,H−s

)
.

Note that the condition σ > 1 in (1.1) has been tacitly assumed. As a consequence, the wave
operators W± defined by the strong limits

W± := s− lim
t→±∞ eitHe−itH0

exist and are asymptotically complete. In addition, these expressions are equal to the ones
obtained by the usual stationary approach, see for example [22, Thm. 5.3.6].

Lemma 3.1. Let s ∈ (1/2, σ − 1/2) and assume that f , g belong to Hs with E0([a, b])g = g for
some [a, b] ⊂ (0,∞) \ σp(H). Then one has

〈f,W±g〉H =
∫ b

a

〈{1− V R(λ± i0)}f, E′
0(λ)g

〉
s,−s

dλ , (3.1)

where E′
0(λ) := 1

2πi

(
R0(λ + i0)−R0(λ− i0)

) ∈ B(Hs,H−s

)
.

Note that it follows from the hypothesis on g that E0(∆)g = 0 for any Borel set ∆ ⊂ J :=
R\[a, b], and that E′

0(λ)g = 0 for all λ ∈ J . Thus, the usual integral over R reduces to an integral
over the finite interval [a, b]. The following proof is standard, but we recall it for completeness.

Proof. Let ε > 0 and f, g as in the statement. By Parseval’s identity and the equation of the
resolvent R(z) = R0(z){1− V R(z)}, one has:

∫ ∞

0

〈
e−εte∓iHtf, e−εte∓iH0tg

〉
H dt =

1
2π

∫ ∞

−∞

〈
R(λ± iε)f, R0(λ± iε)g

〉
H dλ (3.2)

=
1
2ε

∫ ∞

−∞

〈{1− V R(λ± iε)}f, δε(H0 − λ)g
〉
H dλ, (3.3)

where
δε(H0 − λ) =

ε

π
R0(λ± iε)∗R0(λ± iε) =

1
2πi

(
R0(λ + iε)−R0(λ− iε)

)
.

Furthermore, it is known that since the wave operators exist they are also obtained by the
Abelian limit 〈

f, W±g
〉
H = lim

ε↘0
2ε

∫ ∞

0

〈
e−εte∓iHtf, e−εte∓iH0tg

〉
H dt. (3.4)

Thus, by combining (3.3) and (3.4), one gets

〈
f,W±g

〉
H = lim

ε↘0

∫ ∞

−∞

〈{1− V R(λ± iε)}f, δε(H0 − λ)g
〉
H dλ. (3.5)
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Now, it follows from the limiting absorption principle recalled before the statement of the
lemma that for each λ ∈ (0,∞) \ σp(H) one has

lim
ε↘0

〈{1− V R(λ± iε)}f, δε(H0 − λ)g
〉
H =

〈{1− V R(λ± i0)}f, E′
0(λ)g

〉
s,−s

. (3.6)

Thus, the statement of the lemma is obtained once the permutation of the integral and the limit
in (3.5) is justified. For that purpose, recall that

ε

π

〈
R(λ± iε)f,R0(λ± iε)g

〉
H =

〈{1− V R(λ± iε)}f, δε(H0 − λ)g
〉
H. (3.7)

Then (3.6) and (3.7) enable us to apply [22, Lem. 5.2.2] which justifies the permutation and
thus leads directly to the statement of the lemma. Note that the change of the two endpoints
in the integral is also a consequence of that abstract result.

In the next lemma we derive an explicit expression for the operator E′
0(λ) for any λ ∈ (0,∞).

Before this, let us simply recall that if f ∈ Hs with s > 3/2 then f belongs to L1(R3) and thus
its Fourier transform f̂ belongs to C0(R3).

Lemma 3.2. For any f, g ∈ Hs with s > 3/2 and for any λ > 0 one has
〈
f, E′

0(λ)g
〉
s,−s

= λ2
〈
γ(λ)f̂ , γ(λ)ĝ

〉
L2(S2)

(3.8)

with γ(λ) the trace operator onto the sphere
{
k ∈ R3 | |k| = λ

}
, i.e.

(
γ(λ)f̂

)
(ω) := f̂(λω) for

any ω ∈ S2.

Proof. For this proof, we use the integral kernels g±λ (x−y) of the extended resolvents R0(λ± i0)
obtained in [21, Sect. 4] and already recalled in (2.3). Thus, for f, g as in the statement and
x ∈ R3 one has

[(
R0(λ + i0)−R0(λ− i0)

)
g
]
(x) =

λ

2π

∫

R3

eiλ|x−y| − e−iλ|x−y|

|x− y| g(y) dy

=
λi

π

∫

R3

sin(λ|x− y|)
|x− y| g(y) dy . (3.9)

It then follows from the definition of E′
0(λ) and from (3.9) that

〈
f,E′

0(λ)g
〉
s,−s

=
1

2πi

〈
f,

(
R0(λ + i0)−R0(λ− i0)

)
g
〉
s,−s

=
λ

2π2

∫∫

R6

f(x)
sin(λ|x− y|)
|x− y| g(y) dxdy. (3.10)

By appealing to the formula ∫

S2
e−iλω·x dω =

4π sin(λ|x|)
λ|x|

and by the change of order of integration (valid because of our assumptions on f and g) we get
∫∫

R6

f(x)
sin(λ|x− y|)
|x− y| g(y) dxdy =

λ

4π

∫

S2

{∫

R3

e−iλω·xf(x) dx
}{∫

R3

e−iλω·yg(y) dy
}

dω

= 2π2λ

∫

S2
f̂(λω) ĝ(λω) dω

= 2π2λ
〈
γ(λ)f̂ , γ(λ)ĝ)

〉
L2(S2)

.

By combining these equalities with (3.10) one directly obtains (3.8).
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Let us now define the generalized Fourier transforms by the relations

F± := FW ∗
± . (3.11)

In the next lemma, we derive standard and more explicit formulas for F±.

Lemma 3.3. Assume that σ > 2 and let s ∈ (3/2, σ − 1/2). Let f, g ∈ Hs with E0([a, b])g = g
for some [a, b] ⊂ (0,∞) \ σp(H). Then

〈F±f, Fg
〉
H =

∫

R3

[F{1− V R(|k| ± i0)}f]
(k)F [g](k) dk. (3.12)

Proof. It follows successively from (3.11), (3.1) and (3.8) that

〈F±f,Fg
〉
H =

∫ b

a

〈{1− V R(λ± i0)}f,E′
0(λ)g

〉
s,−s

dλ

=
∫ b

a
λ2

{∫

S2

[F{1− V R(λ± i0)}f]
(λω)F [g](λω) dω

}
dλ.

By the change of the variables k := λω, one obtains the result.

For fixed k ∈ R3 let us now define ϕ0(·, k) by ϕ0(x, k) := eik·x. Clearly, ϕ0(·, k) ∈ H−s for
any s > 3/2. Since the subset of all elements g satisfying the condition of the previous lemma
is dense in H, it follows from (3.12) that for f ∈ Hs and almost every k one has

[F±f ](k) =
[F(

1− V R(|k| ± i0)
)
f
]
(k)

= (2π)−3/2
〈{1− V R(|k| ± i0)}f, ϕ0(·, k)

〉
s,−s

= (2π)−3/2
〈
f, {1−R(|k| ∓ i0)V }ϕ0(·, k)

〉
s,−s

= (2π)−3/2

∫

R3

ϕ±(x, k)f(x) dx,

where we have used the definition of the generalized eigenfunctions ϕ±(·, k) introduced in [21,
Eq. (8.5)]:

ϕ±(·, k) := {1−R(|k| ∓ i0)V }ϕ0(·, k) .

Now, it follows from (3.11) that F∗± = W±F∗, or equivalently W± = F∗±F . Thus for f , g as
in the previous lemma one infers that

〈
f, W±g

〉
H =

〈F±f,Fg
〉
H

=
∫

R3

{
(2π)−3/2

∫

R3

ϕ±(x, k)f(x) dx
}

ĝ(k) dk

=
∫

R3

{
(2π)−3/2

∫

R3

ϕ±(x, k)ĝ(k) dk
}

f(x) dx.

Note that for the interchange of the integrals, one has used that ϕ± satisfy the following bound
[21, Thm. 9.1]: for any compact set K ⊂ (0,∞) \ σp(H) there exists c = c(K) such that

sup
x∈R

sup
|k|∈K

|ϕ±(x, k)| < c .

By collecting these various results one has thus proved :

12



Proposition 3.4. Assume that σ > 2 and let s ∈ (3/2, σ−1/2). Let f, g ∈ Hs with E0([a, b])g =
g for some [a, b] ⊂ (0,∞) \ σp(H). Then

〈
f, W±g

〉
H =

〈
f, (2π)−3/2

∫

R3

ϕ±(·, k)ĝ(k) dk
〉
s,−s

.

4 Asymptotic limit for the wave operators

In this section we study the behavior of the wave operators under the dilation group. A related
study for Schrödinger operators in R3 is contained in [1, Sec. I]. As explained in the Introduction
and as it will appear in the sequel, this study is related to the 0-energy properties of H.

So, let us recall the action of the dilation group {Uτ}τ∈R on any f ∈ H, namely [Uτf ](x) =
e3τ/2f(eτx) for any x ∈ R3. Then, the following equalities hold for any fixed τ ∈ R and any
f ∈ D(H0):

U−τH0Uτf = eτH0f and U−τV Uτ = Vτ

with Vτ (x) = V (e−τx) for all x ∈ R3. As a consequence of these relations one infers from the
time-dependent expression for the wave operators the important relations

U−τ W±(H0 + V, H0) Uτ = W±(H0 + e−τVτ ,H0). (4.1)

For clarity, the dependence of W± on both self-adjoint operators used to define them is men-
tioned. Our aim in this section is to study the limits of the corresponding stationary expressions
as τ → −∞.

For that purpose, observe that for z ∈ C \ R one has U−τR0(z)Uτ = e−τR0(e−τz). Further-
more, by setting

vτ := |V (e−τ ·)|1/2 and uτ := |V (e−τ ·)|1/2 sgn
(
V (e−τ ·)),

and by considering these functions as operators of multiplication (i.e. vτ ≡ vτ (X) and similarly
for uτ ) one also obtains

(
1 + e−τVτR0(z)

)−1
Vτ = vτ

(
1 + e−τuτR0(z)vτ

)−1
uτ

= U−τ v0

(
1 + u0R0(eτz)v0

)−1
u0 Uτ .

Thus, by the resolvent equation it follows that
(
H0 + e−τVτ − z

)−1

= R0(z)− e−τR0(z)
(
1 + e−τVτR0(z)

)−1
VτR0(z)

= R0(z)− e−τR0(z)U−τ v0

(
1 + u0R0(eτz)v0

)−1
u0 UτR0(z). (4.2)

Now, let us come back to the setting of Lemma 3.1 but for the perturbation e−τVτ instead
of V . We state in the next lemma alternative stationary expressions for the wave operators. In
the statement, the parameter τ ∈ R is fixed.
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Lemma 4.1. Let σ > 2 in Condition (1.1), s > 1/2 and assume that f, g belong to Hs with
E0([a, b])g = g for some [a, b] ⊂ (0,∞) with [a, b] ∩ σp(H0 + e−τVτ ) = ∅. Then one has

〈
f,

(
W±(H0 + e−τVτ ,H0)− 1

)
g
〉
H

= −e−τ

∫ b

a

〈
B(eτλ± i0)u0 UτR0(λ± i0)f, v0UτE

′
0(λ)g

〉
H dλ, (4.3)

where B(z) :=
(
1 + u0R0(z)v0

)−1.

Proof. Let ε > 0 and f, g as in the statement. It follows from (3.2), (3.4) and (4.2) that
〈
f,

(
W±(H0 + e−τVτ , H0)− 1

)
g
〉
H

= −e−τ lim
ε↘0

∫ ∞

−∞

〈
U−τ v0B

(
eτ (λ± iε)

)
u0 UτR0(λ± iε)f, δε(H0 − λ)g

〉
H dλ

= −e−τ

∫ b

a
lim
ε↘0

〈
B

(
eτ (λ± iε)

)
u0 UτR0(λ± iε)f, v0Uτδε(H0 − λ)g

〉
H dλ.

Note that the permutation of the integral and of the limit as well as the change in the endpoints
of the integral are a consequence of [22, Lem. 5.2.2], as already mentioned in the proof of Lemma
3.1. Furthermore, since Uτ leaves H−s invariant, it follows from the limiting absorption principle
that both limits s− limε↘0 u0UτR0(λ± iε)f and s− limε↘0 v0Uτδε(H0 − λ)g exist and belong
to H.

Finally, we show that the limits limε↘0 B
(
eτ (λ± iε)

)
exist in norm for any λ ∈ [a, b], which

leads directly to the statement of the lemma. For that purpose, it is sufficient to prove that
−1 6∈ σp(u0R0(e−τλ ± i0)v0) if λ 6∈ σp(H0 + e−τVτ ). To this end, we suppose that −f =
u0R0(e−τλ ± i0)v0f , f ∈ H, and set f̃ := v0f . Then we find that f̃ ∈ Hs for any s ∈ (1/2, 1),
and that −f̃ = V R0(e−τλ± i0)f̃ . With h± := R0(e−τλ± i0)f̃ , we see by [21, Thm. 6.5(ii)] that
h± satisfy the equation (H0 − eτλ)h± = f̃ in the sense of distributions and that h+ (resp. h−)
obeys the outgoing (resp. incoming) radiation condition. Since −f̃ = V h±, one can deduce that
h+ (resp. h−) satisfies the equation (H0 +V − eτλ)h± = 0 in the sense of distributions with the
outgoing (resp. incoming) radiation condition. Since λ 6∈ σp(H0 + e−τVτ ) and since

σp(H0 + e−τVτ ) = e−τσp(H0 + V ), (4.4)

[21, Thm. 7.2(i)] leads the fact that h± = 0, which immediately yields f̃ = 0 and f =
−u0R0(e−τλ± i0)f̃ = 0. Hence we can conclude that −1 6∈ σp(u0R0(e−τλ± i0)v0).

Thus, we are now left in understanding separately the limits as τ → −∞ of each factor in
(4.3). The study of two terms relies on the following two lemmas. These results are certainly
well known, but we could not find an explicit reference for them.

Lemma 4.2. Let u, g ∈ L2(R3) and ε ≥ 0. Let Tε be the operator defined by the kernel
tε(x, y) := u(x)g(εx− y) for almost every x, y ∈ R3. Then Tε is a Hilbert-Schmidt operator and
converges to T0 in the Hilbert-Schmidt norm as ε ↘ 0.

Proof. Since

‖Tε‖2
HS =

∫

R3

∫

R3

|u(x)|2 |g(εx− y)|2dxdy = ‖u‖2
L2(R3) ‖g‖2

L2(R3),
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it clearly follows that Tε is a Hilbert-Schmidt operator for any ε ≥ 0.
For the convergence, let K ⊂ R3 be a compact set and let K⊥ denote its complement. Then

one has

‖Tε − T0‖2
HS =

∫

R3

∫

R3

|u(x)|2 |g(εx− y)− g(−y)|2dxdy

≤ ‖u‖2
L2(K) sup

x∈K
‖g(· − εx)− g(·)‖2

L2(R3) + 4‖u‖2
L2(K⊥) ‖g‖2

L2(R3). (4.5)

By choosing a suitable set K and then by taking the continuity of translations in L2(R3) into
account, both terms in (4.5) can be made arbitrarily small for ε small enough. This proves the
statement.

Lemma 4.3. Let u ∈ L2(R3), g ∈ L1(R3) and ε > 0. Let Tε be the operator defined by the
kernel tε(x, y) := u(x)g(εx− y) for almost every x, y ∈ R3. Then Tε maps L∞(R3) into L2(R3).
Furthermore, for each f ∈ L∞(R3), Tεf strongly converges to u(·) ∫

R3 g(−y)f(y)dy in L2(R3)
as ε ↘ 0.

Proof. For f ∈ L∞(R3) observe first that

‖Tεf‖2
L2(R3) =

∫

R3

∣∣∣u(x)
∫

R3

g(εx− y)f(y)dy
∣∣∣
2
dx

≤
∫

R3

|u(x)|2
[ ∫

R3

|g(εx− y)f(y)|dy
]2

dx

≤ ‖u‖2
L2(R3) ‖f‖2

L∞(R3) ‖g‖2
L1(R3).

For the convergence, let K ⊂ R3 be a compact set and let K⊥ denote its complement. Then
one has

∥∥Tεf − u(·)
∫

R3

g(−y)f(y)dy
∥∥2

L2(R3)
=

∫

R3

|u(x)|2
∣∣∣
∫

R3

(
g(εx− y)− g(−y)

)
f(y)dy

∣∣∣
2
dx

≤ ‖u‖2
L2(K) ‖f‖2

L∞ sup
x∈K

‖g(· − εx)− g(·)‖2
L1(R3)

+ 4‖u‖2
L2(K⊥) ‖f‖2

L∞(R3) ‖g‖2
L1(R3). (4.6)

By choosing a suitable set K and then by taking the continuity of translations in L1(R3) into
account, both terms in (4.6) can be made arbitrarily small for ε small enough. This proves the
statement.

By collecting these results, we can now analyse part of the terms in (4.3). This study is
contained in the next lemma.

Lemma 4.4. Let us assume that σ > 3 in Condition (1.1), that s > 3/2 and that λ ∈ (0,∞).

(a) For any f ∈ Hs ∩ L∞(R3), the strong limits of e−3τ/2u0UτR0(λ ± i0)f exist in H as
τ → −∞.

(b) For any g ∈ Hs, the strong limit of e−3τ/2v0UτE
′
0(λ)g exists in H as τ → −∞.
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Proof. (a) From the definition of Uτ and the explicit formulas (2.1), (2.2) and (2.3), it follows
that for almost every x ∈ R3:

[
e−3τ/2u0UτR0(λ± i0)f

]
(x)

= u0(x)
∫

R3

g0(eτx− y)f(y)dy + u0(x)
∫

R3

mλ(eτx− y)f(y)dy

+ u0(x)
∫

R3

k±λ (eτx− y)f(y)dy (4.7)

In order to apply Lemmas 4.2 and 4.3 below, we need the assumption that σ > 3, which implies
that u0 ∈ L2(R3).

Since g0 = g1 + g2 with gj ∈ Lj(R3) (as already used in the proof of Lemma 2.1) and since
mλ ∈ L2(R3) by (2.4) and (2.5), it follows from Lemmas 4.2 and 4.3 that the first two terms on
the r.h.s. of (4.7) admit a strong limit as τ → −∞, or more precisely:

s− lim
τ→−∞

[
u0(·)

∫

R3

g0(eτ· −y)f(y)dy + u0(·)
∫

R3

mλ(eτ· −y)f(y)dy
]

= u0(·)
∫

R3

(
g0(−y) + mλ(−y)

)
f(y)dy.

Note that the r.h.s. is well defined since f ∈ L2(R3) ∩ L∞(R3).
For the third term in (4.7), we decompose k±λ into two terms:

k±λ = k±λ,1 + k±λ,2 := χb(0,1) k
±
λ + (1− χb(0,1))k±λ

in the same way as g0 in Lemma 2.1. Observe that k±λ,1 ∈ L2(R3) and k±λ,2 ∈ L∞(R3). By
Lemma 4.2 the operators corresponding to the kernel u0(x)k±λ,1(e

τx−y) are Hilbert-Schmidt and
converge in the Hilbert-Schmidt norm to the operators with kernel u0(x)k±λ,1(−y) as τ → −∞.
Furthermore, since f ∈ L1(R3) and since k±λ,2 ∈ L∞(R3), Lemma 4.3 shows that

s− lim
τ→−∞u0(·)

∫

R3

k±λ,2(e
τ· −y)f(y)dy = s− lim

τ→−∞u0(·)
∫

R3

f(eτ· −y)k±λ,2(y)dy

= u0(·)
∫

R3

f(−y)k±λ,2(y)dy

= u0(·)
∫

R3

k±λ,2(−y)f(y)dy.

(b) It follows from (3.9) that for almost every x ∈ R3

[
e−3τ/2v0 UτE

′
0(λ)g

]
(x) =

λ

2π2
v0(x)

∫

R3

sin(λ|eτx− y|)
|eτx− y| g(y)dy.

Since g ∈ L1(R3) and the map R3 3 x 7→ sin(|x|)
|x| ∈ R belong to L∞(R3), one proves as above

that
s− lim

τ→−∞ v0(·)
∫

R3

sin(λ|eτ· −y|)
|eτ· −y| g(y)dy = v0(·)

∫

R3

sin(λ|y|)
|y| g(y)dy.
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We are now left with the study of the asymptotic behaviors of the operators B(eτλ± i0) in
(4.3) as τ → −∞. In order to deal with the assumption [a, b] ∩ σp(H0 + e−τVτ ) = ∅ of Lemma
4.1, let us observe that the equality (4.4) implies that if λ0 is a positive eigenvalue of H0 + V ,
then e−τλ0 is a positive eigenvalue of H0 + e−τVτ . Now, by choosing τ close enough to −∞,
the value e−τλ0 can be made arbitrarily large. Thus, one infers that with the following implicit
condition, the mentioned assumption becomes manageable.

Assumption 4.5. The value 0 is not an accumulation point of positive eigenvalues for the
operator H0 + V .

Obviously, this assumption is rather natural and a large class of perturbations V should
satisfy it. In Section 6 we provide sufficient conditions such that the spectrum of H on R+ is
purely absolutely continuous. However, the absence of accumulation of positive eigenvalues at
0 is certainly verified under weaker assumptions. Now, note that Assumption 4.5 together with
(4.4) have an important consequence: for any [a, b] ⊂ (0,∞), there exists τab ∈ R such that for
any τ ≤ τab, one has

σp(H0 + e−τVτ ) ∩ [a, b] = e−τσp(H0 + V ) ∩ [a, b] = ∅. (4.8)

In fact, for any τ ≤ τab the even stronger statement σp(H0 + e−τVτ ) ∩ (0, b] = ∅ holds.
For the time being, we shall impose an additional condition (Assumption 4.6 below) on

the behavior of the 0-energy threshold. It is not clear yet if this condition is necessary or
even if it is always satisfied (see also Remark 4.9 after Proposition 4.8). So, let us assume
that σ > 3 in Condition (1.1) and denote by G0 the finite dimensional subspace of H spanned
by the eigenvectors of the compact operator u0G0v0 associated with the eigenvalue −1. The
orthogonal projection on this subspace is simply denoted by P . In the Schrödinger case, this
space corresponds to the set of 0-energy eigenvectors and 0-energy resonances. Our additional
condition corresponds to the invertibility of a certain operator when restricted on G0. More
precisely, let Q0 be the operator whose kernel is 1

4π |x− y|−1. Clearly, this operator corresponds
to the resolvent of the Laplace operator at 0-energy.

Assumption 4.6. The operator Pu0Q0v0

∣∣
G0

: G0 → G0 is invertible.

Before proving the main result about the operator B(eτλ ± i0) in (4.3), let us show that
Assumptions 4.5 and 4.6 are generically satisfied. Indeed, we shall prove in Lemma 4.7 below
that the condition 0 6∈ σp(H) implies that both Assumptions 4.5 and 4.6 hold. Then, since the
operator H rarely has the 0-energy eigenvalue (see Propositions 2.5 and 2.6 in Section 2), it
follows that the mentioned assumptions are almost always satisfied.

Lemma 4.7. Let σ > 3 in Condition (1.1) and suppose that 0 6∈ σp(H). Then both Assumptions
4.5 and 4.6 hold.

Proof. Recall first from Theorem 2.9 that Assumption 4.5 is satisfied once 0 6∈ σp(H). Then,
we prove below that −1 6∈ σp(u0G0v0), which immediately implies Assumption 4.6 since the
subspace G0 is then trivial.

So, let f ∈ H satisfy −f = u0G0v0f . Putting g := v0f , we find that g ∈ Hs for any
s ∈ (0, σ/2] and −g = V G0g. Now we define h := G0g. It follows from Lemma 2.2 that
h ∈ H−s for any s ∈ (1, σ/2]. Since G0 = 1/H0, one can show that H0h = g in the sense of
distributions. Thus we see that h satisfies (H0 + V )h = 0 in the sense of distributions. Lemma
2.7 yields that h ∈ H1, hence that Hf = 0, which, together with the assumption 0 6∈ σp(H),
implies that f = 0. Thus we have shown that −1 6∈ σp(u0G0v0).
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In addition to Lemma 4.7, we would like to mention that both Assumptions 4.5 and 4.6 are
verified for H = H0 + aV if V satisfies Condition (1.1) with σ > 5/2 and a ∈ R is small enough.
Indeed, this easily follows from Proposition 2.5, Theorem 2.9, and from the smallness of the
expression u0G0v0.

Proposition 4.8. Let σ > 3 in Condition (1.1) and suppose that Assumptions 4.5 and 4.6
hold. Let [a, b] ⊂ (0,∞) and λ ∈ [a, b]. Then, there exists τab ∈ R such that for any τ ≤ τab, the
operators B(eτλ± i0) belong to B(H) and the norm limits

lim
τ→−∞ eτB(eτλ± i0) ∈ B(H) (4.9)

exist.

Proof. It was already shown in the proof of Lemma 4.1 that 1 + u0R0(eτλ± i0)v0 are invertible
in B(H) if λ 6∈ σp(H0 +e−τVτ ). Furthermore, it follows from the above considerations that there
exists τab such that for τ ≤ τab one has σp(H0 + e−τVτ ) ∩ (0, b] = ∅, which clearly prevents λ
from being an eigenvalue of H0 + e−τVτ . Thus, 1 + u0R0(eτλ± i0)v0 are invertible in B(H) and
the inverses are by definition the operators B(eτλ± i0).

Now, we already know from Lemma 2.2 that u0R0(eτλ± i0)v0 converge in norm to u0G0v0

as τ → −∞. However, depending if −1 belongs to the spectrum of u0G0v0 or not, the behaviors
of B(eτλ ± i0) as τ → −∞ change drastically. Clearly, if −1 6∈ σ(u0G0v0), then B(eτλ ± i0)
converge in norm to (1 + u0G0v0)−1 as τ → −∞, and in that case the limits in (4.9) are equal
to 0. But if −1 ∈ σ(u0G0v0), a more refined work is necessary. The rest of the proof is divided
into several steps.

(a) We first derive better approximations for the operators K±
eτ λ and Meτ λ. For simplicity,

let us set ε := eτλ and observe that

k±ε (x) =
ε

2π

1
|x| +

ε

2π

e±iε|x| − 1
|x| =

ε

2π

1
|x| ± i

ε2

2π

∫ 1

0
e±isε|x|ds.

It follows that

[u0K
±
ε v0](x, y) =

ε

2π
u0(x)

1
|x− y|v0(y)± i

ε2

2π
u0(x)

[ ∫ 1

0
e±isε|x−y|ds

]
v0(y).

By setting Q0 for the operator with kernel 1
4π |x− y|−1 the previous equality reads

u0K
±
ε v0 = 2εu0Q0v0 ± ε2 B±

ε

where B±
ε are Hilbert-Schmidt operators with Hilbert-Schmidt norms bounded by a constant

independent of ε.
For the operator Mε, let us observe that

mε(x) = − ε

4π|x| +
ε2

2π2
· 1
ε|x|

(
sin(ε|x|) ci(ε|x|) + cos(ε|x|) si(ε|x|) +

π

2
)
.

Note now that the function ρ 7→ 1
ρ

(
cos(ρ) si(ρ) + π

2

)
is bounded on (0,∞). On the other hand,

the function ρ 7→ 1
ρ sin(ρ) ci(ρ) is bounded on (1,∞) but only the map ρ 7→ 1

ρ ln ρ sin(ρ) ci(ρ) is
bounded on (0, 1). It follows that

mε(x) = − ε

4π|x| + ε2 `(ε|x|) + ε2 ln(ε|x|)n(ε|x|) (4.10)
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for two bounded and continuous functions `, n on [0,∞) and with the support of n contained
in [0, 1). Let Dε denote the operator with kernel u0(x) ln(ε|x − y|) n(ε|x − y|)v0(y). We then
observe that for any γ > 0

‖Dε‖2
HS =

∫

R6

∣∣u0(x) ln(ε|x− y|)n(ε|x− y|)v0(y)
∣∣2dxdy

≤ Const. ε−2γ

∫

R6

∣∣∣u0(x)
1

|x− y|γ v0(y)
∣∣∣
2
dxdy

≤ Const. ε−2γ

∫

R6

〈x〉−σ 1
|x− y|2γ

〈y〉−σdxdy

≤ ε−2γ Const(γ, σ).

For the last equality, one has used estimates for convolution operator obtained in [21, Lem. 11.1].
By collecting these results and by fixing γ = 1/2 one has thus obtained that

u0R0(ε± i0)v0 = u0(G0 + K±
ε + Mε)v0

= u0G0v0 + εu0Q0v0 + ε3/2Dε + ε2C±
ε

(4.11)

where C±
ε and Dε are Hilbert-Schmidt operators with Hilbert-Schmidt norms bounded by con-

stants independent of ε.
(b) For the second step of the proof, we can rely on results obtained in [1, Sec. I.1.2] for the

Schrödinger case. Indeed, the single difference between both contexts is the definition of the
operator G0, but the rest of the analysis can be mimicked. Then, based on [10, Chap. III.6.5],
it has been proved in [1, Sec. I.1.2] that for any z ∈ C \ {0} with |z| small enough, the following
norm convergent expansion holds:

(1 + u0G0v0 + z)−1 = z−1P +
∞∑

m=0

(−z)mTm+1, (4.12)

where P is the projection onto the eigenspace of u0G0v0 associated with the eigenvalue −1 and
T ∈ B(H).

(c) Let us now come to the main part of the proof. By taking the estimates (4.11) and (4.12)
into account, observe that for τ ≤ τab one has

eτB(eτλ± i0)

= eτ
(
1 + u0R0(eτλ± i0)v0

)−1

= eτ
(
1 + u0G0v0 + eτλu0Q0v0 + o(eτ )

)−1

= eτ
((

1 + eτ + u0G0v0

)[
1 + eτ

(
1 + eτ + u0G0v0

)−1(
λu0Q0v0 − 1 + o(1)

)])−1

=
(
1 +

(
P + O(eτ )

)(
λu0Q0v0 − 1 + o(1)

))−1(
P + O(eτ )

)

=
(
1 + P (λu0Q0v0 − 1) + o(1)

)−1(
P + O(eτ )

)
,

where the symbols o(ejτ ) and O(ejτ ) mean respectively that limτ→−∞ e−jτ‖o(ejτ )‖B(H) = 0 and
e−jτ‖O(ejτ )‖B(H) ∈ L∞(−∞, τab) for j ∈ {0, 1}. Thus, if the operator 1 + P (λu0Q0v0 − 1)
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is invertible with a bounded inverse, then the norm limit τ → −∞ can be performed in the
previous expression and one obtains

lim
τ→−∞ eτB(eτλ± i0) =

(
1 + P (λu0Q0v0 − 1)

)−1
P.

Therefore, the final step in the proof consists in studying the operator 1 + P (λu0Q0v0 − 1).
(d) Since P is a projection, one observes that the invertibility of 1 + P (λu0Q0v0 − 1) holds

in B(H) if the condition of Assumption 4.6 is satisfied.

Remark 4.9. It is possible to avoid assuming Assumption 4.6 by still improving part of the
previous proof. Indeed, by further developing the term mε in (4.10), then by working more
carefully and by considering another expression of eτ in front of the term B(eτλ± i0), a better
analysis in the line of [9] could be performed without the Assumption 4.6. For the time being, we
do not carry out this computation. In comparison, let us mention that in the Schrödinger case,
a similar study has been avoided in [1] by inserting an additional real-analytic function of τ just
before V and by adding sufficient conditions on this function. Thanks to this trick, the authors
avoid a condition similar to our Assumption 4.6 but it also prevents them from considering all
the possible situations.

Summing all the results obtained so far, one can readily prove the following statement.

Proposition 4.10. Let us assume that σ > 3 in Condition (1.1), and suppose that Assumptions
4.5 and 4.6 hold. For s > 3/2, let f ∈ Hs ∩ L∞(R3) and g ∈ Hs with E0([a, b])g = g for some
[a, b] ⊂ (0,∞). Then the limits

lim
τ→−∞

〈
f,

(
U−τW±(H, H0)Uτ − 1

)
g
〉
H = 0

hold.

Proof. It is clear from (4.1), (4.8) and Lemma 4.1 that there exists τab ∈ R such that for any
τ ≤ τab the stationary representations (4.3) hold. Then, let us observe that

〈
f,

(
W±(H0 + e−τVτ ,H0)− 1

)
g
〉
H

= −e−τ

∫ b

a

〈
B(eτλ± i0)u0 UτR0(λ± i0)f, v0UτE

′
0(λ)g

〉
H dλ

= −eτ

∫ b

a

〈[
eτB(eτλ± i0)

]
e−3τ/2u0 UτR0(λ± i0)f, e−3τ/2v0UτE

′
0(λ)g

〉
H dλ .

It then follows from Lemma 4.4 and Proposition 4.8 that

lim
τ→−∞ eτ

〈[
eτB(eτλ± i0)

]
e−3τ/2u0 UτR0(λ± i0)f, e−3τ/2v0UτE

′
0(λ)g

〉
H = 0.

Finally, the permutation of the integral and of the limit is easily obtained by an application of
the Lebesgue’s dominated convergence theorem.

Theorem 4.11. Let us assume that σ > 3 in Condition (1.1), and suppose that Assumptions
4.5 and 4.6 hold. Then, the following limits hold:

s− lim
τ→−∞U−τW±(H,H0)Uτ = 1.
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Proof. By density, it is sufficient to show that limτ→−∞ ‖(U−τW±(H,H0)Uτ − 1)f‖H = 0 for
any f ∈ H with f̂ ∈ C∞

c (R3 \ {0}). Observe first that such f satisfies all conditions imposed
on f and g in the statement of Proposition 4.10. Then, let us write W±(τ) for the operator
U−τW±(H, H0)Uτ and compute

∥∥(
W±(τ)− 1

)
f
∥∥2

H = −〈W±(τ)f, f〉H − 〈f,W±(τ)f〉H + ‖W±(τ)f‖2
H + ‖f‖2

H. (4.13)

By Proposition 4.10 the first two terms converge to −‖f‖2
H as τ → −∞. In addition, observe

that
‖W±(τ)f‖2

H = ‖W±(H, H0)Uτf‖2
H = ‖Uτf‖2

H = ‖f‖2
H

because W±(H, H0) are isometries. Thus, the expressions on the l.h.s. of (4.13) converge to 0
as τ → −∞.

The previous result has also important consequences on the scattering operator S as we shall
show in the next section.

5 Asymptotic limit for the scattering operator

Let us first recall that the scattering operator S is defined by the product W ∗
+W− and is a

unitary operator. Then, an immediate consequence of Theorem 4.11 reads as follows:

Corollary 5.1. Let us assume that σ > 3 in Condition (1.1), and suppose that Assumptions
4.5 and 4.6 hold. Then the following limit holds:

s− lim
τ→−∞U−τSUτ = 1. (5.1)

Proof. Let us set Sτ for U−τSUτ and recall the notation W±(τ) := U−τW±Uτ introduced in the
previous proof. Then, for any f ∈ H one deduces from Theorem 4.11 that

lim
τ→−∞〈f, Sτf〉H = lim

τ→−∞〈W+(τ)f, W−(τ)f〉H = ‖f‖2
H.

And with a trick similar to the one already used in the proof of that theorem, one then deduces
that limτ→−∞ ‖(Sτ − 1)f‖2

H = 0.

Let us also look at the consequence of the previous results on the scattering matrices. For
that purpose, let h := L2(S2) and F0 : H → L2(R+, dλ; h) =: H be the unitary transformation
which diagonalizes the operator H0, namely [F0H0f ](λ) = λ[F0f ](λ) for any f belonging to H1

and for almost every λ ∈ R+. For the relativistic Schrödinger operator, the expression for F0

is very simple, more precisely for any f ∈ S(R3) one has
[
[F0f ](λ)

]
(ω) := λ[Ff ](λω) for any

λ > 0 and ω ∈ S2.
Now, it is well know that S is diagonal in the spectral representation of H0, or in other

words that F0SF∗0 = S(Λ), where S(Λ) denotes an operator of multiplication on R+ by an
essentially bounded function with values in B(h). More precisely, for any ϕ ∈ H and λ ∈ R+

the action of S(Λ) reads [S(Λ)ϕ](λ) = S(λ)ϕ(λ) ∈ h and S(λ) ∈ B(h) is called the scattering
matrix at energy λ. Then, by taking into account this relation as well as the well known equality
FUτF∗ = U−τ , one infers that [F0UτF∗0ϕ](λ) = e−τ/2ϕ(e−τλ) for any ϕ ∈ H , and hence obtains
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that [F0SτF∗0ϕ](λ) = S(eτλ)ϕ(λ). By introducing the notation [Sτ (Λ)ϕ](λ) := S(eτλ)ϕ(λ), we
infers that F0SτF∗0ϕ = Sτ (Λ). Note that S0 = S and S0(Λ) = S(Λ).

In that setting, relation (5.1) reads as follows: For any ϕ ∈ H , one has

lim
τ→−∞ ‖Sτ (Λ)ϕ− ϕ‖H .

However, this relation is strictly weaker than the uniform limit u− limλ↘0 S(λ) = 1, which has
been mentioned in the Introduction. In order to obtain the latter result, we shall borrow in the
proof of the next statement a usual stationary representation of the scattering matrix.

Theorem 5.2. Let us assume that σ > 3 in Condition (1.1), and suppose that Assumptions 4.5
and 4.6 hold. Then u− limλ↘0 S(λ) = 1 in B(h).

Proof. For any λ ∈ R+, let us first introduce the operator F0(λ) defined on f ∈ S(R3) by the
relation F0(λ)f = [F0f ](λ) ∈ h. By analogy to the Schrödinger case, it is easily shown that
this operator extends continuously to an element of B(Hs, h) for any s > 1/2. Furthermore, by
mimicking the approach presented in [8, Sec. 5] an asymptotic expansion for F0(λ) as λ ↘ 0
can also be derived. More precisely, one readily obtains that F0(λ) = λγ0 + o(λ) in B(Hs, h) for
any s > 3/2, where [γ0f ](ω) = f̂(0)/(2π)3/2.

Then, the following representation of the scattering matrix holds (see for example [22, Sec. 2.8
& 5.7] or [8, Sec. 5]) :

S(λ) = 1− 2πiF0(λ)V
(
1 + R0(λ + i0)V

)−1F0(λ)∗

In addition, by taking the following relations into account
[
V

(
1 + R0(z)V

)−1]∗ =
(
1 + V R0(z)

)−1
V = v0

(
1 + u0R0(z)v0

)−1
u0

one infers the useful relation

S(λ) = 1− 2πiF0(λ)u0 B(λ− i0)∗ v0F0(λ)∗

where B(z) was introduced in the statement of Lemma 4.1. In addition, recall from Proposition
4.8 that the norm limit limλ↘0 λB(λ − i0) exists in B(H). Thus, by taking into account the
already mentioned properties of F0(λ) when λ ↘ 0, one directly deduces the statement of the
theorem.

6 Absolute continuity of the spectrum on [0, ∞)

The non-existence of embedded eigenvalues should certainly deserve more attention for the
present model. However, since investigations on this question for Schrödinger operators always
involve a rather heavy machinery, we do not expect that this question can be easily solved
for the present relativistic model. On the other hand, by assuming stronger conditions on V ,
one can deduce from an abstract argument that the spectrum of H on R+ is purely absolutely
continuous. We clearly suspect that the following assumptions on V are much too strong both
for the non-existence of positive eigenvalues and for the absolute continuity of the spectrum on
R+. But since the argument is rather simple, we have decided to present it for completeness.
The proof is based on an abstract result obtained in [16]
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Before going into the details of the application of [16, Thm. 1], let us recall one definition on
regularity of operators with respect to C0-groups. Let T1, T2 be two Banach spaces endowed with
two C0-groups {U1

τ }τ∈R, {U2
τ }τ∈R of generators A1, A2, respectively. One says that an element

B ∈ B(T1, T2) belongs to C1(A1, A2; T1, T2) if the map

R 3 τ 7→ U2
−τ BU1

τ ∈ B(T1, T2)

is strongly differentiable.
Now, recall that the dilation group has been introduced in Section 4. It is known that

this group defines C0-groups in all weighted Sobolev spaces Ht
s, for s, t ∈ R. Note that these

groups are defined either by restrictions or by duality arguments, and that we keep the same
notation {Uτ}τ∈R for these groups in each of these spaces. Their generators are all denoted by
A. Furthermore, the relation U−τH0Uτ = eτH0 clearly holds in B(H1,H) for all τ ∈ R. As a
consequence, the operator H0 belongs to C1(A,A;H1,H) ≡ C1(A;H1,H).

Let us now add the potential V . In the sequel, we assume that V ∈ C2
b (R3), which means

that the potential, its first order derivatives as well as its second order derivatives are continuous
and bounded. Since U−τV Uτ is the operator of multiplication by the function Vτ defined by
Vτ (x) = V (e−τx) for any x ∈ R3, one easily observes that V ∈ C1(A;H,H) ≡ C1(A;H), and
therefore V ∈ C1(A;H1,H). As a consequence, one deduces that H belongs to C1(A;H1,H)
and the following equalities hold in B(H1,H):

d
dτ

(
U−τHUτ

)∣∣
τ=0

= [iH, A] = H0 − Ṽ

with Ṽ (x) = x · [∇V ](x).
For the application of [16, Thm. 1], one needs to impose a positivity condition as well

as further decrease conditions. For that purpose, let us first recall Kato’s inequality: H0 ≥
2π−1|X|−1 (cf. [4, Thm. 2.2.4], [10, p. 307]). Then, our positivity assumption takes the following
form : there exist two constants c1, c2 ∈ [0, 1) with c1 + c2 < 1 such that

M := 2π−1c2
1
|X| − c1V − Ṽ > 0. (6.1)

In other words, M is the operator of multiplication by the non-negative function x 7→ M(x) :=
2π−1c2

1
|x| − c1V (x)− Ṽ (x). One infers from this inequality that the operator T , defined on H1

by T := −c1H + [iH, A] satisfies

T = (1− c1)H0 − c1V − Ṽ ≥ (1− c1 − c2)H0 + M > 0.

One also gets the inequalities T ≥ M , T ≥ (1− c1 − c2)H0 and T ≥ 2π−1(1− c1 − c2)|X|−1.
For the decrease conditions, let us assume that for all x ∈ R3:

|x · [∇V ](x)| ≤ Const. 〈x〉−1 and
∣∣x · ∇[(x · ∇)V ](x)

∣∣ ≤ Const. 〈x〉−1. (6.2)

Since H0 ≥ 2π−1|X|−1 ≥ 2π−1〈X〉−1, one then infers that there exists a constant c large enough
such that the following inequalities hold:

−cT ≤ [iH, A] ≤ cT, (6.3)
−cT ≤ [

i[iH, A], A
] ≤ cT, (6.4)

−cT ≤ [iT, A] ≤ cT. (6.5)

With these inequalities at hand, one can now prove:
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Proposition 6.1. Assume that V ∈ C2
b (R3) such that the conditions contained in (6.2) are

satisfied. Assumed in addition that there exist two constants c1, c2 ∈ [0, 1) with c1 + c2 < 1
such that the condition (6.1) is verified. Then, the operator H has purely absolutely continuous
spectrum on [0,∞).

Proof. The proof consists in checking that the abstract conditions of [16, Thm. 1] are satisfied.
As already noticed before the statement of the proposition, one clearly has that H belongs to
C1(A;H1,H) and that the operator T = −c1H + [iH, A] satisfies T > 0 on H1. In addition,
the operator [iH, A] = H0 − Ṽ is bounded from below. Thus both conditions contained in [16,
Eq. (2)] are satisfied.

Now, let us keep writing [iH, A] and T for the continuous extensions of these operators to
elements of B(H1/2,H−1/2). It then follows from (6.3) that for all f ∈ H1/2 one has

∣∣〈f, [iH, A]f〉1/2,−1/2

∣∣ ≤ c〈f, Tf〉1/2,−1/2. (6.6)

Thus, if T denotes the completion of H1/2 with the norm ‖f‖T := 〈f, Tf〉1/2
1/2,−1/2, it follows

from (6.6) that [iH, A] extends to an element of B(T , T ∗), where T ∗ denotes the adjoint space
of T . Note that relation (6.4) leads to a similar conclusion for the operator

[
i[iH, A], A

]
.

We finally check that {Uτ}τ∈R extends to a C0-group in T . This easily reduces to the proof
that ‖Uτf‖T ≤ c(τ)‖f‖T for all f ∈ H1/2 and τ ∈ R. By (6.5) one has :

‖Uτf‖2
T = 〈f, Tf〉+

∫ τ

0
〈Utf, [iT, A]Utf〉dt ≤ ‖f‖2

T + c
∣∣∣
∫ τ

0
‖Utf‖2

T dt
∣∣∣ .

The function (0, τ) 3 t 7→ ‖Utf‖2
T ∈ R is bounded (since H1/2 ↪→ T ), and hence by a simple

form of the Gronwall Lemma, we get the inequality ‖Uτf‖T ≤ e
c
2
|τ |‖f‖T . Thus {Uτ}τ∈R extends

to a C0-group in T , and by duality {Uτ}τ∈R also defines a C0-group in T ∗. This finishes the
proof that [iH,A] extends to an element of C1(A; T , T ∗). All hypotheses of [16, Thm. 1] have
been checked, and the statement follows from this theorem and from its corollary.

7 Appendix

In this appendix, we derive an explicit expression for the action of the unitary group generated
by H0. Apparently, such formula was not exhibited before.

For that purpose, let us consider f ∈ C∞
c (R3), g ∈ S with ĝ ∈ C∞

c (R3) and for z ∈ C one
sets

ζ±(z) :=
∫

R3

e±iz|k|f̂(k) ĝ(k)dk.

Clearly, ζ± are entire functions on C and one has ζ±(∓t) =
〈
e−itH0f, g

〉
for any t ∈ R. On the

other hand, one also has for any t > 0

ζ±(±it) =
∫

R3

e−t|k|f̂(k) ĝ(k)dk

=
〈
e−tH0f, g

〉

=
∫

R3

{∫

R3

t

π2(|x− y|2 + t2)2
f(y)dy

}
g(x)dx,
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where the explicit form of the semi-group is borrowed from [21, Eq. (2.1)]. Now, by setting

η±(z) :=
∫

R3

{∫

R3

∓iz

π2(|x− y|2 − z2)2
f(y)dy

}
g(x)dx

one easily observes that the maps η± are holomorphic on C±. Furthermore, the equalities
ζ±(±it) = η±(±it) hold for any t > 0. By analytic continuation, it follows that the functions
ζ± and η± are equal on C±, respectively.

And as a consequence, one infers that for each fixed t > 0 one has
〈
e−itH0f, g

〉
=ζ−(t) = lim

ε↘0
ζ−(t− iε) = lim

ε↘0
η−(t− iε)

= lim
ε↘0

∫

R3

{∫

R3

it + ε

π2(|x− y|+ t− iε)2(|x− y| − t + iε)2
f(y)dy

}
g(x)dx

which formally reads

〈
e−itH0f, g

〉
=

∫

R3

{∫

R3

it

π2(|x− y|+ t)2(|x− y| − t + i0)2
f(y)dy

}
g(x)dx

where the distributions s 7→ 1
(s±i0)2

are for example defined in [7, Sec. 3.2]. On the other hand,
one infers for each fixed t < 0 that

〈
e−itH0f, g

〉
=ζ+(−t) = lim

ε↘0
ζ+(|t|+ iε) = lim

ε↘0
η+(|t|+ iε)

= lim
ε↘0

∫

R3

{∫

R3

it− ε

π2(|x− y| − t + iε)2(|x− y|+ t− iε)2
f(y)dy

}
g(x)dx

which formally reads

〈
e−itH0f, g

〉
=

∫

R3

{∫

R3

it

π2(|x− y| − t)2(|x− y|+ t− i0)2
f(y)dy

}
g(x)dx

One has thus obtained:

Lemma 7.1. For any f ∈ C∞
c (R3), g ∈ S with ĝ ∈ C∞

c (R3) and ±t > 0, one has

〈
e−itH0f, g

〉
=

∫

R3

{∫

R3

it

π2(|x− y| ± t)2(|x− y| ∓ t± i0)2
f(y)dy

}
g(x)dx,

in a formal sense (the precise sense being the one mentioned above).
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