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Abstract

We study a family of singularly perturbed linear partial differential equations with irregular type (1) in
the complex domain. In a previous work [31], we have given sufficient conditions under which the Borel
transform of a formal solution to (1) with respect to the perturbation parameter e converges near the
origin in C and can be extended on a finite number of unbounded sectors with small opening and bisecting
directions, say k; € [0,27), 0 < i < v — 1 for some integer v > 2. The proof rests on the construction of
neighboring sectorial holomorphic solutions to (1) whose difference have exponentially small bounds in
the perturbation parameter (Stokes phenomenon) for which the classical Ramis-Sibuya theorem can be
applied. In this paper, we introduce new conditions for the Borel transform to be analytically continued
in the larger sectors {¢ € C*/arg(e) € (k;, k;41)} where it develops isolated singularities of logarithmic
type lying on some half lattice. In the proof, we use a criterion of analytic continuation of the Borel
transform described by A. Fruchard and R. Schéfke in [19] and is based on a more accurate description
of the Stokes phenomenon for the sectorial solutions mentioned above.

Key words: asymptotic expansion, Borel-Laplace transform, Cauchy problem, formal power series,
integro-differential equation, linear partial differential equation, singular perturbation, analytic continu-
ation. 2000 MSC: 35C10, 35C20.

1 Introduction

We consider a family of singularly perturbed linear partial differential equations of the form

(1) e0IXi(tz6) + (et + DT Xi(t, 2, 6) = Y baggp (2, 000N Xi(t, 2,€)
(s,ko,k1)€S

for given initial conditions

(2) (@2X:)(1,0,€) = wijtye) , 0<i<v—1, 0<j<S—1,

where € is a complex perturbation parameter, S is some positive integer, v is some positive
integer larger than 2, S is a finite subset of N3 with the property that there exists an integer
b > 1 with

SZb(S—/{0+2)+]€1 , s> 2k



for all (s, ko, k1) € S and the coefficients by j, &, (2, €) belong to O{z, €} where O{z, €} denotes
the space of holomorphic functions in (z,¢) near the origin in C2. In this work, we make
the assumption that the coefficients of (1) factorize in the form by g,k (2,€) = €¥0bg o 1, (2, €)
where b, .1, (2, €) belong to O{z,e}. The initial data ; ;(t,€) are assumed to be holomorphic
functions on a product of two sectors 7 x & where T is a fixed bounded sector centered at 0
and &;, 0 <i <wv—1, are sectors with opening larger than 7 centered at the origin whose union
form a covering of V'\ {0}, where V is some neighborhood of 0. For all € # 0, this family belongs
to a class of partial differential equations which have a so-called irreqular singularity at t = 0
(in the sense of [34]).

In the previous work [31], we have given sufficient conditions on the initial data ¢; ;(t, €), for
the existence of a formal series

X(t,z,€) = > Hi(t, 2)e*/k! € O(T){z}[e]

k>0

solution of (1), with holomorphic coefficients Hy(t,z) on T x D(0,d) for some disc D(0,0),
with § > 0, such that, for all 0 < ¢ < v — 1, the solution X;(t,z,¢) of the problem (1),
(2) defines a holomorphic function on 7 x D(0,8) x & which is the 1—sum of X on &. In
other words, for all fixed (t,z) € T x D(0,6), the Borel transform of X with respect to e
defined as B(X)(s) = >y Hr(t, 2)s*/(k1?) is holomorphic on some disc D(0, sq) and can be
analytically continued (with exponential growth) to sectors G., centered at 0, with infinite
radius and with the bisecting direction k; € [0,27) of the sector &. But in general, due to
the fact that the functions X; do not coincide on the intersections & N &+1 (known as the
Stokes phenomenon), the Borel transform cannot be analytically extended to the whole sectors
Skikis = 15 € C*/arg(s) € (ki kiy1)}, for all 0 < i < v — 1, where by convention , = ko,
E, =& and X, = Xo.

In this work, we address the question of the possibility of analytic continuation, location
of singularities and behaviour near these singularities of the Borel transform within the sector
Skiki1- More precisely, our goal is to give stronger conditions on the initial data ; ;(t, €) under
which the Borel transform B(X)(s) can be analytically continued to the full punctured sector
Ski s €xcept a half lattice of points Ak/t, k € N'\ {0}, depending on ¢ and some well chosen
complex number A € C* and moreover develops logarithmic singularities at Ak/t (Theorem 1).

In a recent paper of A. Fruchard and R. Schifke, see [19], an analogous study has been
performed for formal WKB solutions y(z,¢) = exp((2%/2 — 23/3)/e)a~?(x — 1)"Y20(z, €) to
the singularly perturbed Schréodinger equation

€2y//(wv €) = m2(ac - 1)23/('%'7 €)

where 0(z,€) = Y, <o yn(x)€e" is a formal series with holomorphic coefficients y,, on some domain
avoiding 0 and 1. The authors show that the Borel transform of © with respect to e converges
near the origin and can be analytically continued along any path avoiding some lattices of
points depending on (22/2—x3/3). We also mention that formal parametric Stokes phenomenon
for 1-dimensional stationary linear Schrédinger equation €2y”(2) = Q(2)y(z), where Q(2) is a
polynomial, has been investigated by several other authors using WKB analysis, see [1], [12], [17].
In a more general framework, analytic continuation properties related to the Stokes phenomenon
has been studied by several authors in different contexts. For nonlinear systems of ODEs with
irregular singularity at oo of the form y/(z) = f(z,y(2)) and for nonlinear systems of difference
equations y(z + 1) = g(z,y(2)), under non resonance conditions, we refer to [5], [10]. For
linearizations procedures for holomorphic germs of (C,0) in the resonant case, we make mention



to [14], [28]. For analytic conjugation of vector fields in C? to normal forms, we indicate [15],
[40]. For Hamiltonian nonlinear first order partial differential equations, we notice [35].

In the proof of our main result, we will use a criterion for the analytic continuation of the
Borel transform described by A. Fruchard and R. Schéfke in [19] (Theorem (FS) in Theorem
1). Following this criterion, in order to prove the analytic continuation of the Borel transform
B(X)(s), say, on the sector Sy, x,, for any fixed (t,z) € T x D(0,d), we need to have a complete
description of the Stokes relation between the solutions Xy and X; of the form

(3) Xl(tv Z, 6) - Xo(t, zZ, 6) = Z e_ah/EXh@(t, z, E) + O(e_ceia/e)
h=1

for all e € & N &1, for some integer m > 1, where {as}i<p<m is a set of aligned complex
numbers such that arg(an) = a € (ko, k1) with |ag| < C (for some C' > 0) and X3 (¢, 2, €),
h > 1, are the 1—sums of some formal series G}, (€) € O(T x D(0,8))[[¢]] on &. If the relation
(3) holds, then B(X)(s) can be analytically continued along any path in the punctured sector
(Sko.e1 ND(0,C)) \ {an1<n<m and has logarithmic growth as s tends to aj, in a sector. Actually,
under suitable conditions on the initial data ¢; ;(¢, €), we have shown that such a relation holds
for a = Ak/t, for some well chosen A € C* and for all k£ > 1, see (259) in Theorem 1. In order
to establish such a Stokes relation (3), we proceed in several steps.

In the first step, following the same strategy as in [31], using the linear map 7' +— T'/e = t, we
transform the problem (1) into an auxiliary regularly perturbed singular linear partial differential
equation which has an irregular singularity at 7' = 0 and whose coeflicients have poles with
respect to e at the origin, see (104). Then, for A\ € C*, we construct a formal transseries

expansion of the form
A
A e — 5= ) A
Y(Ta 2 6) = Z Xp(h'T)Yh(T’ 2 6)
h>0 ’

solution of the problem (104), (105), where each Yy, (T, z, €) = Y >0 Yam(z,€)T™/m! is a formal
series in T with coefficients Y}, (2, €) which are holomorphic on a punctured polydisc D(0, ) x
(D(0,€) \ {0}). We show that the Borel transform of each Yy, (T, z, €) with respect to T', defined
by Vi(T,2,€) = 3, 50 Yam(2,€)7™/(m!?) satisfies an integro-differential Cauchy problem with
rational coefficients in 7, holomorphic with respect to (7, z) near the origin and meromorphic
in € with a pole at zero, see (111), (112). For well chosen A and suitable initial data, we show
that each Vj,(7, z, €) defines a holomorphic function near the origin with respect to (7, z) and on
a punctured disc with respect to € and can be analytically continued to functions V} ;(7, 2, €)
defined on the products S; x D(0,d) x & where S;, 0 < i < v — 1, are suitable open sectors with
small opening and infinite radius. Moreover, the functions V}, (7, z, €) have exponential growth
rate with respect to (7, €), namely there exist A, B, K > 0 such that

(4) sup  |Vii(7, 2, €)| < AhBreKITI/Iel
z€D(0,0)

for all (7, z, €) in their domain of definition and all A > 0 (Proposition 21). In order to get these
estimates, we use the Banach spaces depending on two parameters 5 € N, and € with norms ||.||3.
of functions v(7) bounded by exp(Kg|T|/|e|) for some bounded sequence K3 already introduced
in [31]. If one expands the functions V. ;(7,2,€) = 3550 Vhi,5(7, €)2P /B! with respect to z, we
show that the generating function ;4 55 [|vn,i,6(T, €)||g.cux?/(hB!) can be majorized by a
series W;(u, x) which satisfies a Cauchy problem of Kowalevski type (128), (129) and is therefore
convergent near the origin in C2.



We construct a sequence of actual functions Y}, ;(T), z,€), h > 0, 0 < i < v — 1, as Laplace
transform of the functions Vj, ;(7, z, €) with respect to 7 along a halfline L; = R eV~ ¢ S;U{0}.
We show that the functions Xp, ;(¢, 2, €) = Y}, i(et, z, €) are holomorphic functions on the domains
T x D(0,6) x & and that the functions Gpi(€) == Xpi1+1(t, 2,€) — Xp (¢, 2, €) are exponentially
flat as € tends to 0 on &4+1 N E as O(T x D(0,d))—valued functions. In the proof, we use,
as in [31], a deformation of the integration’s path in Xj; and the estimates (4). Using the
Ramis-Sibuya theorem (Theorem (RS) in Proposition 22), we deduce that each X} ;(¢,z,€) is
the 1—sum of a formal series G,(€) € O(T x D(0,6))[[e]] on &, for 0 < i < v — 1 (Proposition
22). We notice that the functions Xo;(¢, z,€) actually coincide with the functions X;(t, z,¢€)
mentioned above solving the problem (1), (2). We deduce that, for a suitable choice of A, the

function
A\

exp e
Zolt,z,6) = (h,t)Xh,o(t, z,€)
h>0 ’

solves the equation (1) on the domain 7 x D(0,6) x (&, N &y).

In the second part of the proof, we establish the connection formula Xo (¢, z,€) = Zy(t, 2, €)
which is exactly the Stokes relation (3) on 7 x D(0,0) x (§9N&1) (Proposition 24). The strategy
we follow consists in expressing both functions X 1 and Zj as Laplace transforms of objects that
are no longer functions in general but distributions supported on R which are called staircase
distributions in the terminology of [10]. We stress the fact such representations of transseries
expansions as generalized Laplace transforms were introduced for the first time by O. Costin
in the paper [10]. Notice that similar arguments have been used in the work [30] to study the
Stokes phenomenon for sectorial holomorphic solutions to linear integro-differential equations
with irregular singularity.

In Lemma 15, we show that Zy can be written as a generalized Laplace transform in the
direction arg(\) of a staircase distribution V(r, z,€) =355, Va(r, €)2% /B! € D'(0,€,d) which is
a convergent series in z on D(0,d) with coefficients Vg(r, €) in some Banach spaces of staircase
distributions D’@ »e O Ry depending on the parameters 5 and € (see Definition 2). We observe
that the distribution V(r, z, €) solves moreover an integro-differential Cauchy problem with ra-
tional coefficients in r, holomorphic with respect to z near the origin and meromorphic with
respect to € at zero, see (214), (215). The idea of proof consists in showing that each function
Xho(t, z,€) can be expressed as a Laplace transform in a sequence of directions ¢, tending to
arg(A) of a sequence of staircase distributions Vy, (7, z, €) (which are actually convergent series
in z with coefficients that are C* functions in r» on Ry with exponential growth). Moreover,
each distribution Vj, (7, 2, €) solves an integro-differential Cauchy problem (179), (180) whose
coefficients tend to the coefficients of an integro-differential equation (181), (182), as n tends
to oo, having a unique staircase distribution solution Vj, (7, 2,€). Under the hypothesis that
the initial data (180) converge to (182) as n — 400, we show that the sequence Vj, (7, 2, €)
converges to Vj, (r, z,€) in the Banach space D’(o,€,0) with precise norm estimates with re-
spect to h and n (Lemma 13). In order to show this convergence, we use a majorazing series
method together with a version of the classical Cauchy Kowalevski theorem (Proposition 9) in
some spaces of analytic functions near the origin in C? with dependence on initial conditions
and coefficients applied to the auxiliary problem (201), (203). Using a continuity property of
the Laplace transform (85), we show that each function Xj (¢, 2,€) can be actually expressed
as the Laplace transform of V, (7, 2, €) in the direction arg(\) and finally that Zy itself is the
Laplace transform of some staircase distribution V(r, z, €) solving (214), (215).

On the other hand, in Lemma 18, under suitable conditions on ¢1 ;(t,€), 0 < j < S —1,
we can also write Xo1(t, z,€) as a generalized Laplace transform in the direction arg(\) of the



staircase distribution mentioned above V(r, z, €) solving (214), (215). Therefore, the equality
Xo,1(t,z,€) = Zy(t, z,€) holds on T x D(0,9) x (€ N &1). The method of proof consists again
in showing that X 1(¢, z,€) can be written as Laplace transform in a sequence of directions &,
tending to arg(\) of a sequence of staircase distributions V,,(r, z,€) (which are actually conver-
gent series in z with coefficients that are C°° functions in r» on R with exponential growth).
Moreover, each distribution V,(r, z, €) solves an integro-differential Cauchy problem (226), (227),
whose coefficients tend to the coefficients of the integro-differential equation (214). Under the
assumption that the initial data (227) converge to the initial data (215), we show that the se-
quence V,(r, z,€) converges to the solution of (214), (215) (i.e V(r, z,¢€)) in the Banach space
D'(0,€,8), as n — 400, see Lemma 16. This convergence result is obtained again by using a
majorazing series technique which reduces the problem to the study of some linear differential
equation (232), (233) whose coefficients and initial data tend to zero as n — +o0o. Finally,
by continuity of the Laplace transform, X (¢, 2, €) can be written as the Laplace transform of
V(r, z,€) in direction arg(\).

After Theorem 1, we give an application to the construction of solutions to some specific
singular linear partial differential equations in C? having logarithmic singularities at the points
(Ak/t,t, z), for k € N\ {0}. We show that under the hypothesis that the coefficients b 1, %, are
polynomials in €, the Borel transform B(X )(s) turns out to solves the linear partial differential
equation (260). We would like to mention that there exists a huge litterature on the study of
complex singularities and analytic continuation of solutions to linear partial differential equations
starting from the fundamental contributions of J. Leray in [26]. Several authors have considered
Cauchy problems a(z, D)u(x) = 0, where a(z, D) is a differential operator of some order m > 1,
for initial data 8!;01”%:0 = wp, 0 < h < m. Under specific hypotheses on the symbol a(z,¢),
precise descriptions of the solutions of these problems are given near the singular locus of the
initial data wy. For meromorphic initial data, we may refer to [21], [36], [37] and for more
general ramified multivalued initial data, we may cite [22], [23], [41], [42], [43].

The layout of this work is as follows.

In Section 2, we introduce Banach spaces of formal series whose coefficients belong to spaces of
staircase distributions and we study continuity properties for the actions of multiplication by
C®® functions and integro-differential operators on these spaces. In this section, we also exhibit
a Cauchy Kowalevski theorem for linear partial differential problems in some space of analytic
functions near the origin in C? with dependence of their solutions on the coefficients and initial
data which will be useful to show the connection formula (174) stated in Section 5.

In Section 3, we recall the definition of a Laplace transform of a staircase distribution as in-
troduced in [10] and we give useful commutation formulas with respect to multiplication by
polynomials, exponential functions and derivation.

In Section 4, we construct formal and analytic transseries solutions to the singularly perturbed
partial differential equation with irregular singularity (1).

In Section 5, we establish the crucial connection formula relying the analytic transseries solution
Zy(t, z,€) and the solution Xo (¢, z,€) of (1). Finally, we state the main result of the paper
which asserts that the Borel transform B(X)(s) in the perturbation parameter € of the formal
solution X (¢, z,€) of (1) can be analytically continued along any path in the punctured sector
Skowr \ Up>1{Ah/t} and has logarithmic growth as s tends to Ah/t in a sector, for all h > 1.



2 Banach spaces of formal series with coefficients in spaces of
staircase distributions. A Cauchy problem in spaces of ana-
lytic functions

2.1 Weighted Banach spaces of distributions

We define D(Ry) to be the space of complex valued C'°°—functions with compact support in
R, where Ry is the set of the positive real numbers = > 0. We also denote by D'(R,) the
space of distributions on R;. For f € D'(Ry), we write f (k) the k—derivative of f in the sense
of distribution, for k > 0, with the convention f(© = f.

Definition 1 A distribution f € D'(Ry.) is called staircase if f can be written in the form

(5) F=Y (A(®,

0

for unique integrable functions Ap(f) € LY(Ry) such that the support supp(Ar(f)) of Ar(f) is
in [k, k+ 1] for all k > 0.

Remark: Given a compact set K € R, a general distribution A € D'(Ry) can always be
written as a k—derivative of a continuous function on R restricted to the test functions with
support in K, where k depends on K, see [39].

Definition 2 Let o0 > 0 be a real number, b > 1 an integer and let ry(5) = Zgzo 1/(n+1)° for
all integers B > 0. Let £ be an open sector centered at 0 and let e € £. We denote by Lg ;. the
vector space of all locally integrable functions f € L}OC(R+) such that

15O me = [ £l esp (= Fra(or ) ar

is finite. We denote by D,,Bae the vector space of staircase distributions f = ZZC’:O(Ak(f))(k)
such that

—+00
g

k

1 1lg.0ca = Z(Qrb(ﬁ)) AR()8.0e
k=0

s finite.

Remark: Let €, 0,8 such that |e] < ory(5). If f € Dlﬁ,o,ev then f € Dlﬁ’,o,e for all 8/ > B and

we have that h — |[f|[n,0.,q is a decreasing sequence on [3,+00). Likewise, if f € Dj ; , then

f €Dy, forall o> and we have that o+ [|f[|g,0,c.q i a decreasing sequence on [&, +00).

Let H be the Heaviside one step function defined by H(r) = 1, if » > 0 and H(r) = 0, if
r < 0. Let P the operator defined on distributions 7' € D'(Ry) by PT = H «T. For a subset
A C R, we denote by 14 the function which is equal to 1 on A and 0 elsewhere.

The proofs of the following Lemma 1 and 2 and Propositions 1,2,3 and Corollary 1 are given
in the appendix of [24], see also [10].

Lemma 1 Let k > 0 and f = F®) ¢ D'(R,), where F € L*(Ry) and supp(F) C [k, +00).
Then f is a staircase distribution and the decomposition of f has the following terms Ag =
Ay = ... = Ap1 =0, Ay = Flppyqy and for n > 1, Agpyrn = Gl kyns where Gp =
,P(anll[k;—&-n,-i-oo)) and GO =F.



Lemma 2 Let f be as in lemma 1 and €,0,5 such that |e| < ory(5). Then, we have

g —n
Hrb(ﬁ)) 1F|g.0e:

HAk-l-nH,B,a,e < (

ifn=20,1,2 and forn > 3,
n—1

—1)!

1knllgge < e

HFHB,U,G'

Proposition 1 Let f € Lg,/. and €,0,8 such that e < orp(B)/2. Then f belongs to
DIB,(LE and the decomposition (5) of f has the following terms A, = Gply, py1) with Gy, =
P(Gn-1ljn,400)) and Go = f, for n > 0. Moreover, there exists a universal constant C1 > 0
such that || Fl|3.0ca < C1l| il

Proposition 2 The set D(Ry) of C*®°— functions with compact support in R is dense in D’ﬂ e
forallB>0,0>0andecef.

Proposition 3 Let €,0, such that |¢| < ory(B). For all f.f€ D%”, we have f* f € D’BUE.
Moreover, there exists a universal constant Co > 0 such that

1 * fllgoea < Collflgo.call Fllg.oed

for all f,f € Dy,

In the paper, for all integers k& > 1, we will denote 9% f(r) the convolution H** x f for all
fe ng - Where H** stands for the convolution product of H with itself k& — 1 times for k > 2
and with the convention that H*!' = H. From the propositions 1 and 3, we deduce that

Corollary 1 Let e, o, be such that |e| < ory(B) and let k > 1 be an integer. For all f € D’B e
we have O7F f(r) € D,/B oc- Moreover there exists a universal constant C3 > 0 such that

i

k
orb(ﬁ)) 1F(P)l15.0.c.d

1075 £ (1)l 5.0e.a < O

forall f € D%,g,e-

In the next proposition, we study norm estimates for the multiplication by bounded analytic
functions.

Proposition 4 Let o and 8 > 0 such that
3o _o
(6) 21BN <1 el < on(9)

and let h be a C*°—function on Ry such that there exist constants Cp > 0,u > 0 and p >
le|/(orp(B)) such that

q!
(7) 9 (r)] < ChW

for all v € Ry. Then, for all f € Dy, ., we have h(r)f(r) € D,
constant Cy > 0 (depending on p, p) such that

(8) R(r) f(r)]|g,0.c.d < CaChllf (1)1 .0,ec.d
for all f € D, o

Moreover, there exists a

,0,€



Proof The proof can be found in [30] and is inspired from Lemma 2.9.1 in [24], but for the sake
of completeness, we sketch it below. Without loss of generality, we can assume that f has the
following form f(t) = A,(Ck) (t) where Ay € LY(Ry) with supp(Ay) € [k, k + 1], for k > 1. Put
gk (t) = h*=D(£) Ag(t). Then, supp(gx;(t)) C [k, k + 1].

From the Leibniz formula, we get the identity

k

BOAL (0 = > a0

=07

On the other hand, one can rewrite g,(j])(t) = (PlE=ilg. ), where supp(PlF=lg, ) € [k, +00)
and Pl denotes the gth iteration of P.

Due to Lemma 1, g,ij]) can be written g,gj]) = LOIS(AZJ-)(Z), with Al,j = Gl Gy =
P(Gr-1,1400)) and Gy j = P[kfj]gm.

Therefore we get the following identity

k—1 k—1 00
k) k) kU Rk k! Al
@ ROATE = GOMOY + D STy AL Y gy 3 A
First of all, we have
+o00
(10) ||(h(t)Ak(t))(k)HB,ms,d:(Wreﬁﬁ))k / B () A(t)] e D 1el
0
Ch ,ory(B) \k
< == Al 5.0,
< W( " ) AR50,

where Cj, > 0 is given in (7). From the Lemma 2, we have the estimates

I

75(8)

) IPF gy

(11) (| Aktnjllgoe < (U

B,0,€3

1 — k)i—k-1 W
L=n PP g

A (2=(=F)) grs(B)
1ALl <€ (I—k—1)

B,0,¢

forn =0,1,2 and all [ > k + 3. Now, we give estimates for HP[kfj]gk,jH/g,g,e.
Using the Taylor formula with integral remainder and the hypothesis (7), we get

. (h=g) [ (=)
PEAlg (6] < Chp—~ 1)!/k e oy Ak

Hence, from the Fubini theorem and the identity

_orp(B) |€|

+oo _o-rb(ﬂ)t ki1 N
(12) / e I f(t—s)F T dt =" (k— 5)

we deduce
oo ory(8) )
/ e PElg () at
k

o o |€| (k—7) +oo e—arl’g(ﬁ)s ’Ak(5)|
< Cull =)k = N T [ e S




and hence
—; Cr(k —7)(k—j)! € s
13) 1P g0 50le < oI LA e
From (11) and (13), we obtain
— K (k-+n) ary(B) |k
(14) mﬂﬁmn,ﬂ( M goea < CrAx( el )" 1[Ak(5)]]8,0.e
i=0 7’

forn=20,1,2, all £k > 1, where

=) lel )
A’“‘Zoj!<p<k+u>>1+k—j(arb<m)

Now, we need to estimate Aj. Due to the Stirling formula, k! ~ kFe=*(27k)Y/? as k tends to
infinity, there exists a universal constant C4 1 > 0 such that

B (k= )k + ) =E oY

A < C47 27‘1’]{3 1/2 —k ,
o F ol ) ZO S

for all £ > 1. Using the hypothesis or,(5)p/|e| > 1, we have

(k) (g kY kRt R (k)
jzo(k 7) 4! (M|be(|5)0)k§j=0(k 7) 4! =k (k—1)! = 4!

Using again the Stirling formula, we get a constant Cy,, > 0 (depending on p) such that

(k+ k!

MRS

< 04,M]€1/2€k

for all £ > 1. Moreover,

k—2 +o00
k+ p)? k+ p)
" ( .'u) < NZ( _'M) _ ekt
=0 J: j=0 J:
Hence,
k—1 - corp(B) J
(k + )’ ( le] P) 1/2
k— : Cy k™= + pet
2= iy < (O )

for all £ > 1. Finally, we obtain a constant Cy , , > 0 depending only on p, 4 such that
(15) A < Capups

for all £ > 1. From (11) and (13), we have

E
—

ar
e S 1AM e < CrArdn( A, () e

(16)
Tt €

.
Il
o
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where

+OO or _ l—k—l) 0 or (h—l)
. ory(B) ik _(2—(1—ky) 72 (I — k)¢ = 0(B) 2y h
Ap= ) (=) e =) )'e Ie =1

— k-1
I=k+3 €] (b=k—1)! h=3 €]

Now, we show that Ay, k > 1, is a bounded sequence. Again, by the Stirling formula, we
get a universal constant Cy 2 > 0 such that

+o0

~ o o o h _ 1
Ai < Cazexp(217r(8)) ;(Mrbw»hexp(h(l ~ NG O Gn(h = 1))12
o X 357
< Cy2 GXP(2?7"b(5)) Z(ll;(ﬁ) exp(1 — —rb(8)))"

" 2 \r
From the assumption (6), and the estimates that for all m;,mg > 0 two real numbers, we have

sup "™ exp(—maz) = (@)mle_ml,

x>0 mso
we get a constant 0 < § < 1 such that

~ 3 3%7“ (,8) 60
(17) A < 04’216_ 5(%)3 eXP(—%Tb(ﬁ)) < M

for all £ > 1.

Finally, from the equality (9) and estimates (10), (14), (15), (16) and (17), we get a constant

Cuppa > 0 depending only on p, p such that [[A(E)AY (1)]|5.0ca < ChClappa||AY (1)]]5.0.c.a for
all £ > 1. It remains to consider the case k = 0.
When k = 0, let f(t) = Ao(t) € LY(Ry), with supp(4y) € [0, 1]. By definition, we can write

(18) [Ih(t)Ao(t)llg,e.d = I[P(t) Ao(t)]]g,0e

1
:/0 |h(t)[] Ao (t)] exp(

_ore(B)

el

Ch C’h
t)dt < —||Ag(t JeziAt o,6,d
) pﬂ|| o()ll8,0, pu” o(t)lls,

O
In the next proposition, we study norm estimates for the multiplication by polynomials.
Proposition 5 Let o and 8 > 0 such that

30

(19) 5Hmwmkmﬂm<1,\d<a

and let s1,ky > 1 be integers. Then, for all f € Dy, ., we have r*1 f(r) € Dy . Moreover,
there exists a constant Cs > 0 (depending on s1,0) such that

(20) 1Pt ()l poed < Oslel™ (B4 1) f(1)l|p-kao.ed

forall f € D/B

—ko,0.€"
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Proof The proof is an adaptation of Proposition 4. Without loss of generality, we can assume
that f has the following form f(t) = A,(gk) (t) where Ay € L*(R,) with supp(Ay) € [k, k+ 1], for
k > 1. We also put h(t) = t51. Let gy ;(t) = h* =) (t)Ax(t). Then, supp(gx ;(t)) C [k, k + 1.
From the Leibniz formula, we get the identity

nnaP @) =3 Mg;{;(t).
0

On the other hand, one can rewrite g,(f])(t) = (PlE=dlg. )*®)| where supp(PF=lg, ) € [k, +00)
and P4 denotes the gth iteration of P.

Due to Lemma 1, g,i]]) can be written g,g]]) = LOE(AM)(Z), with Al,j = Gl Gy =
P(Gi1-1,j1)1400)) and Gy j = P[k*j]g;ﬁj. Therefore, we get the following identity

21 hOAW () = (h(t) A(t)® L Al LR AV
(21) (DA (1) = (h(D)AK(D)) +§M kﬂL;)Ml:; L
1) We first give estimates for |[(h(t)Ak(t))®)||5.0.c.a- We write
or Foo o
22) MO s = (TP [T e 18w o L r@)rr
_ (Urb(ﬁ - k2))k( ro(B)  \k
€] ro(B8 — k2)
k41 o -
X /]C 75 exp(—g(rb(ﬁ) — (B — k2))T)|Ak(7)] exp(—mrb(,é’ — ko)7)dT
_ k+1 o
< (e 8T [ ) expl (s — ke
€] k €]
where )
= sup [ (—22L )k S exp(—— (r — (B —
Ales) = sup ( () 1) expl= T (8) = (= k)b )
Now, we gives estimates for A(e, 3). We write
Tb(ﬁ) k 51 oy _i r _r _
(23) (m) (k4 1) exp( |€\( b(B) — (B — k2))k)

= (k+1)" exp(—k,%, (&(rp(B)) — P(rp(B — k2))))
< 291k exp(—k ((r(B)) — ¥ (ro(B — k2))))

€]
le

where ¢(z) = z — ldl log(x), for all k& > 1. From the Taylor formula applied to ¢ on [ry(8 —

g

k2),m5(B)], we get that

id

(24)  D0(8) — pr(8 — k) = (L= Dy (8) — ry(5 — k) > (1= 1) L2

(B+1)°

for all 8 > ks. Now, we recall that for all mi,ms > 0 two real numbers, we have

id

)

(2

m my g, —mi

(25) sup ™ exp(—max) = (
x>0 mso
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From (23), (24) and (25), we deduce that

81671

(26) Ale, B) < QSl(m

)7l (8 + 1)

for all 5 > ko. From (22) and (26), we deduce that

816_1

I X5 N DA 5] +1bsl ; o
(1_%,@0) €l (B + 1" [ f (D)l p—k2,0.c,d

(27) (&) Ak (0) P[50 < 2 (

2) We give estimates for ||A; |50, for all 0 < j < k—1, all [ > k. From the Lemma 2, we have
the estimates

(28) IIAHn,jHB,a,eS(W )" [[PFgy ]

B,0,€s

d
b(8)

X 2 (1-k)) & ry(8) (L — k)1 F 1
Bulsene < 0 Gy 1P

B,0,€

for n = 0,1,2 and all [ > k + 3. Now, we give estimates for ||PF7lg; j||5 ... Using the Taylor
formula with integral remainder, we have that

[Pr=ilg, ()] < 1 ) /t(t — )P R (5) Ak (s)|ds

k—7— 1! J,

and from the classical identity

oo _ir — s)F It = ex —17" Sij‘
/s exp(= ()t = )77 dt = exp(= 1 b(ﬁ))(ﬁm(ﬁ))’“*j

we get from the Fubini theorem that

%rb(ﬁmdt

400 k —j—1 o .
< [ G e St s aelds

. —+o0 )
(29) [IPF gy (8)||p0e = / Pl gy ()] exp(~

1 =ik — j OOex —gr s)|h*=9) (s s)|ds
4MW)> (=3) [ expl=Zn(@9ht I @A)l
Again, we write
(30) /;exp< ZrB)3) 1) (5) Mgl ) s

=/k !h(k_j)(S)!eXp(—%(rb(B)—rb(ﬂ—kz))S)\Ak(S)!eXp( ro(8 — k2)s)ds

From the expression of h, we have that

(31) |WE=9)(5)] < s115%1 /sF 7T < 51151 JKRTI
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for all s > k,if 1 < k—j < s1, and h*=7)(s) = 0, if k —j > s;. Using (31) in the right handside
of the equality (30), we deduce from (29) that

_ k—j i
32) [P g0 < 1 G ()

k+1 o
X / st exp(——(rp(B) — rp(8 — k2))s)|Ak(s)| exp(—
k le|

if 1 <k—j<sand |[PFilg (1)

H rp(B — k2)s)ds

:Oifk—j>51.

3) We give estimates for Z k'HAk]fnnj |18,0,e.a/ (G (K —j)!), for n = 0,1,2. From the estimates
(28) and (32), we get that

k+TL, ﬁ U7E’d — . o 1- k—1q
p=ELCER ’ jr0 ks IR R0 (B)
k+1
or o
x ( be(’m )k/ 5%t exp(—ﬂ(rb( ) —1p(8 — k2))s)|Ak(s)] exp(—mrb(ﬂ — ko)s)ds.
k
From (22) and (26), we deduce from (33), that
k—1 " g1
n s 1 s s s
B0 X I e < A2 (S (84 D IO
§=0 ] (1 )]{720'
where -
— k!sy! le| ki
Ae= > - : —( )hd
P Uk — 5 — DEF=7 ory(B)

forall k > 1, and n = 0, 1, 2. Now, we show that Ay, k£ > 1, is a bounded sequence. We have
A s1—1 Lk—s1+m

(35) A<l e )

for all k > s,. From the Stirling formula which asserts that k! ~ kFe=*(27k)Y/? as k — +o0, we
get a universal constant C; > 0 and a constant Co > 0 (depending on s3, m) such that

k—si1+m | ok k
k— < kle < 0267
(k —s1+m)! (k — 51+ m)!(2mk)1/2ks1—m (2mk)1/2
for all £ > 1. From (35), (36), we get a constant C3 > 0 (depending on s1) such that
(37) A < Cs
for all £k > 1.

4) We give estimates for ZJ —0 7 k =7 S i3 ||Al(l;|\5,g,e,d. From the estimates (28) and (32),
we get that

|
(36) % < Cre F(2nk)'? |

k-1 A - " k! s1! el \k—j
J:()‘]' ]) zzk;rs" “HB”d J>0,jz>‘7c—81j!(k_j_l)!kkj(arb(ﬁ))
or, k+1 g g
< (ff”)k [ s expl= 2 0u(8) = 8 k) Ao exp( (5  ka)s)ds
+oo —k—
gr l*kex — ({ — gr 7@_]{:)1 o
< 3 Gy enl(z— =)o) =y
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Again from (22) and (26), we deduce from (38) that

k—1 _
8161

‘ Z HA Hﬁoed<Bk21( 1

(39)
I=k+3 ( —g)]@‘f

k=) )*Hel* (8 + 1P| ()| g—ks,0e.a
7=0

where Bk = AkAk and

Aem S (D) exp((2— (1 — B Ul
k= _2: (re(B)) ™ exp((2 = (1 = ))Hrb(ﬂ))m

roo o hh1
:Z;Mmmﬁwm@m%W”z

for all k > 1. Now, we remind from (17) that A, is a bounded sequence.

Finally, from (17), (21), (27), (34), (37) and (39), we deduce a constant Cs > 0 (depending on
s1,0) such that

1REALY Ol oea < Colel™ (B4 1) AL 13-k 0,60

which gives the result. It remains to consider the case k = 0.

When k = 0, let f(t) = Ao(t) € L*(R,), with supp(Ag) € [0, 1]. By definition, we can write

(40) [[R(t)Ao(t)l|g,0c.a = [1h(E) Ao (E)]]5,0,c

1 o o
= /0 751 exp(—m(rb(ﬁ) —1(8 — k2))7)| Ao(T)| exp(—mrb(ﬁ — kg)T)dr.

Using (25), we deduce from (40) that

1 1
(1) MR < (T 0+ 01 7 1ol el = ko)
-1
= L) (5 + D Ol e

Hence there exists a constant C51 > 0 (depending on s1,0) such that

1B f (8)]1.0e.a < Co,alel™ (8 + 1) [ ()| —kz,0e.

which yields the result. O

Proposition 6 Let 0 > ¢ > 0 be real numbers such that

30 _o, -
(42) §mnww1M“m<1,|d<a

Let s1 > 0 be a non negative integer. Then, for all f € Dy ., we have v f(r) € Dj .
Moreover, there exists a constant Cg > 0 (depending on s1,0,6) such that

(43) 722 f ()| 8.0e,a < Colel™ | ()] 8,5,e,d
for all f € D, o
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Proof The line of reasoning will follow the proof of Proposition 5. We start from the identity
(21).

1) We first give estimates for ||(h(t)Ax(t))®)]|5.0.c.a. We write

ar, oo g
u(B) e /0 U () exp(~ Zry(B)T)dr

el el

o k+1 o—0 o
() / 1t exp(— T =0 (8)7) | Ap(r) exp(— Zory(B))dr
o k € |6|

~ or k+1
< A(e, ) )y [ ol Cn@mar

(44)  [[(R()ARE) M |50ea = (
ary(B)

= (

where ~
Ate) = s (Dt )% expl(= =) )
k>1\ O €]
Now, we give estimates for A(e, 3). We write
(0 —0) ro(B)

le]

where p(z) = x — () log(z), for all £ > 1. From the Taylor formula applied to ¢ on [7, 0], we
get that

(46) plo) —p(0) = (1 - =)(0—0)
From (45), (46) and (25), we deduce that

~ s1e

47 A(e, B) < 2% el
(47) (@) S 2 e
From (44) and (47), we get that
spe! s11.(81
(48) (RO AL 0) 5,000 < 281((1 ~ ;1)(0 - &)) el (B)]15.5,c.a

2) We give estimates for ||A; |50, for all 0 < j <k — 1, all I > k. We start from the formula
(28) and (29). We write

(49) /k Ooexp( ﬂrb( 3)s)|h* =) () Ay (s)|ds

- /,;O 0= (s) exp(— =Ty (B)9) A ()] exp(— L () s)ds
We get that

(50)  [[P*gr;(1)]1,0:c

-7 € s o—0
oDy [T s e @) Ao vl Do)

S 81!
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if 1 <k—j<s and |[PlEilg, (1)

ﬁ’UGZOifk‘—j>81.

3) We give estimates for Z k'||AkIf:;nj |18,0,e.d/(G'(k — 4)!), for n =0,1,2. From the estimates
(28) and (50), we get that

k—

H

k—1

(k) k! ((E—=3) el ke
k+n]”6‘7’ﬁ’d< Z j'(k_j)'sl kjk_] ( )
j20,j>k—s1

l
:()j

.

or, k1 o—0o a
(B /k # exp( : ) 14(8)8)| A ()] exp(=oro(B)s)ds.

el

From (44) and (47), we deduce from (51), that

k! X (k+n) spe !
|| e d < Ap2%(
PG I 8 (1-ldyo-5)

where Ay is the bounded sequence given in the proof of Proposition 5.

(52)

)7 el [ f(#)]

/875-767(1

We give estimates for Zj ~0 71 k i S ot3 ]A;?H@U,E,d. From the estimates (28) and (50), we
get that

k—

,_.

k—1

k' 31! |€| k—j
)2 U%”A” posd S 2. =51 B o)
or k+1 o—0 o
« (ZreB) [ exp(— T (8))| Ax(s) exp(— L ry(8)s)ds
€] k le] €]
o (I —k)=k=t
X lzk;r:a “Fexp((2 - (1 - k))mrb(ﬁ))m

From (44) and (47), we deduce from (53), that

k—1 +oco —
k! <~ () sie”!
(54) S A g ed < Bi27( J P E)ll5.5.c
S M=) G, (1-He-3) ’

where Bj is the bounded sequence given in the proof of Proposition 5.

Finally, from (17), (21), (37), (48), (52), and (54), we deduce a constant Cg > 0 (depending on
s1,0,0) such that

k s k
1AL 1)]15.0.a < Colel* 1005500

which gives the result. It remains to consider the case k = 0.

When k = 0, let f(t) = Ao(t) € L'(Ry), with supp(4y) € [0,1]. By definition, we can write

(55)  [[A(t) Ao (t)l]5.0.c.

1
— [[A() Ao ()| e = /O —

rp(8)7)[Ao(7)] exp(—%rb(ﬁ)ﬂdr.

el
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Using (25), we deduce from (55) that

-1

1 ~
(56) mwmammwdg§f5WM“/|&mwwm—fmwvmf
0 €|
-1
e I R [F{C][ PRSP

Hence there exists a constant Cs; > 0 (depending on s1,0,6) such that

(&) f@)]|,0e.d < Colel” | f () 5,6,e.d5
which yields the result. O

2.2 Banach spaces of formal power series with coefficients in spaces of dis-
tributions

Definition 3 Let § > 0 be a real number. We denote by D'(o,€,0) the vector space of formal
series v(r,z) = 3 55 v3(r)2P /B! such that vs(r) € Dy, for all >0 and
&8
o Mty = 3 Nop(r) a3
B>0
is finite. One can check that the normed space (D'(0,¢€,6), ||.||(s.¢,a,6)) is a Banach space.

In the next proposition, we study some parameter depending linear operators acting on the
space D'(o,¢€,0).

Proposition 7 Let sy, s2, k1, ko > 0 be positive integers. Assume that the condition
(57) ko > bsy
holds. Then, if

3ECO) 1o

(58) el <o 5 ¢ <1,
the operator T10-¥10;%2 is a bounded linear operator from the space (D' (o, €, ), |[-[l(0,e,a,5)) into
itself. Moreover, there exists a constant C7 > 0 (depending on b,s1,ke,0), such that
(59) |’r8187"_k1 az_kév(ra Z) | ’(0’,6,d75) < ‘6‘81+k1 C75k2 | ‘U(’I”, Z) H(J,e,d,&)
for allv € D'(0,¢,0).
Proof Let v(r, z) € D'(0,¢€,d). By definition, we have
s1 9—k1 9—ko s1 9—k1 &B
(60) 171075107720 (r, 2) | ey = Y P10 M vg, ("lls.0.ca -

B>k2

From Corollary 1 and Proposition 5, we get a constant C3 5 > 0 (depending on s1,0) such that

(B — ko)!

(61) |Ir*1 0,102 0(r, 2)l|(geas) < Cas Y, el (B + 1) Al

B>ka

ko 5ﬁ_k2
X |[vg—ky (r)[|8=k2,0,¢,40 M
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From the assumptions (57), we get a constant Cp s, r, > 0 (depending on b,s1,k2) such that

(B — ko)

!
3l < Chosy ko

for all 5 > ko. Finally, from the estimates (61) and (62), we get the inequality (59). O

(62) (B+ 1)

In the next proposition, we study linear operators of multiplication by bounded holomorphic
and C'*° functions.

Proposition 8 For all > 0, let hg(T) be a C* function with respect to v on Ry, such that
there exist A, B, p, ;> 0 with

Blq!

@, -8
(63) lhg" (r)| < AB (p(r + p))it1

for all r € Ry. We consider the series

B
h(r,2) =7 hs(r) 5y

B>0

which is convergent for all |z| < B, allr € Ry. Let 0 < 6 < B. Then, if

3i¢(b) | o
(64) <o, ld<pr . eI <,
the linear operator of multiplication by h(r, z) is continuous from (D'(0,€,0),||.||(,c.5)) into itself.

Moreover, there ezists a constant Cg (depending on u,p,B), such that

(65) (7, 2)v(r, 2)[](0,c,0.8) < CsAllv(r, 2)l](0,6,4,)

for all v(r,z) € D'(0,¢€,0) satisfying (64).
Proof Let v(r,2z) =3 550 v3(r)2P /B! € D'(0,¢€,8). By definition, we have that

[
(66) (20 et < S S (o (e sy ) -
B20 P1+B2=p e

From Proposition 4 and the remark after Definition 2, we deduce that there exists Cy > 0
(depending on pu,p) such that

(67) 16, (1), (M)I5,0ea < C4AB™ Bl[[vg, (1)l |p.0e.a < CaAB ™ Bil|[ug, (1)l 0,ea

for all 1, B2 > 0 such that ) + B2 = . From (66) and (67), we deduce that

0
[1h(r, 2)0(r, 2)l|(5.c.a0) < CLAQ_(H) (. 2)ll(oed)
B=0

which yields (65). O
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2.3 Cauchy problems in analytic functions spaces with dependence on initial
data

In this section, we recall the well know Cauchy Kowaleski theorem in some spaces of analytic
functions for which the dependence on the coefficients and initial data can be obtained.

The following Banach spaces were used in [29].

Definition 4 Let T, X be real numbers such that T, X > 0. We define a vector space G(T, X) of
holomorphic functions on a neighborhood of the origin in C2. A formal series U(t,x) € C[[t,z]],

th 28
U(t, .f) = Z Ul’ﬁﬁa

1,620

belongs to G(T, X), if the series

|Ulﬂ’ Iy 8
E =T X
I+ B)! ’

1,620
converge. We also define a norm on G(T,X) as

luigl
Ut [rx) = D, 7T X7,
ZHBZO(HB).

One can easily show that (G(T, X), ||.||(r,x)) is a Banach space.

Remark: Let U(t,z) be in G(Tp, Xo) for given Ty, Xo > 0. Then, U(t,x) also belongs to the
spaces G(T,X) for all T" < Ty and X < Xo. Moreover, the maps T — |[U(t,z)||(r,x) and
X = ||U(t,2)||(r,x) are increasing functions from [0, Tp] (resp. [0, Xo]) into R

We depart from some preliminary lemma from [29]. In the following, for u(t,z) € CI[t, z]],

we denote by 9; 'u(t,z) the formal series [; u(t,7)dr.

Lemma 3 Let hg, h1 € N such that hg < hy. The operator afoa;hl 18 a bounded linear operator
from (G(T, X), ||.||(r,x)) into itself. Moreover, there exists a universal constant Cip > 0 such
that the estimates

(68) 10120, U (t, 2) |1, x) < CroT X" |U(t,2)||(7.x)

hold for all U(t,z) € G(T,X).

Lemma 4 Let A(t,z) = > 55 argt'zP JIIB! be an analytic function on an open polydisc con-
taining D(0,T) x D(0,X) and let U(t,x) be in G(T, X). Then, the product A(t,x)U(t,z) belongs
to G(T, X). Moreover,

where |A|(T, X) = Zl,ﬁzo |al,,3|TlXﬁ/l!B!

Proof Let L s
t'x
U(t,.’I;) = Z ul’ﬁﬁﬁ

1,620
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We have | s
t'x
Alt,2)U(tx) = Y U4 B

1,620

_ all ,B1 ulZa/BQ 171
vp = Z Z l1'51'l2'ﬁ2 AU,
li+l2=l B1+B2=p
for all [, 8 > 0. By definition, we have

where

|ary 5, ||, 8, |
ATVl = 30 | 3 3 Tt ) 7,
1,8>0 \l1+la=l B1+B2=B * 1!(l2 2

and

ai, gy, g8 TEXP
1A, 2)U(E 2)llr,x) = Z Z Z TXTAEN] I
1,6>0 |l1+lo=l B1+B2=p 1116110182 | (14 B)!

On the other side, the next inequalities are well known,
1p! < I+ p)! < I+ p)!
181102182 ™ (I + B1)!(la + B2)! ™ l!B1!(l2 + B2)!

for all I1,lo > 0 such that Iy + s = [ and (1, f2 > 0 such that 51 + 5 = .
Finally, from (70), we deduce that [|A(t,z)U(t,z)||(1,x) converges and that the estimates
(69) hold. 0

(70)

Lemma 5 Let hi,he € N and let U(t,x) be in G(Ty, Xo) for given Ty, Xo > 0. Then, there
exist T, X > 0 small enough (depending on Ty, Xo) such that the formal series BflaiZQU(t,x)
belongs to G(T,X). Moreover, there exists a constant C11 > 0 (depending on hy, ha) such that

(71) 1@ P2 U)(t, 2)||(7x) < Ca T X 72U (8, 2)|| (73, x0)
for all U(t,x) € G(Ty, Xo).

Let C; be a finite subset of N2. For all (lg,11) € C, let ¢y, (t,x) = >1550 Cloy 1,5t 2P /113!
be analytic functions on some polydisc containing the closed polydisc D(0,Tp) x D(0, Xq) for
some Tp, Xog > 0. As in Lemma 4, we define

|Clo | (t; @) Z |Clo 010,81t 1:'8/“5'

1,8>0

which converges on D(0,Tp) x D(0, Xo). We also consider d(t, z) € G(Ty, Xq4), for some Ty, X4 >
0. The following proposition holds.

Proposition 9 Let S > 1 be an integer. We make the following assumptions. For all (lp,11) €
C1, we have that

(72) S>>0, S>lg+1.
We consider the following Cauchy problem

(73) BUEz) = Y oy (t,x)0PoMU(t z) + d(t,z)
(lo,l1)6C1
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for given initial conditions
(74) (@IU)(,0)=U;(t) , 0<j<S—1,

which are analytic functions on some disc containing the closed disc D(0,Tp). If U;(t) =
S im0 Ujat! /1, we define |Uj|(t) = Y 150 |Uja|t! /1! which converges for all t € D(0, Tp).

Then, there exist Ty > 0 with 0 < Ty < min(Ty, Ty) (depending on Ty, Ty,C1) and X1 > 0
with 0 < X7 < min(Xo, Xq) (depending on S, Ty, C1, max, 1, yec, |, [(To, Xo)) such that the
problem (73), (74) has a unique formal solution U(t,z) € G(T1,X1). Moreover, there exist
constants Ci2.1, Ci2,2,C123 > 0 (depending on S,To,X0,C1) such that

(75) [lU®,2)]|(ry,x,) < 02X 1U;1( To)(le(lof’??gc |ct0,11|(To, Xo) + C12,2)

+ Crz3/ld(t, )| (1, x,)

Proof We denote by P the linear operator from C[[t, z]] into itself defined by

(76) P(H(t,x)) =05 H(t,x) — > e, (t,2)00 0L H(t, x)
(lo,l1)€C1

and A denotes the linear map from C[[¢, z]] into itself,

(77) AH(t ) = > e (t,2)0000 S H(t, x)
(lo,l1)€C1

for all H(t,z) € C[[t,x]]. By construction, we have that P o 9;° = id — A, where id represents
the identity map H — H from C[[t, z|] into itself.

Now, we show that for any given 77 > 0 such that 0 < 77 < Tp, there exists X471, > 0
with 0 < X417y < Xo (depending on S, T1, C1, max, ,)ec, |¢,11|(To, Xo)) such that id — A
is an invertible map from G(77,X) into itself for all 0 < X < X 47,. Moreover, the following
inequality

(78) 1Gd — A)Ct, @)1y, x) < 211CE D)2y, x)

holds for all C(t,z) € G(T1,X), for any 0 < X < X4 7. Indeed, from the assumption (72) and
Lemma 3,4, we get a universal constant Cp1 > 0 such that

(79) [JAC @)y x) < Croa( Y et [(Ty, X)T XSO @)y x)
(lo,l1)€C1
<C()1 max ‘cl(),ll To,XO Z T lOXS ll HC(t x)H T1 X)
(l07 )
(lo,l1)€Cy

= NTLX,A,Tl ||C(tv x)H(Tl,X)

for all C(t,x) € G(T1,X). Since S > Iy, for all (lp,l1) € Cy, for a the given T3 > 0 one can

choose X 4, small enough such that Np, x, , <1 /2. Therefore, the inequality (78) holds.
Let w(t,x) = Zf:_ol U;(t)z? /4!. From the hypothesis (74), we deduce that P(w(t,z)) and

w(t, z) belong to G(T1, Xy), for some 0 < T} < T (depending on Cy, Tp). Indeed, from Lemma
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4,5 we get constants C111 > 0, 0 < T1 < Tj (depending on Cy, Tp) such that

S—1-1;

X]
(80) Hp(w(tvx>)H(T1,Xo) < Z ‘Clo,ll|(T1ﬂX0)( Z HaéonJrll( )H (T1,Xo0) 1 )
— J:
(lo,l1)€C1 Jj=0
S—l—ll X]
<Cun Y leoul(T, Xo) T (Y HUjJrh(t)H(To,Xo)T'O)
(lo,l1)eCr j=0 '
S—1-0; Xj
<Cun Y lepn (T Xo) T ) ’Uj+l1’(T0)7|0>
(lo,l1)eCy Jj=0 '
—1— ll X‘j
S 01171 lHllaXC ‘Clo 11|(T0,X0) max |U |(T0) Z
(lo,l)e (lo,l1)eCr j=0
and
S—1 j S—1 Xj
81)  lwt. o)l x0 < DUt ||<T1,Xo> < ZlU ()20 <O<m<a§< i@y 3 =
j=0 j=0 "

Now, for this constructed 77 > 0 satisfying (80), (81) that we choose in such a way that 77 < Ty
also holds, we select X; > 0 such that 0 < X; < min(X 47, X4). From the estimates (80),
(81) and the remark after Definition 4, we deduce that P(w(t,x)), w(t,x) and d(t,x) belong to
G(T1, X1). From (78), we deduce the existence of a unique H(¢,x) € G(11, X;) such that

(Pod;H(t,x) = —P(w(t, z)) + d(t, z)

Now, we put U(t,z) = 0;H(t, ) + w(t,z). By Lemma 3, we deduce that U(t,z) € G(Ty, X1)
and solves the problem (73), (74). Moreover, from (78), (80) and (81), we get constants
Ci2,1,C12,2,C123 > 0 (depending on S,7p,Xo,C1) such that (75) holds, which yields the re-
sult. O

3 Laplace transform on the spaces D'(o,¢€, )

We first introduce the definition of Laplace transform of a staircase distribution.

Proposition 10 1) Let f > 0 be an integer, o > 0 be a real number and € € €. Let

—+00

f(r) = (M)W € D,

k=0
and choose 0 € [—m, ). Then, there exist pg > 0, p > 0 such that the function

+00 ei reif
(52) L)) =3 (T | s exn(="yir

is holomorphic on the sector S97p97‘6|p = {t € C*/|0 — arg(t)| < po,|t| < |e|p}, for all € € E.
Moreover, for all compacts K C Sy ,, ||p» there exists Cx > 0 (depending on K and o) such
that

(83) 1Lo(f)()] < Crllflg0ed
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forallt € K.
2) Let 6 > 0 and let f(r,z) = 3559 fa(r)2P /B! € D'(0,¢,8). We define the Laplace transform
of f(r,z) in direction § € [—m,m) to be the function

(84) Lo(f(r,2))(t) =D Lo(f5)(1)2" /8!

820

which defines a holomorphic function on Sp ,, i, X D(0,6), for some pg > 0, p > 0, for all
€ € £. Moreover, for all compacts K C Sp p, (e[, there exists Cx >0 (depending on K and o)
such that

(85) [Lo(f(r, 2))(B)] < Crlf(r,2)l|(0.e,0.0)
for all (t,z) € K x D(0,6).

Proof We prove the part 1). The second part 2) is a direct application of 1). We have that
(86) |Lo(f)(1)]
+oo “+o00
1 ory(8 cos(f — arg(t o
<> [ 1 exn( T e (SO ED ) gy
— |t] 0

el i el

We choose §; > 0 and py > 0 such that cos(0 — arg(t)) > 01 for all £ € Sy, |c|,- Moreover, we
choose 0 < 92 < §1 and p > 0 such that

— |e|e02/1t

s(B) T tlore(B)
Let k > 0 an integer, for r € [k, k + 1], we get that

, cos(f — arg(t)) . ox kb
exp (=r(“HE2EO) T )} < exp(-102)

<1

01
It] < el
ar,

for all t € S@,p97\e|p'

We deduce that for k& = 0,

orp(B)

el

., cos( — arg(t)) o, -
7o (- o)
1

< mHAo(f)(r)l

1 oo
Ol / Ao(£)(r)| exp(~

670.76
and for k > 1,

+oo or
) e [ 1AM (- d)

]
< L e o B AP < 19
= e M eora(8)” el 5= Ni2ary(B)

From the estimates (87) and (88) we get the inequality (83). O

cos(0 —arg(t)) o
I €]

]e|e"52/|t| o

(Hrb(ﬁ))kHAk(f)(rﬂ

) xesp (o (o) ) dr

570—76

In the next proposition, we show that if f is a function, then the Laplace transform of f
introduced in Proposition 10 coincides with the classical one.
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Proposition 11 Let f(r) € Lg g2. Then, from Proposition 1, we know that f € Dj , .. The
Laplace transform Lo(f)(t) coincides with the classical Laplace transform of f in the direction

0 defined by - ;
e’ &0 re’
)0 =5 [ e

)dr

Jor all t € Sp p, |c|p-

Proof From the proposition 1, the staircase decomposition of f = ZkZO(Ak(f))(k) has the
following form Ag(r) = Gr(r)ljrt1), With G = P(Gr-1lk400)) and Go(r) = f(r), for all
k > 0. We have to compute the integrals

(eie)k—i—l k+1 Tei@
A = sl i Ak (r) exp(— " )dr
for all £ > 0. For k = 0, we have that
0 1 i0
Ag = c f(r) exp(—Te )dr
t /o t
For k = 1, by one integration by parts, we get that
o0 ret® 12 gt g2 retf
Ay = —— |Gi(r)exp(— )| +— | f(r)exp(— )dr
t t ), ot ) t
and using successive integrations by parts, we get that
k if 0 1Rl g pkt i0
e r e re
=Y - [ntnen-"0)| 4 [ en-"Car
m=1 k k

for all K > 1. On the other hand, from the hypothesis that f(r) € Lg, /2. and from the fact
that G, (r) = 0, for all » < m, we have that the next telescopic sum

+o00 eie rew k+1
> ()" Gt ="5),

is convergent and equal to zero, for all m > 1. Finally, we deduce that >~ Ax = Ty(f)(t). O

In the next proposition, we describe the action of multiplication by a polynomial and deriva-
tion on the Laplace transform.

Proposition 12 Let f(r) € D, Then, the following relations

s0,€

(89) Lo(e®0 ) (1) = tLo(£)(t) , Lo(erf(r))(t) = (120 +)Lo(f)(1)

hold for all't € Sy, |cp- Let s,kg > 0 be two integers such that s > 2kg. Then, there exist a

finite subset Og y, C N? such that for all (q,p) € Osg,, ¢+ p = s — ko and integers agjl,fo ez,
for (q,p) € Os i, (depending on s,ko) such that

(90) PO Lo(f)(t) = Lo(e 71N aploria P f(r))(1)

(4,P)€0s i,

Jor allt € Sy 4, |e|p-
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Proof First of all, we have to check that the relations (89) and (90) hold when f € D(R). Since
D(R4) is dense in (Dj, ., [|.|[g,0,¢,a); from the inequality (83) and with the help of Corollary 1
and Proposition 5, we will get that (89) and (90) hold for all f € D} .. Now, let f € D(R).
The first relation of (89) is obtained by integrating once by parts and the second formula of (89)
is a consequence of the equality

6 0

o0 o [ F e )ar)
0

619 0o reiG 210 +o0 Tei@
=7 f(r)exp(— )dr + 3 / rf(r)exp(— ; )dr
0 0

for all t € Sg p, |cp- To get the formula (90), we first show the following relation

(92) (Lo (f(r)(t) = Loe™ ™ (rd} + ) f(r))(t)

for all t € Sy p, |-

Indeed, using one integration by parts, we get that
eiO

. +oo
(93) Lole (07 +0) F()(1) = 5 /0 O ()7 exp(~

10

t

)dr

By a second integration by parts on the right handside of (93) and by comparison with (91), we
get (92). Now, let s,ky € N be such that s > 2ky. Applying the first relation of (89) and (92)
we get that

(94) t°0f Lo(f)(t) = Lo(e" V0 (rd} + 0,) ) f(r)) (1)
Now, we recall a variant of Lemma 5 and 6 in [31].

Lemma 6 For all kg > 1, there exist constants ay i, € N, kg < k < 2ko, such that

2ko
(95) (r0} + 0p)Fou(r) = > aprr* P ofu(r)
k=ko

for all C*° functions v : Ry — C.

Lemma 7 Let a,b,c > 0 be positive integers such that a > b anda >c. Weputé=a+b—c.
Then, for all C* function u : Ry — C, the function 0, *(r*0%u(r)) can be written in the form

07 (rPofu(r)) = > w05 u(r)
(¥ ,c)e0;

where Og is a finite subset of Z* such that for all (b',c') € Os, ¥ — =68, >0, <0, and
ay o € L.

Finally, we observe that the relation (90) follows from (94) and Lemma 6, 7. O

The next proposition can be found in the appendix A of [24], see also [10].

Proposition 13 Let a > 1 and f(r) € Dy, . with |e| < ory(B). Then, for every I > 0, the

expression (f(t — al)liy, +Oo))() belongs to D/ oc- Moreover, there exist a universal constant
A >0 and B(o,b,e) > 0 (depending on o,b,e) such that

||(f(t - al)l[al,-‘roo)) Hﬁ,a,g,d < A(B(Uv ba 6))l||f(r)’|ﬁ,a,f,d
with B(o,b,e) — 0 when € — 0.
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In the forthcoming proposition, we explain the action of multiplication by an exponential
function on the Laplace transform.
Proposition 14 Let a > 1 and f(r) € Dy, . with |e| < ory(B). From the latter proposition, we
know that Fy(r) = (f(r — al)l[al#oo))(l) belongs to Dy , . The following formula
ei@

(96) Lo(F)(t) = (=) exp(~
holds for all t € Sp ,, |

alet

)Lo(f)(2)
lp-

Proof Since D(R.) is dense in D/, it is sufficient to prove that
+ 1870-76’

eiG : al ez‘é’

(97) Lo(F)(1) = (S exp(= ) To() (1)

for all f € D(Ry), all t € Sy, |cp- Then, we get the inequality (96) by using (83) and the
proposition 13. Now, let f € D(Ry). We write

(F(7 = ) Ljats00) Y = O (F (7 — al) gy o)) 7

where 7 > 0 is an integer chosen such that al € [l + 7,14 r 4+ 1]. From our assumption, we have
that 7 — f(7 — al)1{y, o) belongs to L'(Ry) and that supp(f(T — al)1jn) 4e0)) C [l +7,+00).

By Lemma 1, we deduce that (f(7 — al)l[alﬁoo))(l”) is a staircase distribution AELZ) (1)

where the functions Ahyl(T) are constructed as follows :
AjJ(T) =0 y for 0 < ] < Il+r—1 5 Al+r,l(7') = f(T - al)l[al,+oo)1[l+r,l+r+1]
and for all n > 1, we have Ay, y,(7) = Gn(T) 14 rqn,i4r+n+1] Where

Gn(T) = a;l(Gn—l(T)l[l+r+n,+oo)) , Go= f(T - al)l[al,Jroo)'

By definition, we have

it 0o et
Lo((F(7 = al) i 10) )0 = S [T Bnar)exp(= T ar
h=0 0

Now, we will compute the integrals Aj; = (?)h*1 0+OO Apa(1) exp(—T‘;’:g)dT, for all h > 0. By

construction, we have that A,; =0for all 0 <h <l +7r —1. For h =1+ r, we get

ei@ I+r+1 Tei@
98) Auera = () [ o - abexp(- T ar
al

eiO aleie (1—a)l+r+1 Sei@
= ()" exp(———) f(s) exp(—=——)ds.
t t t
For h =1+ r + 1, by one integration by parts, we get that
eig Teia l+r+2
99) Arsrsna = [~ (- T)Gi0)
I+r+1
o0 442 et o0 it I4r+2
H e [ = ae(= T dr = [~ o= TG )
I4+r+1 I+r+1

et alet® (1—a)l+r+2 st
P ep(- 20 | £(s) exp(— 2 )ds
t t (1—a)i+r+1 t
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For h =1+ r +n, with n > 1, by successive integrations by parts, we get that

I4+r+n+1

G|

l4+r+n

n

6@'6
(100) s = 3 [~ exn(-
q=1

ret?

t

o0 . ale® (1—-a)l+r+n+1 get?
(o2 | F(s) exp(~ 2 )ds
(1—a)l+r+n

Since G4(l + 17+ ¢q) =0, for all ¢ > 1, we deduce that the telescopic sum

0 o0 l et I+r4+n+1
(10) 5[ ten- TG0
n=q l+r+n

is equal to 0. From the formula (98), (99), (100), and (101), we get that

(102)  Lo((f(T = al)ljar+00)T)(E) = Y Any

= (et T[T s e s
From the Proposition 12, we have that
(103) Lo(F)(t) = t"(e") " Lo((f(T = al)Ljar 1o0) ) ()
Finally, from (102) and (103), we get the equality (97). O

4 Formal and analytic transseries solutions for a singularly per-
turbed Cauchy problem

4.1 Laplace transform and asymptotic expansions
We recall the definition of Borel summability of formal series with coefficients in a Banach space,

see [2].

Definition 5 A formal series
Z ) tﬁ c E[ft

with coefficients in a Banach space (E, HHE) is said to be 1—summable with respect to t in the
direction d € [0,2m) if

i) there exists p € Ry such that the following formal series, called formal Borel transform of

X of order 1
J

BX)(r) =Y 4T

(e SEIL

[\

j=0

is absolutely convergent for |T| < p,
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ii) there exists 0 > 0 such that the series B(X)(r) can be analytically continued with respect
to T in a sector Sqs = {7 € C* : |d — arg(7)| < §}. Moreover, there exist C > 0, and K > 0
such that
1B(X)(T)||e < CeXIT

for all T € Sy 5. We say that B(X)(7) has exponential growth of order 1 on Sqs.

If this is so, the vector valued Laplace transform of order 1 of B(X)(7) in the direction d is
defined by

LYBX)() =t | BX)(r)eMdr,
LV
along a half-line L, = R e C Sa,s U {0}, where v depends on ¢ and is chosen in such a way
that cos(y — arg(t)) > d; > 0, for some fixed 1, for all ¢ in a sector

Saor={t€C [t <R , [d—arg(t)] <0/2},

where 7 < 6 < m+20 and 0 < R < 0;/K. The function Ed(B( ))(t) is called the 1—sum of the
formal series X (t) in the direction d. The function £4(B(X))(t) is a holomorphic and a bounded
function on the sector Sgg . Moreover, the function £4(B(X))(t) has the formal series X (t)
as Gevrey asymptotic expansion of order 1 with respect to t on S49 r. This means that for all
0 < 61 < 0, there exist C, M > 0 such that

n—1
IL1BE))(E) = D tvlls < M|
p=0 P
foralln >1,allt € Sqp, R
In the next proposition, we recall some well known identities for the Borel transform that

will be useful in the sequel.

Proposition 15 Let X (t) = > >0 ant™/n! and G(t) = > n>0 bnt"™/n! be formal series in E[[t]].
We have the following equalities as formal series in E[[T]]:

(107 +0:)(B(X)(1)) = B(a:X (1))(7), 07 (B(X))(r) = BEX (1))(7),
TB(X)(r) = B((£20, + ) X (1))(7).

4.2 Formal transseries solutions for an auxiliary singular Cauchy problem

Let S > 1 be an integer. Let S be a finite subset of N® and let
bs ok (2, €) st ko k1,8 (€ ﬂ/ﬁ!
B>0

be holomorphic and bounded functions on a polydisc D(0, p) x D(0, €p), for some p, ey > 0, with
eo < 1, for all (s, ko, k1) € S. We consider the following singular Cauchy problems

(104) T?0700Y (T, 2,) + (T+ 1Y (T, 2,) = > bapgun (2,€) €0 T (0P FY) (T, 2, €)
(s,ko,lﬂ)es
for given formal transseries initial conditions
hA

(105) 0.0 =3 2Ty g 0<j<s-
h>0

where @p (T, €) = 3,50 Phjm(€)T™/m! € C[[T]], for all € € £ and A € C*.
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Proposition 16 The problem (104), (105) has a formal transseries solutions
hA
, exp(—7F) ¢
Y(T,Z,S) :Z Al L Yh(T,Z,G),
h>0

where the formal series Yy (T, z,€) € C[[T,z2]], for all e € &, all h > 0, satisfy the following
singular Cauchy problems
(106) T20705V3, (T, z,€) + (T + 1 + Ah)IZYi(T, 2, €)

= Z bs ko k1 (2, €) (ek”(’_sTS (8§°6§I?h)(T,z,e)
(S,k‘o,k1)€$

ko! kL srms (kL k
D DR QIZ chd (hA)aeko—sTs~(ks+a) g Oaklyh(Tze)>

ki+k2=ko,ki>1 O kot o=
with initial conditions
(107) (OIV)(T,0,€) = @n(Tye) , 0<j<S—1,

k.l
for some real numbers c,°, for 1 < q < kzé and 1 < ké < ky.

Proof We have that

hA, hA -

(108)  Drlexp(— AT 2, 0)) = exp(~ ) (b

T Yi(T, z, €) + OrYi (T, z,€)),

and from the Leibniz rule we also have

R\ ko! A g2
(109 plexp(—F V(T2 = D im0y (exp(— )0 Ya(T, 2, 6)
ki+k2=ko 00"

On the other hand, by the Faa Di Bruno formula we have, for all ké > 1, that

(110) 8];;1(exp Zexp Z 'H ok Tl“

(>‘17'" 7)‘k(1))€Aq,k(1)

oot (S

1 1
where A ;1 = {(Al,...,/\ké) € NkO/Z 1A =g, Zfil i\i = k§} and c],;o € R, for all ¢ =
kg
Using the expressions (108), (109), (110), by plugging the formal expansion Y (T, z €) into
the problem (104), (105) and by identification of the coefficients of exp(—%) we get that Y;,
satisfies the problem (106), (107). O
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4.3 Formal solutions to a sequence of regular Cauchy problems

Proposition 17 We make the assumption that
S>k , s>2k

for all (s, ko, k1) € S. Then, the problem (106), (107) has a unique formal solution Yy (T, z, €) €
Cl[T, z]], for alle € E. Let

Yi(T, z,€) = Z Yy m(z,€)T™/ml,

m>0

where Yp, (2, €) € C[[2]], be the formal solution of (106), (107) for all e € £. We denote by

(1,2,€) ZYhmZG )

m>0

the formal Borel transform of Y;, with respect to T. Then, for all h > 0, Vi (7, 2z, €) satisfies the
problem

(111)

(T + 1+ M) Vi(T, 2, €) = Z b ko ky (2,€) | €F07° Z a;pr’“a;f’afl Vi(T, 2, €)

(s,ko,k1)ES (rp)EOL

kl s r
+ Z 1%2' Z O(hX)1 qeko— Z 2q7‘ o paleh(T Z,€)

k{+k2=ko,k}>1 (rp)e0I_y _,

with initial data

m

(112) (2V3)(7,0,€) = vy j(T,€) = Zgohjm eCllr]] , 0<;<85-1

m>0 )
where O} ko 18 a finite subset of N? such that (r,p) € O}

is a finite subset of N? such that (r,p) € O
integers.

implies r+p = s — ko andOS ko—q

2,9
orlp are

s—ko

implies 7 +p = s — ko — ¢, and o}

s—ko—q r.p’

Proof The proof follows by direct computation on the problem (106), (107), using Proposition
15 and the following two lemma from [31].

Lemma 8 For all kg > 1, there exist constants ap, € N, ko < k < 2ko, such that

2ko
(113) (102 + 0 u(r) = Y app, 70 u(r)
k=ko

for all holomorphic functions u : Q — C on an open set Q C C.
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Lemma 9 Let a,b,c > 0 be positive integers such that a > b anda > c. Weputé=a+b—c.
Then, for all holomorphic functions u : Q@ — C, the function 07%(7°0%u(T)) can be written in
the form

oo = 3 oy O u(r)
(b ¢ )EOs
where Os is a finite subset of Z* such that for all (b',c') € Os, ¥/ —c =68, >0, <0, and
Qp o € 7.

|

4.4 An auxiliary Cauchy problem

We denote by €1 an open star shaped domain in C (meaning that 21 is an open subset of C such
that for all x € 4, the segment [0, 2] belongs to 7). Let 2 be an open set in C* contained in
the disc D(0, ). We denote by Q = 1 x Qy. For any open set D C C, we denote by O(D) the
vector space of holomorphic functions on D.

Definition 6 Let b > 1 a real number and let ry(5) = 25:0 1/(n+1)° for all integers B > 0.
Let € € Q2 and o > 0 be a real number. We denote by Eg ¢ 50 the vector space of all functions
v e O(Q) such that

s

wmwmﬂ=mwmm+wme%pmm)

red
1s finite.
Proposition 18 We make the assumption that
S>k , s>2k
for all (s, ko, k1) € S. Moreover, we make the assumption that there exists ¢/, 6’ > 0 such that
(114) T+ 1+hA\>|T+1|>08 , forallTe, allheN.
For all h >0, all € € Qy, the problem (111) with initial conditions
(V) (7,0,€) = vp j(T,€) € O(1) , 0<j<S—1
has a unique formal series

B
(1,2,€) thﬁTE € O()][[#]]

5>0

where vy, g(T,€) satisfies the following recursion

(115) (T+1+h)\)vh5+s(7' 6)
_ Z Z B122:koky Bl sko,k1,51( ) kO—S( Z a T’"é) pw)

(8,k0,k1)E€S B1+B2=0 (r,p)e0} o 52

Y Z S el gl
ki+k2=ko ki >1 Rtk " a=1B1+pB2=p

> Eko_s( Z o? ,qTra p/Uh Ba+k1 (T 6))
fBa!
(r,p)€0O?

s—ko—q
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for all T € Qq, all e € Qo.
Proposition 19 We make the assumption that
S>k , s>2k
for all (s,ko, k1) € S. Let also the assumption (114) holds. Let us assume that
(116) V(7€) € Ejeoq , forallh>0,all0<j<S—1, allee .

Then, we have that v g(T,€) € Egcoq for all B >0, all h > 0, all € € Q9. We put v, g(€) =
l|vn.8(7, €)||8,e.0.0, for all h >0, all B > 0, all € € Qo. Then, the following inequalities hold :
there exist two constants Cig, Cis > 0 (depending on S,0,5) such that

117) vpis@< S Y 5,\bsko,k1,ﬁl()\

(s,ko,k1)ES B1+B2=0

x Clg((8 45+ 1)) 4 w+s+nwkwmwwghu

DY nm§: > el o

kb +k2=kokp>1 V0" =1 B1+B2=p

xkﬁ@MW+S+DW*rﬂ+w+8+nm*rﬁwmﬁﬁﬂd

for all h >0, all B > 0.
Proof The proof follows by direct computation using the recursion (115) and the next lemma.
We keep the notations of Proposition 18.
Lemma 10 There ezists a constant Cig > 0 (depending on s,0,S,ko,k1) such that
(118) |77 0 vn gy 11y (T, €)l |4 S.c.0.02
< el PO1((B+ S + V)PP 4 (B4 S + D)) Jup g, g (7, € gy ne0.0

forallh >0, all 3>0,0< B2 <8, all (r,p) € N> withr+p < s — k.

Proof We follow the proof of Lemma 1 from [31]. By definition, we have that 87 'y, g, 1k, (T, €) =

fOT U, Botky (T1,€)dTy, for all 7 € Q. Using the parametrization 7 = hy7 with 0 < hy < 1, we
get that

1
87'_1vh7/82+k1(7_76):7—/ Uh,Ba+ky (P17, €) M1 (hy)dhy
0

where Mj(h1) = 1. More generally, for all p > 2, we have by definition

T T1 Tp71
a;pvhﬁz-i-/ﬂ (Tv 6) = / / T / Uh,Ba2+k1 (Tpv e)dTpdTp—l e dm
0 0 0

for all 7 € 4. Using the parametrization 7; = h;7j_1, 71 = hy7, with 0 < h; <1, for 2 < j < p,
we can write

8;pvh752+k1 (1,€) = Tp/ s / Uh,Bo+k1 (hp <o haT, G)Mp(hl, RN hp)dhpdhp_l - -dhy
0 0
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where My (hi,...,hp) is a monomial in hy,...,h, whose coefficient is equal to 1. Using these
latter expressions, we now write

(119) 7707 Pvn pyiky (T, €)]
|hp Ce h17’2

1 1 o
=w”/-1/wm%mﬁwm@a+h%>m{ng%+mmwwm)
0 0

exp (5777(82 + k)l b7
L+ [y P/ lef?

My(hy, ... hy)dhy - - dhy|.

Therefore

ra— T 2 g
um>v@%mMm@m+uﬁm(3mewa
r+p |T 2 g
< ||vn B4k (75 o b1, .00l TP (L + 5 ) exp | =5 (re(B + ) — ro(B2 + k1))[ 7| | -
B 2

By construction of (/) we have that

B+S
B 1 B—PB2+8S—k S —k
(121) (B +5) —re(B2 + k) = n5§1+1 1P~ (B+S+1P ~ (BrS+1p

for all 8> 0. From (120) and (121), we get that

_ 7| o
(122) ’Trar pvh,ﬁ2+k1 (T, 6)‘(1 + W) exp _ﬂrb(ﬂ + S)’T‘
7|2 o S —k
< lons s (7, s om0 4 ) exp (g e

for all 5> 0. From (25), we deduce that
(123) |r|"P(1 + E) exp <_Us_klm>
€l? 20el (B+ S5 +1)°

—1
< et (D (g 45 1000+

2(r+p+ 2)6_1
O’(S - kl)

)r+p+2(ﬁ+ S + 1)b(r+p+2)>

for all 7 € Q;. From the estimates (122) and (123), we deduce the inequality (118) O

Proposition 20 Assume that the conditions (114) and (116) hold. Assume moreover, that
(124) SZb(S—ko—i—Q)—i—kl , s> 2kg

for all (s,ko, k1) € S and that the following sums converge near the origin in C,

h
u .
(125) Wj(u) :=>_ sup |[vs;(r,¢€) jeosyy €Clu} , 0<j<S5-1.

h>0 €€
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We make also the hypothesis that, for all (s, ko, k1) € S, one can write
(126) bs ko (2,€) = €0bg ko 1y (2, €)

where by g ky (2,€) = 2550 bs ko ky.5(€)2° /B! is holomorphic for all € € D(0,¢) on D(0, p).
Then, the problem (111) with initial data

(2V3)(7,0,€) = vy j(T,€) , 0<j<S—1,

has a unique solution Vi (T, z,€) which is holomorphic with respect to (7,z) € Q1 x D(0,21/2),
for all € € Q.

The constant x1 is such that 0 < x1 < p and depends on S, uy (which denotes a common
radius of absolute convergence of the series (125)), S, b, o, ||, max(s kg k)es [0lskokr (T0),
MAX (s ko k1)eS |Dlskoki (Z0), where 2o < p and [bls kg iy, |blskok are defined below.

Moreover, the following estimates hold : there exists a constant uy such that 0 < u; < ug
(depending on ug, S and b,0) and a constant C19 > 0 (depending on maxo<;j<s—1 Wj(uo) (where
W; are defined above), ||, max(s ko k1)es 10ls ko k1 (£0), MAX(5 kg k1)eS [bls ko by (Z0), S, w0, To, S,
b) such that

C1o hu(i
1 — 2l
2

1+ 701 e
P

g

2]e]

(127) [Vi(T, 2,€)] < ®)I71)

for all (1,2) € Q1 x D(0,21/2), all € € Qa, all h > 0.
Proof We consider the following Cauchy problem

(128) &W(ue)= > Ol ((xam+5+1)b<3*ko>+
(S,ko,kl)es

(20 + 5 + 1)) ([b] g g ()05 W (11, )

kg
Z ko! Z kL
. 2 0 q
+ kl‘kz' 018‘0(1 HA‘
ki 4k2=koki>1 070" g=1
0 0—Fro,RpZ

x (@0, + 8+ 1)/ 707D 4 (20, + 5+ 1)PETR0ID) ([, () (40,708 W (u, )

for given initial data

) h
(129) (O41) (. 0) = Wi(u) = 3 sup [on(e)| 3y € Clu} , 0<j< 81
h>0 =72 '
where
B N B
‘b‘s,ko,kl (z) = Z sup ‘bs,ko,k1,3(6)|ﬁ ) ’b|s,k0,k1 (z) = Z sup ’bs,ko,kl,ﬁ(f)‘ﬁ;
5>0 e€D(0,¢0) : 5>0 eeD(0,¢0) :

are convergent series near the origin in C with respect to z. From the assumption (124) and the
fact that b > 1, we also deduce that

S>b(s—ko—q+2)+q+k
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for all (s,ko,k1) € S, all 0 < ¢ < ko. Since the initial data (129) and the coefficients
the equation (128) are analytic near the origin, we get that all the hypotheses of the clas-
sical Cauchy Kowalevski theorem from Proposition 9 are fulfilled. We deduce the existence
of Uy with 0 < Uy < Uy, where Uy denotes a common radius of absolute convergence for
the series (129), which depends on Up, S and b, and X7 with 0 < X; < p (depending on
S,U(),S,b,a,‘)\‘,maX(&kO,kl)es |b|s,k0,k1 (XQ), Max(s ko ki )eS ‘b‘&ko,kl (Xo), where X < p), such that
there exist a unique formal series W (u,x) € G(Uy, X1) which solves the problem (128), (129).

Now, let W (u,z) = Zh,ﬁzo whwg%% be its Taylor expansion at (0,0). Then, by construction
the sequence wy, g satisfies the following equalities:

SUDce D(0,60) |0s,ko,k1,61 (€)]
(130) Wh [+ = Z Z /8' eD( 0)6'8 0,K1,01 0118
(s,ko,k1)ES B1+p2=0 v

X ((B+ 5+ 1)PE7R) 4 (54 § 4 1)Plohot2)) Thbath

Ba!
SUPeeD(0,e |557k k1,8 (6)‘ kl
D an > oa B R e B
ki +k2=ko,ki>1 070" g=181+8:=8 v
K CR((5+ S+ 1070 4 (54 54 1o Uit
2.

for all h > 0, all 8> 0, with

(131) wp; = sup |vpj(e)] , forallh>0,all0<j<S—1.

3192

Using the inequality (117) and the equality (130), with the initial conditions (131), one gets that

(132) sup |vp,(€)| < wppg
e€Na

for all h > 0, all B > 0. Using the fact that W(u,z) € G(Uy, X1) and the estimates (75), we
deduce from (132) that there exist a constant C19 > 0 (depending on maxo<;j<s—1 W;(Uo),|Al,
MaX(s ko ki )€S |b|s,k0,k1 (X()), MaX(s ko k1 )eS |b|s,k0,k1 (XQ),S,U(),X(),S,Z),O’) such that

1
Ux

kil

(133)  |vns(r,€)| < Cro(h+ B)!(5- )h( : )B(1+ W) exp(5 - (B)|7)

20"
SQWW&W;W@H;WWMZMWﬂ

forall 7 € Qq, all e € Qo, all h >0, all 5 > 0. O

4.5 Analytic solutions for a sequence of singular Cauchy problems
Assume that the conditions (124) and (126) hold. We consider the following problem
(134) T20705Vi5,6(T,z,€) + (T + 1+ Ah)D2 Vi, 5,6(T, 2, €)

= > bk (2 (0T (9008 Vi 5,6) (T 2, €)

(S,ko,kl)es

+ Z 1| 21 Z h)‘ defomss” (ks +q)a Oaklyh »Sd, (T, E))
k§+k2=ko ki >1
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with initial conditions
(135) (agyh,sdf)(Tv 0, 6) = Sah,j,sd,g(Tv 6) , 0<j<S-1

The initial conditions ¢y, j5,e(T,€), 0 < j < S — 1 are defined as follows. Let S; be an open
sector centered at 0, with infinite radius and bisecting direction d € [0, 27), D(0, 79) be an open
disc centered at 0 with radius 79 > 0 and £ be an open sector centered at 0 contained in the disc
D(0,¢€p). We make the assumption that the condition (114) holds for the set 2 = (SqUD(0, 79)).
We consider a set of functions v (7, €) € Ej 5 D(0,70)x (D(0,e0)\{0}) fOr all € € D(0,¢60) \ {0} such
that

(136) Wj,m,eo (u)
h

u .
=Y supon (7€)l e pom) < (Do) 7 € Clup » 0<j<S—1.
h>0 €€D(0,60)\{0} :

We also assume that for all h > 0, all 0 < j < S — 1, vy j(7,€) has an analytic continuation
denoted by vy j5,.6(T,€) € Ej 5, (5,uD(0,70))xe for all € € € such that

h
(131)  Wisye(w) = Y suplnssie(ricosapomyxe oy € Club + 0= <51,
h>0 €€
Let
m
Uhj T, 6 Z Ph,j, m )

m>0

be the convergent Taylor expansion of vy, ; with respect to 7 on D(0, ), for all e € D(0, ¢)\ {0}.
We consider the formal series

m

‘Ph,] T 5 Z Ph,jm

m>0

for all e € D(0,€p) \ {0}. We define ¢y, j 5, (T, €) as the 1—sum (in the sense of Definition 5) of
©jn(T,€) in the direction d. From the hypotheses, we deduce that T+ ¢y, j g, ¢(T, €) defines a
holomorphic function for all T € Ugg,, |, for all € € £, where

Ugoue ={T € C": |T| < ile[ , |d—arg(T)| < 6/2}
for some § > 7 and some constant ¢ > 0 (independent of €), for all 0 < j < S — 1.

Proposition 21 Assume that the conditions (114), (116), (124), and (126) hold.

Then, the problem (134), (135) has a solution (T, z) — Y}, 5, (T, 2, €) which is holomorphic
and bounded on the set Ugg 1\ % D(0,71/4), for some ' > 0 (independent of €), for all € € &,
where 0 < x1 < p depends on S, uy (which denotes a common radius of absolute convergence
of the series (136), (137)), S, b, o, |Al, mMax(s kg k1)es [bls,kokr (T0), MAX(s 1o k1)eS 105 ko,k1 (T0),
where o < p.

The function Yy, s, (T, z,€) can be written as the Laplace transform of order 1 in the direction
d (in the sense of Definition 5) of a function Vi, g, £(7, 2, €) which is holomorphic on the domain
(SqUD(0,79)) x D(0,21/2) x £ and satisfies the estimates:



37

There ezists a constant uy such that 0 < uy < ug (depending on ug, S and b,0) and a
constant Cq(qey > 0 (depending on maxo<j<s—1 Wjs,e(uo) (where W s, e are defined above),
|>‘|’ MmaX(s ko,k1)eS |b|s,ko,k1 (1’0), maxX(s kg,k1)€S ’b|$,k0,k1 (550)7 S, ug, xo, S, b) such that

|?

Caae 2
(138) \Vh,sd,s(f,z,e)\ﬁl (ﬁh(ul) (HW) exp(
1

||()I )

for all (1,z,€) € (SqU D(0,70)) x D(0,21/2) x &, all h > 0.

Moreover, the function Vi, g, ¢(T,2,€) is the analytic continuation of a function Vi (7,2, ¢€)
which is holomorphic on the punctured polydisc D(0,79) x D(0,21/2) x (D(0,€) \ {0}) and
verifies the following estimates :

There exists a constant Cq, . > 0 (depending on maxo<j<s—1 Wjry.e (o) (where Wiz ¢

kl(x(])y S: uop, o, S; b)

»€Q
are defined above), |\, max x, k1)es |bls ko ki (T0), MAX (4 ko,
such that

s

2 T
T0:€0 7,1 h -1
SR ) e
z1

Ca
(139) [Vi(T, 2, €)] <
1

||()I 7))

for all 7 € D(0,79), all z € D(0,z1/2), all e € D(0,¢0) \ {0}, all h > 0.

Proof From the hypotheses of Proposition 21, we deduce from Proposition 20 applied to the
situation Q = D(0,79) x (D(0,¢e0) \ {0}), the existence of a holomorphic function V; (7, z,€)
satisfying the estimates (139), which is the solution of the problem (111) with initial conditions
(OLV3)(7,0,€) = vy j(T,€), 0 < j < S —1, on the domain D(0,79) X D(0,21/2) x (D(0,€) \ {0}).
Likewise, from Proposition 20 applied to the situation Q = (S; U D(0,79)) X &£, we get the
existence of a holomorphic function V} g, £(7, 2, €) satisfying (138) which is the solution of the
problem (111) with initial conditions (Gth)(T,O,e) = vpj5,6(m€), 0 < j <8 —1, on the
domain (Sq U D(0,79)) x D(0,21/2) x E.

With the Proposition 16, we deduce that the formal solution }Afh(T,z,e) of the problem
(106), (107), is 1—summable with respect to 7" in the direction d as series in the Banach space
O(D(0,z1/4)), for all e € £. We denote by Y}, 5, (7, 2, €) its 1—sum which is holomorphic with
respect to 7" on a domain Ugg /¢, due to the Definition 5 and the estimates (138). Moreover,
from the algebraic properties of the k—summability procedure, see [2] section 6.3, we deduce
that Y3, g, ¢(T, 2, €) is a solution of the problem (134), (135). O

4.6 Summability in a complex parameter

We recall the definition of a good covering.

Definition 7 Let v > 2 be an integer. For all 0 < ¢ < v — 1, we consider open sectors &;
centered at 0, with radius €y, bisecting direction k; € [0,27) and opening m + d;, with 6; > 0,
such that & N Eix1 # 0, for all 0 < i < v —1 (with the convention that &, = &) and such that
U;’;OI& =U\ {0}, where U is some neighborhood of 0 in C. Such a set of sectors {&; }o<i<v—1 is
called a good covering in C*.

Definition 8 Let {&;}o<i<y—1 be a good covering in C*. Let T be an open sector centered at 0
with radius v and consider a family of open sectors

Udip.e0rr =t €C:|t| <eory , |di —arg(t)] < 6/2},
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where d; € [0,27), for 0 <i <wv —1, where @ > m, which satisfy the following properties:

1) For all0 <i<wv—1, all h € N, arg(d;) # arg(—1 — \h).
2) For all0 <i<v—1, forallt €T, all € € &, we have that et € Ug, g.¢yrr-
3) 8.1) We assume that dy < arg(\) < di. We consider the two closed sectors

Mg, = {7 € C*Jarg() € [do,arg(N)]} , Mg, = {r € C"/arg(r) € [arg()),d1]}.
We make the assumption that there exist two constants ¢, 6’ > 0 with
T+ 1+ A0 > +1] >0

for all T € Mg, U Mg, UD(0,79), all h > 0.
3.2) There exists 0 < d7 < 7/2 such that arg(\/(et)) € (=7 /247, 7/2—07) for alle € ENé&y,
allteT.

We say that the family {{Uq, 6,eyrr Jo<i<v—1, T, A} is associated to the good covering {&;}o<i<y—1.
Now, we consider a set of functions ¢, ; ;(T,€) for 0 <i <v—-1,0<35< S -1, h >0,
constructed as follows. For all 0 < ¢ < v —1, let Sy, be an open sector of infinite radius centered

at 0, with bisecting direction d; and with opening n; > 0 — 7. The numbers 8 > 7 and n; > 0
are chosen in such a way that —1 — Ah ¢ Sy, for all 0 < i < v —1, all h > 0. Now, we put

(140) Ph,ij (T, €) := Pnj,s,,.6 (T, €)

for all ' € Uy, g,,/¢|» all € € &;, where ¢y j 5, ¢, (T, €) is given by the formula (135). Recall how
these functions are constructed : we consider a set of functions

V(T3 €) € Ej e 5.D(0,70)x (D(0,e0)\{0})

for all e € D(0,¢€p) \ {0} such that

(141) Wjﬂ'o,ﬁo (u)
h

u .
= sup ol lje.r.DO0)x (DO 77 € Cluy » 07 <851
h>0 e€D(0,e0)\{0} :

We also assume that for all h > 0, all 0 < j < S — 1, vy j(7,€) has an analytic continuation
denoted by v j 5, & (7, €) € Ej (5, uD(0,7))xe; for all € € & such that

h
(142) Wj,Sdi,S ( Zsug thﬂ Sd i (T 6) J,€,0, (Sd UD(O TO)ng h' € C{’U,} 0 S j S S - 1
h>( €&
Let
Fm
Uhj T, E Z Ph,j, m )

m>0
be the convergent Taylor expansion of vy, ; with respect to 7 on D(0, 79), for all € € D(0, €y) \ {0}.
We consider the formal series

m

Qph,] T 6 Z Sph,]m

m>0
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for all € € D(0,€0) \ {0}. We define ¢y, ;5, & (T €) as the 1—sum (in the sense of Definition
5) of ¢jx(T,€) in the direction d;. We deduce that T' — ¢y, j s, ¢, (T, €) defines a holomorphic
function for all T' € Uy, g ,¢|, for all € € &;, where

Usyuie = {T € C*: |T) < dlel , |d; —arg(T)| < 0/2}

for some 6 > 7 and some constant ¢ > 0 (independent of €), for all 0 < j < S — 1.

From Proposition 21, for all 0 < i < v — 1, we consider the solution Y}, g, ¢,(T, z,€) of the
problem (134) with initial conditions

(2Yns, £)(T,0,€) = ppij(Toe) , 0<j<S—1, h>0,
which defines a bounded and holomorphic function on Uy, g,/ x D(0,21/4) x &;.

Proposition 22 The function defined by

Xn,i(t, z,€) = thgdi’gi (et,z,€)

is holomorphic and bounded on (T N D(0,:")) x D(0,21/4) X &, for allh >0, all0 <i<v-—1,
for some 0 < " < /.

Moreover, the functions Gp; : € — Xp;i(t,z,€) from & into the Banach space O((T N
D(0,.")) x D(0,1/4)) are the 1—sums on & of a formal series Gp(e) € O(T N D(0,.")) x
D(0,z1/4))[[e]]. In other words, for all h > 0, there exists a function gp(s,t,z) which is holo-
morphic on D(0, sp) x (T ND(0,.")) x D(0,x1/4) which admits for all0 < i < v—1, an analytic
continuation g i(s,t, z) which is holomorphic on (G., UD(0,s)) x (T ND(0,.")) x D(0,x1/4),
where G, is an open sector centered at 0, with infinite radius and bisecting direction k;, such
that

(143) Xhi(t,z,€) = 6_1/ gni(s,t, z)e_s/eds
Lu,
along a half-line L., = Ry e C G, U{0}.

Proof The proof is based on a cohomological criterion for summability of formal series with
coefficients in a Banach space, see [2], page 121, which is known as the Ramis-Sibuya theorem
in the literature.

Theorem (RS) Let (E,||.||r) be a Banach space over C and {&;}o<i<,—1 be a good covering
in C*. For all 0 < ¢ < v —1, let G; be a holomorphic function from &; into the Banach space
(E, ||.]|r) and let the cocycle A;(e) = Git1(€) — Gi(e) be a holomorphic function from the sector
Z; = &iv1 NE; into E (with the convention that £, = & and G, = Gp). We make the following
assumptions.

1) The functions G;(¢) are bounded as € € &; tends to the origin in C, for all 0 < <wv — 1.

2) The functions A;(e) are exponentially flat of order 1 on Z;, for all 0 < ¢ < v — 1. This means
that there exist constants C;, A; > 0 such that

1A (€)|[ < Cre= 4/l

forallee Z;,all 0 <i<v-—1.
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Then, for all 0 < ¢ < v — 1, the functions G;(¢) are the 1—sums on &; of a 1—summable
formal series G(€) in € with coefficients in the Banach space E.

By the Definition 8 and the construction of Y} g, ¢,(T, z,€) in the proposition 21, we get
that the function Xp, (¢, 2,€) = Yy, 5, ¢, (€t, z,€) defines a bounded and holomorphic function on
the domain (7N D(0,)) x D(0,21/4) x &, for all h >0, all 0 < i < v — 1, where 0 < 21 < p
depends on S, up > 0 (which denotes a common radius of absolute convergence of the series
(141)7 (142))7 S, b, 0, ’)"7 MaX(s kg,k1)eS |b|8,k0,k1 (:EU)? Max(s ko,k1)eS ‘b’S,kO,kl (.T()), where zo < p.
More precisely, we have that

Lemma 11 1) There exist a constant 0 < < i/, a constant uy such that 0 < u; < wug
(depending on ug, S and b,0), a constant x1 such that 0 < z1 < p (depending on S,uo,S,b,0,|\],
MaX (g ko k1 )eS |0l ko k1 (20), MAX(g ko k1)es [0ls,ko,kr (T0), where zo < p) and a constant C; > 0
(depending on maxo<j<s—1 Wj s, & (uo) (where Wjs, e are defined above), ||,

s,kok1 (%0), S, uo, xo, S, b) such that

MaX (s ko k1 )eS |Ols ko ks (T0), MAX(s ko k1)es [

-2
(144) sup | Xn.i(t, 2, €)| < 20:h(—)"
teTND(0,L"),z€D(0,z1/4) u1

foralle e &, forall0<i<v—1, all h > 0.

2) There exist a constant 0 < " < i/, a constant uy such that 0 < wu; < wg (depend-
ing on ug, S and b,o), a constant x1 such that 0 < x1 < p (depending on S,uo,S,b,0,|A|,
MaX (s ko k1 )eS 1Bl s.ko k1 (T0) s MaX (g ko k1 )ES |b|s.ko k1 (T0), where xg < p), a constant M; > 0,

a constant K; > 0 (depending on maxo<j<s—1 ijgdwgq (ug), for q=1,i+ 1 (where W]}qu,gq are
defined above), maxo<j<s—1 Wiz.eo(u0), [Al, max(s ko ky)es |0ls ko ke (0),

MAaX(g ko k1 )eS |£|s,k0,k1 (zo), S, up, zg, S, b) such that

2 M
(145) sup ‘thiJrl(thvﬁ) - Xh,i(tazaﬁ)’ S h'(i)h2Kl€ lel
teTND(0,."),2€D(0,21/4) U1

foralle € &N Eitq, for all0 < i <wv—1, all h > 0 (where by convention Xy, = Xp0).

Proof 1) Let i be an integer such that 0 < ¢ < v — 1. From Proposition 21, we can write
(146) Xn,i(t,z,€) = (et)l/ Visy .€(T, 2, €)e” @ dr
Ly, §

where L., = RJreﬁ% C Sq; U{0} and V3 g, ¢, is a holomorphic function on (Sg, U D(0, 7)) x
D(0,21/4) x & for which the estimates (13%%) hold. By construction, the direction ; (which
depends on et) is chosen in such a way that cos(y; —arg(et)) > 01, foralle € &;, allt € TND(0,.),
for some fixed d; > 0. From the estimates (138), we get

T Caa,e 2 2 oC®)r 1 os(y;—arg(e
(147) |Xh,i(t,z,6)|§|6t|_1/0 Q(Lizll)h!(u—l)h(pr’%)—16 Slel ¢ Telr cos(vimarg(et)) 5.
T
o0 Co gy, 2 cC(b) 511
e A e
x1
Cod & Corg e
_ Q(d;&)h!(z)h 1 - Q(dz,?) h!(g)h
B R U R

1
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for allt € TND(0,), with |t| < 2(81—0d2)/ (¢ (b)), for some 0 < dy < d1, and for all € € & 11 NE;.

2) Let 7 an integer such that 0 <4 < v — 1. From Proposition 21, we can write again

Xni(t,z,€) = (et) ™" | Vis, &(7,2,€)e wdr,
Ly,

Xit1(t,z,€) = (et)l/ Vh,SdiH,giH(T’ z, e)e’elth
L'Y’L+l
where L,, = RieV~1% < S, U {0}, Ly, = RpeV—1nit1 ¢ Sa;y UA{0}, and Vi 5, ¢, (resp.
Vh»5d1-+175i+1) is a holomorphic function on (S4, U D(0,79)) x D(0,z1/4) x & (resp. on (Sdl+1
D(0,79)) x D(0,z1/4) x Ei11) for which the estimates (138) hold and which is moreover an
analytic continuation of a function V; (7, z, €) which satisfies the estimates (139).

From the fact that 7 — V(7 z,€) is holomorphic on D(0, 1) for all (z,€¢) € D(0,z1/4) x
(D(0,¢€9) \ {0}), the integral of 7 — Vj (7, z,€) along the union of a segment starting from 0
to (19/2)eY1i+1 an arc of circle with radius 75/2 connecting (10/2)e¥ " 1i+1 and (r9/2)eV 1
and a segment starting from (75/2)eY =17 to 0, is equal to zero. Therefore, we can rewrite the
difference Xj, ;11 — X3 as a sum of three integrals,

(148)  Xpiv1(t, z,€) — Xpi(t, 2, €) = (d)il (/ Vhasd¢+1 Eit1 (7, 2, f)eiédT

LTO/QMH
/

T0/2% [70/2, +oo)e\/j1%7 Lroyj2pin = [7_0/274_00)6\/?1%“ and C(70/2,7i,7i+1) is an
arc of circle with radius 7/2 connecting (70/2)e¥ =% with (9/2)e¥ =1+ with a well chosen
orientation.

Vh,Sdi & (1,2, e)efﬁdT + /

Vi (T, 2, e)e;d7'>
C(10/2,7iYi+1)

T0/27;

where L

We give estimates for Iy = |(et)~ fL Vi,Sa.  Eia (T5 2, e)e‘idﬂ. By construction, the

T0/2:Yi41 it+1’
direction ;41 (which depends on et) is chosen in such a way that cos(v;41 — arg(et)) > 1, for

alle € &1 NE;,allt € TN D(0,), for some fixed 6; > 0. From the estimates (138), we get

+oo C ) ) 2 o ¢(b)r ” )
(149) I < |€t|_1/ Q(dz+1781+1)h!(3)h(1 + %)_18%67W cos('lerlfarg(et))dr
7’0/2 1— %f' (1 ‘6’
T Cotd . oC(b) 51y r
< |€t|—1/ Q(dl+127\il|+1)h!(3)h€( S *ﬁ)gdr
T0/2 1-— T Ul
—((81 _ot)yToy 1
_ CQ(dZ+17gl+1)h‘(3)he ((\t| 2 )2 )\6‘ < CQ(di+l7gi+l)h'(g)he_églzﬁ//Q
e T S UG SR

1 1

forallt € TND(0,), with |t| < 2(d1—3d2)/(c¢(b)), for some 0 < d2 < 61, and for all € € &1 NE;.

We give estimates for Io = |(et)~ fL o hgd & (T,z,e)e_idﬂ. By construction, the di-
rection 7; (which depends on €t) is chosen in such a way that there exists a fixed §; > 0 with
cos(y; — arg(et)) > 01, for all e € £ NE;, all t € TN D(0,). From the estimates (138), we
deduce as before that

CQ(diagi) h!(i)he_@‘:ﬁ//?
Ga(1 =2y

(150) I <
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for allt € TND(0,), with |t| < 2(81—0d2)/ (¢ (b)), for some 0 < dy < d1, and for all € € & 11 NE;.

Finally, we get estimates for I3 = |et| ™! fC(TO/Q i) Viu(7, z,€)e " dr|. From the estimates
(139), we have

Yi+1 O 9 el )
(151) I3 < \et|_1!/ QTOZ,60| h!( 2 )h(l + (10/2) )—16 o 06_2‘67?‘”,;os(e—arg(at))@da|
Y

BT TE R EE 2

1
By construction, the arc of circle C(79/2,7;,7vi+1) is chosen in such a way that that cos(6 —
arg(et)) > 41, for all 0 € [vi,vi+1] (if v < Yit1), 0 € [Vit1, i) (if vip1 < i), for all £ € T, all
e € & NEiq1. From (151), we deduce that

Ca 2 10 1 _((81_o®)ymy 1
152) I3 < |vjx1 — v 700 py 29T (Fr==%)2 )1
(152) I3 < |vit1 ’Yz’l 2] (Ul) B ‘€t|€
x1
Ca,, . 2 1 _d2mo/4 _d270/4
< ig1 — vil — 55 h'(*)hﬂf [t e leld!

1 - 22 gt 2 et
1

for allt € TND(0,.), with [t| < 2(d1—0d2)/(0((b)), for some 0 < Jy < d1, and for all € € &1 NE,;.
Using the inequality (152) and the estimates (25), we deduce that

Cq 2 . 92e~1 _symp/4
< . - A T0-€0 ' h lele!
(153) I3 < "Verl 'Yz| 1_ 20z h (Ul) 59 €
1

for all t € TN D(0,:), with |t| < 2(d1 — d2)/(c((b)) and for all € € &1 NE;.
Finally, collecting the inequalities (149), (150), (153), we deduce from (148), that

‘Xz‘+1(t, Z, 6) - Xz(t> 2, 6)’

I’L'(ul)h Cﬂ(d & =+ C Lo, 8970 /2 2 —1 Syro/4
! AR Z) Q(dhgl) T e . — A € T el
12 < 5o e 4+ |viy1 —vlCa,, ., 5 el >

1

for all t € TN D(0,), with [t| < 2(51 — d2)/(0((b)), for some 0 < 2 < 41, for all € € 41 NE;,
for all 0 < i < v — 1. Hence the estimates (145) hold. O

Now, let us fix h > 0. For all 0 < i < v — 1, we define Gy i(€) = (t,2) — Xpni(t, z,¢),
which is, by Lemma 11, a holomorphic and bounded function from &; into the Banach space
E = O(T n D(0,.)) x D(0,21/4)) of holomorphic and bounded functions on the set (7 N
D(0,.")) x D(0,z1/4) equipped with the supremum norm. Therefore the property 1) of Theorem
(RS) is satisfied for the functions G}, 0 < i < v — 1. From the estimates (145), we get that
the cocycle A; = G, i11(€) — Ghi(€) is exponentially flat of order 1 on Z; = &1 N E&;, for all
0 <i <wv—1. We deduce that the property 2) of Theorem (RS) is fulfilled for the functions
Ghi, 0 <i <wv—1. From Theorem (RS), we get that G}, ;(€) are the 1—sums of a formal series
G (€) with coefficients in E. In particular, from Definition 5, we deduce the existence of the
functions gy, ;(s,t, z) which satisfy the expression (143). O

4.7 Analytic transseries solutions for a singularly perturbed Cauchy problem

We keep the notations of the previous section.
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Proposition 23 The following singularly perturbed Cauchy problem

(154)  et?0,05 Zo(t, z,€) + (et + 1) Zo(t, z,€) = D Doy (2, )L (0° 0N Z0)(t, 2, €)

(s,ko,k1)ES
for given initial data
hA
. exp(—22) .
(155)  (@20)(1,0,0) = () = 30 T By s(etie) 0SS0,

h>0

which are holomorphic and bounded functions on (T N D(0,.”)) x (&9 N &), has a solution

h)\)

Zo(t, z,€) = Z eXp(iet

h' Xh,g(t,z,ﬁ)
h>0

which defines a holomorphic and bounded function on (T ND(0,.”)) x D(0,0z,) x (E9N &), for
some ", 6z, > 0.

Proof Let h > 0and 0 < j < S—1. By construction, we have that ¢y o j(et, €) = (8§Xh70)(t, 0,¢€),
forallt € T, alle € &. From Lemma 11, 1), we get that there exist a constant /" > 0, a constant
w1 such that 0 < u; < ug (depending on ug, S and b,0) and a constant Cy > 0 (depending on
maxo<;j<s—1 Wj,s,, & (uo) (where Wjg, ¢, are defined above), [Al, max(s ko ky)es [blsko,k: (o),
MaX(g ko ky)eS |[~9|s,k0,k1 (z9), S, ug, xo, S, b) such that

2
(156) sup ono,i(et, )] < hI(=)"Co
teTND(0,0) ul

foralle € &,all0 <j < S—1,all h>0. From (156) and from the property 3) of Definition 8,

we deduce the estimates
A
2 exp(— 12 cos(m/2 — 07))

sup  |y0,(t )] < Co > ( ),
teTND(0,.) h>0 Ul

for all € € &y N &. This latter sum converges provided that ¢y is small enough. We deduce that
70,5 (t, €) defines a holomorphic and bounded function on (7 N D(0,:")) x (& N &1).

Likewise, from (144) and from the property 3) of Definition 8, we deduce that there exist
a constant ¢/ > 0, a constant u; such that 0 < u; < ug (depending on ug, S and b,0), a
constant z1 such that 0 < x1 < p (depending on S,ug,S,b,0,|A[, max, x, k1)es [0ls ko k1 (T0)s
MaX (s o k1)eS |bls,ko,kr (T0), Wwhere xg < p) and a constant Cp > 0 (depending on
maxo<;j<s—1 Wj.s,, & (uo) (where Wi, ¢, are defined above), [Al, max( ko k)es [blskok1 (0),
MaX (g ko k1 )eS |B\s,k0,k1 (zo0), S, up, xg, S, b) such that
2 exp(—-2% cos(n/2 — 7))

el

)h

Co
sup |Z()(t, = 6)| < 257 Z(
teTND(0,L"),2€D(0,6z,) 1-— xlo h>0 U1

for all € € & N E;. Again, this latter sum converges if €y is small enough and if 0 < 0z, < z1/4.
We get that Zy(t, z, €) defines a holomorphic and bounded function on (7ND(0,:”)) x D(0,dz,) x
(&9 N &1). By construction, we have that (8220)(¢,0,€) = vo,j(t,€), for 0 < j < S — 1. Finally,
from the proposition 16, we deduce that Zy(t, z, €) solves the equation (154). O
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5 Parametric Stokes relations and analytic continuation of the
Borel transform in the perturbation parameter

5.1 Assumptions on the initial data

We keep the notations of the previous section. Now, we make the following additional assumption
that there exists a sequence of unbounded open sectors Sy, 9, such that

(157) Sdo C Sdo’ﬁn C Mdo U Sdo
for all n > 0 and a sequence of real numbers (,, n > 0, such that

e ¢ Sdo 0 nBI—&I-loo Cn = arg(A)

with the property that arg(e" /et) € (—m/2+ 67,7/2 — 67) for all e € N &y, all t € T, for all
n > 0 (where T and d7 were introduced in Definition 8). We also make the assumption that for
all n > 0, the function vy, ;g 49 -€0 (7,€) can be analytically continued to a holomorphic function
T > VR,,S 4y €0 (1,€) on Sy, v, for all € € & such that

Uh.j,Sag.0m:80 (T €) € Ejc o (S0 9, UD(0,70))xE0

with the property that

(158) szsdo,ﬁn £o (u) :=
h

u .
Z sup th,] Sdg, 1971,:5'0(7_ 6)”] €,0,(Sag,9, YD(0,70))xE0 71 Bl € C{u} 0<;< S — 1,
R>0 ee&y

and have a common radius of absolute convergence (denoted by ug, > 0), for all n > 0. From the
assumption (158) we get a constant ug; > 0 (depending on j € {0,...,S —1}) and a constant
Ch.j > 0 (depending on n and j € {0,...,5 — 1}) such that

h
:gg) ||Uh,] Sdg,9n €0 (T 6)”] €,0, Sdo 9, UD(0,70)) % Eo < Cn ](UO,] ) h!v

for all A > 0. We deduce that

: 1
(159) (00,551 m 60 (1€ )] < Crj(—— ” )"h! exp(2| | ro(J)r)
7]
forall » > 0, all e € &, all 0 < 57 < S —1 and all h > 0. In particular, we have that
T vh7j75d0ﬂ9mgo(reign,e) belongs to the space Lgs/o for ¢ > orp(S — 1). Moreover, from

Proposition 1, we deduce that r — Vh,§,Sg o 750(7’614",6) belongs to the space DOUs and that
there exists a universal constant C; > 0 such that
(160) thd Sdg, 0 €0 (T’e )HO Ged < Cleh,J,SdO ) (T’e )‘ ’O ,5/2,€
2|e] h
< = C1Cy h!
o —ory(S—1) gl ()7])

forall0<j<S—1,allh>0,alln>0,all € € &.



45

We make the crucial assumption that for all 0 < j7 < S — 1, there exists a sequence of
distributions Uh,j,Maq €0 (r,e) € D(’)’&’E, for h > 0, a constant u; > 0 and a sequence I, ; > 0 with
lim, 4o I5, ; = 0 such that

1

(161) SUD ([0S0 g E0 (1™ €) = Vhj My €0 (75 ) 0,6,6a < Tn il (—)"
e€&o uJ

for all n > 0, all h > 0. From the estimates (160) and (161), we deduce that
h
u .
(162) D sup ([0 gy 0 (7 Nogeary € Clup , 0<j<S-1
h>0 e€&y :

Lemma 12 Let ¢ > ory(S —1). We can write the initial data o ;(t,€) in the form of a Laplace
transform in direction arg(\),

(163) 70,5 (t7 E) = ‘Carg(k) (Vj,arg(k),sdo,go (T‘, 6))(€t)
where Vj,arg(A),Sdo,So(T7 €) €Dz, forall0 <j<S—1,allec&NE, allt €T NDO,L).

Proof For 0 < j < S — 1, from the definition of the initial data, we can write

h
exp(—22) 1 T
(164) vo(te) =) — = /L Vi Sag 0 £ (T €) eXP(=—)dT
h>0 n
iarg(\) . .
= Vh. 5 re>",e)exp(—r
et A et Jo h.3,Sag 97 €0 ’ p et

)dr

forall e € &N &y, allt € TN D(0,4), all n > 0. Now, we can write

‘CCn (/Uhvjvsdo,ﬂn ,€0 (Teicn ) 6)) (Et) = [’arg()\) (Uhujasdo,ﬁn ,€0 (Teicn’ 6)) (Etei(arg(A)_Cn))

forall e € &N &y, allt € TN D(0,0), all n > 0. From the continuity estimates (83) for the
Laplace transform, we deduce that for given t € TN D(0,.), € € EgN &y, there exists a constant
Ce+ (depending on €, t) such that

|Larg(3) (Vhj My £0 (T €)) (€)= Larg(x) (Vh 554, 0, 80 (1€, €))(ete BN =Cn)y)|
S Cs,t| ’(Uh,j,/\/ldo,go (T', 6) - ’Uh,j,sdoygn,go (rei<n7 6) ‘ ’0,5‘,6,6!

+ ‘ﬁarg()\) (Uh,ijdO o (Ta 6)) (etei(arg()\)fﬁn)) - ﬁarg()\) (vh,j,./\/ldo ,£o (Tv 6)) (Et)‘

for all n > 0. By letting n tend to +oo in this latter inequality and using the hypothesis (161),
we get that

(165) [:Cn (Uh7j7sd0,19n ,£o (Teicn ) 6)) <6t) = Earg()\) (UhJ}MdO ,€0 (rv 6)) (Et)

foralle e EgN &y, all t € TN D(0,0), for all n > 0.

On the other hand, from Corollary 1, we have that for all A > 0, the distribution
37=_h(11h,j,/\4d0,50 (r,€)) belongs to Dy 5 . and that there exists a universal constant C3 > 0 such
that

i

(166) 107" (Vg Mag 0 (1 llode.d < C3(=) " 10hg. Mg 0 (7 €)l0,5.cd

o
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forallh > 0,all 0 <j <S5 —1. From (165) and using Propositions 12 and 14, we can write

hl)\‘eiarg(k)

exp(—HE——) giln  Fo0 i ein
(167) N <t a ), vhd,gdwn,go(1"6ZC ,€) exp(—r - )dr
. sarg(\)
ezarg()\) exp(— h|AJe>re ) B
= ( t )h Al = ﬁarg()\)(ar h(vh,j,/\/(do €0 (Ta 6)))(6t)

= 'Carg()\) (Vh,j,)\,./\/ldo ,£o0 (7‘, 6) ) (Gt)

where

(Frjama &0 (1 = (AR €)1 aph, ooy (1) )
thj)\,M%,&) (7’, 6) = d “or Al 7 ) € ,Dé),&,e

with fh,j,A,MdO,zfo(T'v €) = 6;h(vh’j,Md0,gO(r, €)) € D(’)@E, forall h > 0,all 0 < j < S —1. From
Proposition 13, we have a universal constant A > 0 and a constant B(&,b,€) (depending on &,

b and €, which tends to zero as € — 0) such that

(B(&,b,€))"

(168) VhjxMay €0 (T, )ll0,5,ea < A x [ fhg A Mag &0 (T, €)]]0,5,e,

From the estimates (162) and using (166), (168), we deduce that the distribution

Vi arg0),5a,80 (T ) = O Vija My (1) € Dz e
h>0

forall 0 < j < S—1,if ¢g > 0 is chosen small enough. Finally, by the continuity estimates (83)
for the Laplace transform L,4(5) and the formula (164), (167), we get the expression (163). O

On the other hand, we assume the existence of a sequence of unbounded open sectors Sy, s,
with

(169) Sd1 C Sd17§n C Md1 @) Sd1
for all n > 0 and a sequence of real numbers &,, n > 0, such that

e € Saqy.5, nglfoogn = arg(\)
with the property that arg(e’®” /et) € (—7/2 + d7,7/2 —67) for all e € EN &L, all t € T, all
n > 0 (where 7 and 07 are introduced in Definition 8). We make the assumption that for
all n > 0, the function vy, ;g iy :E1 (7,€) can be analytically continued to a holomorphic function
T VhjSa, 0.1 (1,€) on Sy, 5,, for all € € & such that

vh,j,Sdl On 751 (T7 6) € Ej76707(sd1 on UD(O7T0)) Xgl

with the property that

(170) Wj,Sdl,(sn &1 (u) =

uh

> sup ||vh sy, 5,6 (T 6)|!j,e,a,(sdl,énw(o,m))xglﬁ eC{u} , 0<j<S-1.
h>0 e€&y .
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and have a common radius of absolute convergence (defined by ug, > 0), for all n > 0. From the
assumption (170) we get a constant u; ; > 0 (depending on j € {0,...,S — 1}) and a constant
Chn,1,; > 0 (depending on n and j € {0,...,S — 1}) such that

1 h
sup ”vh,j»sdl,6n751 (7_7 6)‘|j,€,0‘,(Sd175nUD(O,To))Xgl < Cn,l,j( ) h!,
e€& ui,j

for all A > 0. We deduce that

: 1 o
(171) |0h..54, 5,62 (€7, €)] < C1 j(—) "Bl exp(5=r

)T
o 2] b(J)7)

forall » > 0, all e € &, all 0 < 5 < S —1and all h > 0. In particular, we have that
ro— vh’j’sdlyén,gl(rezfn,e) belongs to the space Lgz/9, for 6 > ory(S — 1). Moreover, from
Proposition 1, we deduce that r — Vh,j,Sa, o0 5E1 (re’n ¢) belongs to the space D()’&’E and that
there exists a universal constant C7 > 0 such that

(172) th7j75d1,5n 1 (reignv 6) ‘ ‘07576,(1 <Ci ‘ ‘Uh,j,Sdl,(;n,é’l (Teiﬁna 6) ‘ ’0,&/2,5
2|€| 1

C1Cn 1 j(—)"n!

<
“g—on(S—1) Ulj

forall0<j<S—1,allh>0,alln>0,all e €&.
Now, we make the crucial assumption that for all 0 < j < S — 1, there exists a sequence
JIn,j > 0 with lim,_, 4 Jp j = 0 such that

(173) sup ||”07j75d1,5n,81 (reiﬁn, €) — Vj,arg(k),sdo,go (ry)0.6,ed < Injs

eeEoNEL

for all n > 0, where V

Jarg(N),S4gE0 (r,€) are the distributions defined in Lemma 12.

5.2 The Stokes relation and the main result

In the next proposition, we establish a connection formula for the two holomorphic solutions
Xoo(t, z,€) and Xo1(t, 2, €) of the equation (154) constructed in Proposition 22.

Proposition 24 Let the assumptions (157), (158), (161), (169), (170), (173) hold for the
initial data. Then, there exists 0 < dp,, < dz, such that we can write the following connection
formula

_hA
(174) XO,I(t7276) = Zo(t,Z,E) = XO,O(tazve) + Z M

i Xnolt, z,€)
h>1

foralle € &N &y, allt € TN D(0,0"), all z € D(0,0p, ).
The proof of this proposition will need two long steps and will be the consequence of the formula
(213) and (245) from Lemma 15 and Lemma 18.

Step 1: In this step, we show that the function Zy(¢, z, €) can be express as a Laplace transform
of some staircase distribution in direction arg(\) satisfying the problem (214), (215).

From the assumption (158), we deduce from Proposition 21 that the function V}, g 49,0 (1,2,€)
constructed in (146) has an analytic continuation denoted by Vi s, , & (7, %, €) on the domain
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(Sdo,0, U D(0,79)) x D(0,dg,) x & which satisfies estimates of the form (138), for all n > 0,
where dg, > 0 depends on S, ug, (which denotes a common radius of convergence of the series
(158)), S, b, o, [Al, max(s kg k1)es [bls ko,kr (T0), MAX(g ko k1)es [0l ko k1 (T0), Where zg < p. This
constant dg, is therefore independent of n and h. Now, one defines the functions

Vh’sdoﬂn’go (T’, %5 6) = Vh:Sdo,ﬂn:gO (,reiCn’ 2, 6)

for all » > 0, all z € D(0,d¢,), all € € &, all n > 0.

Lemma 13 Let ¢ > 6 > ory(S — 1). Then, there exists 0 < 0p < dg, (depending on
S.0,5,|A\[,u;,0 < j < S — 1(introduced in (161)),S, ug,.p,p,A,B (introduced in Lemma 14)),
there exist My > 0 (depending on S,S,5,|A|uj, for 0 <j<S—1,p,u,A,B), M{ >0 (depending
on 8,5,6,|\,p, .01 (introduced in Lemma 14),A,B,uj for 0 < j < S —1) and a constant U;
(depending on S,S,5,|\|,p,p,A,B ug,,u; for 0 < j < S —1) such that, for all h > 0, all n > 0,
there exists a staircase distribution Vh,/\/ldo &(r z,€) € D'(d,¢,0p) with

(175) fgg) th,sdo,ﬁn,go (r,2,¢€) _Vh,Mdo £o (1,2, 6)| |(€r,e,d,6p) < (M, ngjl,lggil I, ; +M{Dn)h!(U21)h
where I, j is a positive sequence (converging to 0 as n tends to 0o) introduced in the assumption
(161) and D,, is the positive sequence (tending to 0 as n — +oo) introduced in Lemma 14.
Moreover, we have that

h
u
(176) > sup [ Vi ay, £ (7, 2, No.cd.op) 77 € Clu}-
h>0 e€&o .
Proof From the estimates (133), we can write
Z/B
Vh73d0,0n750 (1,2,€) = Z Vhﬂ,sdo,ﬁn,fo (T, E)E

=0

where V}, g 5 o9 50 (7, €) are holomorphic functions such that there exists a constant u; such that
0 < u; < ug, (depending on ug,, S and b,0), a constant z; such that 0 < z; < p (depending
on S,ug,,S,b,0,|Al, max(s ko ky)es [bls ko (0), MAX(s ko k1)es [blsko.ki (To), where zg < p) and
a constant Cody o), > 0 (depending on maxo<j<s—1 Wjs, .6 (ug) (where Wjg, &, are
defined in (158)), |)\|, maX(s,ko,h)GS‘b’S,ko,h (.750), maX(S’kO’kl)es|b\s7k0,kl(a:0), S, Ugy, 0, S, b)
with

2 2 7] _ o
Vi < C, RBI(—) ()P (1 + ) Lexp(=—
Vi (7€) < oty () (14 ) exn(ora(B)l )
for all 7 € Sy,.9, UD(0,70), € € &, all h >0, all >0 and all n > 0. We deduce that
i 2 2 o
(177) ‘Vhﬁasdo,ﬁn:é‘o (re Cna )] < CQ(do,€0)7n(a)h(;1)Bh!6! eXp(mrb(ﬂ)T)

forallr >0, alle € &, all B > 0, all h > 0 and all n > 0. In particular, r — Vi g5, , & (refn ¢

belongs to Lg 5/2 .. From the proposition 1, we deduce that r — Vh:ﬁ75d0,0n750 (reicn, €) belongs
to Dj ;.. From Proposition 1 and (177), we get a universal constant C7 > 0 such that

(178) | ‘Vh,575d0,19n o (reiCn ,€)]

Bosed < CLlIVag 54y om0 (1€ Ol3.5/2.6

o 2., 2
< C1C —)"(—
>~ U1 Q(do,go),né_ o (ul) (xl

)P hIg!
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for all 5 >0, all h >0, all n > 0. From (178), we deduce that the distribution

B
. z .
Vh,sdg,ﬂn,fo (r,z,€) = Z thﬂzsdo,ﬂn:‘go (Telgna 6)@ € D/(Uv €,0)
B>0 ’

for all € € &, all § < 1/2, all h > 0 and all n > 0.
One gets from (111), (112) and the assumption (126) that the following problem holds,
(179)  (re" + 1+ M)V g, 5 6 (r, 2 €)

= Z €M0bg ok, (2, €) R0 el (5 R0)Cn ( Z Oéyln,meafpafth,Sdo,ﬂn,Eo(7"7Z,6))

(s,ko,kl)es ( ,p)GOS ko

k k
+ Z 1| 2| Sko ke (2 E)cq (hA)e™o™ sellsho=0)n
ki +k2=ko,ki>1 0"
2,q ,.,ma—pAak
(D AP Vs, o e (1 20€)
(m,p)eO?

s—kg—q

with initial data

(180) (2,540 00.60) (750,€) = Vn s, 0 g (re’m ), 0<j<S—1.
On the other hand, we consider the problem

(181)  (re™ &N 14 A)OZVh pay £ (7, 2, €)

= Z ek l;s,k:o,kl (2, E)Eko—sei(s—ko)arg()\)( Z O‘}n,p"ﬂmar_paflvh,/\/ldo ,€o (r,2,€))

(s,ko,k1)ES (m )EO; ko

Z ko—s ,i(s—ko— A
+ 1| 21 sko k(2 E)Cq (hA)Tekoseilshoma)arsld)
kg +k2=ko,kt>1 V"

x( Z O‘zrfprma;paflvh,/\/(do & (1,2, €))

( 7p>605 kO q

with initial data

(182) (DIVh My £0) (1 0,€) = Vnjpty, £o(r€) , 0<j<S—1.
In the next lemma we give estimates for the coefficients of the equations (179) and (181).

Lemma 14 Let B

Ds ko ks (25 €) E Ds ko 1,5 (€)
8>0

the convergent Taylor expansion of l;s,ko,kl with respect to z near 0. Let @ € R be a real
number. Then, there exist positive constants A,B,p,p’,u,p’ and a sequence D, > 0 such that
limy, 100 Dy = 0 with

Sko k1,8(€)e Zaarg(}\)” < AB B plg!
rered) +1 4+ Ah (p(r + p))rtt’
(e

’aq(g&ko,klﬁ €)e
" reiln + 14+ Mh

(183) 197(

s Bl
(p(r + p))att

)| < AB
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and

bs,ko,kl,ﬁ<€)emarg(/\) q Bs,ko,kl,ﬁ(e)emC"

5 Blg!
retars() £ 1 4 \h ) o T( rein + 1+ \h

(184) oK )| < D,B"

forallg>0,all B3>0, alln>0,allh>0, allr >0 and all € € &.

Proof We first show (183). From the fact that b, g, 1, (2, €) is holomorphic near z = 0, we get
from the Cauchy formula that there exist A, B > 0 such that

(185) ‘i)s,ko,kl,ﬂ(eﬂ < AB_ﬁB!

for all 5 > 0, all € € &. On the other hand, from Definition 8 3.1), there exist p, > 0 such
that [re’n + 14 \h| > p(r + p) for all » > 0, all A > 0, all n > 0. Hence
an | |
e )< — q! < q!
ren + 1+ \h [rein + 1+ Ah|9HL = (p(r + p))et!

(186) 107 (

for all ¥ > 0, all h > 0, all ¢ > 0, all n > 0. We deduce (183) from (185) and (186).
Now, we show (184). Using the classical identities ab—cd = (a—c)b+c(b—d) and b9+ —q+! =
(b—a) x >21_a’b?%, we get the estimates

s=0
187 a4 eiaarg()\) g et
187) 17 e s 100) ~ 7 Gee r 1)
| glaars(V giaarg() ¢i0Gn iaCn
<q! - — -
=4 |(T.61arg()\) +1+ )\h)qul (TG'LCn + 1+ )\h)q+1 |

g+1
r

i |reiarg(A) 4 1 4 Ah|at2=s|reiln 4 1 + Ah|s

‘emarg(,\) _ eiozCn| + |6iarg(>\) _ eiCn|(q + 1)
|T€iarg()\) + 1+ )\h|q+1

)

< ¢! (!e’(" — 28N x (

+

On the other hand, again from Definition 8 3.1), there exist p1, 1 > 0 such that
(188) ret®8N) L1 4 AR > pr(r 4+ 1), |re’m 4+ 14 A > pr(r + 1)

for all » > 0, all b > 0, all n > 0. Using (187), (188) and the fact that ¢+ 1 < 297! for all ¢ > 0,
we deduce the estimates (184). O

In the first part of the proof of Lemma 13, we show the existence of a staircase distribution
solution of the problem (181), (182) which satisfies the estimates (176). As a starting point, it
is easy to check that the problem (181), (182) has a formal solution of the form

B

z

V’%Mdmgo (r,z,€) = Z Vh757/\4d0,50 (r, e)ﬁ
820 ’
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where 1 — Vi g m,, 6, (r, €) are distributions on Ry for which the next recursion holds:

189) V r.e) = 6'6 bS ko,klﬂl( )Eko_s
h7ﬁ+S7Md0780 9
(s,ko0,k1)€ES P1+B2=p
et(s—ko)arg(}) Z 1 7pVh’ﬁ2+k1 May o (7“, 6))

X — mo,
rerE ) 115 A Gm.pl O By
(m ,p)GOS k

0

6 b5 k07k17ﬁ1( ) (l)(hA)q

D

k5+k3=ko,k3>1 q L B1+B2=
o ei(s—ko—q)arg(}) 2.q mg-p Vh,62+k1,/\/ld0,50 (7‘, 6) )
€ iarg(\) Fmp" Or |
retr8ld) + 1+ \h Ba!
(m.p)EOZ_4 4

for all 8 > 0, h > 0, with initial conditions

thj»Mdovgo (717 6) = vh,ijdU,go (r‘) 6) ) O S j S S - 1 ) h Z 0'

Using Corollary 1, Propositions 4,5, the estimates (162) and the remark after Definition 2, we
deduce that Vi, g m, 6(r,€) € Dy 5. for all h, 3 > 0 and that the following inequalities hold

for the real numbers Vi, g a1, (€) == [[Vh,g,My, .6 (75 €)l[3,6,c,a: there exist constants Cls0, C330
(depending on S,5,5,p,u) with

b Vh,Ba2+k1 Mag (€)

B!

(190) Vipisag (€< > D CioBAB (B +5+ 1))
(s,k0,k1)€ES B1+P2=p

* Z % 'Z Z C35081AB~ BllckOH)\\qhq

1 2
ki+k2=ko,kt>1 Fotko! = 1 B1+p2=5
ko—a)p ¥ haBathi Mo, (€)
B!
2.

for all B,h > 0, where A, B > 0 are defined in Lemma 14. We define the following Cauchy
problem

x (B4 S+ 1)~

(191) Wy, (ww) = Y Ciyolrde+ 5+ 1)b(s_k0)(1 4 7O W, (u, )
(s,ko.k1)ES B
kl
ko! <= 2 (K b(s—ko—q) (A k
+ z paTpeT] 2023.0|Cq A (20, + 5 + 1)"* 701 (ﬁ(uau)qaxlw-/vldo(u? z))
ki+k2=ko,ki>1 007 g=1 B

for given initial data

(192) (W, ) (u,0) = Wy, j(u)
h
= Zsup [ 0h,j,May &0 (T e)ngedh' eC{u} , 0<j<S—-1
h>0 €€€0
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From the assumption (124) and the fact that b > 1, we deduce that
S>b(s—k0—q)+q—i—k1

for all (s, ko, k1) € S, all 0 < g < ko. Hence the assumption (72) is satisfied in Proposition 9 for
the Cauchy problem (191), (192). Since the initial data W4, ;(u) is an analytic function on
a disc containing some closed disc D(0, Up), for 0 < j < S — 1 and since the coefficients of the
equation (191) are analytic on C x D(0, B), we deduce that all the hypotheses of Proposition
9 are fulfilled for the problem (191), (192). We deduce the existence of a formal solution
WMdO(u,m) € G(UMdO,XMdO) where 0 < Upm,, < Uo (depending on S) and 0 < XMy, < B/2
(depending on S,a,|A|,p,u,Uo,S,A,B).

Now, let Wy, (u,z) = Zh,ﬁzo wh757MdO”h—};%f be its Taylor expansion at the origin. Then,
the sequence wy, g m do satisfies the next equalities

b wh?BQ"FkldeO

(193) whprsmy = Y. >, CooBAB (B +5+1)F k) X
2.

(s,ko,k1)€S B1+p2=p

kl
k'()! 0 2 -8 k}
+ > WZ D C30BAB P cg || A 7N
ki+k2=ko,ki>1 070" g=1 B1+p,=P

b wh7ﬁ2+k1 7Md0

x (B + S+ 1)skom0) X

for all 8, h > 0, with

(194) Whij M, = SUP |n,j Mag 80 (T Eljea » =0, 0<j<S—1
€E€ECO

Gathering the inequalities (190), the equalities (193) with the initial conditions (194), one gets

(195) sup [V, g, My, (€)] < whga,
ec&p 0 0

for all h, 8 > 0. From (195) and the fact that Wy, (u,z) € G(UMdO,XMO) we get a constant
CMdO > 0 such that

(196)  sup ||Vhﬂ,/\/1d0750 (r, e)llg.6.e,d
ec&

2
h B
) G

(o

0 0

)7 < Oy, BN

for all h,8 > 0. From this last estimates (196), we deduce that for all h > 0, Vi, My &0 (r,z,€)
belongs to D'(4, e, 6Md0) for 0 < 5Md0 < XMy, /4 and moreover that

h

u
E sup HVh,MdO,SO (7“, 2y E)H(é,e,d,éMd ) Al € C{u}
h>0 e€&y 0 .

holds. This yields the property (176).

In the second part of the proof, we show (175). One defines the distribution

Vﬁsdwwgo (r,z,€) == VdemgO (r,z,€) — Vh75d0ﬂ9n,50 (r,z,€)
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for all » > 0, all z € D(0, 5Md0) ND(0,6), with 0 < § < x1/2, all € € &. If one writes the Taylor

expansion
5B

A
Vhsdoﬂ 750 r,2,€) Z hﬂ5d00n750 )/3'
B>0

for z € D(0, dpm,,)ND(0, 5), then the coefficients Vﬁﬁ Sy 4. £ (s €) satisty the following recursion
52590dg, O >

A
(197) Vh,ﬁ-l—S,SdO,ﬁn,So (T7 6)
ei(S*ko)Cn

_ |€k0 ES,ko,kl,ﬁl (¢) ko—s
- Z Z g € ( iC )
51! re’n + 1+ \h

(s,ko,k1)€S B1+P2=p

h,B2+ & (] 6)
Y h, k1,8 o
Z 1 maH—p B2+k1 dg,9n €0\ 7 )

X ( m,pr T |
(m,p)GOS ko ﬂQ.
|€ bSko,k‘1ﬁ1( ) kg )
D 1. 7 Z >, A o' (hA)
ki +k2=kokt>1 V70" g=1 p1+B82=5
i(s—ko—q)Cn va (r,€)
ko—s © 2,q mg—p h,B2+k1,5dq,9p,E0\"
TSI RS YA ( Z Wnp”™ O By )+ Brgn(r€)
(mp)EOT 4 g
where
(198)
i(s—ko)arg(N) ei(s—k’o)gn

6 bSk kl 51( ) ko— € (
Bhﬁn(’r E) - Z Z ﬁ' 07 7 € S( iar o ]
PR g(M) iCn
(5,0 k1 )ES Br+Ba=B re 1+ retn 414k

)

(Y 1 ma_pvh,ﬁﬁkl,Mdo,so(T,6))

N LA B!
2!
(m.p)EO;_ ko
e bsko,k1,51() 5
T2 z.Z > T a’ (W)
k{+kE=ko,k§>1 q=1 B1+p2=
i(s—ko—q)arg(X) i(s—ko—q)Cn v (T 6)
o—s; € e 2,q ma—p  MPatki,May,Eo\"
X € (Teiarg(/\)+1+)\h TBZC"—f-l—I—)\h) ( Z A pT ar BQ' )
(m7p)eos kO q

forall h > 0, all 5 > 0. Now, we put Vh/o’n( €) = Hth Sy o 0T €)||8,5.,a- Using the corollary 1,
0,Vn?

the propositions 4, 5 and the lemma 14, we get that there exist constants C; ;,C% ; (depending
on §,6,5,p,1) such that the following inequalities

A\ €
(199) VBssa0< S0 % 0%3.15!AB—61<B+S+1>(s"“°’bh’ﬁ?;"?’”()
(S,ko,kl)es B1+p2=p z
kl
k()! 2 2 | —61
Y e D ChapAB

ki+k2=ko,ki>1 0707 g=1 B1+p,=P

ko qaphq (s—ko—q)bVﬁ[?erkl,n(e)
X e [[A7hI(B + S + 1) T+Bh,ﬂ,n(€)
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hold for all h, 3 > 0, where A, B > 0 are defined in Lemma 14 and By, g ,,(€) is a sequence which
satisfies the next estimates: there exist constants C3; 1,C55; > 0 (depending on S8,5,5,p 1)

with

(200) Bhgn(e) < > > C3,8DB™H

(s,ko,k1)ES B1+P2=p4
s—ko)b ||Vh762+k17Md0750 (7, )| Bo+k1,5,,d

x (B+5+1)¢ 5
kl
| 0
fo > C3,8D, B~

LD Ry
k}+kE=ko,k§>1 q=1 p1+B2=p

, oV Byt My 0 (T €| Boter 5ed
X e[ ATh9(B + § + 1)(e—Ro—ap LRt wel Btk e

for all h, B,n > 0, where D,,, n > 0 is the sequence defined in Lemma 14.

We consider the following sequence of Cauchy problem
(201) OSWR(u, )= > Cogi(wde+ 5+ 1)b(s_k°)(1_7x8];1W$(u,x))
(s,ko,k1)ES B
k_l
+ Y kol ZO:CQ IR0\ |90, + 5 + 1)b<8*’€0*q>(7f4 (udy,) 1O WE (u, 2))
k(l)'k%' po 23.11%q x 1— % u x n ’

k{+k3=ko,k}>1
+ Dy (u, x)

where
(202) Dp(u,z)= > 033.1(1;8;,3+S+1)b(5‘k0)(1_7"£8§1WMd0 (u,z))
(s.ko.k1)€ES B
ko
Kol 2 O [ A (2, + 5 4+ 1) om0 (P, yagh
+ Z WZ 23.11¢q" [[A|* (202 + S + 1) (ﬁ(“ )10 W, (u, @)
ki+k2=ko,kt>1 070" g=1 B
and Wy, (u,z) is already defined as the solution of the problem (191), (192), for given initial

data

A A
(203) (03 W;)(u, 0) = W35, (u)
h
. u .
= > 5D [[0h5Muq 0 (1 ) = Vhiy 0, 0 (1€ iy € Clu} , 0<j<S—1,
h>0 ec&y :
which are convergent near the origin with respect to u due to the assumption (161) and the

remark after Definition 2. Moreover, the initial data satisfy the estimates
(204) W ()] < =
P T L = Jul fuy

for all |u| <u;,0<j<S—1,alln>0.
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From the assumption (124) and the fact that b > 1, we deduce that
S>b(8—]€0—q)+q+k1

for all (s, ko, k1) € S, all 0 < g < ky. Therefore the assumption (72) is satisfied in Proposition 9
for the problem (201), (203).

On the other hand, from Lemma 4,5, there exist a constant Dy, > 0 (depending on
S,5,8, 0,1, AL B, Umy, s XMy, )» & constant 0 < Uy aq,, < Um,, and a constant 0 < Xy aq,, <
X m, such that

do

(205) || Dy (u, ) < DnD g, [[Wang, (u, ) < DnDpmy, Cmy,

H(U1,Md0 X1,Mm,) H(UMdO XMy, )

for all n > 0, where the constant Cy,, is introduced in (196).

Since the initial data Wﬁn (u) is an analytic function on some disc containing the closed disc
D(0,u;/2), for 0 < j < S—1 and the coefficients of the equation (201) are analytic on Cx D(0, B),
we deduce that all the hypotheses of Proposition 9 for the problem (201), (203) are fulfilled.
We deduce the existence of a formal solution W2 (u,2) € G(Up, X1) of (201), (203), where
0 < Ui < min(Ui,m,, ming<j<s—1u;/2) (depending on ) and 0 < X < min(B/2, X1 m,,)
(depending on S,5,|A|,u;,for 0 < j < S —1,5,A,B,p,1).

Moreover, from (75) and (205), there exists constants M; > 0 (depending on S,5,\,u;,for
0<5<85-185,AB,p,1) and My > 0 (depending on S,u; for 0 < j < .5 —1,B,S) such that

(206) W3 (u, )| (0, x1) < M o 12X I+ DnMa Doy, G,

for all n > 0. Now, let W& (u,z) = Zh,ﬁzo wﬁﬁn . 5, be its Taylor expansion at the origin.
Then, the sequence wfﬂ ,, satisfies the following equalities:

A
- s— wh, ki,n
(207) wl%BJrS,n = Z Z Ci31BIAB™P1 (B + S + 1) ko)b%
(s,ko,k1)€S B1+B2=p 2:

kl A
ko! _gy kb —ko—q)b
Y S Y ChastaB (B + 5 4 pfeor R
ki+k2=ko,ki>1 070" g=1 B145,=p >
+ Drgn

where

p Wh,Ba-+k1,Maj

208) Dnpn= C35 18\ D, B~ (B + S 4 1)(57ko)
(208) Dy g, Z Z 5318 (B ) 5!

(s, kg,kl)ES B1+B2=0

(s—ko—q)b Wh, B2+k1,Ma,

B!

k.l
+ Z ATy 2,2 Z C3318' D, B~ e [[ATh9(B + S + 1)

ki+k2=ko k3 >1 Fotko! o= B1+B2=p
for all h, 5,n > 0, with

(209) wﬁj N

= Sug,P VR, j, May &0 (T, €) — vhmgdoﬁn,go(reic",e)||j75,76,d , forallh>0,al0<j <S5 —1.
eclo
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Gathering the inequalities (199), (200) and the equalities (207), with the initial conditions (209),
one gets that

(210) sup [V g.(6)| < wiisp
6650

for all h, 5 > 0, all n > 0.
From (210) and the estimates (206), we deduce that

(211)  sup [|Vids s, o (7 Ollo.ca

e€&y
11
< —_
< (M, o 28x Inj+ DnMaDi,, CMy, ) (R + B)! (Ul) (Xl)
2 2
< ! A
(M, O<r]n<a§< 1In]—i-D MQDMd CMd )hﬂ( ) (X1)

for all h, 8 >0, all n > 0. From (211), we get that

(212) Sélgp ||Vh 3Sdg, 90 €0 (T Z, 6) Vh,/\/ldofo (7“, 2, 6) ‘ |(5,e,d,5D)
ec&o

< |
S (M10<I]n<a§< IIn]+D MQDMd CMd )h (Ul)

for all h > 0, all 0 < 6p < X;/4. This yields the estimates (175). O
In the next lemma, we express Zy(t, z, €) as Laplace transform of a staircase distribution.

Lemma 15 Let & > 6 > ory(S —1). Then, we can write the solution Zy(t,z,€) of (154), (155)
in the form of a Laplace transform in direction arg(\)

(213) Z() (t, Z, 6) = ‘Carg()\) (Varg(k),Sdo £o (7’, Z, 6))(6t)

forall(t,z,€) € (TND(0,0")) x D(0,0p,2,) % (EoNEL) where Varg(x) 5, (T 2,€) € D'(5,€,6p,2,)
(with 6p,z, = min(dp, dz,)) solves the following Cauchy problem

(214)  (re®BN) £ 1)V gn) s (122, €)

= Z RO ok (2, €) (X5 TR0)ar8(Y) Z O"}n,prmar_paflvarg()\),sdo & (1, 2,€))

(s,ko,k1)ES (m,p)e0}_ kg

where the sets O;fko and the integers o, . are introduced in (111), with initial data

P

(215) (L arg(3).5,.60) (7 0:€) = Vi arg ()50, €0 (1:€) 5 0<j<S—1.

Proof From Proposition 23, we can write the solution Zy(¢, z, €) of (154), (155) in the form

exp(—2 T
(216) Zo(t,z,e)zzT / Vi S 0(72 21 €) exp(— = )dr
h>0 '
h|)\‘ewrg(>\) i i¢
exp(——5———) e'n - e'or
- Z A < et /0 Vh,Sdo,ﬂmfo(relcnazf) exp(—r n )dr

h>0
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for all (t,z,€) € (T N D(0,.")) x D(0,0z,) x (EgN &), all n > 0. Now, we write

EC’n (thsdo,'&n o (reifn 2 6)) (Gt) = Earg()\) (Vh,SdO’gn ,£o (Teign X 6)) (etei(arg(/\)_cn))

for all (t,z,¢) € (T N D(0,/")) x D(0,0z,) x (& N &), all n > 0. Now, we define dp z, =
min(dp,dz,). From the continuity estimates (85) for the Laplace transform, we deduce that for
given e € N &1, t € TN D(0,0"), there exists a constant C,; (depending on €, t) such that

(217) |£arg(z\) (thMd0750 (Tv 2 6)) (Et) - Earg()\) (thsdo,ﬁn o ('l"eign y %5 6)) (Etei(arg(/\)—gn)) |
< Ce,tHVh,./\/ldO,go (7"7 2, 6) - Vh,SdO,ﬁn,So (reifn’ 2, 6) ’ ‘(67€7d75D,Z0)

+ |'Carg()\) (Vh,/\/ldo £o (T7 2, 6) ) (Etei(arg()\)—g"n)) - ‘Carg()\) (Vh,/\/ldo &0 (Tv Z, 6)) (Et)‘

for all z € D(0,9p.z,), all n > 0. By letting n tend to 400 in this latter inequality and using
the estimates (175), we obtain

(218) ﬁcn (Vh’sd()?ﬂn?‘go (reiCn7 z, 6))(6t) = Earg()\) (Vh,Mdeo (T’, Z, 6))(6t)

for all (¢, z,€) € (T ND(0,.")) x D(0,6p,z,) x (S9N &r), all n > 0.

On the other hand, from Corollary 1, we have that for all h > 0, the distribution
8r_h(Vh,Md0,So (r,z,€)) belongs to D'(,€,0p,z,) and that there exists a universal constant C > 0
such that

(219) 107 (Viaag, o0 (r 2 )] <

5’,6,d,6D720 S CS( )h | |Vh7Md0 €0 (r7 2, 6) | |6767d76D,ZO

G
for all h > 0.
From (218) and using Propositions 12 and 14, we can write

hIA[er8N) \ e +00 i¢

exp(~ PN i, . i
(220) N ct a ), Vh,SdO,ﬂn,Eo (7"6Zc , 2, €) exp(—r - )dr
. iarg(\)
ezarg()\) eXp(— h|Aletare 7
= ( ot )h Al = Earg()\) (ar h(VhJVldO,go (Tv 2y 6))) (et)
= Earg()\) (Vh,)\,/\/ldo ) (T’ 2 6) ) (Et)
where

(FraMag &0 (T = IR, 2, €)1 400 (7))
Vi Mag £ (7€) = 0 o (AR o0) € D'(5,€0p,7,)

with fh,A,MdO,So(T7 Z, 6) = ar_h(vh,/\/ldo,go(r? z, 6)) € D/(é', €, 5D,Zo)7 forallh > 0,all0 < j < S—1.
From Proposition 13, we have a universal constant A > 0 and a constant B(d,b,¢€) (depending
on &, b and ¢, which tends to zero as € — 0) such that

(B(5,b,¢€))"
(221) VhaMay 0 (752 €)l6,6,d,0p 7, < A# [ ha Mag 0 (75 2 )l6,6.d,0p 2,

From the convergence of the series (176) near the origin and using (219), (221), we deduce that
the distribution

(222) Varg(/\)ﬁdo ,£o0 (’I", 2y 6) = z th/\deO o (’I”, 2y 6) € D/(&a €, 5D,Zo)>
h>0
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if ¢¢ > 0 is chosen small enough. Finally, by the continuity estimates (85) of the Laplace
transform L, () and the formula (216), (220), we get the expression (213). Moreover, from the
formulas in Proposition 12, as Zy(t, z, €) solves the problem (154), (155), we deduce that the
distribution Vag(x) s, £ (r, 2, €) solves the Cauchy problem (214), (215). O

Step 2: In this step, we show that the function X (¢, 2, €) can be express as a Laplace transform
of some staircase distribution in direction arg(\) satisfying the problem (214), (215).

From the assumption (170), we deduce from Proposition 21, that the function Vj g 061 (1,2,€)
constructed in (146) has an analytic continuation denoted by Vs, ;. & (7,2,€) on (Sg s, U
D(0,79)) x D(0,0¢,) x (EgN&1) and satisfies estimates (138) for all n > 0, where dg, > 0 depends
on S,ug, (which denotes a common radius of absolute convergence of the series (170), S, b, o,
|Al, max(s ko k1)es [Bls,ko b (£0), MaX(s 1o k1)es [0s ko k1 (T0), Where zo < p. This constant dg, is
therefore independent of n. Now, one defines the functions

VO’Sdlﬂén 781 (r7 Z7 6) = %7Sd175n7€1 (T€Z£n7 Z? 6)

for all » > 0, all z € D(0,6g,), all n > 0.

Lemma 16 Let 6 > 6 > ory(S — 1) as in Lemma 13. Then, there exists 0 < 6p,, <
min(dg,,0p,z,) (depending on S, S, &,|A[, A, B, p, p and A, B, p, i introduced in Lemma 17), there
exist My, M| (depending on S,S,5,|\, A, B, p,pu, A, B, p, v and p', i’ introduced in Lemma 17)
such that

(223) 66551;251 V0,50, 5,61 (7 2, €) = Varg(3),5, .20 (7 2 | ze,a.8m, ) < (M1 oA Jnj+ M Dy)
for all n > 0, where Varg(k),SdO & (7, z,€) is defined in Lemma 15 and solves the problem (214),

(215) and D, is the sequence (which tends to zero as n — +oc) defined in Lemma 17.

Proof From the estimates (133), we can write

B

z

%:Sd1,6n751 (1,2,€) = Z %7575011,5” & (7, e)ﬁ
B8>0 '

where Vg g g iy .m0 sE1 (7,€) are holomorphic functions such that there exists a constant w; with
0 < uy < ug, (depending on ug,, S and b,0), a constant x1 such that 0 < z1 < p (depending
on S,ug,,S,b,0,|Al, max(s ko k)es bls ok (T0), MAX(s ko k1 )es [0]s,ko k1 (T0), Where 29 < p) and
a constant Cqq, £,)n > 0 (depending on maxo<j<s—1 Wi Su, 61 (ug,) (where WiiSu, 50,61 aTE
defined in (170)), |)\|, maX(s,ko,h)GS‘b’S,ko,h (.750), maX(s’kO’kl)es|b\s7k0,kl(a:0), S, ug,, o, S, b)
with

2 TI* 1 o

)’ (1+ W) exp(5r=75(B)I7])

|Vb7675d1,5n751 (T7 6)| S CQ(dhgl),nB!(;l

for all 7 € Sy, 5, UD(0,70), € € &1, all 5 >0, all n > 0. We deduce that

g

Z' 2
(224) V0,8, 5,61 (1", €)| < Cn(dl,a),n(;l)’g p! exp(mrb(ﬁ)r)

forallr >0, alle € &, all 3> 0 and all n > 0. In particular, r — %,B,Sdl,sn,& (re'én €) belongs
to Lg /2, From the proposition 1, we deduce that r — Vo g5, 5 & (reén €) belongs to D’ﬁ 5o
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From Proposition 1 and (224), we get a universal constant C; > 0 such that

(225) |‘%7575d1,5n751 (reiﬁn’ e)”g’&’@d < Cl‘|%7675d1,6n7gl (reiﬁn’ 6)”6,6/2,6

2le 2
< CiCaa, 1) m = i (=)°p!

o—0 X1

for all 5 >0, all n > 0. From (225), we deduce that the distribution

B

. z . .

V0,54, 5,61 (1,2, €) = Z V0,6,54, 5,61 (re', f)ﬁ € D'(d,¢,9)
B>0 '

foralle e N &y, all § < x1/2 and all n > 0.
From (111), (112), we have that the distribution Vo g, ; & (7, 2, €) solves the following prob-
lem

(226) (re™ +1)07Vos, 4. & (r 2 €)

= Y b (2 )TNl O PO Vg, e (2, )

(s,ko,k1)ES (m.p)EO; 4

where (’);_ ko is the set and o}

mp are the integers from (214), with initial data

(227) (6ZVO=Sd1,6n751)(T7 0, 6) = 00,5,54; 65,61 (reiﬁn’ 6) , 0<7<S-1

In the next lemma, we give estimates for the coefficients of the equations (226) and (214). The
proof is exactly the same as the one described for Lemma 14.

Lemma 17 Let

bs k07k1 2, 6 Z bS k’07k1w8
B>0

the convergent Taylor expanszon of bs ko iy with respect to z near 0. Then, there exist positive
constants A,B,p,p ,ji,il and a sequence D,, > 0 such that lim,_, o Dy = 0 with

by p(DECTOEN o g
228) |99 (—2kekLl <ABTP g
(328) 10r T e 1 = AP Gy
Ds ko by 3 (€)€" (5RO 7 B Blg!
‘ag( 0 1/5;5 . |<AB B Ny}

retn + (p(r+ @)

and
i(s—ko)arg(\) i(s—ko)én . 1!

(229) yag(bs,ko,klﬂ(e)e . ag(b&ko,k‘lﬁ(e)e )’ < DnB—ﬁL

retarg(A) + 1 retén + 1
forallqg>0,all >0, alln>0, allr>0 and all e € &y N &y

Now, we consider the distribution

A
VO,Sdl’énﬁl (T> 2y 6) = Varg()\),sdo £o (’l”, 2y 6) - VOdel,én &1 (7", 2, 6)
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for all » > 0, all z € D(0,0p,z,) N D(O,S), with 0 < 6 < x1/2 and 0p,z, defined in Lemma 15,
for all € € & N &1. One writes the Taylor expansions

2B

A
VOSdla 51 r,z,€) Z 0,8,54;,6,, €1 ’6)6
8>0

8

z

Varg(3),500.60 (1% €) = D Vi arg(3).54, 0 (T 6)@
>0 ‘

for z € D(0,6p.z,) N D(0,d), then the coefficients VOAﬁ s, 5. . (7€) satisfy the next recursion
-y 1,00
A
(230) Vo,ﬁ‘f‘s,sdl’gn ,81 ('I", E)

Yy phesast
retén 4+ 1

(S ko,kl)ES 514’52 6
€)

A
1 mg—p V0752+k17541 0m €1 (r,
X ( O p” Op ﬁ2' )
(m.p)EO; 4,

ei(s—ko)arg()\) ei(s—ko)fn

1Ys,ko,k1,81\€) Sko k1 51( ) cko—s B
" (s, kzk)es 514% BB (Teiarg()\) +1 retén 4+ 1 )
0,k1

Vst ky arg(A),Sa, .0 (r,€)
X ( Z A B! : )

(mzp)eoifk;o

for all h > 0, all 8 > 0. We put V€5n51(e) = ||V0A6 Sy 5 .8 (T€)
My lly L] 1:9n

the propositions 4, 5 and the lemma 17, we get a constant Ca5 5 > 0 (depending on S, &, S, p, i)
and C%;, > 0 (depending on S, 5, S, ¢, ') such that the next inequalities

,d- Using the corollary 1,

-~ \7S €
(231) Vosisne (< > > 0213,25!A3ﬁ1(,3+s+1)b<sko>W
(s,ko,k1)€ES P1+P2=p 2

b Y bt s + 1yt Ve s Ol
23.2+~n '
(s,ko,k1)€S B1+B2=p 52-

hold for all B > 0, where A, B > 0 and the sequence D,,, n > 0, are defined in Lemma 17.

We consider the following sequence of Cauchy problems

(232)  BWog ()= Y Chyo(ade+ 8+ 1) (—F 49w, () + Ba(a)

(s,ko,k1)€S B
where -
Du@)= D C3ys(@de + 8+ 1) (08 Warg(n) 60 (2))
(S,ko,kl)es
with

B

X

Warg()\),go (I’) = Z sup HVﬁ arg(\), Sd() ,50( )H,B,ﬁ',ﬁdﬁ
>0 ec&oNér .
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for given initial data

(233) (0IWpe,)(0)

A i&n
=Wine, = SUD V) arg(n),500,60 (7 €) = 00,54, 5,8 (" €)]

ecEoNE

7,0,6d OSJSS_L

which are finite positive numbers due to the assumption (173) and the remark after Definition
2. Moreover, the initial data satisfy the estimates

(234) (Wil < Jng

]7”"51

foral0<j<S—1,alln>0.
On the other hand, we have that W,.4()) ¢, () is convergent for all |z < X, /4 (where
X m, is chosen in (196)). Indeed, we know, from (222), that

do

8
z

Vi &0 (T2 €) = D Vi ga My, (1 6)@

520 '

is convergent for all |z| < dp z,, all 7 > 0, for all A > 0. From (219) and (221), we know that

€|B(G,b,€)/5)"
(235) ||Vh757)\7Md0750(T76)H575757d§C3A(‘ = A /o) [Vh,8,Maq:0 (75 )] 8.6,

for all h > 0, all > 0. From (196) and (235), we deduce that

soed = 1D Vigary& T Ollssed
h>0

11V arg(2),S4 &0 (7€)
0

2|e|B(5,b,¢)

< CaACi, Bl — ) S (!

do  p>0 do

and this last sum is convergent provided that €y is small enough. We deduce that W, () g, (z)
belongs to G(U, XMdU /4), for any U > 0. Let CMdO = ||Warg(/\)’go (I)’|(U7de0 /4)-

From Lemma 4 and 5, we get constants DMdO > 0 (depending on 8,5, S, 7/, i, B, U, XMdO)7
0< Ul,MdO <Uand 0 < Xl,Mdo < XMy, /4 such that

(236) D0l 1, 1) < DrDtay Ot

for all n > 0.
From the assumption (124) and the fact that b > 1, we deduce that

S>b(5*k0)+/€1

for all (s,ko,k1) € S. Hence the assumption (72) is satisfied in Proposition 9 for the prob-
lem (232), (233). Moreover, the initial data Wﬁn can be seen as constant functions (therefore
analytic) with respect to a variable u on the closed disc D(0,U) for any given U > 0 and the
coefficients of the equation (232) are analytic with respect to 2 on D(0, B/2) and constant (there-
fore analytic) with respect to v on D(0,U). We deduce that all the hypotheses of Proposition 9
for the problem (232), (233) are fulfilled. A direct computation shows that the problem (232),
(233) has a unique formal solution WA& () = > p>0 wémglxﬁ/[f!, with wén,& € C. From

n,
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Proposition 9, we deduce that Wﬁgl (z) € G(Uy, X1) where 0 <

and 0 < X; < min(B/2,)~(17Md0) (depending on S, S, 5, A,
(236), there exist constants M, > 0 (depending on S, S, 5,
on S, B, S) such that

1< Ul,MdO (depending on S)
B, p, i). Moreover, from (75) and
A, B, p, i) and My > 0 (depending

N § o
(237) IWone, (@)l 7, %,y < M o X In,j + DnMaDpg,, Cpmg,

for all n > 0.
Now, the coefficients wén’ ¢, satisfy the following equalities:

A
~ ~ w
(238) whisne = Do D ChafIABTN(54 S 41t iaat
(s,ko,k1)€S B1-+B2=B >

* Z Z 0223.25!Dné_51 (B+ S+ 1)b(8—k0)
(s.ko.k1)€S Br+P2=B

« SUPcecgynés ||V62+k1,arg()\),5'd0,€o (r,6)] |ﬂz+k1,6,e,d

B!

for all g > 0, all n > 0, with

(239) Wi =Wie , 0<j<S—1.
Gathering the inequalities (231) and the equalities (238), with the initial data (239), one gets
that

A A
(240) sup [Vogne (6 Sws,e
ecEoNE

for all 8,n > 0.
From (240) and the estimates (237), we deduce that

- o - 1
241 A s < (M Jn i+ DyMyDy C ()P
(241) EesglolgglHVO,,B,Sdl,g,L,&(T?E”57076761—( 1o nax Jng + DnMaDog, Cg, ) B Xl)

for all 5,n > 0. From (241), we get that

(242) sup ||V0,Sd1,6n751 (Ta 2, 6) - Varg(k),Sdo,So (7“, 2, 6) ||((7,e,d,6DO 1)
ecEoNEL ’

< 2(M1 OSI]IISEL‘;{_I Jn,j + DnM2DMdO CMdO)

for all n > 0, for all 0 < dp,, < X1 /2. This implies the estimates (223). O

In the following lemma, we express the function X (¢, z, €) as Laplace transform of a staircase
distribution.

Lemma 18 Let & > & > ory(S — 1) as in Lemma 13. Then, we can write the function
Xo,1(t, 2, €), which by contruction of Proposition 21, solves the singularly perturbed Cauchy prob-
lem

(243) 20,00 X01(t,2,€) + (et + )T X01(t2,) = D> Do (2, €)1° (0108 X0.1) (8, 2, €)
(s,ko,kl)és
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for given initial data

(244) (2 X01)(t,0.€) = o1 j(ete) , 0<j<S—1,

in the form of a Laplace transform in direction arg(\)

(245) X0,1(t, 2, €) = Larg(2) Varg(n), 54,80 (75 25 €)) (€t)

forall (t,z,¢) € (TND(0,."))xD(0,dp, ) x (E0NEL), where Varg(2),54,,60 (15 %, €) € D'(5,€,0p,,)
solves the Cauchy problem (214), (215).

Proof From Proposition 21 and the assumption (170), we get that the function X (¢, 2, €) can
be expressed as a Laplace transform in the direction &,,

1 T
(246) X071(t,z,e):g : %,Sd1,6n751(7—,2,5)eXp(_a)dT
&n
elé‘n o0 reifn

- et 0 ‘/()’Sdlﬁn’gl (Telfn’ Z, 6) eXp(_ et

)dr

for all (t,z,e) € (T N D(0,.")) x D(0,d¢g,) x (&g N &), all n > 0. Now, let t € T N D(0,.”),
e € &NE. Forall n > 0, we can rewite X 1(t,2,€) as a Laplace transform in the direction
arg(A),

(247) XO,l(t, zZ, 6) = ﬁarg()\) (Vovdeén & (r7 z, 6))(6tei(arg(>\)*§n)),

for all z € D(0,0¢,). Using the expression (247), we deduce that from the estimates (85), there
exists a constant C; o) > 0 such that

(248) ’XO,l(ta Z, 6) - £arg()\) (Varg(A),SdO,So (Ta 2, 6))(6t)’
< C(t,e) | ’VO,Sdl,an 1 (T7 2, 6) - Varg(/\),Sdo ,€0 (T7 2y 6)| |(6,e,d,5D071)
+ |£arg(/\) <Varg(>\)75d0 £o (’f‘, Z, 6)) (etei(arg()\)fﬁn)) - ﬁarg(/\) (Varg()\),sdo ,£0 (T7 2, 6)) (Et)‘

for all n > 0 and all z € D(0,dp,,). By letting n tend to +o0o and using the estimates (223),
we get the formula (245). O

Now, we are in position to state the main result of our work.

Theorem 1 Let the assumptions (124), (126), (140), (141), (142), (157), (158), (161), (169),
(170) and (173) hold. Then, if we denote by op(Gx,) (resp. op(Gs,)) the opening of the sector
Gro (resp. Gy, ), we have that for allt € TND(0,."), z € D(0,0p,,), the function s — go(s, 1, 2)
(constructed in Proposition 22) can be analytically continued along any path T in the punctured

sector (g ) (g ) e
> * Y K Y K fe’e)
Sramin = {s € CJrg = 2080 < arg(s) < my + 2P\ Uy { =),
Itz

as a function denoted by g, (s). Moreover, for all k > 1, and any path I'gj C Sno,m,t,A from
0 to a neighborhood of %, there exists a constant Cy > 0 such that

Lok t,z Ak
(249) 90" (8)| < Ci[log(s — =)

as s tends to % in a sector centered at %
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Proof The proof is based on the following version of a result on analytic continuation of Borel
transforms obtained by A. Fruchard and R. Schéfke in [19]. This result extends a former state-
ment obtained by the same authors in [20].

Theorem (FS) Let r > 0 and let g : D(0,7) — C be a holomorphic function that can be
analytically continued as a function g+ (resp. g~ ) with exponentiel growth of order 1 on an
unbounded sector S+ s+ (resp. S.— 5-) centered at 0, with bisecting direction £+ (resp. K~)
and opening 5% (resp. 6~ ). Let C > r be a real number and let m > 1 be an integer. Let {a, €
C*,1 <k <m} C D(0,C) be a set of aligned points and let o > 0 with arg(ay) = a € (k~,kT),
for all 1 < k < m. For all integers 1 < k < m, let Si be an unbounded open sector centered at
ax, with bisecting direction which is parallel to k™, and opening p > 0 such that the SN D(0,C)
do not intersect for all 1 < k < m.

Now, for all 1 < k < m, let gi be a holomorphic and bounded function on a small neighbor-
hood of 0 and with exponential growth of order 1 on the sector Sy —ax, = {s € C/s + ar € Sk}
with bisecting direction k~. We consider the Laplace transforms

€)= s)e /¢ds “(e) = ~(s)e*/¢ds . (€) = s)e %/¢ds
£+ /LF” ds . @= [ oo @ = [ et

K K

for all k > 1, where L+ is the half-line starting from 0 in the direction k™ and L,- is the
half-line starting from 0 in the direction k~. The function f+ (resp. f~) defines a holomorphic
and bounded function on an open sector EV (resp. £~ ) with finite radius, with bisecting direction
kT (resp. k™) and opening m+ 06" (resp. w+ 8 ). The sectors EY,E™ are chosen in such a way
that ET N E™ is contained in a sector with direction o and with opening less than w. Assume
that the following Stokes relation

—ay/€

(250) FrO=r @+ eT F(€) + O(e=Ce /ey
k=1

holds for all € € E* N E~, where O(e=C¢"*/%) is a holomorphic function R(e) on E¥ NE™ such
that there exists a constant H > 0 with

R(e)| < Hle=Ce"/¢| = He 1 co(emare(e)

forallec ETNE.
Then, the function g : D(0,r) — C can be analytically continued along any path T in the
punctured sector

) ot
Siwrc = {5 € Cfls] < O~ = o <arg(s) < wF + -\ UPL fag

Moreover, for all 1 < k < m, and any path I'gj C S,(,H+7C from 0 to a neighborhood of ay,
if we denote by gt ok (s) the analytic continuation of g along Lo, then there exists a constant
Cr > 0 such that

(251) 170 ()] < Cil log(s — ax)
as s tends to ay, in a sector centered at aj.

Proof For the sake of completeness, we give a sketch of proof of this theorem. In the first step,
let us consider the following sums of Cauchy integrals

1 U | gk (T — ag)
b =g [
k=1 ap,k—,C
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where L,, .- ¢ is the segment starting from a, in direction £~ with length C'. The multivalued
function A(t) can be analytically continued along any path I' in C\ {ay,...,an} by deforming
the path of integration L, .- ¢ in the sector Sy and keeping the endpoints of the segment
Lg, «- ¢ fixed for all 1 <k < m. Moreover, let 1 <k <m and t € L,, .- \ {ax}, where L
denotes the half line starting from ay, in direction x~. We denote by hlextr(t) the analytic
continuation of h(t) along a loop I'y, ;, around aj constructed as follows : the loop follows a
segment starting from ¢ in the direction aj then turns around a; along a circle I'y, , of small
radius p > 0 positively oriented and then goes back to ¢ following the same segment. We have
that

ag,K—

(252) h(t) — hrak,t,p(t) _ gk(tk—' ak)‘

Indeed, by the Cauchy theorem, one can write h(t) — htext(t) as a Cauchy integral

1 gk(T — ak)
L= —— ALy
M 2irk! /c r—t

a,,C

where C,, ¢ is a positively oriented closed curve enclosing ¢ starting from a;, and containing the

point aj + Ce™ . By the residue theorem, one gets that I, = gr(t — ag)/k!. From the relation
(252), we also deduce the existence of a holomorphic function b(¢) near aj such that

(253) h(t) = —W log(t — ay) + b(t)

for all ¢ near ag, for a well chosen determination of the logarithm log(x).
In the second step, let us define the truncated Laplace transforms and Laplace transforms

H;/C,(e):/L h(s)e™/<ds, HE,(G):/ h(s)e™*/<ds,

rt,C’ Kk—,C!

T(e) = s)e */¢ds “(e) = s)e */¢ds
HH(o L#m> ds. 170 = [ b as,

K

where L,.+ ¢ is the segment starting from 0 to e and L, ¢ is the segment starting from

0 to C'e™, for any fixed C' > C. By the Cauchy formula, one can write the difference
H},(e) — Hz(€) as the sum

(254) H/.(e) — Hz

(€
- h(s)e™/ds + (h(s) — Broxor (5))e/eds 4+ O(e=C="* /%)
> J

aj.p Layp.Ct n=

where L,, ,cr .- is the segment starting from ay + pe™ to ap + C’'e™™ for any p > 0 small
enough. Due to the decomposition (253), h(s) is integrable at a. By letting p tending to 0 and
C’ tending to infinity, using the relation (252) in (254), ones gets that

- - 1 —s/e —Ce'™ /e
(255) H*(e)— H (e):;k!/L gk(s — ag)e™<ds + O(e=C" /)

aj,K

i 7(1)@/6 e
- Z - Kl / gi(s)e™*/ ds + O(e= /)
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where L, .- is the half-line starting from aj, in the direction ™.
Now, one considers the differences D (e) = f*(¢) — H"(¢) and D~ (e) = f~(¢) — H ().
From the Stokes relations (250) and (255), one deduces that

(256) D" (e) — D™ (e) = O(e~ €/

for all e € ET N E~. Using a similar Borel transform integral representation as in the proof of
Theorem 1 in [20], one can show that the difference g(s)—h(s), which is by construction analytic
near the origin in C, can be analytically continued to a function G(s) which is holomorphic on the
sector S,— .+ o = {s € C*/|s| < C,k~ < arg(s) < kT}. Since h can be analytically continued
along any path in C\ {ai,...,a,}, one gets that the function g can be analytically continued
along any path in Sm,w,c and from the decomposition (253) one deduces the estimates (251).
O

Now, we return to the proof of Theorem 1. From the formula (143) and Proposition 24, the
following equality

(257) / 90,1(3,?572)65/6618:/ go0(s,t,2)e”/ds
L'ﬂ LNO

hA

eXp(_?) —s/e
—i—Zh't/L gno(s,t,z)e"/ds

h>1 &)

holds for all € € & N &y, for all t € T N D(0,."), all z € D(0,dp,,). Let t € T N D(0,.”) and
z € D(0,6p,,) fixed. Let m > 1 be an integer. From the estimates (144), we get that

hA

@9 Y T [ gt <20, Y Jen-hIC)

. et Ui
h>m+1 ®0 h>m+1

I A 1
<9 “ \ym+1 _ 1)—
< Co(ul) | exp(—(m + )et)|1—2|eXp(—g\7)|/u1

for all e € &N &;. From (257) and (258), we deduce that the following Stokes relation

(259) / 90,1(871572)6_5/6(15:/ g00(s,t, z)e*/ds
L

K1 LHO

s exp(—22) / Gno(s, £, 2)e/ 4+ O(e~ MM (eD)

h=1 ) Lig

holds where O(e~(m+D/(t)) i a holomorphic function R(e) on & N & such that there exists a
constant H > 0 with
‘R(€)| < H’e—(m+1)>\/(et)|

for all e € & N E. We can apply the theorem (FS) with ar = kA/t, for 1 < k < m, C =
IA|(m + 1)/|t] to get that the function s — go(s,t,2) (constructed in Proposition 22) can be
analytically continued along any path in the punctured sector

SHO,I@l,t,)\,m

= (3 € ©/ls < Om 1)/ o — PG <) <+ PG\ UL )
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as a function denoted by gF b (). Moreover, for all 1 < k < m, and any path I'g; C Sﬁo,m,t,)\,m

from 0 to a neighborhood of 2, there exists a constant Cy > 0 such that |g FOk’t’z( )| <
Ck|log(s — &)| as s tends to T in a sector centered at ’\tk. Since this result is true for all
m > 1, the theorem 1 follows. O

In the next result, we show that under the additional hypothesis that the coefficients of the
equation (154) are polynomials in the parameter ¢, the function go(s, t, z) solves a singular linear
partial differential equation in C3.

Corollary 2 Let the assumptions of Theorem 1 hold. We assume moreover that, for all tuple
(s, ko, k1) chosen in the set S, the coefficients bs iy 1, (2,€) belong to C{z}[e] with the following
exTpansion in €,

ds kg ky
bS,ko,kl('zvﬁ): Z bgfko,kl(z)em
m=kg

for some dg o 1, > ko. Then, for all K € N with K > 1 and K > max{d;, %, € N/(s,ko, k1) €
S}, the function go(u,t, z) (constructed in Proposition 22) satisfies the following singular linear
partial differential equation

(260)  t20,057105 go(u, t, 2) + 0K go(u, t, 2)
9 skoyk1

= —tdK 9% go(u, t, 2) + Z Z b ko ey (2)°( K —mako gk g (u, t, 2)
(S ko,k’l)ES m=ko

for all (u,t,z) € D(0,s0) x (T N D(0,")) x D(0,0p,,). From Theorem 1, for all (t,z) €
(T N D(0,:")) x D(0,0p,,), this solution go(u,t,z) can be analytically continued with respect
to u along any path in the punctured sector Sno,m,t,A with logarithmic estimates (249) near the
singular points \k/t, for all k > 1.

Proof From the proposition 22, we have that the function

Xoo(t,z,€) = 61/ go,0(s,t, 2)e "/ <ds
L

K0

solves the equation (243) on (T N.D(0,.”)) x D(0,0p,,) X &. From the formulas in Proposition
15, we deduce that the function ggo(u,t, z) solves the singular integro-differential equation

(261) 20,0, 18 g0.0(u,t, 2) +8 go,0(u,t,2)
Sko k1

= —ta;lafgop(u,t, z) + Z Z by, ko, k1 t° a m@f°8§19070)(u,t,z)
(s ko,k1)€5 m=ko

for all (u,t,2) € (Gx, U D(0,50)) x (T N D(0,.")) x D(0,6p,, ). Since go(u,t, z) is holomorphic
on D(0,s0) x (T ND(0,.")) x D(0,dp, ,) and has goo(u,t,z) as analytic continuation on (G, U
D(0,50)) x (TND(0,:")) x D(0,6p,, ), we get that go(u,t, z) also solves (261). By differentiating
K times each hand side of the equation with respect to u, one gets that go(u,t,z) solves the
partial differential equation (260). O
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