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From superpositions to KAM theory

Foreword. V. I. Arnold (12 June 1937 – 3 June 2010) published several papers where he

described, in the form of recollections, his two earliest research problems (superpositions of

continuous functions and quasi-periodic motions in dynamical systems), the main results and

their interrelations: [1], [2] (reprinted as [4]), and [3] (translated into English by the author

as [5]). The first exposition [1] has never been translated into English; however, it contains

many details absent in the subsequent articles. It seems therefore that publishing the English

translation of the paper [1] would not be superfluous. What follows is this translation prepared

by M. B. Sevryuk.

A related material is contained also in Arnold’s recollections “On A. N. Kolmogorov”. Slightly

different versions of these reminiscences were published several times in Russian and English

[6–10].
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A. N. Kolmogorov proved his theorem on the persistence of invariant tori under a small

analytic perturbation of a completely integrable Hamiltonian system in 1954.1 He later related

that he had been thinking about this problem for decades, starting from his childhood when

he had read Flammarion’s Astronomy,2 but the success had come only after Stalin’s death in

1953 when a new epoch had begun in the Russian life. The hopes this death raised had a deep

impact on Kolmogorov, and the years 1953–1963 were one of the most productive periods in his

life.

The initial point of the 1954 work on invariant tori was the mathematical practicum for

sophomores of the Faculty for Mechanics and Mathematics of the Moscow State University.

This practicum was introduced by Kolmogorov into the compulsory program at the time when

computers were virtually unavailable in Russia. As one of the problems for the practicum, Kol-

mogorov proposed a study of integrable dynamical systems (geodesics on surfaces of revolution,

the motion of a heavy particle on a horizontal torus, and so on). To his surprise, in all these

integrable systems, one observed conditionally periodic motions along invariant tori in the phase

space.

1Translator’s note: A. N. Kolmogorov, On the persistence of conditionally periodic motions under a small
change in the Hamilton function, Doklady Akad. Nauk SSSR, 1954, 98, no. 4, 527–530 (in Russian). The English
translation in: Stochastic Behavior in Classical and Quantum Hamiltonian Systems. Proceedings of the Volta
Memorial Conference (Como, 1977). Edited by G. Casati and J. Ford. Lecture Notes in Physics, 93. Springer,
Berlin, 1979, 51–56 and in: Selected Works of A. N. Kolmogorov. Vol. 1. Mathematics and Mechanics. Edited
by V. M. Tikhomirov. Kluwer, Dordrecht, 1991, 349–354.

2Translator’s note: C. Flammarion’s famous book Astronomie populaire (1880) was published in Russian
several times under various titles. The edition of 1897 was probably the first one.
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In trying to understand this phenomenon, Kolmogorov examined its abstract version: a

dynamical system on the torus afforded by a field of divergence zero with respect to some

volume element. In his note published in 1953 in Doklady,3 Kolmogorov proved that such

a “generic” vector field (i.e., a field satisfying certain Diophantine conditions on the mean

frequencies that hold almost always) is equivalent to a standard (translationally invariant) field

on the torus.4 Such a field determines quasi-periodic motions (“conditionally periodic motions”,

as Kolmogorov used to say following old-fashioned terminology5). The system is ergodic (i.e.,

it does not possess nontrivial measurable invariant sets), but it does not mix up the particles of

the phase space (the torus). The field flow carries over these particles preserving their shapes.

However, for some “exceptional” mean frequencies of revolution along the torus, Kolmogorov

observed intermixing motions rather than quasi-periodic ones, even in the case of analytic fields.

This intermixing is explained by non-uniformity of the motions along the orbits filling the torus

in a quasi-periodic way, as parallel straight lines.

Immediately, the question arose whether such exceptional intermixing systems on tori were

of real importance for studies of Hamiltonian dynamical systems.

In integrable systems, the motions along the tori are quasi-periodic. To discover real appli-

cations of the abstract theory of vector fields on the torus constructed by Kolmogorov, one had

therefore to find invariant tori in non-integrable systems.

The simplest way to find such tori is to try to employ some variant of the perturbation theory

for integrable systems. This was the course took by Kolmogorov and it was in this way that he

arrived at his 1954 theorem on the persistence of invariant tori.

However, the initial goal here was by no means achieved. The motions along the perturbed

invariant tori found by Kolmogorov are quasi-periodic. It is still unknown whether in the phase

space of a typical nearly integrable Hamiltonian system, there are invariant tori carrying flows

intermixing along those tori. Kolmogorov supposed that such tori do exist, so that the effect

revealed in his 1953 note is observed in generic nearly integrable Hamiltonian systems.

It is interesting to remark that the “partial” success of Kolmogorov’s 1954 work (which result

is known nowadays as the KAM theorem6) is of much greater importance than the technical

question of intermixing which Kolmogorov did not manage to answer. Kolmogorov’s achieve-

ment was similar to that of Columbus whose attempt to find a Western route to India had

3Translator’s note: A. N. Kolmogorov, On dynamical systems with an integral invariant on the torus, Doklady

Akad. Nauk SSSR, 1953, 93, no. 5, 763–766 (in Russian). The English translation in: Selected Works of
A. N. Kolmogorov. Vol. 1. Mathematics and Mechanics. Edited by V. M. Tikhomirov. Kluwer, Dordrecht,
1991, 344–348.

4This theorem of Kolmogorov admits a natural multidimensional generalization in the theory of polyintegrable
systems (Algebra i Analiz, 1992, 4, no. 6, 54–62). [Translator’s note: The English translation: V. I. Arnold,
Polyintegrable flows, St. Petersburg Math. J., 1993, 4, no. 6, 1103–1110.]

5Translator’s note: In fact, the term “conditionally periodic motions” is still in use nowadays. One often
defines a quasi-periodic motion to be a conditionally periodic motion with incommensurable frequencies.

6In the American literature of the sixties, one can find papers with proofs of the “analytic counterpart of
Moser’s theorem” (which is of course Kolmogorov’s original theorem). J. Moser never supported these attempts
to attribute Kolmogorov’s theorem to him.
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failed.

Several years later, Kolmogorov delivered a course of lectures on the theory of dynamical

systems at the Faculty for Mechanics and Mathematics of the Moscow State University. I was

then a student and I heard his exposition of the 1953 and 1954 papers. There were no formal

proofs in the course (that was a characteristic feature of Kolmogorov’s lectures in general), but

all the ideas were presented quite clearly, and I had no doubts that the proofs Kolmogorov had

in view were correct. I still have no such doubts (although Kolmogorov never wrote down his

proofs). In my opinion, the text of the 1954 note in Doklady enables one to restore the missing

details of the proofs. Kolmogorov held that life is short and that it was better for him to devote

the time remained to discoveries of new results.

I entered the Faculty for Mechanics and Mathematics of the Moscow State University in

1954 (before Stalin’s death in 1953 or after the invasion to Czechoslovakia in 1968, this would

probably have been impossible for me because my mother was a Jew while my grandfather was

shot dead in 1938 on the flagrantly false charge of espionage for England, Germany, Greece, and

Japan7).

In 1955–1956, I was incited by Kolmogorov to work on Hilbert’s 13th problem concerning

the possibility of representing any continuous function in three real variables in the form of a

finite superposition of continuous functions in two variables. Kolmogorov had just reduced this

problem to the following question:

Is it possible to embed the universal tree in the Euclidean space in such a way that any

continuous function on this tree can be represented as the sum of continuous functions, each

depending on one coordinate only?

I managed to construct such an embedding of the universal tree in the three-dimensional

Euclidean space. This result implies the affirmative answer to Hilbert’s question: the desired

superposition does exist. Kolmogorov told me that I had solved Hilbert’s 13th problem,8 and

that I had to choose the next problem myself.

The work on Hilbert’s problem was my first serious mathematical research. I was still a

junior student entirely ignorant in almost all the remaining mathematics. I therefore decided

to keep on representing functions in the form of the sums of summands depending on one of

the coordinates only. It was natural to try to figure out what happens when the set where the

functions to be represented in the form of the sum of functions in the coordinates are defined is

not a tree.

7The family was first informed that he had been condemned to ten years of forced labor camps without the
right of correspondence. [Translator’s note: This was the standard euphemism used by the Soviet secret police
in Stalin’s era for a death sentence.] Later on, the KGB provided us twice with various false data on the cause,
location, and moment of his death. [Translator’s note: Such lies were also quite usual.] Finally, in the nineties—
no earlier—we were given a rehabilitation certificate and acquainted with the corresponding documents which
included a troika’s sentence to be shot and information on its immediate execution. [Translator’s note: Under
Stalin, the so-called “troikas” (“trŏıka” means “triple” or “triad” in Russian) were commissions of three persons
who convicted people without trial. They were a very widespread instrument of extrajudicial repressions.]

8Nowadays, I hold that the question of a representation of algebraic functions in three variables by superpo-
sitions of algebraic functions in two variables would be more reasonable than Hilbert’s own formulation.
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The simplest non-tree curve is a circle. So I attempted to represent a function on a closed

planar curve in the form of the sum of functions in the coordinates.

This problem immediately led me to a dynamical system defined on the curve.

I started with simplest (convex) smooth closed curves like an ellipse. Such a curve is inter-

sected by the straight lines parallel to the coordinate axes at two points (which rarely coincide).

The involution A interchanging the two intersection points with each of the lines x = const

and the involution B interchanging the two intersection points with each of the lines y = const

determine the orientation preserving diffeomorphism T = AB : S1 → S1 of the curve to itself.

The solvability of the problem of representing a function f : S1 → R in the form a(x) + b(y)

depends on the properties of the dynamical system T : S1 → S1. For instance, if P is a periodic

point (T nP = P ), then the function f to be represented in the form indicated has to satisfy the

relation

f(P ) + f(TP ) + . . .+ f(T n−1P ) = f(Q) + f(TQ) + . . .+ f(T n−1Q),

where Q = AP . On the other hand, if the dynamical system T has no periodic points, then it

is easy to construct a formal representation f = a + b by choosing arbitrarily the value of a in

one of the points. (If we know the sum f and one of the summands a or b in each successive

point of the polygonal line P , Q, TP , TQ, T 2P , T 2Q, . . ., we are able to compute the other

summand.) However, the question of the continuity and smoothness of the functions a and b

constructed this way is far from being so straightforward.

The dynamical system T given on the circle is characterized by the rotation number defined

by Poincaré. This number can be either rational or irrational. In the rational (“resonant”)

case, the mapping T admits, as a rule, attracting and repelling periodic points. In the case

of an irrational rotation number, the mapping T can be reduced to the rotation at an angle

incommensurable with 2π by a homeomorphic coordinate change on the circle (according to the

theorem of Poincaré and Denjoy).

I tried to prove that this homeomorphic change of the variable is a diffeomorphism (for typical

rotation numbers satisfying the usual Diophantine conditions—the same conditions as those in

Kolmogorov’s theorem on invariant tori).

I considered the analytic category and supposed that the mapping is analytically close to a

(rigid) rotation. This is the case if, for example, the original planar curve is close to an ellipse.

Kolmogorov’s method can be applied to this problem in the perturbation theory and enables

one to prove the smoothness of the Denjoy homeomorphism.

It was really amazing that my attempt to become independent of my teacher and to solve my

own problem avoiding problems raised by others had led me to a problem so close to another

field of Kolmogorov’s research. The mysterious interrelations between different branches of

mathematics with seemingly no connections are still an enigma for me. A discovery of such

interrelations is one of the greatest enjoyments provided by mathematics, and I have been lucky

enough to feel such a delight several times in various mathematical contexts. By the way, the

problem of representing functions on a curve by the sum of functions in the coordinates appeared
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again in the singularity theory where its solution (S. M. Voronin, J.-P. Dufour, 1981) turned

out to be different in the infinitely smooth category and in the analytic one.

Having proven the smoothness of the Denjoy homeomorphism for typical small perturbations

of a rotation, I started inquiring whether somebody had examined all these questions between

A. Denjoy’s work of 1932 and my work of 1958. Among others, I found C. L. Siegel’s papers on

the linearization of holomorphic mappings near fixed points. To be more precise, I first invented

this problem myself (as a simplified model of the problem of circle mappings) and solved it by

Kolmogorov’s method. Only later on, I discovered Siegel’s work who had obtained the same

result by another method9 in about 1940.

“We are in a good company,” Kolmogorov told me when I let him know of my bibliographic

findings. As far as I understand, he was aware of neither Siegel’s works nor J. E. Littlewood’s

works on the exponential slowness of an increase in perturbations.

I tried to prove some more conjectures raised by myself and concerning analytic diffeomor-

phisms of a circle. The first conjecture was that the Denjoy homeomorphism (which conjugates

an analytic mapping with a rotation) is smooth (analytic) under the usual Diophantine condi-

tions on the rotation number.

The smoothness of the Denjoy homeomorphism means the existence of a smooth invariant

measure for the original diffeomorphism. I constructed examples of analytic diffeomorphisms

for which the invariant measure was singular (not absolutely continuous with respect to the

Lebesgue measure). The rotation numbers of these diffeomorphisms are pathologically well

approximable by rationals. Such unusual numbers form a set of measure zero.

It was M.-R. Herman who managed to prove (more than twenty years later) the conjecture

on the smoothness of the invariant measure without the assumption that the mapping is close

to a rotation.10

The second conjecture concerned the natural boundary of the complex neighborhood (of the

real circle) where the Denjoy homeomorphism may be extended holomorphically. Such a neigh-

borhood cannot contain periodic points of the original holomorphic mapping. The conjecture

was that (say, for mappings of the form x 7→ x+ a+ b sin x, |b| < 1) there exist periodic points

in a vicinity of any point of the boundary of the domain of holomorphy of the Denjoy mapping

(and on the boundary itself).

Analogous conjectures were recently proven by J.-C. Yoccoz and R. Pérez-Marco for the

particular case of rational mappings. Counterexamples to the original conjecture were also

constructed but only for exceptional rotation numbers (which form a set of measure zero).

As far as I know, the question whether the initial conjecture holds for non-rational mappings

(similar to the one pointed out above) remains open.

9After several recent works by L. H. Eliasson, E. Trubowitz, and others, it has become clear that Siegel’s
method is close to diagrammatic methods of the quantum field perturbation theory.

10Translator’s note: In fact, Herman proved this conjecture in 1976, slightly less than two decades after
Arnold’s work, see M.-R. Herman, Conjugaison C∞ des difféomorphismes du cercle pour presque tout nombre
de rotation, C. R. Acad. Sci. Paris, Sér. A–B, 1976, 283, no. 8, Aii, A579–A582.
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In 1958–1959, I discussed these works on mappings of a circle onto itself with many math-

ematicians. I. M. Gelfand explained to me the relations between mappings of a circle and his

investigations (joint with M. L. Tsetlin) of cardiac arrhythmias. S. L. Sobolev and two mem-

bers of his school, N. N. Vakhaniya and R. A. Aleksandryan, let me know of the fact that these

problems were close to some questions in the spectral theory of differential operators. Those

questions had arisen in connection with Sobolev’s works on liquid vibrations in rotating rockets.

These works by Sobolev (carried out in 1943) had just been declassified (they were published

in 1960). Professor A. L. Goldenvĕızer11 explained to me the relation between the Dirichlet

problem for the wave equation (I had started examining the mappings of a circle onto itself

just for this problem) and studies of the stability of thin shells of hyperbolic curvature. Within

the latter problem, the resonances correspond to a special instability of the shells distending

along the polygons formed by the asymptotic lines of the shell surface (these lines are pairwise

connected at the vertices located at the boundary of this surface).

All these applications were discussed in my diploma work defended at the Department for

Function Theory and Functional Analysis of the Faculty for Mechanics and Mathematics of the

Moscow State University in April 1959.

The same year, this work was submitted to Izvestiya Akad. Nauk SSSR, Ser. Matem. How-

ever, Kolmogorov advised me to exclude two subsections from the work. One of them was about

heartbeats and the other one, about the effect of a small noise on the invariant measure.

“The heartbeat theory is an interesting application,” he said, “but this is not one of the

classic problems a mathematician should work on.” “You would do better,” he added, “to start

developing applications of these ideas to celestial mechanics, to the motion of a rigid body, and

to such classic problems as the stability problem for the Solar System.”

The subsection about the effect of a small noise on the invariant measure dealt with the

asymptotics of the solutions of the Fokker–Planck equation (and of its discrete analogues) as

the diffusion coefficient tends to zero and the time tends to infinity. Nowadays, these asymptotics

are included in the general scheme of the Morse–Witten theory (where the case of discrete time

seems to have not been considered yet, however). Naturally, Kolmogorov did not approve my

amateurish intrusion into the classic branch of the theory of stochastic processes that belonged

to him by right.

This was the only occasion where Kolmogorov interfered in my studies. Although he was

my scientific advisor, after my work on Hilbert’s problem Andrĕı Nikolaevich gave me complete

freedom to study whatever I wanted. He even told me that he would regard all his advices as

harmful for me, especially those concerning the choice of a further research direction. However,

later on A. N. advised me to include J. W. Milnor’s works on differentiable structures on the

spheres in my post-graduate curriculum which was extremely helpful for me (and led me to

learning some mathematics from S. P. Novikov, D. B. Fuks,12 and V. A. Rokhlin).

11Translator’s note: In the Western literature, this name is very often spelt “Goldenweiser”.
12Translator’s note: In the Western literature, this name is usually spelt “Fuchs”.
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So, I shortened my diploma work, and its abridged version was published two years later

(Izvestiya Akad. Nauk SSSR, Ser. Matem., 1961, 25, no. 1, 21–86). Since the English translation

appeared in 1965,13 this work is usually referred to as “Arnold 1965”. Later on, the subsection

on heartbeats I had deleted was partially published in I. M. Gelfand’s Collected Works (vol. 3).14

By that moment, most of its content had been rediscovered by the Canadian physiologist L. Glass

(who had employed mathematical theorems in “Arnold 1965”).15

One day, Kolmogorov invited two famous physicists, his old friend and collaborator M. A. Le-

ontovich16 and L. A. Artsimovich from the Atomic Energy Institute of the USSR Academy of

Sciences,17 to present a talk at his 1958–1959 seminar on the dynamical systems theory at the

Faculty for Mechanics and Mathematics of the Moscow State University. They reported on

mathematical problems in the theory of particle confinement in reactors for controlled ther-

monuclear fusion.

One of the problems was to prove the existence of so-called magnetic surfaces in systems of

toroidal geometry of the Tokamak type. Magnetic surfaces are surfaces filled with magnetic

field lines. An example of such a surface had been pointed out by I. E. Tamm18 in his manual

on the electricity theory in the twenties.

Kolmogorov’s theorem implies the persistence of the most of magnetic surfaces (enclosed in

one another) in systems with “shear” (where the rotation number changes as one passes from a

torus to another torus).

The persistence of magnetic surfaces was a more or less direct consequence of Kolmogorov’s

theorem but for the physicists at those times, all the contemporary theory of dynamical systems

was new and unexpected, and it seemed improbable to them. It was written in the manual by

L. D. Landau and E. M. Lifshits19 that any Hamiltonian system is either completely integrable

or ergodic on each level manifold of the first integrals known.20 However, invariant tori (in

integrable systems) were mentioned in Born’s Introduction to Atomic Mechanics. In the Russian

translation of 1934, they were called “trëkhizmeritel′nye raznovidnosti”.21

13Translator’s note: V. I. Arnold, Small denominators. I. On mappings of a circle onto itself, Amer. Math.

Soc. Transl., Ser. 2, 1965, 46, 213–284.
14Translator’s note: V. I. Arnold, Cardiac arrhythmias and circle mappings. In: I. M. Gelfand. Collected

Papers. Vol. III. Edited by S. G. Gindikin, V. W. Guillemin, A. A. Kirillov, B. Kostant, and S. Sternberg.
Springer, Berlin, 1989, 1019–1024. Reprinted (with some corrections) in: Chaos, 1991, 1, no. 1, 20–24.

15Translator’s note: See, e.g., L. Glass, Cardiac arrhythmias and circle maps—A classical problem, Chaos,
1991, 1, no. 1, 13–19 and references therein.

16It is interesting to note that in their joint work on the trajectories of Brownian motion [Translator’s note:

A. Kolmogoroff and M. Leontowitsch, Zur Berechnung der mittleren Brownschen Fläche, Phys. Z. Sowjetunion,
1933, 4, H. 1, 1–13], the physical part was due to Kolmogorov and the mathematical one, to Leontovich.

17Translator’s note: Now the National Research Center “Kurchatov Institute”.
18Artsimovich, Leontovich, and Tamm were among the most active theoretical physicists of the Soviet nuclear

project. Leontovich and Tamm were close friends of my father and helped my family to survive hard years after
his death (I was then eleven years old).

19Translator’s note: In the Western literature, this name is usually spelt “Lifshitz”.
20Translator’s note: In the later editions of Mechanics by Landau and Lifshits, this was corrected, of course.
21Translator’s note: Here the author has in view M. Born’s treatise Vorlesungen über Atommechanik (“Lec-

tures on Atomic Mechanics”). In 1934, it was translated into Russian: M. Born, Lektsii po Atomnŏı Mekhanike,
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The second problem formulated by Leontovich and Artsimovich consisted in studying the be-

havior of adiabatic invariants, for instance, in magnetic mirror traps. In this theory, a charged

particle moves fast along a spiral around a magnetic field line (under the Lorentz force). The

Larmor radius (the distance from the magnetic field line) is small, and the adiabatic approxi-

mation predicts that it will remain small even after many reflections from the magnetic mirrors.

As a typical example here, one may consider the motion of a charged particle in the magnetic

field of the Earth between the two magnetic poles. The vibrations as the Larmor center moves

along a line of force with reflections near the poles are observed in the form of the polar aurorae

(the northern and southern lights).

In the problems of particle confinement in a trap, one has to know what happens after many

millions of reflections. The adiabatic approximation cannot answer this question, and new

methods are required.

I started working on this question while not forgetting applications to celestial mechanics.

While reading Poincaré’s New Methods of Celestial Mechanics and discussing it with V. M. Alek-

seev, I realized that to apply Kolmogorov’s method to the stability problem of planetary systems,

one had to overcome several difficulties. Some of them are present already in the problem of

adiabatic invariants.

Born called the main difficulty “proper degeneracy”: some of the frequencies of the perturbed

quasi-periodic motion vanish as the perturbation magnitude tends to zero.22 This difficulty is

encountered already in the problem of the perpetual adiabatic invariance for a system with

a parameter undergoing a slow periodic variation. Here the ratio of the slow frequency of

the parameter variation to the fast frequency of the basic motion is a small parameter of the

problem.

In celestial mechanics, the main small parameter is the ratio of the masses of the planets to

the mass of the Sun. This ratio is of the order of 10−3. The Keplerian ellipses are fixed in the

space provided that one does not take into account the mutual attraction of the planets. As one

begins taking into account the mutual attraction of the planets, the ellipses start moving slowly.

The angular frequencies of their slow rotation are small as soon as the perturbation is small.

Consequently, in the next-to-Keplerian quasi-periodic approximation to the planetary motions,

there are fast (Keplerian) frequencies as well as slow (“secular”) frequencies that vanish as the

perturbation magnitude tends to zero.

ONTI – Gos. Nauchn.-Tekhn. Izd. Ukrainy, Khar′kov–Kiev, 1934. “Trëkhizmeritel′nye raznovidnosti” is a point-
less term meaning something like “three-measuring races”. I have failed to find this term in the Russian trans-
lation of Born’s book. Nevertheless, on p. 38, there are the words “dvukhizmeritel′nye raznovidnosti” (≈ “two-
measuring races”) for “zweidimensionale Mannigfaltigkeiten” (“two-dimensional manifolds”). Born discussed
there any two-dimensional surfaces in the phase space, not necessarily invariant 2-tori. The correct Russian for
“two-dimensional manifolds” is “dvumernye mnogoobraziya”. The translation has many other flaws.

22Translator’s note: In Vorlesungen über Atommechanik, Born contrasted “proper degeneracy” (“eigentliche
Entartung”) and “chance degeneracy” (“zufällige Entartung”) of completely integrable systems. The latter
referred to the situation where the unperturbed frequencies are commensurable for some particular values of the
action variables. The term “chance degeneracy” is almost out of use nowadays.
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Another peculiarity of the planetary problem is the so-called “limit degeneracy”.23 The

eccentricities and mutual inclinations of the planetary orbits are small. The limit case of zero

eccentricities and inclinations corresponds to a degeneracy of the first approximation motions

described above. This kind of degeneracy is analogous to that of a family of toroidal magnetic

surfaces that are enclosed in one another and shrink down to the central circle lying inside all

the surfaces.

The simplest mathematical model with this sort of degeneracy is the problem (formulated

by G. D. Birkhoff) on the stability of a fixed point of an area preserving mapping of the plane

onto itself. I decided to start with this problem.

A solution of this problem of Birkhoff was completed in 1960 and published in Doklady in

1961 (Doklady Akad. Nauk SSSR, 1961, 137, no. 2, 255–257).24 This result is not so different

from Kolmogorov’s original theorem of 1954, but it provides a solution of an old classic problem

and, at the same time, it is a necessary step towards exploring the problem of planetary motions.

After that, I turned to proper degeneracy. First, as a model problem, I considered the case

of a non-Hamiltonian system where the frequency ratio was proportional to the perturbation

parameter (Doklady Akad. Nauk SSSR, 1961, 138, no. 1, 13–15).25

This case is no longer within the standard framework of the perturbation theory and Kolmo-

gorov’s method since the solution cannot be expanded in the Taylor series in the perturbation

parameter.

Now it became possible to apply the techniques developed in the problem of adiabatic invari-

ants. As soon as I accomplished that, Kolmogorov suggested that I should submit the paper on

perpetual adiabatic invariance to ZhÈTF,26 the main physical journal in the USSR.

A few weeks later, M. A. Leontovich (who was, as far as I remember, a deputy to the editor-

in-chief of ZhÈTF 27) invited me to his home (near the Atomic Energy Institute of the USSR

Academy of Sciences) to discuss the manuscript. Having fed me, as usual, by boiled buckwheat

and calling me, as usual, “Dimka”28 (M. A. called me in such a way until his death), Mikhail

Aleksandrovich explained to me that the paper could not be published in ZhÈTF due to the

following reasons.

1. The manuscript contained the words “theorem” and “proof” forbidden in ZhÈTF.

2. The manuscript claimed that “A implies B” while every physicist knew examples showing

that B does not imply A.

23Translator’s note: “Grenzentartung” in Born’s Vorlesungen über Atommechanik.
24Translator’s note: The English translation: V. I. Arnold, On the stability of an equilibrium point of a

Hamiltonian system of ordinary differential equations in the general elliptic case, Soviet Math. Dokl., 1961, 2,
no. 2, 247–249.

25Translator’s note: The English translation: V. I. Arnold, On the birth of a quasi-periodic motion out of a
family of periodic motions, Soviet Math. Dokl., 1961, 2, no. 3, 501–503.

26Translator’s note: Zhurnal Èksperimental ′nŏı i Teoreticheskŏı Fiziki (translated into English as Journal of
Experimental and Theoretical Physics).

27Translator’s note: Indeed, Leontovich was a deputy editor-in-chief of ZhÈTF in 1957–1981, from vol. 32,
no. 3 through vol. 80, no. 6 (until his death).

28Translator’s note: This is one of the (many) diminutive forms of “Vladimir”.

9



3. The manuscript used the unintelligible terms “Lebesgue measure”, “invariant tori”, “Dio-

phantine conditions”.

Mikhail Aleksandrovich therefore proposed that I should rewrite the paper.

Now I realize how right he was in defending a physical journal from the Bourbaki-like math-

ematical jargon.

For instance, indeed, while claiming that “A implies B” the author must point out explicitly

whether the converse holds, otherwise any reader not spoiled by the mathematical slang would

understand the claim as “A is equivalent to B”.

Nowadays, every physicist who studies Hamiltonian chaos or employs KAM theory in the

problems of plasma confinement or of the particle accelerator theory freely uses the Lebesgue

measure, invariant tori, and Diophantine conditions. But in 1961 one of the first papers on the

theory now called KAM was, as we see, rejected by a leading physical journal for the use of

these terms (and also of the words “theorem” and “proof”).

As a result, I withdrew the article from ZhÈTF, and it appeared no earlier than a year later

(Doklady Akad. Nauk SSSR, 1962, 142, no. 4, 758–761).29 The first long paper on KAM theory

(“Small denominators. I” where in 1959, Kolmogorov’s method had been described in detail for

the first time) was also initially rejected by the editorial board of Izvestiya Akad. Nauk SSSR,

Ser. Matem. but finally appeared in January 1961.

Mathematical connections of Russia with the West started restoring after Stalin’s death due

to the Khrushchëv “Thaw”. Kolmogorov had been isolated from the Western colleagues for

about 15 years (1938–1953) but at the beginning of the sixties, foreign mathematicians started

visiting Moscow.

My first serious mathematical contact with a foreign mathematician was a meeting with

S. Smale who came to Moscow in fall 1961. Among various interesting things Smale told me

about on the roof of the skyscraper of the Moscow State University (in his reminiscences,

he writes on the steps30), there was the information that J. Moser had started working on

the problem of invariant tori. A few months later, Moser’s remarkable paper in Proc. Nat.

Acad. Sci. USA appeared,31 where he combined Kolmogorov’s method with J. Nash’s smoothing

and applied these ideas to the isometric imbedding problem of a Riemannian manifold into a

Euclidean space.32

Later on, this powerful method enabled him to prove a Kolmogorov-type theorem for per-

29Translator’s note: The English translation: V. I. Arnold, On the behavior of an adiabatic invariant under
a slow periodic variation of the Hamilton function, Soviet Math. Dokl., 1962, 3, no. 1, 136–140.

30Translator’s note: Here the author probably has in view the recollections: S. Smale, On the steps of
Moscow University, Math. Intelligencer, 1984, 6, no. 2, 21–27; in: From Topology to Computation: Proceedings
of the Smalefest (Berkeley, CA, August 5–9, 1990). Edited by M. W. Hirsch, J. E. Marsden, and M. Shub.
Springer, New York, 1993, 41–52. However, Smale recounts there an entirely different event, namely, his anti-
war press conference on the steps of the Moscow State University on August 26, 1966 (the last day of the Moscow
International Congress of Mathematicians where Smale was awarded a Fields Medal).

31Translator’s note: J. Moser, A new technique for the construction of solutions of nonlinear differential
equations, Proc. Nat. Acad. Sci. U.S.A., 1961, 47, no. 11, 1824–1831.

32Translator’s note: To be more precise, of a 2-torus into R
5.

10



turbing functions of finite smoothness. To my shame, I should confess that I have not read

Moser’s proofs and confined myself with applying his ideas on my own. Because of this, a

strange technical inaccuracy in all the proofs by Moser (which was absent in my version of his

theory) remained unnoticed for about 30 years until it was revealed by M. B. Sevryuk.33

Moser’s results were amazing. Kolmogorov had supposed that even infinite smoothness of

the perturbation is insufficient for the persistence of invariant tori. “Moser’s achievement,” he

told me, “changes all our philosophy.”

At the Stockholm International Congress of Mathematicians (in August 1962), I met J. Moser

for the first time. He was an invited speaker and gave a talk about his solution of the Birkhoff

problem on the stability of fixed points of area preserving mappings of a plane onto itself.

Instead of the analyticity requirement in my 1961 paper, Moser assumed the existence of

333 derivatives only (for subsequent 30 years, the order of the derivatives needed in the proofs

reduced to three34). What was even more astonishing to me was that Moser replaced the

Birkhoff nonresonance condition by the assumption of the absence of a finite number of the

“strong” resonances only (of orders less than five). In this problem, the rational numbers with

the denominators greater than four behave like irrational ones. In my 1961 work, I missed this

circumstance although my proof (in the analytic category) could be carried over verbatim from

the non-resonant case to the case of weak resonances (of orders greater than four).

In that article, instead of thinking of the nature of things, I tried to solve the “sports”

problem raised by Birkhoff. In Birkhoff’s formulation, all the resonances are forbidden. Being

hypnotized by this fact, I did not observe that my proof provided more than a solution of

Birkhoff’s problem. This was a good lesson: one should never yield to the hypnotic influence of

famous experts.

The trip to the Stockholm Congress of 1962 was my first visit abroad. My report was devoted

to the stability problem for planetary systems, but the “panel” (the committee selecting the

speakers) and the Program Committee did not regard planetary systems as deserving an invited

lecture at a Mathematical Congress.

Fortunately, at those times, brief communications of uninvited speakers were heard at special

sessions of 15-minute talks, so I gave my talk all the same.

The Organizing Committees of the International Congresses of Mathematicians have made

great efforts to wipe out uninvited reports. The question whether this is good provokes disputes.

The best (and the most important for me) talk I have ever heard at the Mathematical Congresses

33Translator’s note: In fact, for less than 25 years. I detected this (minor) inaccuracy in 1985 (I was then
Arnold’s post-graduate student) in Moser’s famous paper on invariant curves of planar mappings: J. Moser, On
invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II,
1962, 1, 1–20. Then I communicated my observation to Arnold and Moser. Subsequently, Moser published
an erratum: J. Moser, Remark on the paper “On invariant curves of area-preserving mappings of an annulus”,
Regul. Chaotic Dyn., 2001, 6, no. 3, 337–338.

34Translator’s note: In fact, for 25 years. The smoothness class C3 (for annular mappings) was achieved in
1986: M.-R. Herman, Sur les courbes invariantes par les difféomorphismes de l’anneau, Vol. 2, Astérisque, 144,
Soc. Math. France, Paris, 1986.
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was F. Hirzebruch’s lecture at the Moscow Congress of 1966 on E. Brieskorn’s works concerning

the connection between the singularity theory and the Milnor spheres. Hirzebruch was not an

invited speaker. I hold that the harm from uninvited reports of little interest is smaller than the

loss due to rejections of important and interesting reports. Galois would hardly be invited to a

Congress. In 1992, V. A. Vasil′ev was not given an official permission to attend the sessions of

the First European Congress of Mathematics in Paris although four invited speakers discussed

his works in their talks.35

My paper on the stability problem of planetary systems appeared in 1962 (Doklady Akad.

Nauk SSSR, 1962, 145, no. 3, 487–490).36 From the viewpoint of the techniques, this work

is very complicated. It depends on a lemma on Diophantine approximations in an intricate

situation with several small parameters (this is due to the presence of both proper and limit

degeneracies in the problem at hand). A detailed proof was published in Uspekhi Matem. Nauk,

1963, 18, no. 6, 91–192 (“Small denominators. III”).37 It is a combination of the ideas of the

works on adiabatic invariants and on the Birkhoff stability problem.

Kolmogorov’s sixtieth anniversary was celebrated in the Assembly Hall of the Moscow State

University in April 1963. I gave a talk on his works on invariant tori. In this talk, I showed how

these works could be used to prove the stability of fast rotation of a heavy non-symmetrical

rigid body. This work “Small denominators. II” (Uspekhi Matem. Nauk, 1963, 18, no. 5, 13–

40)38 contained the first detailed proof of Kolmogorov’s theorem of 1954 on the persistence of

invariant tori under a small analytic perturbation of a completely integrable Hamiltonian system

(Kolmogorov’s method had been published in detail already in 1961 in my 1959 work “Small

denominators. I” on mappings of a circle).

Of my own achievements in the perturbation theory for non-integrable Hamiltonian systems,

the main one was published in Doklady in 1964 (Doklady Akad. Nauk SSSR, 1964, 156, no. 1, 9–

12).39. This paper describes the universal mechanism of instability in Hamiltonian systems with

many degrees of freedom. Later on, the physicists called this mechanism “Arnold diffusion”.40

This diffusion contradicted Kolmogorov’s intuition; he thought that stability can take place in

generic multidimensional systems as well despite the fact that in these cases, stability is not

ensured by the existence of invariant tori.

35Translator’s note: Nevertheless, he managed to attend.
36Translator’s note: The English translation: V. I. Arnold, On the classical perturbation theory and the

stability problem for planetary systems, Soviet Math. Dokl., 1962, 3, no. 4, 1008–1012.
37Translator’s note: The English translation: V. I. Arnold, Small denominators and problems of stability of

motion in classical and celestial mechanics, Russian Math. Surveys, 1963, 18, no. 6, 85–191.
38Translator’s note: The English translation: V. I. Arnold, Proof of a theorem by A. N. Kolmogorov on the

persistence of conditionally periodic motions under a small change in the Hamilton function, Russian Math.

Surveys, 1963, 18, no. 5, 9–36.
39Translator’s note: The English translation: V. I. Arnold, On the instability of dynamical systems with many

degrees of freedom, Soviet Math. Dokl., 1964, 5, no. 3, 581–585.
40Translator’s note: The term “Arnold diffusion” was proposed by B. V. Chirikov in 1969: B. V. Chirikov,

Research in the theory of nonlinear resonance and stochasticity, Preprint of the Novosibirsk Institute for Nuclear
Physics of the USSR Academy of Sciences, 1969, no. 267 (in Russian). The English translation: CERN Transl.,
1971, no. 71-40.
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In systems with the phase space of small dimension, the invariant tori entrap the regions

between them and thus ensure stability (for instance, in the Birkhoff problem). In the paper

of 1964, I constructed an example of instability in a situation where the Kolmogorov tori are

preserved. I supposed then (and I still do) that the “diffusion” mechanism described in that

article works in generic systems. So, what is typical is the existence of trajectories connecting

a vicinity of any invariant n-torus of a nearly integrable Hamiltonian system with a vicinity

of any other n-torus on the same energy level hypersurface (if the dimension 2n − 1 of this

hypersurface is no less than 5, that is, if n > 2). However, this has not been proven yet.41

I do not hold that one may speak of a KAM theorem. Kolmogorov proved correctly his

theorem in 1954, and this is clearly seen from his note in Doklady. Most probably, it would be

more rightful to speak of KAM theory constituted by many theorems.42 In the present note, I

have tried to describe the contribution of each of the three authors.

The bibliography below pertains to the foreword and has been added by the translator.
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