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Abstract

For many real physico-chemical complex systems detailed mechanism includes both reversible and irreversible reac-
tions. Such systems are typical in homogeneous combustion and heterogeneous catalytic oxidation. Most complex
enzyme reactions include irreversible steps. The classical thermodynamics has no limit for irreversible reactions
whereas the kinetic equations may have such a limit. We represent the systems with irreversible reactions as the limits
of the fully reversible systems when some of the equilibrium concentrations tend to zero. The structure of the limit
reaction system crucially depends on the relative speeds of this tendency to zero. We study the dynamics of the limit
system and describe its limit behavior as t → ∞. The extended principle of detailed balance provides the physical
background of this analysis. If the reversible systems obey the principle of detailed balance then the limit system with
some irreversible reactions must satisfy two conditions: (i) the reversible part satisfies the principle of detailed balance
and (ii) the convex hull of the stoichiometric vectors of the irreversible reactions does not intersect the linear span of
the stoichiometric vectors of the reversible reactions. These conditions imply the existence of the global Lyapunov
functionals and alow an algebraic description of the limit behavior. The thermodynamic theory of the irreversible
limit of reversible reactions is illustrated by the analysis of hydrogen combustion.
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1. Introduction

1.1. The problem: non-existence of thermodynamic
functions in the limit of irreversible reactions

We consider a homogeneous chemical system with n
components Ai, the concentration of Ai is ci ≥ 0, the
amount of Ai in the system is Ni ≥ 0, V is the volume,
Ni = Vci, T is the temperature. The n dimensional vec-
tors c = (ci) and N = (Ni) belong to the closed positive
orthant Rn

+ in Rn. (Rn
+. (The closed positive orthant is

the set of all vectors x ∈ Rn such that xi ≥ 0 for all i.)
The classical thermodynamics has no limit for irre-

versible reactions whereas the kinetic equations have.
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For example, let us consider a simple cycle

A1
k1­
k−1

A2
k2­
k−2

A3
k3­
k−3

A1

with the equilibrium concentrations ceq = (ceq
1 , c

eq
2 , c

eq
3 )

and the detailed balance conditions:

kic
eq
i = k−ic

eq
i+1

under the standard cyclic convention, here, A3+1 = A1
and c3+1 = c1. The perfect free energy has the form

F =
∑

i

RTVci

ln
 ci

ceq
i

 − 1
 + const .

Let the equilibrium concentration ceq
1 → 0 for the
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fixed values of ceq
2,3 > 0. This means that

k−1

k1
=

ceq
1

ceq
2

→ 0 and
k3

k−3
=

ceq
1

ceq
3

→ 0 .

Let us take the fixed values of the rate constants k1, k±2
and k−3. Then the limit kinetic system exists and has the
form:

A1
k1→A2

k2­
k−2

A3 ←
k−3

A1 .

It is a routine task to write a first order kinetic equa-
tion for this scheme. At the same time, the free energy
function F has no limit: it tends to ∞ for any positive
vector of concentrations because the term c1 ln(c1/c

eq
1 )

increases to ∞. The free energy cannot be normalized
by adding a constant term because the variation of the
term c1 ln(c1/c

eq
1 ) on an interval [0, c] with fixed c also

increases to∞, it varies from −ceq
1 /e (for the minimizer,

c1 = ceq
1 /e) to a large number c(ln c− ln ceq

1 ) (for c1 = c).
The logarithmic singularity is rather “soft” and does

not cause a real physical problem because even for
ceq

1 /c1 = 10−10 the corresponding large term in the free
energy will be just ∼ 23RT per mole. Nevertheless, the
absence of the limit causes some mathematical ques-
tions. For example, for perfect systems with detailed
balance under isochoric isothermal conditions the den-
sity,

f = F/(RTV) =
∑

i

ci(ln(ci/c
eq
i ) − 1) , (1)

is a Lyapunov function for a system of chemical kinetics
(here, ci is the concentration of the ith component and
ceq

i is its equilibrium concentration for a selected value
of the linear conservation laws, the so-called “reference
equilibrium”).

This function is used for analysis of stability, exis-
tence and uniqueness of chemical equilibrium since the
work of Zeldovich (1938, reprinted in 1996 [26]). De-
tailed analysis of the connections between detailed bal-
ance and the free energy function was provided in [19].
Perhaps, the first detailed proof that f is a Lyapunov
function for chemical kinetics of perfect systems with
detailed balance was published in 1975 [22].

For the irreversible systems which are obtained as
limits of the systems with detailed balance we should
expect the preservation of stability of the equilibrium.
More over, one can expect existence of the Lyapunov
functions which are as universal as the thermodynamic
functions are. The “universality” means that these func-
tions depend on the list of components and on the equi-
librium concentrations but do not depend on the reaction
rate constants directly.

The thermodynamic potential of a component Ai can-
not be defined in the irreversible limits when the equilib-
rium concentration of Ai tends to 0. Nevertheless, in this
paper, we construct the universal Lyapunov functions
for systems with some irreversible reactions. Instead
of detailed balance we use the weaker assumption that
these systems can be obtained from the systems with
detailed balance when some constants tend to zero.

1.2. The extended form of detailed balance conditions
for systems with irreversible reactions

Let us consider a reaction mechanism in the form of
the system of stoichiometric equations

∑

i

αriAi →
∑

j

βr jA j (r = 1, . . . ,m) , (2)

where αri ≥ 0, βr j ≥ 0 are the stoichiometric coeffi-
cients. The reverse reactions with positive rate constants
are included in the list (2) separately (if they exist). The
stoichiometric vector γr of the elementary reaction is
γr = (γri), γri = βri − αri. We always assume that
there exists a strictly positive conservation law, a vec-
tor b = (bi), bi > 0 and

∑
i biγri = 0 for all r. This may

be the conservation of mass or of total number of atoms,
for example.

According to the generalized mass action law, the re-
action rate for an elementary reaction (2) is (compare to
Eqs. (4), (7), and (14) in [14] and Eq. (4.10) in [7])

wr = kr

n∏

i=1

aαri
i , (3)

where ai ≥ 0 is the activity of Ai,

ai = exp

µi − µ0

i

RT

 . (4)

Here, µi is the chemical potential and µ0
i is the standard

chemical potential of the component Ai.
This law has a long history (see [6, 24, 13, 7]). It

was invented in order to meet the thermodynamic re-
strictions on kinetics. For this purposes, according to
the principle of detailed balance, the rate of the reverse
reaction is defined by the same formula and its rate con-
stant should be found from the detailed balance condi-
tion at a given equilibrium.

It is worth mentioning that the free energy has no
limit when some of the reaction equilibrium constants
tend to zero. For example, for the ideal gas the chemi-
cal potential is µi(c,T ) = RT ln ci + µ0

i (T ). In the irre-
versible limit some µ0

i → ∞. On the contrary, the ac-
tivities remain finite (for the ideal gases ai = ci) and the
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approach based on the generalized mass action law and
the detailed balance equations w+

r = w−r can be applied
to find the irreversible limit.

The list (2) includes reactions with the reaction rate
constants kr > 0. For each r we define k+

r = kr, w+
r = wr,

k−r is the reaction rate constant for the reverse reaction
if it is on the list (2) and 0 if it is not, w−r is the reaction
rate for the reverse reaction if it is on the list (2) and 0 if
it is not. For a reversible reaction, Kr = k+

r /k
−
r

The principle of detailed balance for the generalized
mass action law is: For given values kr there exists a
positive equilibrium aeq

i > 0 with detailed balance, w+
r =

w−r .
Recently, it is found the extended form of the de-

tailed balance conditions for the systems with some ir-
reversible reactions [12]. This extended principle of de-
tailed balance is valid for all systems which obey the
generalized mass action law and are the limits of the
systems with detailed balance when some of the reac-
tion rate constants tend to zero. It consists of two parts:

• The algebraic condition: The principle of detailed
balance is valid for the reversible part. (This means
that for the set of all reversible reactions there ex-
ists a positive equilibrium where all the elemen-
tary reactions are equilibrated by their reverse re-
actions.)

• The structural condition: The convex hull of the
stoichiometric vectors of the irreversible reactions
has empty intersection with the linear span of the
stoichiometric vectors of the reversible reactions.
(Physically, this means that the irreversible reac-
tions cannot be included in oriented cyclic path-
ways.)

Let us recall the formal convention: the linear span of
empty set is {0}, the convex hull of empty set is empty.

1.3. The structure of the paper
In Sec. 2 we study the systems with detailed balance,

their multiscale limits and the limit systems which sat-
isfy the extended principle of detailed balance. The
classical Wegscheider identities for the reaction rate
constants are presented. Their limits when some of the
equilibria tend to zero give the extended principle of de-
tailed balance.

We use the generalized mass action law for the reac-
tion rates. For the analysis of equilibria for the general
systems, the formulas with activities are the same as for
the ideal systems and it is convenient to work with activ-
ities unless we need to study dynamics. The dynamical
variables are amounts and concentrations. In a special

subsection 2.3 we discuss the relations between concen-
tration and activities, formulate the main assumptions
and present formulas for the dissipation rate.

We introduce attractors of the systems with some ir-
reversible reactions and study them in Sec. 3. It includes
the central results of the paper. We fully characterize the
faces of the positive orthant that includeω-limit sets. On
such a face, dynamics is completely degenerated (zero
rates) or it is driven by a smaller reversible system that
obeys classical thermodynamics.

Hydrogen combustion is the most studied and very
important gas reaction. It has the modest complexity: in
the usual models there are 6-8 components and ∼15-30
elementary reversible reactions. Under various condi-
tions some of these reactions are practically irreversible.
We use this system as a benchmark in Sec. 4 and give an
example of the correct separation of the reactions into
reversible and irreversible part. The limit behavior of
this system in time is described.

In Conclusion we briefly discuss the results with fo-
cus on the unsolved problems.

2. Multiscale limit of a system with detailed balance

2.1. Two classical approaches to the detailed balance
condition

There are two traditional approach to the description
of the reversible systems with detailed balance. First,
we can start from the independent rate constants of the
elementary reactions and consider the solvability of the
detailed balance equations as the additional condition
on the admissible values of the rate constants. Here
we have m constants (m should be an even number,
m = 2`) and some equations which describe connec-
tions between these constants. This approach was in-
troduced by Wegscheider in 1901 [23] and developed
further by many authors [20, 4].

Secondly, we can select a “direct” reaction in each
pair of mutually reverse elementary reactions. If a posi-
tive equilibrium is known then we can find the reaction
rate constants for the reverse reaction from the constants
for direct reaction and the detailed balance equations.
Therefore, the direct reaction rate constants and a set of
the equilibrium activities form the complete description
of the reaction. Here we have ` + n independent con-
stants, ` = m/2 rate constants of direct reactions and n
(it is the number of components) equilibrium activities.
For these ` + n constants, the principle of detailed bal-
ance produces no restrictions. This second approach is
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popular in applied chemical thermodynamics and kinet-
ics [17, 10, 25] because it is convenient to work with the
independent parameters “from scratch”.

The Wegscheider conditions appear as the necessary
and sufficient conditions of solvability of the detailed
balance equations. (See, for example, the textbook
[24]). Let us join the direct and reverse elementary re-
actions and write

∑

i

αriAi ­
∑

j

βr jA j (r = 1, . . . , `) . (5)

The stoichiometric matrix is Γ = (γri), γri = βri − αri

(gain minus loss). The stoichiometric vector γr is the
rth row of Γ with coordinates γri = βri − αri.

Both sides of the detailed balance equations, w+
r =

w−r , are positive for positive activities. The solvability of
this system for positive activities means the solvability
of the following system of linear equations:

∑

i

γrixi = ln k+
r − ln k−r = ln Kr (r = 1, . . . `) (6)

(xi = ln aeq
i ). Of course, we assume that if k+

r > 0 then
k−r > 0 (reversibility) and the equilibrium constant Kr >
0 is defined for all reactions from (5).

Proposition 1. The necessary and sufficient conditions
for existence of the positive equilibrium aeq

i > 0 with
detailed balance is: For any solution λ = (λr) of the
system

λΓ = 0

i.e.
∑̀

r=1

λrγri = 0 for all i

 (7)

the Wegscheider identity holds:

∏̀

r=1

(k+
r )λr =

∏̀

r=1

(k−r )λr . (8)

It is sufficient to use in (8) any basis of solutions of the
system (7): λ ∈ {λ1, · · · , λq}.

2.2. Multiscale degeneration of equilibria
Let us take a system with detailed balance and send

some of the equilibrium activities to zero: aeq
i → 0

when i ∈ I for some set of indexes I. Immediately we
find a surprise: this assumption is not sufficient to find a
limiting irreversible mechanism. It is necessary to take
into account the rates of the convergency to zero of dif-
ferent aeq

i . Indeed, let us study a very simple example,

A1
k1­
k−1

A2
k2­
k−2

A3

when aeq
1 , a

eq
2 → 0.

If aeq
1 , a

eq
2 → 0, aeq

1 /a
eq
2 = const > 0 and aeq

3 =

const > 0 then the limit system should be A1
k1­
k−1

A2 →
A3 and we can keep k1,−1,2 = const whereas k−2 → 0.

If aeq
1 , a

eq
2 → 0, aeq

1 /a
eq
2 → 0 then the limit sys-

tem should be A1 → A2 → A3 and we can keep
k1,2 = const > 0 whereas k−1,−2 → 0.

If aeq
1 , a

eq
2 → 0, aeq

2 /a
eq
1 → 0 then in the limit survives

only one reaction A2 → A3 (if we assume that all the
reaction rate constants are bounded).

We study asymptotics aeq
i = const × εδi , ε → 0

for various values of non-negative exponents δi ≥ 0
(i = 1, . . . , n). At equilibrium, each reaction rate in the
generalized mass action law is proportional to a power
of ε:

weq+
r = k+

r const × ε
∑

i αriδi , weq−
r = k−r const × ε

∑
i βriδi .

According to the principle of detailed balance, weq+
r =

weq−
r and

k+
r

k−r
= const × ε(γr ,δ) , (9)

where δ is the vector of exponents, δ = (δi).
There are three groups of reactions with respect to the

given vector δ:

1. (γr, δ) = 0; 2. (γr, δ) < 0; 3. (γr, δ) > 0 .

In the first group ((γr, δ) = 0) the ratio k+
r /k

−
r remains

constant and we can take k±r = const > 0. In the second
group ((γr, δ) < 0) the ratio k−r /k

+
r → 0 and we should

take k−r → 0 whereas k+
r may remain constant and pos-

itive. In the third group ((γr, δ) > 0), the situation is
inverse: k+

r /k
−
r → 0 and we can take k−r = const > 0,

whereas k+
r → 0.

These three groups depend on δ but this dependence
is piecewise constant. For every γr, three sets of δ
are defined: (i) hyperplane (γr, δ) = 0, (ii) hemispace
(γr, δ) < 0 and hemispace (γr, δ) > 0. The space of
vectors δ is split in the subsets defined by the values of
functions sign(γr, δ) (±1 or 0).

We consider bounded systems, hence the negative
values of δ should be forbidden. At least one equilib-
rium activity should not vanish. Therefore, δ j = 0 for
some j. Below we assume that δi ≥ 0 and δ j = 0 for
a non-empty set of indices J0. Moreover, the atom bal-
ance in equilibrium should be positive. Here, this means
that for the set of equilibrium concentrations ceq

i (i ∈ J0)
the corresponding values of all atomic concentrations
are strictly positive and separated from zero.

Let the vector of exponents, δ = (δi) be given and the
three groups of reactions are found. For the reactions of
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the third group (with (γr, δ) > 0) the direct reaction van-
ishes in the limit ε→ 0. It is convenient to transpose the
stoichiometric equations for these reactions and swap
the direct reactions with reverse ones. Let us perform
this transposition. After that, αr changes over βr, γ
transforms into −γ, and the inequality (γr, δ) > 0 trans-
forms into (γr, δ) < 0.

Let us summarize. We use the given vector of ex-
ponents δ and produce a system with some irreversible
reactions from a system of reversible reactions and de-
tailed balance equilibrium aeq

i by the following rules:

1. if δi > 0 then we assign aeq
i = 0 and if δi = 0 then

aeq
i does not change;

2. if (γr, δ) = 0 then k±r do not change;
3. if (γr, δ) < 0 then we assign k−r = 0 and k+

r does
not change;

4. if (γr, δ) > 0 then we assign k+
r = 0 and k−r does not

change. (In the last case, we transpose the stoichio-
metric equation and swap the direct reaction with
reverse one, for convenience, γr changes to -γr and
k−r becomes 0. Therefore, this case transforms into
case 3.)

This is a limit system caused by the multiscale degen-
eration of equilibrium. The multiscale character of the
limit aeq

i = const × εδi → 0 (for some i) is important
because for different values of δ reactions may have dif-
ferent dominant directions and the set of irreversible re-
actions in the limit may change.

The general form of the kinetic equations for the ho-
mogeneous systems is

dN
dt

= V
∑

r

wrγr , (10)

where Ni is the amount of Ai, N is the vector with com-
ponents Ni and V is the volume.

Let us consider a limit system for the degeneration
of equilibrium with the vector of exponents δ. For this
system (γr, δ) ≤ 0 for all r and, in particular, (γr, δ) <
0 for all irreversible reactions and (γr, δ) = 0 for all
reversible reactions.

Proposition 2. A linear functional Gδ(N) = (δ,N) de-
creases along the solutions of kinetic equations (10) for
this limit system: dGδ(N)/dt ≤ 0 and dGδ(N)dt = 0
if and only if all the reaction rates for the irreversible
reactions are zero.

Proof. Indeed,

dGδ(N)
dt

= V
∑

r

wr(γr, δ) ≤ 0 , (11)

because for reversible reactions (γr, δ) = 0, and for ir-
reversible reactions wr = w+

r ≥ 0 and (γr, δ) < 0. All
the terms in this sum are non-negative, hence it may be
zero if and only if each summand is zero.

This Lyapunov function may be used in a proof that
the rates of all irreversible reactions in the system tend
to 0 with time. Indeed, if they do not tend to zero then
on a solution of (10) Gδ(N(t)) → −∞ when t → ∞ and
N(t) is unbounded. Equation (11) and Proposition (2)
give us the possibility to prove the extended principle of
detailed balance in the following form. Let us consider
a reaction mechanism that includes reversible and irre-
versible reactions. Assume that the reaction rates satisfy
the generalized mass action law (3) and the set of reac-
tion rate constants is given. Let us ask the question: Is it
possible to obtain this reaction mechanism and reaction
rate constants as a limit in the multiscale degeneration
of equilibrium from a fully reversible system with the
classical detailed balance. The answer to this question
gives the following theorem about the extended princi-
ple of detailed balance.

Theorem 1. A system can be obtained as a limit in
the multiscale degeneration of equilibrium from a re-
versible system with detailed balance if and only if (i)
the reaction rate constants of the reversible part of the
reaction mechanism satisfy the classical principle of de-
tailed balance and (ii) the convex hull of the stoichio-
metric vectors of the irreversible reactions does not in-
tersect the linear span of the stoichiometric vectors of
reversible reactions.

Proof. Let the given system be a limit of a reversible
system with detailed balance in the multiscale degener-
ation of equilibrium with the exponent vector δ. Then
for the reversible reactions (γr, δ) = 0 and for the irre-
versible reactions (γr, δ) < 0. For every vector x from
the convex hull of the stoichiometric vector of the irre-
versible reactions (x, δ) < 0 and for any vector y from
the linear span of the stoichiometric vectors of the re-
versible reactions (y, δ) = 0. Therefore, these sets do not
intersect. The reaction rate constants for the reversible
reactions satisfy the classical principle of detailed bal-
ance because they do not change in the equilibrium de-
generation and keep this property of the original fully
reverse system with detailed balance.

Conversely, let a system satisfy the extended princi-
ple of detailed balance: (i) the reaction rate constants of
the reversible part of the reaction mechanism satisfy the
classical principle of detailed balance and (ii) the con-
vex hull of the stoichiometric vectors of the irreversible
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reactions does not intersect the linear span of the sto-
ichiometric vectors of reversible reactions. Due to the
classical theorems of the convex geometry, there exists
a linear functional that separates this convex set from
the linear subspace. (Strong separation of closed and
compact convex sets.) This separating functional can be
represented in the form (x, θ) for some vector θ. For the
reversible reactions (γr, θ) = 0 and for the irreversible
reactions (γr, θ) < 0.

It is possible to find vector δ with this separation
property and non-negative coordinates. Indeed, accord-
ing to the basic assumptions, there exists a linear con-
servation law with strongly positive coordinates. This
is a vector b (bi > 0) with the property: (γr, b) = 0 for
all reactions. For any λ, the vector θ + λb has the same
separation property as the vector θ has. We can select
such λ that δi = θi + λbi ≥ 0 and δi = θi + λbi = 0 for
some i. Let us take this linear combination δ as a vector
of exponents.

Let us create a fully reversible system from the ini-
tial partially irreversible one. We do not change the
reversible reactions and their rate constants. Because
the reversible reactions satisfy the classical principle of
detailed balance, there exists a strongly positive vector
of equilibrium activities a∗i > 0 for the reversible re-
actions. Let us take one such a vector. (A simple re-
mark is needed here: for the components A j that do not
participate in the reversible reactions we have to select
arbitrary positive values a∗j > 0.)

For each irreversible reaction with the stoichiometric
vector γr and reaction rate constant kr = k+

r > 0 we add
a reverse reaction with the reaction rate constant

k−r = k+
r

∏

i

(a∗i )−γri .

For this fully reversible system the activities a∗i > 0 pro-
vide the point of detailed balance. In the multiscale de-
generation process, the equilibrium activities depend on
ε → 0 as aeq

i = a∗i ε
δi . For the reactions with (γr, δ) = 0

the reaction rate constants do not depend on ε and for
the reactions with (γr, δ) < 0 the rate constant k−r tends
to zero as ε−(γr ,δ) and k+

r does not change. We return to
the initial system of reactions in the limit ε→ 0.

This is a particular form of the extended principle of
detailed balance. For more discussion see [12].

2.3. Activities, concentrations and affinities

To combine the linear Lyapunov functions Gδ(N) =

(δ,N) (11) with the classical thermodynamic potential
and study the kinetic equations in the closed form we

have to specify the relations between activities and con-
centrations. We accept the assumption: ai = cigi(c,T ),
where gi(c,T ) > 0 is the activity coefficient. It is a
continuously differentiable function of c,T in the whole
diapason of their values. In a bounded region of con-
centrations and temperature we can always assume that
gi > g0 > 0 for some constant g0. This assumption is
valid for the non-ideal gases and for liquid solutions. It
holds also for the “surface gas” in kinetics of hetero-
geneous catalysis [24] and does not hold for the solid
reagents (see for example, analysis of carbon activity in
the methane reforming [12]).

The system of units should be commented. Tradi-
tionally, ai is assumed to be dimensionless and for per-
fect systems ai = ci/c◦i , where c◦i is an arbitrary “stan-
dard” concentration. To avoid introduction of unneces-
sary quantities, we always assume that in the selected
system of units, c◦i ≡ 1.

If the thermodynamic potentials exist then due to the
thermodynamic definition of activity (4), this hypoth-
esis is equivalent to the logarithmic singularity of the
chemical potentials, µi = RT ln ci + . . . where . . . stands
for a continuous function of c,T (all the concentrations
and the temperature). In this case, the free energy has
the form

F(N,T,V) = RT
∑

i

Ni(ln ci − 1 + f0i(c,T )) , (12)

where the functions f0i(c,T ) are continuously differen-
tiable for all possible values of arguments. Functions f0i

in the right hand side of the representation (12) cannot
be restored unambiguously from the free energy func-
tion F(N,T,V) but for a small admixture Ai it is pos-
sible to introduce the partial pressure pi which satis-
fies the law pi = RTci + o(ci). This is due to the
terms Ni ln ci in F. Indeed, P = −∂F(N,T,V)/∂V =

RTci + o(ci) + P
∣∣∣ci=0 . Connections between the equa-

tion of state, free energy and kinetics are discussed in
more detail in [7, 8].

There are several simple algebraic corollaries of the
assumed connection between activities and concentra-
tions. Let us consider an elementary reaction

∑
αiAi →∑

βiAi with αi, βi ≥ 0. Then, according to the general-
ized mass action law, for any vector of concentrations c
(ci ≥ 0)

1. If, for some i, ci = 0 then γiw(c) ≥ 0;
2. If, for some i, ci = 0 and γi < 0 then αi > 0 and

w(c) = 0.

Similarly, for a reversible reaction
∑
αiAi ­ ∑

βiAi

1. If, for some i, ci = 0 and γi > 0 then βi > 0 and
w−(c) = 0;

6



2. If, for some i, ci = 0 and γi < 0 then αi > 0 and
w+(c) = 0.

These statements as well as Proposition 3 and Corol-
lary 1 below are the consequences of the generalized
mass action law (3) and the connection between activ-
ities and concentrations without any assumptions about
extended principle of detailed balance.

Each set of indexes J = {i1, . . . , i j} defines a face of
the positive polyhedron,

FJ = {c | ci ≥ 0 for all i and ci = 0 for i ∈ J} .

By definition, the relative interior of FJ , ri(FJ), consists
of points with ci = 0 for i ∈ J and ci > 0 for i < J.

Proposition 3. Let for a point c ∈ ri(FJ) and an index
i ∈ J ∑

r

γriwr(c) = 0 .

Then this identity holds for all c ∈ FJ .

Proof. For convenience, let us write all the direct and
reverse reactions separately and represent the reaction
mechanism in the form (2). All the terms in the sum∑

r γriwr(c) are non-negative, because ci = 0. There-
fore, if the sum is zero then all the terms are zero. The
reaction rate wr (3) with non-zero rate constant takes
zero value if and only if αr j > 0 and a j = 0 for some j.
The equality ai = 0 is equivalent to ci = 0. Therefore,
wr(c) = 0 for a point c ∈ ri(FJ) if and only if there ex-
ists j ∈ J such that αr j > 0. If αr j > 0 for an index j ∈ J
then wr(c) = 0 for all c ∈ FJ because c j = 0 in FJ .

We call a face FJ of the positive orthant Rn
+ invari-

ant with respect to a set S of elementary reactions if∑
r∈S γr jwr(c) = 0 for all c ∈ FJ and every j ∈ J.
Let us consider the reaction mechanism in the form

(2) where all the direct and reverse reactions participate
separately.

Corollary 1. The following statements are equivalent:

1.
∑

r∈S γriwr(c) = 0 for a point c ∈ ri(FJ) and all
indexes i ∈ J;

2. The face FJ is invariant with respect to the set of
reactions S ;

3. The face FJ is invariant with respect to every ele-
mentary reaction from S ;

4. For every r ∈ S either γr j = 0 for all j ∈ J or
αr j > 0 for some j ∈ J.

We aim to perform the analysis of the asymptotic be-
havior of the kinetic equations in the multiscale degen-
eration of equilibrium described in Sec. 2.2. For this

purpose, we have to answer the question: how the re-
lations between activities ai and concentrations ci de-
pend on the degeneration parameter ε → 0? We do
no try to find the maximally general appropriate answer
to this question. For the known applications, the an-
swer is: the relations between ai and ci do not depend
on ε → 0. In particular, it is trivially true for the ideal
systems. The simple generalization, ai = cigi(c,T, ε),
where gi(c,T, ε) > g0 > 0 are continuous functions, is
not a generalization at all, because we can use for ε→ 0
the limit case that does not depend on ε, gi(c,T ) =

gi(c,T, 0).
This independence from ε implies that the reversible

part of the reaction mechanism has the thermodynamic
Lyapunov functions like free energy. If we just delete
the irreversible part then the classical thermodynamics
is applicable and the thermodynamic potentials do not
depend on ε. For the generalized mass action law, the
time derivative of the relevant thermodynamic poten-
tials have very nice general form. Let, under given con-
dition, the function Φ(N, . . .) be given, where by . . . is
used for the quantities that do not change in time un-
der these conditions. It is the thermodynamics poten-
tial if ∂Φ(N, . . .)/∂Ni = µi. For example, it is the free
Helmholtz energy F for V,T = const and the free Gibbs
energy G for P,V = const.

Let us calculate the time derivative of Φ(N, . . .) due
to kinetic equation (10). The reaction rates are given
by the generalized mass action law (3) with definition
of activities through chemical potential (4). We assume
that the principle of detailed balance holds (it should
hold for the reversible part of the reaction mechanism
according to the extended detailed balance conditions).
More precisely, there exists an equilibrium with de-
tailed balance for any temperature T , aeq(T ): for all r,
w+

r (aeq) = w−r (aeq) = weq
r (T ). It is convenient to rep-

resent the reaction rates using these equilibrium fluxes
weq

r (T ):

w+
r = weq

r exp


∑

i

αri(µi − µeq
i )

RT

 ,

w−r = weq
r exp


∑

i

βri(µi − µeq
i )

RT

 .

where µeq
i = µi(aeq,T ).

These formulas give immediately the following rep-
resentation of the dissipation rate

dΦ

dt
=

∑

i

∂Φ(N, . . .)
∂Ni

dNi

dt
=

∑

i

µi
dNi

dt

= −VRT
∑

r

(ln w+
r − ln w−r )(w+

r − w−r ) ≤ 0 .
(13)
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The inequality holds because ln is a monotone function
and, hence, the expressions ln w+

r − ln w−r and w+
r − w−r

have always the same sign. Formulas of this kind for
dissipation are well known since the famous Boltzmann
H-theorem (1873 [2], see also [13]). The entropy in-
crease in isolated systems has the similar form:

dS
dt

= VR
∑

r

(ln w+
r − ln w−r )(w+

r − w−r ) ≥ 0 .

Let us notice that

ln w+
r − ln w−r =

1
RT

∑

i

µi(αri − βri) = − (γr, µ)
RT

.

The quantity −(γr, µ) is one of the central notion of
physical chemistry, affinity [5]. It is positive if the di-
rect reaction prevails over reverse one and negative in
the opposite case. It measures the energetic advantage
of the direct reaction over the reverse one (free energy
per mole). The activity divided by RT shows how large
is this energetic advantage comparing to the thermal en-
ergy. We call it the normalized affinity and use a special
notation for this quantity:

Ar = − (γr, µ)
RT

Let us apply an elementary identity

exp a − exp b = (exp a + exp b) tanh
a − b

2

to the reaction rate, wr = w+
r − w−r :

wr = (w+
r + w−r ) tanh

Ar

2
. (14)

This representation of the reaction rates gives immedi-
ately for the dissipation rate:

dΦ

dt
= −VRT

∑

r

(w+
r + w−r )Ar tanh

Ar

2
≤ 0 . (15)

In this formula, the kinetic information is collected
in the positive factors, the sums of reaction rates
(w+

r + w−r ), and the purely thermodynamical multipliers
Ar tanh(Ar/2) are also positive. For small |Ar |, the ex-
pression Ar tanh(Ar/2) behaves like A2

r/2 and for large
|Ar | it behaves like the absolute value, |Ar |.

So, we have two Lyapunov functions for two frag-
ments of the reaction mechanism. For the reversible
part, this is just a classical thermodynamic potential.
For the irreversible part, this is a linear functional
Gδ(N) = (δ,N). More precisely, the irreversible reac-
tions decrease this functional, whereas for the reversible
reactions it is the conservation law. Therefore, it de-
creases monotonically in time for the whole system.

3. Attractors

3.1. Dynamical systems and limit points

The kinetic equations (10) do not give a complete
representation of dynamics. The right hand side in-
cludes the volume V and the reaction rates wr which are
functions (3) of the concentrations c and temperature T ,
whereas in the left hand side there is Ṅ. To close this
system, we need to express V , c and T through N and
quantities which do not change in time. This closure
depends on conditions. The simplest expressions ap-
pear for isochoric isothermal conditions: V,T = const,
c = N/V . For other classical conditions (U,V = const,
or P,T = const, or H, P = const) we have to use the
equations of state. There may be more sophisticated
closures which include models or external regulators of
the pressure and temperature, for example.

Proposition 2 is valid for all possible closures. It is
only important that the external flux of the chemical
components is absent. Further on, we assume that the
conditions are selected, the closure is done, the right
hand side of the resulting system is continuously differ-
entiable and there exists the positive bounded solution
for initial data in Rn

+ and V , T remain bounded and sep-
arated from zero. The nature of this closure is not cru-
cial. For some important particular closures the proofs
of existence of positive and bounded solutions are well
known (see, for example, [22]). Strictly speaking, such
a system is not a dynamical system in Rn

+ but a semi-
dynamical one: the solutions may lose positivity and
leave Rn

+ for negative values of time. The theory of the
limit behavior of the semi-dynamical systems was de-
veloped for applications to kinetic systems [9].

We aim to describe the limit behavior of the systems
as t → ∞. Under the extended detailed balance condi-
tion the limit behavior is rather simple and the system
will approach steady states but to prove this behavior
we need the more general notion of the ω-limit points.

By the definition, the ω-limit points of a dynamical
system are the limit points of the motions when time
t → ∞. We consider a kinetic system in Rn

+. In particu-
lar, for each solution of the kinetic equations N(t) the set
of the corresponding ω-limit points is closed, connected
and consists of the whole trajectories ([9], Proposition
1.5). This means that the motion which starts from an
ω-limit point remains in Rn

+ for all time moments, both
positive and negative.

Proposition 4. Let N(t) be a positive solution of the ki-
netic equation and x∗ be an ω-limit point of this solution
and x∗i = 0. then at this point ẋi|x∗ = 0.
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Proof. Let x(t) be a solution of the kinetic equations
with the initial state x(0) = x∗. All the points x(t)
(−∞ < t < ∞) belong to Rn

+. Indeed, there exists such a
sequence t j → ∞ that N(t j)→ x∗. For any τ ∈ (−∞,∞),
N(t j + τ) → x(τ). For sufficiently large j, t j + τ > 0
and the value N(t j + τ) ∈ Rn

+. Therefore, x(τ) ∈ Rn
+

(−∞ < τ < ∞) and for any τ the point x(τ) is an ω-limit
point of the solution N(t). Let x∗i = 0 and ẋi|x∗ = v , 0.
If v > 0 then for small |τ| and τ < 0 the value of xi

becomes negative, xi(τ) < 0. It is impossible because
positivity. Similarly, If v < 0 then for small τ > 0 the
value of xi becomes negative, xi(τ) < 0. It is also im-
possible because positivity. Therefore, ẋi|x∗ = 0.

We use Proposition 4 in the following combination
with Proposition 3. Let us write the reaction mechanism
in the form (2).

Corollary 2. If an ω-limit point belongs to the relative
interior riFJ of the face FJ ⊂ Rn

+ then the face FJ is
invariant with respect to the reaction mechanism and for
every elementary reaction either γr j = 0 for all j ∈ J or
αr j > 0 for some j ∈ J.

Proof. If an ω-limit point belongs to riFJ then at this
point all ċ j = 0 for j ∈ J due to Proposition 4. There-
fore, we can apply Corollary 1.

3.2. Steady states of irreversible reactions
Under extended detailed balance conditions, all the

reaction rates of the irreversible reactions are zero at
every limit point of the kinetic equations (10), due to
Proposition 2. In this section, we give a simple combi-
natorial description of steady states for the set of irre-
versible reactions. This description is based on Proposi-
tion 2 and, therefore, uses the extended detailed balance
conditions.

We continue to study multiscale degeneration of a
detailed balance equilibrium. The vector of exponents
δ = (δi) is given, δi ≥ 0 for all i and δi = 0 for some
i. There are two sets of reaction. For one of them,
(γr, δ) = 0 and in the limit both k±r > 0. In the sec-
ond set, (γr, δ) < 0 and in the limit we assign k−r = 0
and k+

r is the same as in the initial system (before the
equilibrium degeneration). If it is necessary, we trans-
pose the stoichiometric equations and swap the direct
reactions with reverse ones.

For convenience, let us change the notations. Let
γi be the stoichiometric vectors of reversible reactions
with (γr, δ) = 0 (r = 1, . . . , h), and νl be the stoichio-
metric vectors for the reactions from the second set,
(νl, δ) < 0 (l = 1, . . . , s). For the reaction rates and
constants for the first set we keep the same notations:

wr, w±r , k±r . For the second set, we use for the reaction
rate constants ql = q+

l and for the reaction rates vl = v+
l .

(They are also calculated according to the generalized
mass action law (3).) The input and output stoichiomet-
ric coefficients remain αri and βri for the first set and for
the second set we use the notations ανli and βνli.

Let the rates of all the irreversible reaction be equal
to zero. This does not mean that all the concentrations
ai with δi > 0 achieve zero. A bimolecular reaction
A + B → C gives us a simple example: w = kaAaB

and w = 0 if either aA = 0 or aB = 0. On the plane
with coordinates aA, aB and with the positivity condi-
tion, aA, aB ≥ 0, the set of zeros of w is a union of two
semi-axes, {aA = 0, aB ≥ 0} and {aA ≥ 0, aB = 0}.
In more general situation, the set in the activity space,
where all the irreversible reactions have zero rates, has
a similar structure: it is the union of some faces of the
positive orthant.

Let us describe the set of the steady states of the irre-
versible reactions. Due to Proposition 2, if

∑
l vlνl = 0

then all vl = 0. Let us describe the set of zeros of all vl

in the the positive orthant of activities.
For every l = 1, . . . , s the set of zeros of vl in Rn

+ is
given by the conditions: at least for one i ανli , 0 and
ai = 0. It is convenient to represent this condition as a
disjunction. Let Jl = {i |ανli , 0}. Then the set of zeros
of vl an a positive orthant of activities is presented by
the formula

∨
i∈Jl

(ai = 0). The set of zeros of all vl is
represented by the following conjunction form

∧s
l=1

(∨i∈Jl (ai = 0)
)
. (16)

To transform it into the unions of subspaces we have
to move to a disjunction form and make some cancela-
tions. First of all, we represent this formula as a dis-
junction of conjunctions:

∧s
l=1

(∨i∈Jl (ai = 0)
)

= ∨i1∈J1,...,is∈Js

(
(ai1 = 0) ∧ . . . ∧ (ais = 0)

)
.

(17)

For a cortege of indexes {i1, . . . , is} the correspondent set
of their values may be smaller because some values il
may coincide. Let this set of values be S {i1,...,is}. We can
delete from (17) a conjunction (ai1 = 0)∧. . .∧(ais = 0) if
there exists a cortege {i′1, . . . , i′s} (i′l ∈ Jl) with smaller set
of values, S {i1,...,is} ⊇ S {i′1,...,i′s}. Let us check the corteges
in some order and delete a conjunction from (17) if there
remain a term with smaller (or the same) set of index
values in the formula. We can also substitute in (17)
the corteges by their sets of values. The resulting min-
imized formula may become shorter. Each elementary
conjunction represents a coordinate subspace and after
cancelations each this subspace does not belong to a
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union of other subspaces. The final form of formula
(17) is

∨ j(∧i∈S j (ai = 0)) , (18)

where S j are sets of indexes, S j ⊂ {1, . . . , n} and for ev-
ery two different S j, S p none of them includes another,
S j * S p. The elementary conjunction ∧i∈S j (ai = 0)
describes a subspace.

The steady states of the irreversible part of the re-
action mechanism are given by the intersection of the
union of the coordinate subspaces (18) with Rn

+. For ap-
plications of this formula, it is important that the equal-
ities ai = 0, ci = 0 and Ni = 0 are equivalent and the
positive orthants of the activities ai, concentrations ci or
amounts Ni represent the same sets of physical states.
This is also true for the faces of these orthants: FJ for
the activities, concentrations or amounts correspond to
the same sets of states. (The same state may corre-
sponds to the different points of these cones, but the
totalities of the states are the same.)

3.3. Sets of steady states of irreversible reactions in-
variant with respect to reversible reactions

In this Sec. we study the possible limit behavior
of systems which satisfy the extended detailed balance
conditions and include some irreversible reactions. All
the ω-limit points of such systems are steady states of
the irreversible reactions due to Proposition 2 but not all
these steady states may be the ω-limit points of the sys-
tem. A simple formal example gives us the couple of
reaction: A ­ B, A + B → C. Here, we have one re-
versible and one irreversible reaction. The conditions of
the extended detailed balance hold (trivially): the linear
span of the stoichiometric vector of the reversible reac-
tion, (−1, 1, 0), does not include the stoichiometric vec-
tor of the irreversible reaction, (−1,−1, 1). For the de-
scription of the multiscale degeneration of equilibrium,
we can take the exponents δA = 1, δB = 1, δC = 0.

The steady states of the irreversible reaction are given
in Rn

+ by the disjunction, (cA = 0) ∨ (cB = 0) but only
the points (cA = cB = 0) may be the limit points when
t → ∞. Indeed, if cA = 0 and cB > 0 then dcA/dt =

k−1 cB > 0. Due to Proposition 4 this is not an ω-limit
point. Similarly, the points with cA > 0 and cB = 0 are
not the ω-limit points.

Let us combine Propositions 2, 4 and Corollary 2 in
the following statement.

Theorem 2. Let the kinetic system satisfy the extended
detailed balance conditions and include some irre-
versible reactions. Then an ω-limit point x∗ ∈ riFJ

exists if and only if FJ consists of steady states of the

irreversible reactions and is invariant with respect to
all reversible reactions.

Proof. If an ω-limit point x∗ ∈ riFJ exists then it is a
steady state for all irreversible reactions (due to Proposi-
tions 2). Therefore, the face FJ consists of steady-states
of the irreversible reactions (Proposition 4) and is in-
variant with respect to all reversible reactions (Proposi-
tion 4 and Corollary 2). To prove the reverse statement,
let us assume that FJ consists of steady states of the ir-
reversible reactions and is invariant with respect to all
reversible reactions. The reversible reactions which do
not act on c j for j ∈ J define a semi-dynamical system
on FJ . The positive conservation law b defines an pos-
itively invariant polyhedron in FJ . Dynamics in such a
compact set always has ω-limit points.

Let us find the faces FJ that contain theω-limit points
in their relative interior riFJ . According to Theorem 2,
these faces should consist of the steady states of the ir-
reversible reactions and should be invariant with respect
to all reversible reactions. Let us look for the maximal
faces with this property. For this purpose, we always
minimize the disjunctive forms by cancelations. We do
not list the faces that contain the ω-limit points in their
relative interior and are the proper subsets of other faces
with this property. All the ω-limit points belong to the
union of these maximal faces.

Let us start from the minimized disjunctive form (18).
Equation (18) represents the set of the steady states of
the irreversible part of the reaction mechanism by a
union of the coordinate subspaces ∧i∈S j (ci = 0) in in-
tersection with Rn

+. It is the union of the faces, ∪ jFS j . If
a face FJ consists of the steady states of the irreversible
reactions then J ⊇ S j for some j.

The following formula (19) is true on a face FJ if it
containsω-limit points in the relative interior riFJ (The-
orem 2):

(ci = 0)⇒
[(
∧r,γri>0 ∨ j,αr j>0 (c j = 0)

)

∧
(
∧r,γri<0 ∨ j,βr j>0 (c j = 0)

)]
.

(19)

Here, ci = 0 in FJ may be read as i ∈ J. Following
the previous section, we use here the notations γri, βri

and βri for the reversible reactions and reserve νl, ανli
and βνli for the irreversible reactions. The set of γr in
this formula is the set of the stoichiometric vectors of
the reversible reactions.

The required faces FJ may be constructed in an itera-
tive procedure. First of all, let us introduce an operation
that transforms a set of indexes S ⊂ {1, 2, . . . , n} in a
family of sets, S(S ) = {S ′1, . . . , S ′l }. Let us take formula
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(19) and find the set where it is valid for all i ∈ S . This
set is described by the following formula:

∧i∈S
[
(ci = 0) ∧

(
∧r,γri>0 ∨ j,αr j>0 (c j = 0)

)

∧
(
∧r,γri<0 ∨ j,βr j>0 (c j = 0)

)]
.

(20)

Let us produce a disjunctive form of this formula and
minimize it by cancelations as it is described in Sec. 3.2.
The result is

∨ j=1,...,k

(
∧i∈S ′j (ci = 0)

)
. (21)

Because of cancelations, the sets S ′j do not include one
another. They give the result, S(S ) = {S ′1, . . . , S ′l }.
Each S ′j ∈ S(S ) is a superset of S , S ′ ⊇ S .

Let us extend the operation S on the sets of sets
S = {S 1, . . . , S p} with the property: S i 1 S j for i , j.
Let us apply S to all S i and take the union of the results:
S0(S) = ∪iS(S i). Some sets from this family may in-
clude other sets from it. Let us organize cancelations: if
S ′, S ′′ ∈ S0(S) and S ′ ⊂ S ′′ then retain the smallest set,
S ′, and delete the largest one. We do the cancelations
until it is possible. Let us call the final result S(S). It
does not depend on the order of these operations.

Let us start from any family S and iterate the opera-
tion S. Then, after finite number of iterations, the se-
quence Sd(S) stabilizes: Sd(S) = Sd+1(S) = . . . be-
cause for any set S all sets from S(S ) include S .

The problems of propositional logic that arise in
this and the previous section seem very similar to el-
ementary logical puzzles [3]. In the solution we just
use the logical distribution laws (distribution of con-
junction over disjunction and distribution of disjunc-
tion over conjunction), commutativity of disjunction
and conjunction, and elementary cancelation rules like
(A ∧ A) ⇔ A, (A ∨ A) ⇔ A, [A ∧ (A ∨ B)] ⇔ A, and
[A ∨ (A ∧ B)]⇔ A.

Now, we are in position to describe the construction
of all FJ that have the ω-limit points on their relative
interior and are the maximal faces with this property.

1. Let us follow Sec. 3.2 and construct the minimized
disjunctive form (18) for the description of the
steady states of the irreversible reactions.

2. Let us calculate the families of sets Sd({S j}) for
the family of sets {S j} from (18) and d = 1, 2, . . .,
until stabilization.

3. Let Sd({S j}) = Sd+1({S j}) = {J1, J2, . . . Jp}. Then
the family of the faces FJi (i = 1, 2, . . . , p) gives
the answer: the ω-limit points are situated in riFJi

and for each i there are ω-limit points in riFJi .

3.4. Simple examples
In this Sec., we present two simple and formal exam-

ples of the calculations described in the previous sec-
tions.

1. A1 +A2 ­ A3 +A4, γ = (−1,−1, 1, 1, 0); A1 +A2 →
A5, ν = (−1,−1, 0, 0, 1). The extended principle of de-
tailed balance holds: the convex hull of the stoichiomet-
ric vectors of the irreversible reactions consists of one
vector γ2 and it is linearly independent of γ1. The in-
put vector α for the irreversible reaction A1 + A2 → A5
is (−1,−1, 0, 0, 0). The set J = Jl from the conjunc-
tion form (16) is defined by the non-zero coordinates of
this αν: J = {1, 2}. The conjunction form in this simple
case (one irreversible reaction) loses its first conjunc-
tion operation and is just (c1 = 0) ∨ (c2 = 0). It is,
at the same time, the minimized disjunction form (18)
and does not require additional transformations. This
formula describes the steady states of the irreversible
reaction in the positive orthant Rn

+. For this disjunction
form, The family of sets S = {S j} consists of two sets,
S 1 = {1} and S 2 = {2}.

Let us calculate S(S 1,2). For both cases, i = 1, 2 there
are no reversible reactions with γri = 0. Therefore, one
expression in round parentheses vanishes in (20). For
S = {1} this formula gives

(c1 = 0) ∧ ((c3 = 0) ∨ (c4 = 0))

and for S = {2} it gives

(c2 = 0) ∧ ((c3 = 0) ∨ (c4 = 0)) .

The elementary transformations give the disjunctive
forms:

[(c1 = 0) ∧ ((c3 = 0) ∨ (c4 = 0))]
⇔[((c1 = 0) ∧ (c3 = 0)) ∨ ((c1 = 0) ∧ (c4 = 0))] ,

[(c2 = 0) ∧ ((c3 = 0) ∨ (c4 = 0))]
⇔[((c2 = 0) ∧ (c3 = 0)) ∨ ((c2 = 0) ∧ (c4 = 0))] .

Therefore, S(S 1) = {{1, 3}, {1, 4}}, S(S 2) =

{{2, 3}, {2, 4}} and

S({S 1, S 2}) = {{1, 3}, {1, 4}, {2, 3}, {2, 4}} .
No cancelations are needed. The iterations of S do not
produce new sets from {{1, 3}, {1, 4}, {2, 3}, {2, 4}}. In-
deed, if c1 = c3 = 0, or c1 = c4 = 0, or c2 = c3 = 0,
or c2 = c4 = 0 then all the reaction rates are zero. More
formally, for example for S({1, 3}) formula (20) gives

[(c1 = 0) ∧ ((c3 = 0) ∨ (c4 = 0))]
∧[(c3 = 0) ∧ ((c1 = 0) ∨ (c2 = 0))] .
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This formula is equivalent to (c1 = 0)∧ (c3 = 0). There-
fore, S({1, 3}) = {1, 3}. The same result is true for {1, 4},
{2, 3}, and {2, 4}.

All the ω-limit points (steady states) belong to the
faces F{1,3} = {c |, c1 = c3 = 0}, F{1,4} = {c |, c1 = c4 =

0}, F{2,3} = {c |, c2 = c3 = 0}, or F{2,4} = {c |, c2 = c4 =

0}. The position of the ω-limit point for a solution N(t)
depends on the initial state. More specifically, this sys-
tem of reactions has three independent linear conserva-
tion laws: b1 = N1 + N2 + N3 + N4 + 2N5, b2 = N1 − N2
and b3 = N3 −N4. For given values of these b1,2,3 vector
N belongs to the 2D plane in R5. The intersection of
this plane with the selected faces depends on the signs
of b2,3:

• If b2 < 0, b3 < 0 then it intersects F{1,3} only, at one
point N = (0,−b2, 0,−b3, b1 + b2 + b3) (N5 should
be non-negative, b1 + b2 + b3 ≥ 0) .

• If b2 = 0, b3 < 0 then it intersects both F{1,3} and
F{2,3} at one point N = (0, 0, 0,−b3, b1 + b3) (N5
should be non-negative, b1 + b3 ≥ 0).

• If b2 < 0, b3 = 0 then it intersects both F{1,3} and
F{1,4} at one point N = (0,−b2, 0, 0, b1 + b2) (N5
should be non-negative, b1 + b2 ≥ 0).

• If b2 > 0, b3 < 0 then it intersects F{2,3} only, at one
point N = (b2, 0, 0,−b3, b1 +b2 +b3) (N5 should be
non-negative, b1 + b2 + b3 ≥ 0).

• If b2 > 0, b3 = 0 then it intersects F{2,3} and F{2,4}
at the point N = (b2, 0, 0, 0, b1 + b2) (N5 is non-
negative because b1 + b2 + b3 ≥ 0).

• If b2 < 0, b3 > 0 then it intersects F{1,4} only, at one
point N = (0,−b2, b3, 0, b1 +b2 +b3) (N5 should be
non-negative, b1 + b2 + b3 ≥ 0).

• If b2 = 0, b3 > 0 then it intersects F{1,4} and F{2,4}
at one point N = (0, 0, b3, 0, b1 + b3) (N5 is non-
negative because b1 + b3 ≥ 0).

• If b2 > 0, b3 > 0 then it intersects F{2,4} only, at
one point N = (b2, 0, b3, 0, b1 + b2 + b3) (N5 is non-
negative because b1 + b2 + b3 ≥ 0).

As we can see, the system has exactly one ω-limit point
for any admissible combination of the values of the con-
servation laws. These points are the listed points of in-
tersection.

For the second simple example, let us change the di-
rection of the irreversible reaction.

2. A1 + A2 ­ A3 + A4, γ1 = (−1,−1, 1, 1, 0),
A5 → A1 + A2, ν = (1, 1, 0, 0,−1). The extended

Table 1: H2 burning mechanism [21]
No Reaction Stoichiometric vector

1 H2 + O2 ­ 2OH (-1,-1,2,0,0,0,0,0)
2 H2 + OH ­ H2O + H (-1,0,-1,1,1,0,0,0)
3 OH + O ­ O2 + H (0,1,-1,0,1,-1,0,0)
4 H2 + O ­ OH + H (-1,0,1,0,1,-1,0,0)
5 O2 + H +M ­ HO2 +M (0,-1,0,0,-1,0,1,0)
6 OH + HO2 ­ O2 + H2O (0,1,-1,1,0,0,-1,0)
7 H + HO2 ­ 2OH (0,0,2,0,-1,0,-1,0)
8 O + HO2 ­ O2 + OH (0,1,1,0,0,-1,-1,0)
9 2OH ­ H2O + O (0,0,-2,1,0,1,0,0)
10 2H + M ­ H2 + M (1,0,0,0,-2,0,0,0)
11 2H + H2 ­ H2 + H2 (1,0,0,0,-2,0,0,0)
12 2H + H2O ­ H2 + H2O (1,0,0,0,-2,0,0,0)
13 OH + H + M ­ H2O + M (0,0,-1,1,-1,0,0,0)
14 H + O + M ­ OH + M (0,0,1,0,-1,-1,0,0)
15 2O + M ­ O2 + M (0,1,0,0,0,-2,0,0)
16 H + HO2 ­ H2 + O2 (1,1,0,0,-1,0,-1,0)
17 2HO2 ­ O2 + H2O2 (0,1,0,0,0,0,-2,1)
18 H2O2 + M ­ 2OH + M (0,0,2,0,0,0,0,-1)
19 H + H2O2 ­ H2 + HO2 (1,0,0,0,-1,0,1,-1)
20 OH + H2O2 ­ H2O + HO2 (0,0,-1,1,0,0,1,-1)

principle of detailed balance holds. The steady-states
of the irreversible reactions is given by one equation,
c5 = 0. Formula (20) gives for S({5}) just (c5 = 0).
The face F{5} includes ω-limit points in riF{5}. Dynam-
ics on this face is defined by the fully reversible reac-
tion system and tends to the equilibrium of the reaction
A1 + A2 ­ A3 + A4 under the given conservation laws.
On this face, there exist the border equilibria, where
c1 = c3 = 0, or c1 = c4 = 0, or c2 = c3 = 0, or
c2 = c4 = 0 but they are not attracting the positive solu-
tions.

4. Example: H2+O2 system

For the case study, we selected the H2+O2 system.
This is one of the main model systems of gas kinet-
ics. The hydrogen burning gives us an example of
the medium complexity with 8 components (A1 =H2,
A2 =O2, A3 =OH, A4 =H2O, A5 =H, A6 =O, A7 =HO2,
and A8 =H2O2) and 2 atomic balances (H and O). For
the example, we selected the reaction mechanism from
[21]. The literature about hydrogen burning mecha-
nisms is huge. For recent discussion we refer to [16, 18].

A special symbol “M” is used for the “third body”.
It may be any molecule. The third body provides the
energy balance. Efficiency of different molecules in this
process is different, therefore, the “concentration” of the
third body is a weighted sum of the concentrations of the
components with positive weights. The third body does
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not affect the equilibrium constants and does not change
the zeros of the direct and inverse reaction rates but
modifies the non-zero values of reaction rates. There-
fore, for our analysis we can omit these terms. The
elementary reactions 10, 11 and 12 are glued in one,
2H­H2, after cancelation of the third bodies, and we
analyze the mechanism of 18 reaction.

Under various conditions, some of the reactions are
(almost) irreversible and some of them should be con-
sidered as reversible. For example, let us consider the
H2+O2 system at or near the atmospheric pressure and
in the temperature interval 800–1200K. The reactions
1, 2, 4, 18, 19, and 20 are supposed to be reversible
(on the base of the reaction rate constants presented in
[21]). The first question is: if these reactions are re-
versible then which reactions may be irreversible?

Due to the general criterion, the convex hull of the
stoichiometric vectors of the irreversible reactions has
empty intersection with the linear span of the stoichio-
metric vectors of the reversible reactions. Therefore, if
the stoichiometric vector of a reaction belongs to the lin-
ear span of the stoichiometric vectors of the reversible
reactions, then this reaction is reversible. Simple linear
algebra gives that

γ3,5,9 ∈ span{γ1, γ2, γ4, γ18, γ19, γ20} .

In particular, γ3 = −γ1 + γ4, γ5 = γ1 − γ18 + γ19,
γ9 = γ2 − γ4. So, the list of the reversible reactions
should include the reactions 1, 2, 3, 4, 5, 9, 18, 19, and
20. The reactions 6, 7, 8, 10, 11, 12, 13, 14, 15, and 17
may be irreversible. Formally, there are 28 = 256 pos-
sible combinations of the directions of these 8 reactions
(the reactions 10, 11 and 12 have the same stoichiomet-
ric vector and, in this sense, should be considered as one
reaction). The general criterion and simple linear alge-
bra give that there are only two admissible combinations
of the directions of irreversible reactions: either for all
of them k−r = 0 or for all of them k+

r = 0. Here, the
direct and inverse reactions and the notations k±r are se-
lected according to the Table 1. We can immediately no-
tice that the inverse direction of all reactions is very far
from the reality under the given conditions, for example,
it includes the irreversible dissociation H2 → 2H.

Let us demonstrate in detail, how the general crite-
rion produces this reduction from the 256 possible com-
binations of directions of irreversible reactions to just
2 admissible combinations. We assume that the initial
set of reactions is spit in two: reversible reactions with
numbers r ∈ J0 and irreversible reactions with r ∈ J1,
rank{γ1, γ2, . . . , γ`} = d, rank{γr | r ∈ J0} = d0. The rank
of all vectors γr, d, must exceed the rank of the stoichio-

metric vectors of the reversible reactions, d > d0, be-
cause if d = d0 then all the reactions must be reversible
and the problem becomes trivial.

According to [12], we have to perform the following
operations with the set of stoichiometric vectors γr:

1. Eliminate several coordinates from all γr using lin-
ear conservation laws. This is transfer to the inter-
nal coordinates in span{γr | r = 1, . . . , `};

2. Eliminate coordinates from all γr (r ∈ J1) using
the stoichiometric vectors of the reversible reac-
tions and the Gauss–Jordan elimination procedure.
This is the map to the quotient space span{γr | r =

1, . . . , `}/span{γr | r ∈ J0}. Me denote the result as
γr;

3. Use the linear programming technique and analyze
for which combinations of the signs, the convex
hull conv{±γr | r ∈ J1} does not include 0.

In the Table 2 we present the results of the step-by-
step elimination. First, the atomic balances give us for
every possible stoichiometric vector η = (η1, . . . , η8)
two identities:

1. 2η1 + η3 + 2η4 + η5 + η7 + 2η8 = 0 or η1 = − 1
2 (η3 +

2η4 + η5 + η7 + 2η8);
2. 2η2 + η3 + η4 + η6 + 2η7 + 2η8 = 0 or η2 = − 1

2 (η3 +

η4 + η6 + 2η7 + 2η8).

Let us recall that the order of the coordinates (η1, . . . , η8)
corresponds to the following order of the components,
(H2, O2, OH, H2O, H, O, HO2, H2O2). Due to these
identities, a stoichiometric vector η for this mixture is
completely defined by six coordinates (η3, . . . , η8). In
the second column of the Table 2 these 6D vectors are
given for all the reactions from the H2 burning mecha-
nism (the Table 1).

In five columns No. 3-7, the results of the coordinate
eliminations are presented (and the zero-valued elimi-
nated coordinates are omitted). Each elimination step
may be represented as a projection:

x 7→ x − xi
1
ηi
η ,

where ηi is a pivot (highlighted in bold in the column
preceding the result of elimination), and η is the vec-
tor that includes the pivot (as the ith coordinate). The
projection operator is applied to every vector of the pre-
vious column. At the end (the last column), all the sto-
ichiometric vectors of the reversible reaction are trans-
formed into zero, and the stoichiometric vectors of the
irreversible reactions with the given direction (from the
left to the right) are transformed into the same vector
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Table 2: Elimination of coordinates of stoichiometric vectors for H2 burning mechanism. The reversible reactions are collected in the upper part of
the Table. The reaction in the lower part of the table are irreversible. The group of equivalent reactions 10, 11, 12 is presented by one of them. In
the second column, the first two coordinates (which correspond to H2 and O2) are excluded using the atomic balance. In the following columns the
results of the coordinates elimination are presented. For each step, the pivot for elimination is underlined and highlighted in bold in the previous
column. The eliminated coordinates at each step are named at the top of each column. Their zero values are omitted.

No H2, O2 OH H2O2 H2O H O
1 (2,0,0,0,0,0) (0,0,0,0,0) (0,0,0,0) (0,0,0) (0,0) (0)
2 (-1,1,1,0,0,0) (1,1,0,0,0) (1,1,0,0) (0,0,0) (0,0) (0)
3 (-1,0,1,-1,0,0) (0,1,-1,0,0) (0,1,-1,0) (1,-1,0) (0,0) (0)
4 (1,0,1,-1,0,0) (0,1,-1,0,0) (0,1,-1,0) (1,-1,0) (0,0) (0)
5 (0,0,-1,0,1,0) (0,-1,0,1,0) (0,-1,0,1) (-1,0,1) (-1,1) (0)
9 (-2,1,0,1,0,0) (1,0,1,0,0) (1,0,1,0) (-1,1,0) (0,0) (0)
18 (2,0,0,0,0,-1) (0,0,0,0,-1) (0,0,0,0) (0,0,0) (0,0) (0)
19 (0,0,-1,0,1,-1) (0,-1,0,1,-1) (0,-1,0,1) (-1,0,1) (-1,1) (0)
20 (-1,1,0,0,1,-1) (1,0,0,1,-1) (1,0,0,1) (-1,0,1) (-1,1) (0)
6 (-1,1,0,0,-1,0) (1,0,0,-1,0) (1,0,0,-1) (-1,0,-1) (-1,-1) (-2)
7 (2,0,-1,0,-1,0) (0,-1,0,-1,0) (0,-1,0,-1) (-1,0,-1) (-1,-1) (-2)
8 (1,0,0,-1,-1,0) (0,0,-1,-1,0) (0,0,-1,-1) (0,-1,-1) (-1,-1) (-2)
10 (0,0,-2,0,0,0) (0,-2,0,0,0) (0,-2,0,0) (-2,0,0) (-2,0) (-2)
13 (-1,1,-1,0,0,0) (1,-1,0,0,0) (1,-1,0,0) (-2,0,0) (-2,0) (-2)
14 (1,0,-1,-1,0,0) (0,-1,-1,0,0) (0,-1,-1,0) (-1,-1,0) (-2,0) (-2)
15 (0,0,0,-2,0,0) (0,0,-2,0,0) (0,0,-2,0) (0,-2,0) (-2,0) (-2)
16 (0,0,-1,0,-1,0) (0,-1,0,-1,0) (0,-1,0,-1) (-1,0,-1) (-1,-1) (-2)
17 (0,0,0,0,-2,1) (0,0,0,-2,1) (0,0,0,-2) (0,0,-2) (0,-2) (-2)

(−2). If we restore all the zeros, then the corresponding
6D vector is (0, 0, 0, 0,−2, 0). We have to use the atomic
balances to return to the 8D vectors. The coordinate x7
corresponds to HO2, x1 corresponds to H2, and x2 cor-
responds to O2, hence, 2x1−2 = 0 and 2x2−4 = 0. The
restored 8D vector is (1, 2, 0, 0, 0, 0,−2, 0).

A convex combination of several copies of one vec-
tor cannot give zero. Therefore, the structural condition
of the extended principle of detailed balance holds. It
holds also for the inverse direction of all the irreversible
reactions. All other distributions of directions can pro-
duce zero in the convex hull and are inadmissible. So,
we have the following list of irreversible reactions that
satisfies the extended principle of detailed balance for
given reversible reactions. (We will not discuss the sec-
ond list of reverse irreversible reactions because it has
not much sense for given conditions.)

6 OH + HO2 → O2 + H2O
7 H + HO2 → 2OH
8 O + HO2 → O2 + OH
10 2H→ H2
13 OH + H→ H2O
14 H + O→ OH
15 2O→ O2
16 H + HO2 → H2 + O2
17 2HO2 → O2 + H2O2.

We assume that all the reaction rate constants for the
selected directions are strictly positive. The rate of all
these reaction vanish if and only if concentration of H,
O and HO2 are equal to zero, c5,6,7 = 0. Indeed, c5 = 0
if and only if w10 = 0, c6 = 0 if and only if w15 = 0,
a7 = 0 if and only if w17 = 0. On the other hand, all
other reaction rates from this list are zeros if c5,6,7 = 0.

Let us reproduce this reasoning using formulas from
Sec. 3.2. For the lth irreversible reaction, Jl is the set
of indexes i for which αli , 0. Let us keep for the
irreversible reactions their numbers (6, 7, 8, 10, 13,
14, 15, 16, 17). For them, J6 = {3, 7}, J7 = {5, 7},
J8 = {6, 7}, J10 = {5}, J13 = {3, 5}, J14 = {5, 6},
J15 = {6}, J16 = {5, 7}, J17 = {7}.

Formula (18) gives for the steady states of the irre-
versible reactions:

((c3 = 0) ∨ (c7 = 0)) ∧ ((c5 = 0) ∨ (c7 = 0))
∧((c6 = 0) ∨ (c7 = 0)) ∧ (c5 = 0)
∧((c3 = 0) ∨ (c5 = 0)) ∧ ((c5 = 0) ∨ (c6 = 0))
∧(c6 = 0) ∧ ((c5 = 0) ∨ (c7 = 0)) ∧ (c7 = 0).

It is equivalent to

(c5 = 0) ∧ (c6 = 0) ∧ (c7 = 0) .

Of course, the result is the same, the face F{5,6,7} (c5,6,7 =
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0, ci ≥ 0) is the set of the steady states of all irreversible
reaction.

Let us look now on the list of reversible reactions:

1 H2 + O2 ­ 2OH
2 H2 + OH ­ H2O + H
3 OH + O ­ O2 + H
4 H2 + O ­ OH + H
5 O2 + H ­ HO2
9 2OH ­ H2O + O
18 H2O2 ­ 2OH
19 H + H2O2 ­ H2 + HO2
20 OH + H2O2 ­ H2O + HO2

If the concentration OH (c3) is positive then the com-
ponent O is produced in the reaction 9. If the concentra-
tions of H2 (c1) and OH (c3) both are positive then the
component H is produced in reaction 2. If the concen-
trations of H2O2 (c8) and OH (c3) both are positive then
the component HO2 is produced in reaction 2. Due to
the reversible reaction 18 any of two components H2O2
and OH produces the other component. Moreover, the
first reaction produces OH from H2 + O2. This produc-
tion stops if and only if either concentration of H2 is
zero (c1 = 0) or concentration of O2 is zero (c2 = 0).

This means that the set of zeros of the irreversible re-
actions, c5,6,7 = 0 (c ≥ 0), is not invariant with respect
to the kinetics of the reversible reactions. This means
that from an initial conditions on this set the kinetic tra-
jectory will leave it unless, in addition, c3 = c8 = 0 and
either c1 = 0 or c2 = 0.

The reactions of all irreversible reactions should tend
to zero due to Proposition 2. Therefore, the kinetic
trajectory should approach the union of two planes,
c1,3,5,6,7,8 = 0 and c2,3,5,6,7,8 = 0 (under condition c ≥ 0).
These planes are two-dimensional and the position of
the state there is completely defined by the atomic bal-
ances.

If the concentration vector belongs to the first plane,
then all the atoms are collected in O2 and H2O. It is
possible if and only if bO ≥ 1

2 bH. In this case, c4 = 1
2 bH

and c2 = 1
2 (bO − 1

2 bH).

If the concentration vector belongs to the second
plane, then all the atoms are collected in H2 and H2O. It
is possible if and only if bO ≤ 1

2 bH. In this case, c4 = bO

and c1 = 1
2 (bH − 2bO).

Let us reproduce this reasoning formally using the
general formalism of Sec. 3.3. Formula 20 gives for

S({5, 6, 7})
(c5 = 0)∧

(
∧r,γr5>0 ∨ j,αr j>0 (c j = 0)

)

∧
(
∧r,γr5<0 ∨ j,βr j>0 (c j = 0)

)

∧(c6 = 0)∧
(
∧r,γr6>0 ∨ j,αr j>0 (c j = 0)

)

∧
(
∧r,γr6<0 ∨ j,βr j>0 (c j = 0)

)

∧(c7 = 0)∧
(
∧r,γr7>0 ∨ j,αr j>0 (c j = 0)

)

∧
(
∧r,γr7<0 ∨ j,βr j>0 (c j = 0)

)
.

(22)

Vectors γr in this formula participate are the sto-
ichiometric vectors of reversible reactions (r =

1, 2, 3, 4, 5, 9, 18, 19, 20). From the Table 1 we find that
γr5 > 0 for r = 2, 3, 4, γr5 < 0 for r = 5, 19, γr6 > 0 for
r = 9, γr6 < 0 for r = 3, 4, γr7 > 0 for r = 5, 19, 20, and
γr7 ≮ 0 for all r. Formula (22) transforms into

(c5 = 0) ∧ ((c1 = 0)∨(c3 = 0)) ∧ ((c3 = 0)∨(c6 = 0))
∧((c1 = 0)∨(c6 = 0)) ∧ (c7 = 0) ∧ ((c1 = 0)∨(c7 = 0))
∧(c6 = 0) ∧ (c3 = 0) ∧ ((c2 = 0)∨(c5 = 0))
∧((c3 = 0)∨(c5 = 0)) ∧ (c7 = 0) ∧ ((c2 = 0)∨(c5 = 0))
∧((c5 = 0)∨(c8 = 0)) ∧ ((c3 = 0)∨(c8 = 0)) .

After simple transformations it becomes

(c3 = 0) ∧ (c5 = 0) ∧ (c6 = 0) ∧ (c7 = 0) . (23)

Therefore, S({5, 6, 7}) = {3, 5, 6, 7}. To iterate, we have
to compute S({3, 5, 6, 7}). For this calculation, we have
to add one more line to formula (22), namely,

∧(c3 = 0)∧
(
∧r,γr3>0 ∨ j,αr j>0 (c j = 0)

)

∧
(
∧r,γr3<0 ∨ j,βr j>0 (c j = 0)

)
.

Let us take into account that γr3 > 0 for r = 1, 4, 18 and
γr3 < 0 for r = 2, 3, 9, 20, and rewrite this formula in
the more explicit form

(c3 = 0) ∧ ((c1 = 0) ∨ (c2 = 0))
∧((c1 = 0) ∨ (c6 = 0)) ∧ (c8 = 0)
∧((c4 = 0) ∨ (c5 = 0)) ∧ ((c2 = 0) ∨ (c5 = 0))
∧((c4 = 0) ∨ (c6 = 0)) ∧ (c7 = 0) .

Let us take the conjunction of this formula with (22)
taken in the simplified equivalent form (23) and trans-
form the result to the disjunctive form. We get

[(c3 = 0) ∧ (c5 = 0) ∧ (c6 = 0)
∧ (c7 = 0) ∧ (c8 = 0) ∧ (c1 = 0)]

∨[(c3 = 0) ∧ (c5 = 0) ∧ (c6 = 0)
∧ (c7 = 0) ∧ (c8 = 0) ∧ (c2 = 0))]

(24)
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This means that S2({5, 6, 7}) = S({3, 5, 6, 7}) =

{{1, 3, 5, 6, 7, 8}, {2, 3, 5, 6, 7, 8}}. The further calcula-
tions show that the next iteration does not change the
result. Therefore, all the ω-limit points belong to two
faces, F{1,3,5,6,7,8} and F{2,3,5,6,7,8}. The result is the same
as for the previous discussion. The detailed formaliza-
tion becomes crucial for more complex systems and for
software development.

Let us find the vector of exponents δ = (δi) (i =

1, . . . , 8) from the Table 2. After all the eliminations,
the corresponding linear functional δ̂ is just a value of
the 7th coordinate: δ̂(x) = x7. Its values are negative
(−2) for all irreversible reactions and zero for all re-
versible reactions (see the last column of the Table 2).
The conditions (δ, γ) = 0 for the reversible reactions
and (δ, γ) < 0 for all irreversible reactions do not define
the unique vector: if δ satisfies these conditions then its
linear combination with the vectors of atomic balances
also satisfy them. Such a combination is a vector

λδ + λH(2, 0, 1, 2, 1, 0, 1, 2) + λO(0, 2, 1, 1, 0, 1, 2, 2)
(25)

under condition λ > 0. This transformation of δ does
not change the signs of δ̂ on the stoichiometric vectors
because of atomic balances.

In our case the only coordinate remains not elimi-
nated, x7 (the bottom part of the last column of the Ta-
ble 2). If, for some reaction mechanism and selected
sets of reversible and irreversible reaction, there remain
several (q) coordinates, then it is necessary to find q cor-
responding functionals δ̂ and the space of possible vec-
tors of exponents is (q + j)-dimensional. Here, j is the
number of the independent linear conservation laws for
the whole system, j = n − rank{γr}, n is the number
of the components, {γr} includes all the stoichiometric
vectors for reversible and irreversible reactions.

To find δ, we apply the elimination procedures from
the Table 2 to an arbitrary vector y = (yi) (i = 1, . . . , 8):

(y1, y2, y3, y4, y5, y6, y7, y8) 7→ (y1, y2, 0, y4, y5, y6, y7, y8)
7→(y1, y2, 0, y4, y5, y6, y7, 0) 7→ (y1, y2, 0, 0, y5−y4, y6, y7, 0)
7→(y1, y2, 0, 0, 0, y6 + y5 − y4, y7, 0)
7→(y1, y2, 0, 0, 0, 0, y7 + y6 + y5 − y4, 0)

(26)

This sequence of transformations gives us the linear
functional

δ̂(y) = y7 + y6 + y5 − y4 .

The corresponding vector of exponents
(0, 0, 0,−1, 1, 1, 1, 0) should be corrected because
its coordinates cannot be negative. Let us apply

(25) with λ = 2 (for convenience). The coordinates
of this combination are non-negative if and only if
λH ≥ 0, λO ≥ 0 and 2λH + λO − 2 ≥ 0. The solutions
of these linear inequality on the (λH, λO) plane is a
convex combination of the extreme points (corners)
(1, 0) and (0, 2) plus any non-negative 2D vector:
(λH, λO) = ς(1, 0) + (1− ς)(0, 2) + (ϑ1, ϑ2), ϑ1,2 ≥ 0 and
1 ≥ ς ≥ 0. The corresponding vectors of exponents are

(0, 0, 0,−2, 2, 2, 2, 0) + (ς + ϑ1)(2, 0, 1, 2, 1, 0, 1, 2)
+ (1 − ς + ϑ2)(0, 4, 2, 2, 0, 2, 4, 4) .

At least one of the exponents should be zero. There
are only three possibilities, δ1, δ2 or δ4. For all other i,
δi > 0 if ϑ1,2 ≥ 0 and 1 ≥ ς ≥ 0.

To provide any necessary atomic balance in the limit
ε → 0 it is necessary that two of δi are zeros. If bO ≤
1
2 bH, then δ1 = δ4 = 0. This means that ϑ1,2 = 0, ς = 0
and δ = (0, 4, 2, 0, 2, 4, 6, 4). It is convenient to divide
this δ by 2 and write

δ = (0, 2, 2, 0, 2, 2, 3, 2) .

For these exponents, the equilibrium concentrations
tend to 0 with the small parameter ε→ 0 (ε > 0) as

ceq
H2

= ceq
1 = const, ceq

O2
= ceq

2 ∼ ε2, ceq
OH = ceq

3 ∼ ε2,

ceq
H2O = ceq

4 = const, ceq
H = ceq

5 ∼ ε2, ceq
O = ceq

6 ∼ ε2,

ceq
HO2

= ceq
7 ∼ ε3, ceq

H2O2
= ceq

6 ∼ ε2 .

(27)

If bO ≥ 1
2 bH, then δ2 = δ4 = 0. This means that

ϑ1,2 = 0, ς = 1 and

δ = (2, 0, 1, 0, 3, 2, 3, 2) .

For these exponents, the equilibrium concentrations
tend to 0 with the small parameter ε→ 0 (ε > 0) as

ceq
H2

= ceq
1 ∼ ε2, ceq

O2
= ceq

2 = const, ceq
OH = ceq

3 ∼ ε,
ceq

H2O = ceq
4 = const, ceq

H = ceq
5 ∼ ε3, ceq

O = ceq
6 ∼ ε2,

ceq
HO2

= ceq
7 ∼ ε3, ceq

H2O2
= ceq

6 ∼ ε2 .

(28)

The linear combination
∑

i δiNi decreases in time due
to kinetic equations. This is true for any vector of expo-
nents presented by a linear combination (25) (λ , 0) of
the initial vector (0, 0, 0,−1, 1, 1, 1, 0) with the vectors
of the atomic balances. At the same time, any of these
combinations give an additional linear conservation law
for the system of reversible reactions.

Below are several versions of this function:
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• The initial version, δ̂, obtained from the Table 2 is
(δ,N) = −NH20 + NH + NO + NHO2;

• Vector of exponents, calibrated by adding of the
atomic balances (25) to meet the atomic balance
conditions for bO ≤ 1

2 bH in the limit ε → 0 is
(δ,N) = 2NO2 +2NOH+2NH+2NO+3NHO2 +2NH2O2 ;

• Vector of exponents, calibrated to meet the atomic
balance conditions for bO ≥ 1

2 bH is, (δ,N) =

2NH2 + NOH + 3NH + 2NO + 3NHO2 + 2NH2O2 .

All these forms differs by the combinations of the
atomic balances (25) and are, in this sense, equivalent.

5. Conclusion

The general principle of detailed balance was formu-
lated in 1925 as follows [15]: “Corresponding to every
individual process there is a reverse process, and in a
state of equilibrium the average rate of every process is
equal to the average rate of its reverse process.” Rigor-
ously speaking, the chemical reactions have to be con-
sidered as reversible ones, and every step of the complex
reaction consists of two reactions, forward and reverse
(backward) one. However, in reality some forward or
reverse reactions have the negligible rate. Typically, the
complex combustion reactions, in particular, reactions
of hydrocarbon oxidation or hydrogen combustion, in-
clude both reversible and irreversible steps. It is a case
in catalytic reactions as well. Although many catalytic
reactions are globally irreversible, they always include
some reversible steps, in particular steps of adsorption
of gases.

This work aims to solve the problem of the partially
irreversible limit in chemical thermodynamics when
some reactions become irreversible whereas some other
reactions remain reversible. The main results in this di-
rection are

1. Description of the multiscale limit of a system re-
versible reactions when some of equilibrium con-
centrations tend to zero (Sec. 2.2).

2. Extended principle of detailed balance for the sys-
tems with some irreversible reactions (Theorem 1).

3. The linear functional Gδ that decreases in time on
solutions of the kinetic equations under the ex-
tended detailed balance conditions (Proposition 2
and Eq. (11)).

4. The entropy production (or free energy dissipa-
tion) formulas for the reversible part of the reac-
tion mechanism under the extended detailed bal-
ance conditions (Eqs. (13), (15)).

5. Description of the faces of the positive orthant
which include the ω-limit points in their relative
interior and, therefore, description of limiting be-
havior in time (Theorem 2).

Did we solve the main problem and create the ther-
modynamic of the systems with some irreversible re-
action? The answer is: we solved this problem par-
tially. We described the limit behavior but we did not
find the global Lyapunov function that captures relax-
ation of both reversible and irreversible parts of the sys-
tem. The good candidate is a linear combination of the
relevant classical thermodynamic potential and Gδ but
we did not find the coefficients. In that sense, the prob-
lem of the limit thermodynamics remains open.

Nevertheless, one problem is solved ultimately and
completely: How to throw away some reverse reac-
tions without violation of thermodynamics and micro-
scopic reversibility? The answer is: the convex hull of
the stoichiometric vectors of the irreversible reactions
should not intersect with the linear span of the stoichio-
metric vectors of the reversible reactions and the reac-
tion rate constants of the remained reversible reactions
should satisfy the Wegscheider identities (8). If the irre-
versible reactions are introduced correctly then we also
know that the closed system with this reaction mecha-
nism goes to an equilibrium state. At this equilibrium,
all the reaction rates are zero: the irreversible reaction
rates vanish and the rates of the reversible reactions sat-
isfy the principle of detailed balance. The limit equi-
libria are situated on the faces of the positive orthant of
concentrations and these faces are described in the pa-
per.

The solution of this theoretical problem is important
for the modeling of the chemical reaction networks.
This is because some of reactions are practically irre-
versible. Removal of some reverse reaction from the re-
action mechanism cannot be done independently of the
whole structure of the reaction network; the whole reac-
tion mechanism should be used in the decision making.
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