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Abstract

We study a family of singularly perturbed linear partial differential equations with irregular type (1) in
the complex domain. In a previous work [31], we have given sufficient conditions under which the Borel
transform of a formal solution to (1) with respect to the perturbation parameter ε converges near the
origin in C and can be extended on a finite number of unbounded sectors with small opening and bisecting
directions, say κi ∈ [0, 2π), 0 ≤ i ≤ ν − 1 for some integer ν ≥ 2. The proof rests on the construction of
neighboring sectorial holomorphic solutions to (1) whose difference have exponentially small bounds in
the perturbation parameter (Stokes phenomenon) for which the classical Ramis-Sibuya theorem can be
applied. In this paper, we introduce new conditions for the Borel transform to be analytically continued
in the larger sectors {ε ∈ C∗/arg(ε) ∈ (κi, κi+1)} where it develops isolated singularities of logarithmic
type lying on some half lattice. In the proof, we use a criterion of analytic continuation of the Borel
transform described by A. Fruchard and R. Schäfke in [19] and is based on a more accurate description
of the Stokes phenomenon for the sectorial solutions mentioned above.

Key words: asymptotic expansion, Borel-Laplace transform, Cauchy problem, formal power series,
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1 Introduction

We consider a family of singularly perturbed linear partial differential equations of the form

(1) εt2∂t∂
S
z Xi(t, z, ε) + (εt+ 1)∂Sz Xi(t, z, ε) =

∑
(s,k0,k1)∈S

bs,k0,k1(z, ε)ts∂k0t ∂
k1
z Xi(t, z, ε)

for given initial conditions

(2) (∂jzXi)(t, 0, ε) = ϕi,j(t, ε) , 0 ≤ i ≤ ν − 1 , 0 ≤ j ≤ S − 1,

where ε is a complex perturbation parameter, S is some positive integer, ν is some positive
integer larger than 2, S is a finite subset of N3 with the property that there exists an integer
b > 1 with

S ≥ b(s− k0 + 2) + k1 , s ≥ 2k0
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for all (s, k0, k1) ∈ S and the coefficients bs,k0,k1(z, ε) belong to O{z, ε} where O{z, ε} denotes
the space of holomorphic functions in (z, ε) near the origin in C2. In this work, we make
the assumption that the coefficients of (1) factorize in the form bs,k0,k1(z, ε) = εk0 b̃s,k0,k1(z, ε)
where b̃s,k0,k1(z, ε) belong to O{z, ε}. The initial data ϕi,j(t, ε) are assumed to be holomorphic
functions on a product of two sectors T × Ei where T is a fixed bounded sector centered at 0
and Ei, 0 ≤ i ≤ ν − 1, are sectors with opening larger than π centered at the origin whose union
form a covering of V \{0}, where V is some neighborhood of 0. For all ε 6= 0, this family belongs
to a class of partial differential equations which have a so-called irregular singularity at t = 0
(in the sense of [34]).

In the previous work [31], we have given sufficient conditions on the initial data ϕi,j(t, ε), for
the existence of a formal series

X̂(t, z, ε) =
∑
k≥0

Hk(t, z)ε
k/k! ∈ O(T ){z}[[ε]]

solution of (1), with holomorphic coefficients Hk(t, z) on T × D(0, δ) for some disc D(0, δ),
with δ > 0, such that, for all 0 ≤ i ≤ ν − 1, the solution Xi(t, z, ε) of the problem (1),
(2) defines a holomorphic function on T × D(0, δ) × Ei which is the 1−sum of X̂ on Ei. In
other words, for all fixed (t, z) ∈ T × D(0, δ), the Borel transform of X̂ with respect to ε
defined as B(X̂)(s) =

∑
k≥0Hk(t, z)s

k/(k!2) is holomorphic on some disc D(0, s0) and can be
analytically continued (with exponential growth) to sectors Gκi , centered at 0, with infinite
radius and with the bisecting direction κi ∈ [0, 2π) of the sector Ei. But in general, due to
the fact that the functions Xi do not coincide on the intersections Ei ∩ Ei+1 (known as the
Stokes phenomenon), the Borel transform cannot be analytically extended to the whole sectors
Sκi,κi+1 = {s ∈ C∗/arg(s) ∈ (κi, κi+1)}, for all 0 ≤ i ≤ ν − 1, where by convention κν = κ0,
Eν = E0 and Xν = X0.

In this work, we address the question of the possibility of analytic continuation, location
of singularities and behaviour near these singularities of the Borel transform within the sector
Sκi,κi+1 . More precisely, our goal is to give stronger conditions on the initial data ϕi,j(t, ε) under

which the Borel transform B(X̂)(s) can be analytically continued to the full punctured sector
Sκi,κi+1 except a half lattice of points λk/t, k ∈ N \ {0}, depending on t and some well chosen
complex number λ ∈ C∗ and moreover develops logarithmic singularities at λk/t (Theorem 1).

In a recent paper of A. Fruchard and R. Schäfke, see [19], an analogous study has been
performed for formal WKB solutions y(x, ε) = exp((x2/2 − x3/3)/ε)x−1/2(x − 1)−1/2v̂(x, ε) to
the singularly perturbed Schrödinger equation

ε2y′′(x, ε) = x2(x− 1)2y(x, ε)

where v̂(x, ε) =
∑

n≥0 yn(x)εn is a formal series with holomorphic coefficients yn on some domain
avoiding 0 and 1. The authors show that the Borel transform of v̂ with respect to ε converges
near the origin and can be analytically continued along any path avoiding some lattices of
points depending on (x2/2−x3/3). We also mention that formal parametric Stokes phenomenon
for 1-dimensional stationary linear Schrödinger equation ε2y′′(z) = Q(z)y(z), where Q(z) is a
polynomial, has been investigated by several other authors using WKB analysis, see [1], [12], [17].
In a more general framework, analytic continuation properties related to the Stokes phenomenon
has been studied by several authors in different contexts. For nonlinear systems of ODEs with
irregular singularity at ∞ of the form y′(z) = f(z, y(z)) and for nonlinear systems of difference
equations y(z + 1) = g(z, y(z)), under non resonance conditions, we refer to [5], [10]. For
linearizations procedures for holomorphic germs of (C, 0) in the resonant case, we make mention
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to [14], [28]. For analytic conjugation of vector fields in C2 to normal forms, we indicate [15],
[40]. For Hamiltonian nonlinear first order partial differential equations, we notice [35].

In the proof of our main result, we will use a criterion for the analytic continuation of the
Borel transform described by A. Fruchard and R. Schäfke in [19] (Theorem (FS) in Theorem
1). Following this criterion, in order to prove the analytic continuation of the Borel transform
B(X̂)(s), say, on the sector Sκ0,κ1 , for any fixed (t, z) ∈ T ×D(0, δ), we need to have a complete
description of the Stokes relation between the solutions X0 and X1 of the form

(3) X1(t, z, ε)−X0(t, z, ε) =

m∑
h=1

e−ah/εXh,0(t, z, ε) +O(e−Ce
iα/ε)

for all ε ∈ E0 ∩ E1, for some integer m ≥ 1, where {ah}1≤h≤m is a set of aligned complex
numbers such that arg(ah) = α ∈ (κ0, κ1) with |ak| < C (for some C > 0) and Xh,0(t, z, ε),

h ≥ 1, are the 1−sums of some formal series Ĝh(ε) ∈ O(T ×D(0, δ))[[ε]] on E0. If the relation
(3) holds, then B(X̂)(s) can be analytically continued along any path in the punctured sector
(Sκ0,κ1 ∩D(0, C))\{ah}1≤h≤m and has logarithmic growth as s tends to ah in a sector. Actually,
under suitable conditions on the initial data ϕi,j(t, ε), we have shown that such a relation holds
for ak = λk/t, for some well chosen λ ∈ C∗ and for all k ≥ 1, see (259) in Theorem 1. In order
to establish such a Stokes relation (3), we proceed in several steps.

In the first step, following the same strategy as in [31], using the linear map T 7→ T/ε = t, we
transform the problem (1) into an auxiliary regularly perturbed singular linear partial differential
equation which has an irregular singularity at T = 0 and whose coefficients have poles with
respect to ε at the origin, see (104). Then, for λ ∈ C∗, we construct a formal transseries
expansion of the form

Ŷ (T, z, ε) =
∑
h≥0

exp(−λh
T )

h!
Ŷh(T, z, ε)

solution of the problem (104), (105), where each Ŷh(T, z, ε) =
∑

m≥0 Yh,m(z, ε)Tm/m! is a formal
series in T with coefficients Yh,m(z, ε) which are holomorphic on a punctured polydisc D(0, δ)×
(D(0, ε0) \ {0}). We show that the Borel transform of each Ŷh(T, z, ε) with respect to T , defined
by Vh(τ, z, ε) =

∑
m≥0 Yh,m(z, ε)τm/(m!2) satisfies an integro-differential Cauchy problem with

rational coefficients in τ , holomorphic with respect to (τ, z) near the origin and meromorphic
in ε with a pole at zero, see (111), (112). For well chosen λ and suitable initial data, we show
that each Vh(τ, z, ε) defines a holomorphic function near the origin with respect to (τ, z) and on
a punctured disc with respect to ε and can be analytically continued to functions Vh,i(τ, z, ε)
defined on the products Si×D(0, δ)×Ei where Si, 0 ≤ i ≤ ν − 1, are suitable open sectors with
small opening and infinite radius. Moreover, the functions Vh,i(τ, z, ε) have exponential growth
rate with respect to (τ, ε), namely there exist A,B,K > 0 such that

(4) sup
z∈D(0,δ)

|Vh,i(τ, z, ε)| ≤ Ah!BheK|τ |/|ε|

for all (τ, z, ε) in their domain of definition and all h ≥ 0 (Proposition 21). In order to get these
estimates, we use the Banach spaces depending on two parameters β ∈ N, and ε with norms ||.||β,ε
of functions v(τ) bounded by exp(Kβ|τ |/|ε|) for some bounded sequence Kβ already introduced
in [31]. If one expands the functions Vh,i(τ, z, ε) =

∑
β≥0 vh,i,β(τ, ε)zβ/β! with respect to z, we

show that the generating function
∑

h≥0,β≥0 ||vh,i,β(τ, ε)||β,εuhxβ/(h!β!) can be majorized by a
series Wi(u, x) which satisfies a Cauchy problem of Kowalevski type (128), (129) and is therefore
convergent near the origin in C2.
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We construct a sequence of actual functions Yh,i(T, z, ε), h ≥ 0, 0 ≤ i ≤ ν − 1, as Laplace

transform of the functions Vh,i(τ, z, ε) with respect to τ along a halfline Li = R+e
√
−1γ ⊂ Si∪{0}.

We show that the functions Xh,i(t, z, ε) = Yh,i(εt, z, ε) are holomorphic functions on the domains
T ×D(0, δ)× Ei and that the functions Gh,i(ε) := Xh,i+1(t, z, ε)−Xh,i(t, z, ε) are exponentially
flat as ε tends to 0 on Ei+1 ∩ Ei as O(T × D(0, δ))−valued functions. In the proof, we use,
as in [31], a deformation of the integration’s path in Xh,i and the estimates (4). Using the
Ramis-Sibuya theorem (Theorem (RS) in Proposition 22), we deduce that each Xh,i(t, z, ε) is

the 1−sum of a formal series Ĝh(ε) ∈ O(T ×D(0, δ))[[ε]] on Ei, for 0 ≤ i ≤ ν − 1 (Proposition
22). We notice that the functions X0,i(t, z, ε) actually coincide with the functions Xi(t, z, ε)
mentioned above solving the problem (1), (2). We deduce that, for a suitable choice of λ, the
function

Z0(t, z, ε) =
∑
h≥0

exp(−λh
εt )

h!
Xh,0(t, z, ε)

solves the equation (1) on the domain T ×D(0, δ)× (E0 ∩ E1).
In the second part of the proof, we establish the connection formula X0,1(t, z, ε) = Z0(t, z, ε)

which is exactly the Stokes relation (3) on T ×D(0, δ)× (E0∩E1) (Proposition 24). The strategy
we follow consists in expressing both functions X0,1 and Z0 as Laplace transforms of objects that
are no longer functions in general but distributions supported on R+ which are called staircase
distributions in the terminology of [10]. We stress the fact such representations of transseries
expansions as generalized Laplace transforms were introduced for the first time by O. Costin
in the paper [10]. Notice that similar arguments have been used in the work [30] to study the
Stokes phenomenon for sectorial holomorphic solutions to linear integro-differential equations
with irregular singularity.

In Lemma 15, we show that Z0 can be written as a generalized Laplace transform in the
direction arg(λ) of a staircase distribution V(r, z, ε) =

∑
β≥0 Vβ(r, ε)zβ/β! ∈ D′(σ, ε, δ) which is

a convergent series in z on D(0, δ) with coefficients Vβ(r, ε) in some Banach spaces of staircase
distributions D′β,σ,ε on R+ depending on the parameters β and ε (see Definition 2). We observe
that the distribution V(r, z, ε) solves moreover an integro-differential Cauchy problem with ra-
tional coefficients in r, holomorphic with respect to z near the origin and meromorphic with
respect to ε at zero, see (214), (215). The idea of proof consists in showing that each function
Xh,0(t, z, ε) can be expressed as a Laplace transform in a sequence of directions ζn tending to
arg(λ) of a sequence of staircase distributions Vh,n(r, z, ε) (which are actually convergent series
in z with coefficients that are C∞ functions in r on R+ with exponential growth). Moreover,
each distribution Vh,n(r, z, ε) solves an integro-differential Cauchy problem (179), (180) whose
coefficients tend to the coefficients of an integro-differential equation (181), (182), as n tends
to ∞, having a unique staircase distribution solution Vh,∞(r, z, ε). Under the hypothesis that
the initial data (180) converge to (182) as n → +∞, we show that the sequence Vh,n(r, z, ε)
converges to Vh,∞(r, z, ε) in the Banach space D′(σ, ε, δ) with precise norm estimates with re-
spect to h and n (Lemma 13). In order to show this convergence, we use a majorazing series
method together with a version of the classical Cauchy Kowalevski theorem (Proposition 9) in
some spaces of analytic functions near the origin in C2 with dependence on initial conditions
and coefficients applied to the auxiliary problem (201), (203). Using a continuity property of
the Laplace transform (85), we show that each function Xh,0(t, z, ε) can be actually expressed
as the Laplace transform of Vh,∞(r, z, ε) in the direction arg(λ) and finally that Z0 itself is the
Laplace transform of some staircase distribution V(r, z, ε) solving (214), (215).

On the other hand, in Lemma 18, under suitable conditions on ϕ1,j(t, ε), 0 ≤ j ≤ S − 1,
we can also write X0,1(t, z, ε) as a generalized Laplace transform in the direction arg(λ) of the
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staircase distribution mentioned above V(r, z, ε) solving (214), (215). Therefore, the equality
X0,1(t, z, ε) = Z0(t, z, ε) holds on T × D(0, δ) × (E0 ∩ E1). The method of proof consists again
in showing that X0,1(t, z, ε) can be written as Laplace transform in a sequence of directions ξn
tending to arg(λ) of a sequence of staircase distributions Vn(r, z, ε) (which are actually conver-
gent series in z with coefficients that are C∞ functions in r on R+ with exponential growth).
Moreover, each distribution Vn(r, z, ε) solves an integro-differential Cauchy problem (226), (227),
whose coefficients tend to the coefficients of the integro-differential equation (214). Under the
assumption that the initial data (227) converge to the initial data (215), we show that the se-
quence Vn(r, z, ε) converges to the solution of (214), (215) (i.e V(r, z, ε)) in the Banach space
D′(σ, ε, δ), as n → +∞, see Lemma 16. This convergence result is obtained again by using a
majorazing series technique which reduces the problem to the study of some linear differential
equation (232), (233) whose coefficients and initial data tend to zero as n → +∞. Finally,
by continuity of the Laplace transform, X0,1(t, z, ε) can be written as the Laplace transform of
V(r, z, ε) in direction arg(λ).

After Theorem 1, we give an application to the construction of solutions to some specific
singular linear partial differential equations in C3 having logarithmic singularities at the points
(λk/t, t, z), for k ∈ N \ {0}. We show that under the hypothesis that the coefficients bs,k0,k1 are

polynomials in ε, the Borel transform B(X̂)(s) turns out to solves the linear partial differential
equation (260). We would like to mention that there exists a huge litterature on the study of
complex singularities and analytic continuation of solutions to linear partial differential equations
starting from the fundamental contributions of J. Leray in [26]. Several authors have considered
Cauchy problems a(x,D)u(x) = 0, where a(x,D) is a differential operator of some order m ≥ 1,
for initial data ∂hx0u|x0=0 = wh, 0 ≤ h < m. Under specific hypotheses on the symbol a(x, ξ),
precise descriptions of the solutions of these problems are given near the singular locus of the
initial data wh. For meromorphic initial data, we may refer to [21], [36], [37] and for more
general ramified multivalued initial data, we may cite [22], [23], [41], [42], [43].

The layout of this work is as follows.
In Section 2, we introduce Banach spaces of formal series whose coefficients belong to spaces of
staircase distributions and we study continuity properties for the actions of multiplication by
C∞ functions and integro-differential operators on these spaces. In this section, we also exhibit
a Cauchy Kowalevski theorem for linear partial differential problems in some space of analytic
functions near the origin in C2 with dependence of their solutions on the coefficients and initial
data which will be useful to show the connection formula (174) stated in Section 5.
In Section 3, we recall the definition of a Laplace transform of a staircase distribution as in-
troduced in [10] and we give useful commutation formulas with respect to multiplication by
polynomials, exponential functions and derivation.
In Section 4, we construct formal and analytic transseries solutions to the singularly perturbed
partial differential equation with irregular singularity (1).
In Section 5, we establish the crucial connection formula relying the analytic transseries solution
Z0(t, z, ε) and the solution X0,1(t, z, ε) of (1). Finally, we state the main result of the paper
which asserts that the Borel transform B(X̂)(s) in the perturbation parameter ε of the formal
solution X̂(t, z, ε) of (1) can be analytically continued along any path in the punctured sector
Sκ0,κ1 \ ∪h≥1{λh/t} and has logarithmic growth as s tends to λh/t in a sector, for all h ≥ 1.
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2 Banach spaces of formal series with coefficients in spaces of
staircase distributions. A Cauchy problem in spaces of ana-
lytic functions

2.1 Weighted Banach spaces of distributions

We define D(R+) to be the space of complex valued C∞−functions with compact support in
R+, where R+ is the set of the positive real numbers x > 0. We also denote by D′(R+) the
space of distributions on R+. For f ∈ D′(R+), we write f (k) the k−derivative of f in the sense
of distribution, for k ≥ 0, with the convention f (0) = f .

Definition 1 A distribution f ∈ D′(R+) is called staircase if f can be written in the form

(5) f =
∞∑
k=0

(∆k(f))(k),

for unique integrable functions ∆k(f) ∈ L1(R+) such that the support supp(∆k(f)) of ∆k(f) is
in [k, k + 1] for all k ≥ 0.

Remark: Given a compact set K ∈ R+, a general distribution Λ ∈ D′(R+) can always be
written as a k−derivative of a continuous function on R+ restricted to the test functions with
support in K, where k depends on K, see [39].

Definition 2 Let σ > 0 be a real number, b > 1 an integer and let rb(β) =
∑β

n=0 1/(n+ 1)b for
all integers β ≥ 0. Let E be an open sector centered at 0 and let ε ∈ E. We denote by Lβ,σ,ε the
vector space of all locally integrable functions f ∈ L1

loc(R+) such that

||f(r)||β,σ,ε :=

∫ ∞
0
|f(τ)| exp

(
− σ

|ε|
rb(β)τ

)
dτ

is finite. We denote by D′β,σ,ε the vector space of staircase distributions f =
∑∞

k=0(∆k(f))(k)

such that

||f ||β,σ,ε,d =
+∞∑
k=0

(
σ

|ε|
rb(β))k||∆k(f)||β,σ,ε

is finite.

Remark: Let ε, σ, β such that |ε| < σrb(β). If f ∈ D′β,σ,ε, then f ∈ D′β′,σ,ε for all β′ ≥ β and
we have that h 7→ ||f ||h,σ,ε,d is a decreasing sequence on [β,+∞). Likewise, if f ∈ D′β,σ̃,ε, then
f ∈ D′β,σ,ε for all σ ≥ σ̃ and we have that σ 7→ ||f ||β,σ,ε,d is a decreasing sequence on [σ̃,+∞).

Let H be the Heaviside one step function defined by H(r) = 1, if r ≥ 0 and H(r) = 0, if
r < 0. Let P the operator defined on distributions T ∈ D′(R+) by PT = H ∗ T . For a subset
A ⊂ R, we denote by 1A the function which is equal to 1 on A and 0 elsewhere.

The proofs of the following Lemma 1 and 2 and Propositions 1,2,3 and Corollary 1 are given
in the appendix of [24], see also [10].

Lemma 1 Let k ≥ 0 and f = F (k) ∈ D′(R+), where F ∈ L1(R+) and supp(F ) ⊂ [k,+∞).
Then f is a staircase distribution and the decomposition of f has the following terms ∆0 =
∆1 = . . . = ∆k−1 = 0, ∆k = F1[k,k+1] and for n ≥ 1, ∆k+n = Gn1[k+n,k+n+1] where Gn =
P(Gn−11[k+n,+∞)) and G0 = F .
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Lemma 2 Let f be as in lemma 1 and ε, σ, β such that |ε| < σrb(β). Then, we have

||∆k+n||β,σ,ε ≤ (
σ

|ε|
rb(β))−n||F ||β,σ,ε,

if n = 0, 1, 2 and for n ≥ 3,

||∆k+n||β,σ,ε ≤ e
(2−n) σ|ε| rb(β) nn−1

(n− 1)!
||F ||β,σ,ε.

Proposition 1 Let f ∈ Lβ,σ/2,ε and ε, σ, β such that |ε| < σrb(β)/2. Then f belongs to
D′β,σ,ε and the decomposition (5) of f has the following terms ∆n = Gn1[n,n+1] with Gn =
P(Gn−11[n,+∞)) and G0 = f , for n ≥ 0. Moreover, there exists a universal constant C1 > 0
such that ||f ||β,σ,ε,d ≤ C1||f ||β,σ/2,ε.

Proposition 2 The set D(R+) of C∞−functions with compact support in R+ is dense in D′β,σ,ε
for all β ≥ 0, σ > 0 and ε ∈ E.

Proposition 3 Let ε, σ, β such that |ε| < σrb(β). For all f, f̃ ∈ D′β,σ,ε, we have f ∗ f̃ ∈ D′β,σ,ε.
Moreover, there exists a universal constant C2 > 0 such that

||f ∗ f̃ ||β,σ,ε,d ≤ C2||f ||β,σ,ε,d||f̃ ||β,σ,ε,d,

for all f, f̃ ∈ D′β,σ,ε.

In the paper, for all integers k ≥ 1, we will denote ∂−kr f(r) the convolution H∗k ∗ f for all
f ∈ D′β,σ,ε where H∗k stands for the convolution product of H with itself k − 1 times for k ≥ 2

and with the convention that H∗1 = H. From the propositions 1 and 3, we deduce that

Corollary 1 Let ε, σ, β be such that |ε| < σrb(β) and let k ≥ 1 be an integer. For all f ∈ D′β,σ,ε,
we have ∂−kr f(r) ∈ D′β,σ,ε. Moreover there exists a universal constant C3 > 0 such that

||∂−kr f(r)||β,σ,ε,d ≤ C3(
|ε|

σrb(β)
)k||f(r)||β,σ,ε,d

for all f ∈ D′β,σ,ε.

In the next proposition, we study norm estimates for the multiplication by bounded analytic
functions.

Proposition 4 Let σ and β ≥ 0 such that

(6)
3

2

σ

|ε|
rb(β)e

1− σ
|ε| rb(β)

< 1 , |ε| < σrb(β)

and let h be a C∞−function on R+ such that there exist constants Ch > 0, µ > 0 and ρ >
|ε|/(σrb(β)) such that

(7) |h(q)(r)| ≤ Ch
q!

(ρ(r + µ))(q+1)

for all r ∈ R+. Then, for all f ∈ D′β,σ,ε, we have h(r)f(r) ∈ D′β,σ,ε. Moreover, there exists a
constant C4 > 0 (depending on µ, ρ) such that

(8) ||h(r)f(r)||β,σ,ε,d ≤ C4Ch||f(r)||β,σ,ε,d

for all f ∈ D′β,σ,ε.
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Proof The proof can be found in [30] and is inspired from Lemma 2.9.1 in [24], but for the sake
of completeness, we sketch it below. Without loss of generality, we can assume that f has the

following form f(t) = ∆
(k)
k (t) where ∆k ∈ L1(R+) with supp(∆k) ∈ [k, k + 1], for k ≥ 1. Put

gk,j(t) = h(k−j)(t)∆k(t). Then, supp(gk,j(t)) ⊂ [k, k + 1].
From the Leibniz formula, we get the identity

h(t)∆
(k)
k (t) =

k∑
j=0

k!

j!(k − j)!
g

(j)
k,j(t).

On the other hand, one can rewrite g
(j)
k,j(t) = (P [k−j]gk,j)

(k), where supp(P [k−j]gk,j) ∈ [k,+∞)

and P [q] denotes the qth iteration of P.

Due to Lemma 1, g
(j)
k,j can be written g

(j)
k,j =

∑+∞
l=k (∆̃l,j)

(l), with ∆̃l,j = Gl,j1[l,l+1], Gl,j =

P(Gl−1,j1[l,+∞)) and Gk,j = P [k−j]gk,j .
Therefore we get the following identity

(9) h(t)∆
(k)
k (t) = (h(t)∆k(t))

(k) +

k−1∑
j=0

k!

j!(k − j)!
∆̃

(k)
k,j +

k−1∑
j=0

k!

j!(k − j)!

+∞∑
l=k+1

∆̃
(l)
l,j .

First of all, we have

(10) ||(h(t)∆k(t))
(k)||β,σ,ε,d = (

σrb(β)

|ε|
)k
∫ +∞

0
|h(t)∆k(t)|e−σrb(β)t/|ε|dt

≤ Ch
ρµ

(
σrb(β)

|ε|
)k||∆k(t)||β,σ,ε,

where Ch > 0 is given in (7). From the Lemma 2, we have the estimates

(11) ||∆̃k+n,j ||β,σ,ε ≤ (
|ε|

σrb(β)
)n||P [k−j]gk,j ||β,σ,ε,

||∆̃l,j ||β,σ,ε ≤ e
(2−(l−k)) σ|ε| rb(β) (l − k)l−k−1

(l − k − 1)!
||P [k−j]gk,j ||β,σ,ε

for n = 0, 1, 2 and all l ≥ k + 3. Now, we give estimates for ||P [k−j]gk,j ||β,σ,ε.
Using the Taylor formula with integral remainder and the hypothesis (7), we get

|P [k−j]gk,j(t)| ≤ Ch
(k − j)!

(k − j − 1)!

∫ t

k

(t− s)k−j−1

(ρ(s+ µ))1+(k−j) |∆k(s)|ds.

Hence, from the Fubini theorem and the identity

(12)

∫ +∞

s
e
−σrb(β)|ε| t

(t− s)k−j−1dt = e
−σrb(β)|ε| s

(k − j)!( |ε|
σrb(β)

)(k−j)

we deduce∫ +∞

k
e
−σrb(β)|ε| t|P [k−j]gk,j(t)|dt

≤ Ch(k − j)(k − j)!( |ε|
σrb(β)

)(k−j)
∫ +∞

k
e
−σrb(β)|ε| s |∆k(s)|

(ρ(s+ µ))1+(k−j)ds
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and hence

(13) ||P [k−j]gk,j(t)||β,σ,ε ≤
Ch(k − j)(k − j)!
(ρ(k + µ))1+k−j (

|ε|
σrb(β)

)(k−j)||∆k(s)||β,σ,ε.

From (11) and (13), we obtain

(14)
k−1∑
j=0

k!

j!(k − j)!
||∆̃(k+n)

k+n,j (t)||β,σ,ε,d ≤ ChAk(
σrb(β)

|ε|
)k||∆k(s)||β,σ,ε

for n = 0, 1, 2, all k ≥ 1, where

Ak =
k−1∑
j=0

k!(k − j)
j!(ρ(k + µ))1+k−j (

|ε|
σrb(β)

)(k−j)

Now, we need to estimate Ak. Due to the Stirling formula, k! ∼ kke−k(2πk)1/2 as k tends to
infinity, there exists a universal constant C4,1 > 0 such that

Ak ≤ C4,1
kk

(k + µ)k
1

ρ(k + µ)
(2πk)1/2e−k

k−1∑
j=0

(k − j)((k + µ)σrb(β)
|ε| ρ)j

j!(σrb(β)
|ε| ρ)k

,

for all k ≥ 1. Using the hypothesis σrb(β)ρ/|ε| ≥ 1, we have

k−1∑
j=0

(k − j)(k + µ)j

j!

(σrb(β)
|ε| ρ)j

(σrb(β)
|ε| ρ)k

≤
k−1∑
j=0

(k − j)(k + µ)j

j!
= k

(k + µ)k−1

(k − 1)!
− µ

k−2∑
j=0

(k + µ)j

j!

Using again the Stirling formula, we get a constant C4,µ > 0 (depending on µ) such that

k
(k + µ)k−1

(k − 1)!
≤ C4,µk

1/2ek

for all k ≥ 1. Moreover,

µ
k−2∑
j=0

(k + µ)j

j!
≤ µ

+∞∑
j=0

(k + µ)j

j!
= µek+µ.

Hence,
k−1∑
j=0

(k − j)(k + µ)j

j!

(σrb(β)
|ε| ρ)j

(σrb(β)
|ε| ρ)k

≤ (C4,µk
1/2 + µeµ)ek,

for all k ≥ 1. Finally, we obtain a constant C4,µ,ρ > 0 depending only on ρ, µ such that

(15) Ak ≤ C4,µ,ρ,

for all k ≥ 1. From (11) and (13), we have

(16)

k−1∑
j=0

k!

j!(k − j)!

+∞∑
l=k+3

||∆̃(l)
l,j ||β,σ,ε,d ≤ ChAkÃk(

σrb(β)

|ε|
)k||∆k(s)||β,σ,ε
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where

Ãk =

+∞∑
l=k+3

(
σrb(β)

|ε|
)l−ke

(2−(l−k))
σrb(β)

|ε|
(l − k)(l−k−1)

(l − k − 1)!
=

∞∑
h=3

(
σrb(β)

|ε|
)he

(2−h)
σrb(β)

|ε|
h(h−1)

(h− 1)!

Now, we show that Ãk, k ≥ 1, is a bounded sequence. Again, by the Stirling formula, we
get a universal constant C4,2 > 0 such that

Ãk ≤ C4,2 exp(2
σ

|ε|
rb(β))

+∞∑
h=3

(
σ

|ε|
rb(β))h exp(h(1− σ

|ε|
rb(β)))(

h

h− 1
)h−1 1

(2π(h− 1))1/2

≤ C4,2 exp(2
σ

|ε|
rb(β))

+∞∑
h=3

(
3 σ
|ε|rb(β)

2
exp(1− σ

|ε|
rb(β)))h

From the assumption (6), and the estimates that for all m1,m2 > 0 two real numbers, we have

sup
x≥0

xm1 exp(−m2x) = (
m1

m2
)m1e−m1 ,

we get a constant 0 < δ < 1 such that

(17) Ãk ≤ C4,2
e3

1− δ
(
3 σ
|ε|rb(β)

2
)3 exp(− σ

|ε|
rb(β)) ≤ 36C4,2

23(1− δ)

for all k ≥ 1.

Finally, from the equality (9) and estimates (10), (14), (15), (16) and (17), we get a constant

C4,µ,ρ,1 > 0 depending only on µ, ρ such that ||h(t)∆
(k)
k (t)||β,σ,ε,d ≤ ChC4,µ,ρ,1||∆(k)

k (t)||β,σ,ε,d for
all k ≥ 1. It remains to consider the case k = 0.

When k = 0, let f(t) = ∆0(t) ∈ L1(R+), with supp(∆0) ∈ [0, 1]. By definition, we can write

(18) ||h(t)∆0(t)||β,σ,ε,d = ||h(t)∆0(t)||β,σ,ε

=

∫ 1

0
|h(t)||∆0(t)| exp(−σrb(β)

|ε|
t)dt ≤ Ch

ρµ
||∆0(t)||β,σ,ε =

Ch
ρµ
||∆0(t)||β,σ,ε,d

2

In the next proposition, we study norm estimates for the multiplication by polynomials.

Proposition 5 Let σ and β ≥ 0 such that

(19)
3

2

σ

|ε|
rb(β)e

1− σ
|ε| rb(β)

< 1 , |ε| < σ

and let s1, k2 ≥ 1 be integers. Then, for all f ∈ D′β−k2,σ,ε, we have rs1f(r) ∈ D′β,σ,ε. Moreover,
there exists a constant C5 > 0 (depending on s1,σ) such that

(20) ||rs1f(r)||β,σ,ε,d ≤ C5|ε|s1(β + 1)bs1 ||f(r)||β−k2,σ,ε,d

for all f ∈ D′β−k2,σ,ε.
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Proof The proof is an adaptation of Proposition 4. Without loss of generality, we can assume

that f has the following form f(t) = ∆
(k)
k (t) where ∆k ∈ L1(R+) with supp(∆k) ∈ [k, k+ 1], for

k ≥ 1. We also put h(t) = ts1 . Let gk,j(t) = h(k−j)(t)∆k(t). Then, supp(gk,j(t)) ⊂ [k, k + 1].
From the Leibniz formula, we get the identity

h(t)∆
(k)
k (t) =

k∑
j=0

k!

j!(k − j)!
g

(j)
k,j(t).

On the other hand, one can rewrite g
(j)
k,j(t) = (P [k−j]gk,j)

(k), where supp(P [k−j]gk,j) ∈ [k,+∞)

and P [q] denotes the qth iteration of P.

Due to Lemma 1, g
(j)
k,j can be written g

(j)
k,j =

∑+∞
l=k (∆̃l,j)

(l), with ∆̃l,j = Gl,j1[l,l+1], Gl,j =

P(Gl−1,j1[l,+∞)) and Gk,j = P [k−j]gk,j . Therefore, we get the following identity

(21) h(t)∆
(k)
k (t) = (h(t)∆k(t))

(k) +

k−1∑
j=0

k!

j!(k − j)!
∆̃

(k)
k,j +

k−1∑
j=0

k!

j!(k − j)!

+∞∑
l=k+1

∆̃
(l)
l,j .

1) We first give estimates for ||(h(t)∆k(t))
(k)||β,σ,ε,d. We write

(22) ||(h(t)∆k(t))
(k)||β,σ,ε,d = (

σrb(β)

|ε|
)k
∫ +∞

0
τ s1 |∆k(τ)| exp(− σ

|ε|
rb(β)τ)dτ

= (
σrb(β − k2)

|ε|
)k(

rb(β)

rb(β − k2)
)k

×
∫ k+1

k
τ s1 exp(− σ

|ε|
(rb(β)− rb(β − k2))τ)|∆k(τ)| exp(− σ

|ε|
rb(β − k2)τ)dτ

≤ A(ε, β)(
σrb(β − k2)

|ε|
)k
∫ k+1

k
|∆k(τ)| exp(− σ

|ε|
rb(β − k2)τ)dτ

where

A(ε, β) = sup
k≥1

(
(

rb(β)

rb(β − k2)
)k(k + 1)s1 exp(− σ

|ε|
(rb(β)− rb(β − k2))k)

)
Now, we gives estimates for A(ε, β). We write

(23) (
rb(β)

rb(β − k2)
)k(k + 1)s1 exp(− σ

|ε|
(rb(β)− rb(β − k2))k)

= (k + 1)s1 exp(−k σ
|ε|

(ψ(rb(β))− ψ(rb(β − k2))))

≤ 2s1ks1 exp(−k σ
|ε|

(ψ(rb(β))− ψ(rb(β − k2))))

where ψ(x) = x − |ε|σ log(x), for all k ≥ 1. From the Taylor formula applied to ψ on [rb(β −
k2), rb(β)], we get that

(24) ψ(rb(β))− ψ(rb(β − k2)) ≥ (1− |ε|
σ

)(rb(β)− rb(β − k2)) ≥ (1− |ε|
σ

)
k2

(β + 1)b

for all β ≥ k2. Now, we recall that for all m1,m2 > 0 two real numbers, we have

(25) sup
x≥0

xm1 exp(−m2x) = (
m1

m2
)m1e−m1 .
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From (23), (24) and (25), we deduce that

(26) A(ε, β) ≤ 2s1(
s1e
−1

(1− |ε|σ )k2σ
)s1 |ε|s1(β + 1)bs1

for all β ≥ k2. From (22) and (26), we deduce that

(27) ||(h(t)∆k(t))
(k)||β,σ,ε,d ≤ 2s1(

s1e
−1

(1− |ε|σ )k2σ
)s1 |ε|s1(β + 1)bs1 ||f(t)||β−k2,σ,ε,d

2) We give estimates for ||∆̃l,j ||β,σ,ε, for all 0 ≤ j ≤ k−1, all l ≥ k. From the Lemma 2, we have
the estimates

(28) ||∆̃k+n,j ||β,σ,ε ≤ (
|ε|

σrb(β)
)n||P [k−j]gk,j ||β,σ,ε,

||∆̃l,j ||β,σ,ε ≤ e
(2−(l−k)) σ|ε| rb(β) (l − k)l−k−1

(l − k − 1)!
||P [k−j]gk,j ||β,σ,ε

for n = 0, 1, 2 and all l ≥ k + 3. Now, we give estimates for ||P [k−j]gk,j ||β,σ,ε. Using the Taylor
formula with integral remainder, we have that

|P [k−j]gk,j(t)| ≤
1

(k − j − 1)!

∫ t

k
(t− s)k−j−1|h(k−j)(s)∆k(s)|ds

and from the classical identity∫ +∞

s
exp(− σ

|ε|
rb(β)t)(t− s)k−j−1dt = exp(− σ

|ε|
rb(β)s)

(k − j)!
( σ|ε|rb(β))k−j

we get from the Fubini theorem that

(29) ||P [k−j]gk,j(t)||β,σ,ε =

∫ +∞

k
|P [k−j]gk,j(t)| exp(− σ

|ε|
rb(β)t)dt

≤
∫ +∞

k
(

∫ ∞
s

(t− s)k−j−1

(k − j − 1)!
exp(− σ

|ε|
rb(β)t)dt)|h(k−j)(s)∆k(s)|ds

= (
1

σ
|ε|rb(β)

)k−j(k − j)
∫ ∞
k

exp(− σ

|ε|
rb(β)s)|h(k−j)(s)∆k(s)|ds

Again, we write

(30)

∫ ∞
k

exp(− σ

|ε|
rb(β)s)|h(k−j)(s)∆k(s)|ds

=

∫ ∞
k
|h(k−j)(s)| exp(− σ

|ε|
(rb(β)− rb(β − k2))s)|∆k(s)| exp(− σ

|ε|
rb(β − k2)s)ds

From the expression of h, we have that

(31) |h(k−j)(s)| ≤ s1!ss1/sk−j ≤ s1!ss1/kk−j
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for all s ≥ k, if 1 ≤ k− j ≤ s1, and h(k−j)(s) = 0, if k− j > s1. Using (31) in the right handside
of the equality (30), we deduce from (29) that

(32) ||P [k−j]gk,j(t)||β,σ,ε ≤ s1!
(k − j)
kk−j

(
|ε|

σrb(β)
)k−j

×
∫ k+1

k
ss1 exp(− σ

|ε|
(rb(β)− rb(β − k2))s)|∆k(s)| exp(− σ

|ε|
rb(β − k2)s)ds

if 1 ≤ k − j ≤ s1 and ||P [k−j]gk,j(t)||β,σ,ε = 0 if k − j > s1.

3) We give estimates for
∑k−1

j=0 k!||∆̃(k+n)
k+n,j ||β,σ,ε,d/(j!(k− j)!), for n = 0, 1, 2. From the estimates

(28) and (32), we get that

(33)
k−1∑
j=0

k!

j!(k − j)!
||∆̃(k+n)

k+n,j ||β,σ,ε,d ≤
k−1∑

j≥0,j≥k−s1

k!

j!(k − j)!
s1!

(k − j)
kk−j

(
|ε|

σrb(β)
)k−j

× (
σrb(β)

|ε|
)k
∫ k+1

k
ss1 exp(− σ

|ε|
(rb(β)− rb(β − k2))s)|∆k(s)| exp(− σ

|ε|
rb(β − k2)s)ds.

From (22) and (26), we deduce from (33), that

(34)
k−1∑
j=0

k!

j!(k − j)!
||∆̃(k+n)

k+n,j ||β,σ,ε,d ≤ Ak2
s1(

s1e
−1

(1− |ε|σ )k2σ
)s1 |ε|s1(β + 1)bs1 ||f(t)||β−k2,σ,ε,d

where

Ak =
k−1∑

j=k−s1,j≥0

k!s1!

j!(k − j − 1)!kk−j
(
|ε|

σrb(β)
)k−j

for all k ≥ 1, and n = 0, 1, 2. Now, we show that Ak, k ≥ 1, is a bounded sequence. We have

(35) Ak ≤ s1!
k!

kk
(

s1−1∑
m=0

kk−s1+m

(k − s1 +m)!(s1 −m− 1)!
)

for all k ≥ s1. From the Stirling formula which asserts that k! ∼ kke−k(2πk)1/2 as k → +∞, we
get a universal constant C1 > 0 and a constant C2 > 0 (depending on s1, m) such that

(36)
k!

kk
≤ C1e

−k(2πk)1/2 ,
kk−s1+m

(k − s1 +m)!
≤ C1

k!ek

(k − s1 +m)!(2πk)1/2ks1−m
≤ C2

ek

(2πk)1/2

for all k ≥ 1. From (35), (36), we get a constant C3 > 0 (depending on s1) such that

(37) Ak ≤ C3

for all k ≥ 1.

4) We give estimates for
∑k−1

j=0
k!

j!(k−j)!
∑+∞

l=k+3 ||∆̃
(l)
l,j ||β,σ,ε,d. From the estimates (28) and (32),

we get that

(38)

k−1∑
j=0

k!

j!(k − j)!

+∞∑
l=k+3

||∆̃(l)
l,j ||β,σ,ε,d ≤

k−1∑
j≥0,j≥k−s1

k!

j!(k − j − 1)!

s1!

kk−j
(
|ε|

σrb(β)
)k−j

× (
σrb(β)

|ε|
)k
∫ k+1

k
ss1 exp(− σ

|ε|
(rb(β)− rb(β − k2))s)|∆k(s)| exp(− σ

|ε|
rb(β − k2)s)ds

×
+∞∑
l=k+3

(
σ

|ε|
rb(β))l−k exp((2− (l − k))

σ

|ε|
rb(β))

(l − k)l−k−1

(l − k − 1)!
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Again from (22) and (26), we deduce from (38) that

(39)

k−1∑
j=0

k!

j!(k − j)!

+∞∑
l=k+3

||∆̃(l)
l,j ||β,σ,ε,d ≤ Bk2

s1(
s1e
−1

(1− |ε|σ )k2σ
)s1 |ε|s1(β + 1)bs1 ||f(t)||β−k2,σ,ε,d

where Bk = AkÃk and

Ãk =
+∞∑
l=k+3

(
σ

|ε|
rb(β))l−k exp((2− (l − k))

σ

|ε|
rb(β))

(l − k)l−k−1

(l − k − 1)!

=

+∞∑
h=3

(
σ

|ε|
rb(β))h exp((2− h)

σ

|ε|
rb(β))

hh−1

(h− 1)!

for all k ≥ 1. Now, we remind from (17) that Ãk is a bounded sequence.

Finally, from (17), (21), (27), (34), (37) and (39), we deduce a constant C5 > 0 (depending on
s1,σ) such that

||h(t)∆
(k)
k (t)||β,σ,ε,d ≤ C5|ε|s1(β + 1)bs1 ||∆(k)

k ||β−k2,σ,ε,d
which gives the result. It remains to consider the case k = 0.

When k = 0, let f(t) = ∆0(t) ∈ L1(R+), with supp(∆0) ∈ [0, 1]. By definition, we can write

(40) ||h(t)∆0(t)||β,σ,ε,d = ||h(t)∆0(t)||β,σ,ε

=

∫ 1

0
τ s1 exp(− σ

|ε|
(rb(β)− rb(β − k2))τ)|∆0(τ)| exp(− σ

|ε|
rb(β − k2)τ)dτ.

Using (25), we deduce from (40) that

(41) ||h(t)∆0(t)||β,σ,ε,d ≤ (
s1e
−1

σk2
)s1 |ε|s1(β + 1)bs1

∫ 1

0
|∆0(τ)| exp(− σ

|ε|
rb(β − k2)τ)dτ

= (
s1e
−1

σk2
)s1 |ε|s1(β + 1)bs1 ||f(t)||β−k2,σ,ε,d

Hence there exists a constant C5,1 > 0 (depending on s1,σ) such that

||h(t)f(t)||β,σ,ε,d ≤ C5,1|ε|s1(β + 1)bs1 ||f(t)||β−k2,σ,ε,d,

which yields the result. 2

Proposition 6 Let σ > σ̃ > 0 be real numbers such that

(42)
3

2

σ

|ε|
rb(β)e

1− σ
|ε| rb(β)

< 1 , |ε| < σ̃.

Let s1 ≥ 0 be a non negative integer. Then, for all f ∈ D′β,σ̃,ε, we have rs1f(r) ∈ D′β,σ,ε.
Moreover, there exists a constant C6 > 0 (depending on s1,σ,σ̃) such that

(43) ||rs1f(r)||β,σ,ε,d ≤ C6|ε|s1 ||f(r)||β,σ̃,ε,d

for all f ∈ D′β,σ,ε.
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Proof The line of reasoning will follow the proof of Proposition 5. We start from the identity
(21).

1) We first give estimates for ||(h(t)∆k(t))
(k)||β,σ,ε,d. We write

(44) ||(h(t)∆k(t))
(k)||β,σ,ε,d = (

σrb(β)

|ε|
)k
∫ +∞

0
τ s1 |∆k(τ)| exp(− σ

|ε|
rb(β)τ)dτ

= (
σ̃rb(β)

|ε|
)k(

σ

σ̃
)k
∫ k+1

k
τ s1 exp(−(σ − σ̃)

|ε|
rb(β)τ)|∆k(τ)| exp(− σ̃

|ε|
rb(β)τ)dτ

≤ Ã(ε, β)(
σ̃rb(β)

|ε|
)k
∫ k+1

k
|∆k(τ)| exp(− σ̃

|ε|
rb(β)τ)dτ

where

Ã(ε, β) = sup
k≥1

(
(
σ

σ̃
)k(k + 1)s1 exp(−(σ − σ̃)

|ε|
rb(β)k)

)
Now, we give estimates for Ã(ε, β). We write

(45) (
σ

σ̃
)k(k + 1)s1 exp(−(σ − σ̃)

|ε|
rb(β)k) = (k + 1)s1 exp(−krb(β)

|ε|
(ϕ(σ)− ϕ(σ̃))

≤ 2s1ks1 exp

(
−krb(β)

|ε|
(ϕ(σ)− ϕ(σ̃))

)
where ϕ(x) = x− |ε|

rb(β) log(x), for all k ≥ 1. From the Taylor formula applied to ϕ on [σ̃, σ], we
get that

(46) ϕ(σ)− ϕ(σ̃) ≥ (1− |ε|
σ̃

)(σ − σ̃).

From (45), (46) and (25), we deduce that

(47) Ã(ε, β) ≤ 2s1(
s1e
−1

(1− |ε|σ̃ )(σ − σ̃)
)s1 |ε|s1

From (44) and (47), we get that

(48) ||(h(t)∆k(t))
(k)||β,σ,ε,d ≤ 2s1(

s1e
−1

(1− |ε|σ̃ )(σ − σ̃)
)s1 |ε|s1 ||f(t)||β,σ̃,ε,d

2) We give estimates for ||∆̃l,j ||β,σ,ε, for all 0 ≤ j ≤ k − 1, all l ≥ k. We start from the formula
(28) and (29). We write

(49)

∫ ∞
k

exp(− σ

|ε|
rb(β)s)|h(k−j)(s)∆k(s)|ds

=

∫ ∞
k
|h(k−j)(s)| exp(−(σ − σ̃)

|ε|
rb(β)s)|∆k(s)| exp(− σ̃

|ε|
rb(β)s)ds

We get that

(50) ||P [k−j]gk,j(t)||β,σ,ε

≤ s1!
(k − j)
kk−j

(
|ε|

σrb(β)
)k−j

∫ k+1

k
ss1 exp(−(σ − σ̃)

|ε|
rb(β)s)|∆k(s)| exp(− σ̃

|ε|
rb(β)s)ds
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if 1 ≤ k − j ≤ s1 and ||P [k−j]gk,j(t)||β,σ,ε = 0 if k − j > s1.

3) We give estimates for
∑k−1

j=0 k!||∆̃(k+n)
k+n,j ||β,σ,ε,d/(j!(k− j)!), for n = 0, 1, 2. From the estimates

(28) and (50), we get that

(51)
k−1∑
j=0

k!

j!(k − j)!
||∆̃(k+n)

k+n,j ||β,σ,ε,d ≤
k−1∑

j≥0,j≥k−s1

k!

j!(k − j)!
s1!

(k − j)
kk−j

(
|ε|

σrb(β)
)k−j

× (
σrb(β)

|ε|
)k
∫ k+1

k
ss1 exp(−(σ − σ̃)

|ε|
rb(β)s)|∆k(s)| exp(− σ̃

|ε|
rb(β)s)ds.

From (44) and (47), we deduce from (51), that

(52)
k−1∑
j=0

k!

j!(k − j)!
||∆̃(k+n)

k+n,j ||β,σ,ε,d ≤ Ak2
s1(

s1e
−1

(1− |ε|σ̃ )(σ − σ̃)
)s1 |ε|s1 ||f(t)||β,σ̃,ε,d

where Ak is the bounded sequence given in the proof of Proposition 5.

We give estimates for
∑k−1

j=0
k!

j!(k−j)!
∑+∞

l=k+3 ||∆̃
(l)
l,j ||β,σ,ε,d. From the estimates (28) and (50), we

get that

(53)
k−1∑
j=0

k!

j!(k − j)!

+∞∑
l=k+3

||∆̃(l)
l,j ||β,σ,ε,d ≤

k−1∑
j≥0,j≥k−s1

k!

j!(k − j − 1)!

s1!

kk−j
(
|ε|

σrb(β)
)k−j

× (
σrb(β)

|ε|
)k
∫ k+1

k
ss1 exp(−(σ − σ̃)

|ε|
rb(β)s)|∆k(s)| exp(− σ̃

|ε|
rb(β)s)ds

×
+∞∑
l=k+3

(
σ

|ε|
rb(β))l−k exp((2− (l − k))

σ

|ε|
rb(β))

(l − k)l−k−1

(l − k − 1)!

From (44) and (47), we deduce from (53), that

(54)
k−1∑
j=0

k!

j!(k − j)!

+∞∑
l=k+3

||∆̃(l)
l,j ||β,σ,ε,d ≤ Bk2

s1(
s1e
−1

(1− |ε|σ̃ )(σ − σ̃)
)s1 |ε|s1 ||f(t)||β,σ̃,ε,d

where Bk is the bounded sequence given in the proof of Proposition 5.

Finally, from (17), (21), (37), (48), (52), and (54), we deduce a constant C6 > 0 (depending on
s1,σ,σ̃) such that

||h(t)∆
(k)
k (t)||β,σ,d ≤ C6|ε|s1 ||∆(k)

k ||β,σ̃,ε,d
which gives the result. It remains to consider the case k = 0.

When k = 0, let f(t) = ∆0(t) ∈ L1(R+), with supp(∆0) ∈ [0, 1]. By definition, we can write

(55) ||h(t)∆0(t)||β,σ,ε,d

= ||h(t)∆0(t)||β,σ,ε =

∫ 1

0
τ s1 exp(−(σ − σ̃)

|ε|
rb(β)τ)|∆0(τ)| exp(− σ̃

|ε|
rb(β)τ)dτ.
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Using (25), we deduce from (55) that

(56) ||h(t)∆0(t)||β,σ,ε,d ≤ (
s1e
−1

σ − σ̃
)s1 |ε|s1

∫ 1

0
|∆0(τ)| exp(− σ̃

|ε|
rb(β)τ)dτ

= (
s1e
−1

σ − σ̃
)s1 |ε|s1 ||f(t)||β,σ̃,ε,d

Hence there exists a constant C6,1 > 0 (depending on s1,σ,σ̃) such that

||h(t)f(t)||β,σ,ε,d ≤ C6,1|ε|s1 ||f(t)||β,σ̃,ε,d,

which yields the result. 2

2.2 Banach spaces of formal power series with coefficients in spaces of dis-
tributions

Definition 3 Let δ > 0 be a real number. We denote by D′(σ, ε, δ) the vector space of formal
series v(r, z) =

∑
β≥0 vβ(r)zβ/β! such that vβ(r) ∈ D′β,σ,ε, for all β ≥ 0 and

||v(r, z)||(σ,ε,d,δ) :=
∑
β≥0

||vβ(r)||β,σ,ε,d
δβ

β!

is finite. One can check that the normed space (D′(σ, ε, δ), ||.||(σ,ε,d,δ)) is a Banach space.

In the next proposition, we study some parameter depending linear operators acting on the
space D′(σ, ε, δ).

Proposition 7 Let s1, s2, k1, k2 ≥ 0 be positive integers. Assume that the condition

(57) k2 ≥ bs1

holds. Then, if

(58) |ε| < σ ,
3 σ
|ε|ζ(b)

2
e

1− σ
|ε| < 1,

the operator τ s1∂−k1τ ∂−k2z is a bounded linear operator from the space (D′(σ, ε, δ), ||.||(σ,ε,d,δ)) into
itself. Moreover, there exists a constant C7 > 0 (depending on b,s1,k2,σ), such that

(59) ||rs1∂−k1r ∂−k2z v(r, z)||(σ,ε,d,δ) ≤ |ε|s1+k1C7δ
k2 ||v(r, z)||(σ,ε,d,δ)

for all v ∈ D′(σ, ε, δ).

Proof Let v(r, z) ∈ D′(σ, ε, δ). By definition, we have

(60) ||rs1∂−k1r ∂−k2z v(r, z)||(σ,ε,d,δ) =
∑
β≥k2

||rs1∂−k1r vβ−k2(r)||β,σ,ε,d
δβ

β!
.

From Corollary 1 and Proposition 5, we get a constant C3,5 > 0 (depending on s1,σ) such that

(61) ||rs1∂−k1r ∂−k2z v(r, z)||(σ,ε,d,δ) ≤ C3,5

∑
β≥k2

|ε|s1+k1(β + 1)bs1
(β − k2)!

β!

× ||vβ−k2(r)||β−k2,σ,ε,dδk2
δβ−k2

(β − k2)!
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From the assumptions (57), we get a constant Cb,s1,k2 > 0 (depending on b,s1,k2) such that

(62) (β + 1)bs1
(β − k2)!

β!
≤ Cb,s1,k2 ,

for all β ≥ k2. Finally, from the estimates (61) and (62), we get the inequality (59). 2

In the next proposition, we study linear operators of multiplication by bounded holomorphic
and C∞ functions.

Proposition 8 For all β ≥ 0, let hβ(τ) be a C∞ function with respect to r on R+, such that
there exist A,B, ρ, µ > 0 with

(63) |h(q)
β (r)| ≤ AB−β β!q!

(ρ(r + µ))q+1

for all r ∈ R+. We consider the series

h(r, z) =
∑
β≥0

hβ(r)
zβ

β!
,

which is convergent for all |z| < B, all r ∈ R+. Let 0 < δ < B. Then, if

(64) |ε| < σ , |ε| < ρσ ,
3 σ
|ε|ζ(b)

2
e

1− σ
|ε| < 1,

the linear operator of multiplication by h(r, z) is continuous from (D′(σ, ε, δ), ||.||(σ,ε,δ)) into itself.
Moreover, there exists a constant C8 (depending on µ,ρ,B), such that

(65) ||h(r, z)v(r, z)||(σ,ε,d,δ) ≤ C8A||v(r, z)||(σ,ε,d,δ)

for all v(r, z) ∈ D′(σ, ε, δ) satisfying (64).

Proof Let v(r, z) =
∑

β≥0 vβ(r)zβ/β! ∈ D′(σ, ε, δ). By definition, we have that

(66) ||h(τ, z)v(r, z)||(σ,ε,d,δ) ≤
∑
β≥0

(
∑

β1+β2=β

||hβ1(r)vβ2(r)||β,σ,ε,d
β!

β1!β2!
)
δβ

β!
.

From Proposition 4 and the remark after Definition 2, we deduce that there exists C4 > 0
(depending on µ,ρ) such that

(67) ||hβ1(r)vβ2(r)||β,σ,ε,d ≤ C4AB
−β1β1!||vβ2(r)||β,σ,ε,d ≤ C4AB

−β1β1!||vβ2(r)||β2,σ,ε,d

for all β1, β2 ≥ 0 such that β1 + β2 = β. From (66) and (67), we deduce that

||h(r, z)v(r, z)||(σ,ε,d,δ) ≤ C4A(
∑
β≥0

(
δ

B
)β)||v(r, z)||(σ,ε,d,δ)

which yields (65). 2
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2.3 Cauchy problems in analytic functions spaces with dependence on initial
data

In this section, we recall the well know Cauchy Kowaleski theorem in some spaces of analytic
functions for which the dependence on the coefficients and initial data can be obtained.

The following Banach spaces were used in [29].

Definition 4 Let T,X be real numbers such that T,X > 0. We define a vector space G(T,X) of
holomorphic functions on a neighborhood of the origin in C2. A formal series U(t, x) ∈ C[[t, x]],

U(t, x) =
∑
l,β≥0

ul,β
tl

l!

xβ

β!

belongs to G(T,X), if the series ∑
l,β≥0

|ul,β|
(l + β)!

T lXβ,

converge. We also define a norm on G(T,X) as

||U(t, x)||(T,X) =
∑
l,β≥0

|ul,β|
(l + β)!

T lXβ.

One can easily show that (G(T,X), ||.||(T,X)) is a Banach space.

Remark: Let U(t, x) be in G(T0, X0) for given T0, X0 > 0. Then, U(t, x) also belongs to the
spaces G(T,X) for all T ≤ T0 and X ≤ X0. Moreover, the maps T → ||U(t, x)||(T,X) and
X → ||U(t, x)||(T,X) are increasing functions from [0, T0] (resp. [0, X0]) into R+.

We depart from some preliminary lemma from [29]. In the following, for u(t, x) ∈ C[[t, x]],
we denote by ∂−1

x u(t, x) the formal series
∫ x

0 u(t, τ)dτ .

Lemma 3 Let h0, h1 ∈ N such that h0 ≤ h1. The operator ∂h0t ∂
−h1
x is a bounded linear operator

from (G(T,X), ||.||(T,X)) into itself. Moreover, there exists a universal constant C10 > 0 such
that the estimates

(68) ||∂h0t ∂−h1x U(t, x)||(T,X) ≤ C10T
−h0Xh1 ||U(t, x)||(T,X),

hold for all U(t, x) ∈ G(T,X).

Lemma 4 Let A(t, x) =
∑

l,β≥0 al,βt
lxβ/l!β! be an analytic function on an open polydisc con-

taining D(0, T )×D(0, X) and let U(t, x) be in G(T,X). Then, the product A(t, x)U(t, x) belongs
to G(T,X). Moreover,

(69) ||A(t, x)U(t, x)||(T,X) ≤ |A|(T,X)||U(t, x)||(T,X).

where |A|(T,X) =
∑

l,β≥0 |al,β|T lXβ/l!β!

Proof Let

U(t, x) =
∑
l,β≥0

ul,β
tl

l!

xβ

β!
.
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We have

A(t, x)U(t, x) =
∑
l,β≥0

vl,β
tl

l!

xβ

β!
,

where
vl,β =

∑
l1+l2=l

∑
β1+β2=β

(
al1,β1
l1!β1!

ul2,β2
l2!β2!

β!l!),

for all l, β ≥ 0. By definition, we have

|A|(T,X)||U2(t, x)||(T,X) =
∑
l,β≥0

 ∑
l1+l2=l

∑
β1+β2=β

|al1,β1 ||ul2,β2 |
l1!β1!(l2 + β2)!

T lXβ,

and

||A(t, x)U(t, x)||(T,X) =
∑
l,β≥0

∣∣∣∣∣∣
∑

l1+l2=l

∑
β1+β2=β

al1,β1ul2,β2 l!β!

l1!β1!l2!β2!

∣∣∣∣∣∣ T
lXβ

(l + β)!

On the other side, the next inequalities are well known,

(70)
l!β!

l1!β1!l2!β2!
≤ (l + β)!

(l1 + β1)!(l2 + β2)!
≤ (l + β)!

l1!β1!(l2 + β2)!

for all l1, l2 ≥ 0 such that l1 + l2 = l and β1, β2 ≥ 0 such that β1 + β2 = β.
Finally, from (70), we deduce that ||A(t, x)U(t, x)||(T,X) converges and that the estimates

(69) hold. 2

Lemma 5 Let h1, h2 ∈ N and let U(t, x) be in G(T0, X0) for given T0, X0 > 0. Then, there
exist T,X > 0 small enough (depending on T0, X0) such that the formal series ∂h1t ∂

h2
x U(t, x)

belongs to G(T,X). Moreover, there exists a constant C11 > 0 (depending on h1, h2) such that

(71) ||(∂h1t ∂h2x U)(t, x)||(T,X) ≤ C11T
−h1X−h2 ||U(t, x)||(T0,X0),

for all U(t, x) ∈ G(T0, X0).

Let C1 be a finite subset of N2. For all (l0, l1) ∈ C1, let cl0,l1(t, x) =
∑

l,β≥0 cl0,l1,l,βt
lxβ/l!β!

be analytic functions on some polydisc containing the closed polydisc D̄(0, T0) × D̄(0, X0) for
some T0, X0 > 0. As in Lemma 4, we define

|cl0,l1 |(t, x) =
∑
l,β≥0

|cl0,l1,l,β|tlxβ/l!β!

which converges on D̄(0, T0)×D̄(0, X0). We also consider d(t, x) ∈ G(Td, Xd), for some Td, Xd >
0. The following proposition holds.

Proposition 9 Let S ≥ 1 be an integer. We make the following assumptions. For all (l0, l1) ∈
C1, we have that

(72) S > l1 , S ≥ l0 + l1.

We consider the following Cauchy problem

(73) ∂SxU(t, x) =
∑

(l0,l1)∈C1

cl0,l1(t, x)∂l0t ∂
l1
x U(t, x) + d(t, x)
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for given initial conditions

(74) (∂jxU)(t, 0) = Uj(t) , 0 ≤ j ≤ S − 1,

which are analytic functions on some disc containing the closed disc D̄(0, T0). If Uj(t) =∑
l≥0 Uj,lt

l/l!, we define |Uj |(t) =
∑

l≥0 |Uj,l|tl/l! which converges for all t ∈ D̄(0, T0).
Then, there exist T1 > 0 with 0 < T1 < min(T0, Td) (depending on T0,Td,C1) and X1 > 0

with 0 < X1 < min(X0, Xd) (depending on S, T0, C1, max(l0,l1)∈C1 |cl0,l1 |(T0, X0)) such that the
problem (73), (74) has a unique formal solution U(t, x) ∈ G(T1, X1). Moreover, there exist
constants C12,1, C12,2, C12,3 > 0 (depending on S,T0,X0,C1) such that

(75) ||U(t, x)||(T1,X1) ≤ max
0≤j≤S−1

|Uj |(T0)(C12,1 max
(l0,l1)∈C1

|cl0,l1 |(T0, X0) + C12,2)

+ C12,3||d(t, x)||(Td,Xd)

Proof We denote by P the linear operator from C[[t, x]] into itself defined by

(76) P(H(t, x)) := ∂SxH(t, x)−
∑

(l0,l1)∈C1

cl0,l1(t, x)∂l0t ∂
l1
x H(t, x)

and A denotes the linear map from C[[t, x]] into itself,

(77) A(H(t, x)) :=
∑

(l0,l1)∈C1

cl0,l1(t, x)∂l0t ∂
l1−S
x H(t, x)

for all H(t, x) ∈ C[[t, x]]. By construction, we have that P ◦ ∂−Sx = id−A, where id represents
the identity map H 7→ H from C[[t, x]] into itself.

Now, we show that for any given T1 > 0 such that 0 < T1 ≤ T0, there exists XA,T1 > 0
with 0 < XA,T1 ≤ X0 (depending on S, T1, C1, max(l0,l1)∈C1 |cl0,l1 |(T0, X0)) such that id − A
is an invertible map from G(T1, X) into itself for all 0 < X ≤ XA,T1 . Moreover, the following
inequality

(78) ||(id−A)−1C(t, x)||(T1,X) ≤ 2||C(t, x)||(T1,X)

holds for all C(t, x) ∈ G(T1, X), for any 0 < X ≤ XA,T1 . Indeed, from the assumption (72) and
Lemma 3,4, we get a universal constant C10,1 > 0 such that

(79) ||A(C(t, x))||(T1,X) ≤ C10,1(
∑

(l0,l1)∈C1

|cl0,l1 |(T1, X)T−l01 XS−l1)||C(t, x)||(T1,X)

≤ C10,1 max
(l0,l1)∈C1

|cl0,l1 |(T0, X0)(
∑

(l0,l1)∈C1

T−l01 XS−l1
A,T1 )||C(t, x)||(T1,X)

:= NT1,XA,T1
||C(t, x)||(T1,X)

for all C(t, x) ∈ G(T1, X). Since S > l1, for all (l0, l1) ∈ C1, for a the given T1 > 0 one can
choose XA,T1 small enough such that NT1,XA,T1

≤ 1/2. Therefore, the inequality (78) holds.

Let w(t, x) =
∑S−1

j=0 Uj(t)x
j/j!. From the hypothesis (74), we deduce that P(w(t, x)) and

w(t, x) belong to G(T1, X0), for some 0 < T1 < T0 (depending on C1, T0). Indeed, from Lemma
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4,5 we get constants C11,1 > 0, 0 < T1 < T0 (depending on C1, T0) such that

(80) ||P(w(t, x))||(T1,X0) ≤
∑

(l0,l1)∈C1

|cl0,l1 |(T1, X0)(

S−1−l1∑
j=0

||∂l0t Uj+l1(t)||(T1,X0)
Xj

0

j!
)

≤ C11,1

∑
(l0,l1)∈C1

|cl0,l1 |(T1, X0)T−l01 (

S−1−l1∑
j=0

||Uj+l1(t)||(T0,X0)
Xj

0

j!
)

≤ C11,1

∑
(l0,l1)∈C1

|cl0,l1 |(T1, X0)T−l01 (

S−1−l1∑
j=0

|Uj+l1 |(T0)
Xj

0

j!
)

≤ C11,1 max
(l0,l1)∈C1

|cl0,l1 |(T0, X0) max
0≤j≤S−1

|Uj |(T0)
∑

(l0,l1)∈C1

T−l01 (

S−1−l1∑
j=0

Xj
0

j!
)

and

(81) ||w(t, x)||(T1,X0) ≤
S−1∑
j=0

||Uj(t)||(T1,X0)
Xj

0

j!
≤

S−1∑
j=0

|Uj |(T1)
Xj

0

j!
≤ max

0≤j≤S−1
|Uj |(T0)

S−1∑
j=0

Xj
0

j!

Now, for this constructed T1 > 0 satisfying (80), (81) that we choose in such a way that T1 < Td
also holds, we select X1 > 0 such that 0 < X1 < min(XA,T1 , Xd). From the estimates (80),
(81) and the remark after Definition 4, we deduce that P(w(t, x)), w(t, x) and d(t, x) belong to
G(T1, X1). From (78), we deduce the existence of a unique H(t, x) ∈ G(T1, X1) such that

(P ◦ ∂−Sx )H(t, x) = −P(w(t, x)) + d(t, x)

Now, we put U(t, x) = ∂−Sx H(t, x) + w(t, x). By Lemma 3, we deduce that U(t, x) ∈ G(T1, X1)
and solves the problem (73), (74). Moreover, from (78), (80) and (81), we get constants
C12,1, C12,2, C12,3 > 0 (depending on S,T0,X0,C1) such that (75) holds, which yields the re-
sult. 2

3 Laplace transform on the spaces D′(σ, ε, δ)
We first introduce the definition of Laplace transform of a staircase distribution.

Proposition 10 1) Let β ≥ 0 be an integer, σ > 0 be a real number and ε ∈ E. Let

f(r) =

+∞∑
k=0

(∆k(r))
(k) ∈ D′β,σ,ε

and choose θ ∈ [−π, π). Then, there exist ρθ > 0, ρ > 0 such that the function

(82) Lθ(f)(t) =
+∞∑
k=0

(
eiθ

t
)k+1

∫ ∞
0

∆k(f)(r) exp(−re
iθ

t
)dr

is holomorphic on the sector Sθ,ρθ,|ε|ρ = {t ∈ C∗/|θ − arg(t)| < ρθ, |t| < |ε|ρ}, for all ε ∈ E.
Moreover, for all compacts K ⊂ Sθ,ρθ,|ε|ρ, there exists CK > 0 (depending on K and σ) such
that

(83) |Lθ(f)(t)| ≤ CK ||f ||β,σ,ε,d
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for all t ∈ K.
2) Let δ > 0 and let f(r, z) =

∑
β≥0 fβ(r)zβ/β! ∈ D′(σ, ε, δ). We define the Laplace transform

of f(r, z) in direction θ ∈ [−π, π) to be the function

(84) Lθ(f(r, z))(t) =
∑
β≥0

Lθ(fβ)(t)zβ/β!

which defines a holomorphic function on Sθ,ρθ,|ε|ρ × D(0, δ), for some ρθ > 0, ρ > 0, for all
ε ∈ E. Moreover, for all compacts K ⊂ Sθ,ρθ,|ε|ρ, there exists CK > 0 (depending on K and σ)
such that

(85) |Lθ(f(r, z))(t)| ≤ CK ||f(r, z)||(σ,ε,d,δ)

for all (t, z) ∈ K ×D(0, δ).

Proof We prove the part 1). The second part 2) is a direct application of 1). We have that

(86) |Lθ(f)(t)|

≤
+∞∑
k=0

1

|t|k+1

∫ +∞

0
|∆k(f)(r)| exp(−σrb(β)

|ε|
r)× exp

(
−r(cos(θ − arg(t))

|t|
− σ

|ε|
rb(β))

)
dr

We choose δ1 > 0 and ρθ > 0 such that cos(θ − arg(t)) > δ1 for all t ∈ Sθ,ρθ,|ε|ρ. Moreover, we
choose 0 < δ2 < δ1 and ρ > 0 such that

|t| < |ε|δ1 − δ2

σrb(β)
,
|ε|e−δ2/|t|

|t|σrb(β)
< 1

for all t ∈ Sθ,ρθ,|ε|ρ. Let k ≥ 0 an integer, for r ∈ [k, k + 1], we get that

exp

(
−r(cos(θ − arg(t))

|t|
− σ

|ε|
rb(β))

)
≤ exp(−kδ2

|t|
)

We deduce that for k = 0,

(87)
1

|t|

∫ +∞

0
|∆0(f)(r)| exp(−σrb(β)

|ε|
r)× exp

(
−r(cos(θ − arg(t))

|t|
− σ

|ε|
rb(β))

)
dr

≤ 1

|t|
||∆0(f)(r)||β,σ,ε

and for k ≥ 1,

(88)
1

|t|k+1

∫ +∞

0
|∆k(f)(r)| exp(−σrb(β)

|ε|
r)× exp

(
−r(cos(θ − arg(t))

|t|
− σ

|ε|
rb(β))

)
dr

≤ 1

|t|
(
|ε|e−δ2/|t|

|t|σrb(β)
)k(

σ

|ε|
rb(β))k||∆k(f)(r)||β,σ,ε ≤

|ε|e−δ2/|t|

|t|2σrb(β)
(
σ

|ε|
rb(β))k||∆k(f)(r)||β,σ,ε

From the estimates (87) and (88) we get the inequality (83). 2

In the next proposition, we show that if f is a function, then the Laplace transform of f
introduced in Proposition 10 coincides with the classical one.
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Proposition 11 Let f(r) ∈ Lβ,σ/2,ε. Then, from Proposition 1, we know that f ∈ D′β,σ,ε. The
Laplace transform Lθ(f)(t) coincides with the classical Laplace transform of f in the direction
θ defined by

Tθ(f)(t) =
eiθ

t

∫ +∞

0
f(r) exp(−re

iθ

t
)dr

for all t ∈ Sθ,ρθ,|ε|ρ.

Proof From the proposition 1, the staircase decomposition of f =
∑

k≥0(∆k(f))(k) has the
following form ∆k(r) = Gk(r)1[k,k+1], with Gk = P(Gk−11[k,+∞)) and G0(r) = f(r), for all
k ≥ 0. We have to compute the integrals

Ak =
(eiθ)k+1

tk+1

∫ k+1

k
∆k(r) exp(−re

iθ

t
)dr

for all k ≥ 0. For k = 0, we have that

A0 =
eiθ

t

∫ 1

0
f(r) exp(−re

iθ

t
)dr

For k = 1, by one integration by parts, we get that

A1 = −e
iθ

t

[
G1(r) exp(−re

iθ

t
)

]2

1

+
eiθ

t

∫ 2

1
f(r) exp(−re

iθ

t
)dr

and using successive integrations by parts, we get that

Ak =
k∑

m=1

−(
eiθ

t
)m
[
Gm(r) exp(−re

iθ

t
)

]k+1

k

+
eiθ

t

∫ k+1

k
f(r) exp(−re

iθ

t
)dr

for all k ≥ 1. On the other hand, from the hypothesis that f(r) ∈ Lβ,σ/2,ε and from the fact
that Gm(r) = 0, for all r ≤ m, we have that the next telescopic sum

+∞∑
k=1

−(
eiθ

t
)m
[
Gm(r) exp(−re

iθ

t
)

]k+1

k

is convergent and equal to zero, for all m ≥ 1. Finally, we deduce that
∑

k≥0Ak = Tθ(f)(t). 2

In the next proposition, we describe the action of multiplication by a polynomial and deriva-
tion on the Laplace transform.

Proposition 12 Let f(r) ∈ D′β,σ,ε. Then, the following relations

(89) Lθ(eiθ∂−1
r f)(t) = tLθ(f)(t) , Lθ(eiθrf(r))(t) = (t2∂t + t)Lθ(f)(t)

hold for all t ∈ Sθ,ρθ,|ε|ρ. Let s, k0 ≥ 0 be two integers such that s ≥ 2k0. Then, there exist a

finite subset Os,k0 ⊂ N2 such that for all (q, p) ∈ Os,k0, q + p = s − k0 and integers αs,k0q,p ∈ Z,
for (q, p) ∈ Os,k0 (depending on s,k0) such that

(90) ts∂k0t Lθ(f)(t) = Lθ(ei(s−k0)θ
∑

(q,p)∈Os,k0

αs,k0q,p r
q∂−pr f(r))(t)

for all t ∈ Sθ,ρθ,|ε|ρ.
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Proof First of all, we have to check that the relations (89) and (90) hold when f ∈ D(R+). Since
D(R+) is dense in (D′β,σ,ε, ||.||β,σ,ε,d), from the inequality (83) and with the help of Corollary 1
and Proposition 5, we will get that (89) and (90) hold for all f ∈ D′β,σ,ε. Now, let f ∈ D(R+).
The first relation of (89) is obtained by integrating once by parts and the second formula of (89)
is a consequence of the equality

(91) ∂t(
eiθ

t

∫ +∞

0
f(r) exp(−re

iθ

t
)dr)

= −e
iθ

t2

∫ +∞

0
f(r) exp(−re

iθ

t
)dr +

e2iθ

t3

∫ +∞

0
rf(r) exp(−re

iθ

t
)dr

for all t ∈ Sθ,ρθ,|ε|ρ. To get the formula (90), we first show the following relation

(92) ∂t(Lθ(f(r))(t) = Lθ(e−iθ(r∂2
r + ∂r)f(r))(t)

for all t ∈ Sθ,ρθ,|ε|ρ. Indeed, using one integration by parts, we get that

(93) Lθ(e−iθ(r∂2
r + ∂r)f(r))(t) =

eiθ

t2

∫ +∞

0
∂rf(r)r exp(−re

iθ

t
)dr

By a second integration by parts on the right handside of (93) and by comparison with (91), we
get (92). Now, let s, k0 ∈ N be such that s ≥ 2k0. Applying the first relation of (89) and (92)
we get that

(94) ts∂k0t Lθ(f)(t) = Lθ(ei(s−k0)θ∂−sr (r∂2
r + ∂r)

(k0)f(r))(t)

Now, we recall a variant of Lemma 5 and 6 in [31].

Lemma 6 For all k0 ≥ 1, there exist constants ak,k0 ∈ N, k0 ≤ k ≤ 2k0, such that

(95) (r∂2
r + ∂r)

k0u(r) =

2k0∑
k=k0

ak,k0r
k−k0∂kr u(r)

for all C∞ functions u : R+ → C.

Lemma 7 Let a, b, c ≥ 0 be positive integers such that a ≥ b and a ≥ c. We put δ = a+ b− c.
Then, for all C∞ function u : R+ → C, the function ∂−ar (rb∂cru(r)) can be written in the form

∂−ar (rb∂cru(r)) =
∑

(b′,c′)∈Oδ

αb′,c′r
b′∂c

′
r u(r)

where Oδ is a finite subset of Z2 such that for all (b′, c′) ∈ Oδ, b′ − c′ = δ, b′ ≥ 0, c′ ≤ 0, and
αb′,c′ ∈ Z.

Finally, we observe that the relation (90) follows from (94) and Lemma 6, 7. 2

The next proposition can be found in the appendix A of [24], see also [10].

Proposition 13 Let α ≥ 1 and f(r) ∈ D′β,σ,ε with |ε| < σrb(β). Then, for every l ≥ 0, the

expression (f(t − αl)1[αl,+∞))
(l) belongs to D′β,σ,ε. Moreover, there exist a universal constant

A > 0 and B(σ, b, ε) > 0 (depending on σ,b,ε) such that

||(f(t− αl)1[αl,+∞))
(l)||β,σ,ε,d ≤ A(B(σ, b, ε))l||f(r)||β,σ,ε,d

with B(σ, b, ε)→ 0 when ε→ 0.



26

In the forthcoming proposition, we explain the action of multiplication by an exponential
function on the Laplace transform.

Proposition 14 Let α ≥ 1 and f(r) ∈ D′β,σ,ε with |ε| < σrb(β). From the latter proposition, we

know that Fl(r) = (f(r − αl)1[αl,+∞))
(l) belongs to D′β,σ,ε. The following formula

(96) Lθ(Fl)(t) = (
eiθ

t
)l exp(−αle

iθ

t
)Lθ(f)(t)

holds for all t ∈ Sθ,ρθ,|ε|ρ.

Proof Since D(R+) is dense in D′β,σ,ε, it is sufficient to prove that

(97) Lθ(Fl)(t) = (
eiθ

t
)l exp(−αle

iθ

t
)Tθ(f)(t)

for all f ∈ D(R+), all t ∈ Sθ,ρθ,|ε|ρ. Then, we get the inequality (96) by using (83) and the
proposition 13. Now, let f ∈ D(R+). We write

(f(τ − αl)1[αl,+∞))
(l) = ∂−rτ (f(τ − αl)1[αl,+∞))

(l+r)

where r ≥ 0 is an integer chosen such that αl ∈ [l+ r, l+ r+ 1]. From our assumption, we have
that τ 7→ f(τ − αl)1[αl,+∞) belongs to L1(R+) and that supp(f(τ − αl)1[αl,+∞)) ⊂ [l + r,+∞).

By Lemma 1, we deduce that (f(τ − αl)1[αl,+∞))
(l+r) is a staircase distribution

∑
h≥0 ∆̃

(h)
h,l (τ)

where the functions ∆̃h,l(τ) are constructed as follows :

∆̃j,l(τ) = 0 , for 0 ≤ j ≤ l + r − 1 , ∆̃l+r,l(τ) = f(τ − αl)1[αl,+∞)1[l+r,l+r+1]

and for all n ≥ 1, we have ∆̃l+r+n,l(τ) = Gn(τ)1[l+r+n,l+r+n+1] where

Gn(τ) = ∂−1
τ (Gn−1(τ)1[l+r+n,+∞)) , G0 = f(τ − αl)1[αl,+∞).

By definition, we have

Lθ((f(τ − αl)1[αl,+∞))
(l+r))(t) =

∞∑
h=0

(
eiθ

t
)h+1

∫ ∞
0

∆̃h,l(τ) exp(−τe
iθ

t
)dτ

Now, we will compute the integrals Ah,l = ( e
iθ

t )h+1
∫ +∞

0 ∆̃h,l(τ) exp(− τeiθ

t )dτ , for all h ≥ 0. By
construction, we have that Ah,l = 0 for all 0 ≤ h ≤ l + r − 1. For h = l + r, we get

(98) Al+r,l = (
eiθ

t
)l+r+1

∫ l+r+1

αl
f(τ − αl) exp(−τe

iθ

t
)dτ

= (
eiθ

t
)l+r+1 exp(−αle

iθ

t
)

∫ (1−α)l+r+1

0
f(s) exp(−se

iθ

t
)ds.

For h = l + r + 1, by one integration by parts, we get that

(99) Al+r+1,l =

[
−(
eiθ

t
)l+r+1 exp(−τe

iθ

t
)G1(τ)

]l+r+2

l+r+1

+ (
eiθ

t
)l+r+1

∫ l+r+2

l+r+1
f(τ − αl) exp(−τe

iθ

t
)dτ =

[
−(
eiθ

t
)l+r+1 exp(−τe

iθ

t
)G1(τ)

]l+r+2

l+r+1

+ (
eiθ

t
)l+r+1 exp(−αle

iθ

t
)

∫ (1−α)l+r+2

(1−α)l+r+1
f(s) exp(−se

iθ

t
)ds
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For h = l + r + n, with n ≥ 1, by successive integrations by parts, we get that

(100) Al+r+n,l =

n∑
q=1

[
−(
eiθ

t
)l+r+q exp(−τe

iθ

t
)Gq(τ)

]l+r+n+1

l+r+n

+

(
eiθ

t
)l+r+1 exp(−αle

iθ

t
)

∫ (1−α)l+r+n+1

(1−α)l+r+n
f(s) exp(−se

iθ

t
)ds

Since Gq(l + r + q) = 0, for all q ≥ 1, we deduce that the telescopic sum

(101)
∞∑
n=q

[
(
eiθ

t
)l+r+q exp(−τe

iθ

t
)Gq(τ)

]l+r+n+1

l+r+n

is equal to 0. From the formula (98), (99), (100), and (101), we get that

(102) Lθ((f(τ − αl)1[αl,+∞))
(l+r))(t) =

+∞∑
h=0

Ah,l

= (
eiθ

t
)l+r exp(−αle

iθ

t
)
eiθ

t

∫ +∞

0
f(s) exp(−se

iθ

t
)ds.

From the Proposition 12, we have that

(103) Lθ(Fl)(t) = tr(eiθ)−rLθ((f(τ − αl)1[αl,+∞))
(l+r))(t)

Finally, from (102) and (103), we get the equality (97). 2

4 Formal and analytic transseries solutions for a singularly per-
turbed Cauchy problem

4.1 Laplace transform and asymptotic expansions

We recall the definition of Borel summability of formal series with coefficients in a Banach space,
see [2].

Definition 5 A formal series

X̂(t) =

∞∑
j=0

aj
j!
tj ∈ E[[t]]

with coefficients in a Banach space (E, ||.||E) is said to be 1−summable with respect to t in the
direction d ∈ [0, 2π) if

i) there exists ρ ∈ R+ such that the following formal series, called formal Borel transform of
X̂ of order 1

B(X̂)(τ) =
∞∑
j=0

ajτ
j

(j!)2
∈ E[[τ ]],

is absolutely convergent for |τ | < ρ,
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ii) there exists δ > 0 such that the series B(X̂)(τ) can be analytically continued with respect
to τ in a sector Sd,δ = {τ ∈ C∗ : |d − arg(τ)| < δ}. Moreover, there exist C > 0, and K > 0
such that

||B(X̂)(τ)||E ≤ CeK|τ |

for all τ ∈ Sd,δ. We say that B(X̂)(τ) has exponential growth of order 1 on Sd,δ.

If this is so, the vector valued Laplace transform of order 1 of B(X̂)(τ) in the direction d is
defined by

Ld(B(X̂))(t) = t−1

∫
Lγ

B(X̂)(τ)e−(τ/t)dτ,

along a half-line Lγ = R+e
iγ ⊂ Sd,δ ∪ {0}, where γ depends on t and is chosen in such a way

that cos(γ − arg(t)) ≥ δ1 > 0, for some fixed δ1, for all t in a sector

Sd,θ,R = {t ∈ C∗ : |t| < R , |d− arg(t)| < θ/2},

where π < θ < π+ 2δ and 0 < R < δ1/K. The function Ld(B(X̂))(t) is called the 1−sum of the
formal series X̂(t) in the direction d. The function Ld(B(X̂))(t) is a holomorphic and a bounded
function on the sector Sd,θ,R. Moreover, the function Ld(B(X̂))(t) has the formal series X̂(t)
as Gevrey asymptotic expansion of order 1 with respect to t on Sd,θ,R. This means that for all
0 < θ1 < θ, there exist C,M > 0 such that

||Ld(B(X̂))(t)−
n−1∑
p=0

ap
p!
tp||E ≤ CMnn!|t|n

for all n ≥ 1, all t ∈ Sd,θ1,R.

In the next proposition, we recall some well known identities for the Borel transform that
will be useful in the sequel.

Proposition 15 Let X̂(t) =
∑

n≥0 ant
n/n! and Ĝ(t) =

∑
n≥0 bnt

n/n! be formal series in E[[t]].
We have the following equalities as formal series in E[[τ ]]:

(τ∂2
τ + ∂τ )(B(X̂)(τ)) = B(∂tX̂(t))(τ), ∂−1

τ (B(X̂))(τ) = B(tX̂(t))(τ),

τB(X̂)(τ) = B((t2∂t + t)X̂(t))(τ).

4.2 Formal transseries solutions for an auxiliary singular Cauchy problem

Let S ≥ 1 be an integer. Let S be a finite subset of N3 and let

bs,k0,k1(z, ε) =
∑
β≥0

bs,k0,k1,β(ε)zβ/β!

be holomorphic and bounded functions on a polydisc D(0, ρ)×D(0, ε0), for some ρ, ε0 > 0, with
ε0 < 1, for all (s, k0, k1) ∈ S. We consider the following singular Cauchy problems

(104) T 2∂T∂
S
z Ŷ (T, z, ε) + (T + 1)∂Sz Ŷ (T, z, ε) =

∑
(s,k0,k1)∈S

bs,k0,k1(z, ε)εk0−sT s(∂k0T ∂
k1
z Ŷ )(T, z, ε)

for given formal transseries initial conditions

(105) (∂jz Ŷ )(T, 0, ε) =
∑
h≥0

exp(−hλ
T )

h!
ϕ̂h,j(T, ε) , 0 ≤ j ≤ S − 1

where ϕ̂h,j(T, ε) =
∑

m≥0 ϕh,j,m(ε)Tm/m! ∈ C[[T ]], for all ε ∈ E and λ ∈ C∗.
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Proposition 16 The problem (104), (105) has a formal transseries solutions

Ŷ (T, z, ε) =
∑
h≥0

exp(−hλ
T )

h!
Ŷh(T, z, ε),

where the formal series Ŷh(T, z, ε) ∈ C[[T, z]], for all ε ∈ E, all h ≥ 0, satisfy the following
singular Cauchy problems

(106) T 2∂T∂
S
z Ŷh(T, z, ε) + (T + 1 + λh)∂Sz Ŷh(T, z, ε)

=
∑

(s,k0,k1)∈S

bs,k0,k1(z, ε)
(
εk0−sT s (∂k0T ∂

k1
z Ŷh)(T, z, ε)

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

c
k10
q (hλ)qεk0−sT s−(k10+q)∂

k20
T ∂

k1
z Ŷh(T, z, ε)

)
with initial conditions

(107) (∂jz Ŷh)(T, 0, ε) = ϕ̂h,j(T, ε) , 0 ≤ j ≤ S − 1,

for some real numbers c
k10
q , for 1 ≤ q ≤ k1

0 and 1 ≤ k1
0 ≤ k0.

Proof We have that

(108) ∂T (exp(−hλ
T

)Ŷh(T, z, ε)) = exp(−hλ
T

)(
hλ

T 2
Ŷh(T, z, ε) + ∂T Ŷh(T, z, ε)),

and from the Leibniz rule we also have

(109) ∂k0T (exp(−hλ
T

)Ŷh(T, z, ε)) =
∑

k10+k20=k0

k0!

k1
0!k2

0!
∂
k10
T (exp(−hλ

T
))∂

k20
T Ŷh(T, z, ε)

On the other hand, by the Faa Di Bruno formula we have, for all k1
0 ≥ 1, that

(110) ∂
k10
T (exp(−hλ

T
)) =

k10∑
q=1

exp(−λh
T

)
∑

(λ1,··· ,λk10
)∈A

q,k10

k1
0!

k10∏
i=1

((−1)i+1 hλ
T i+1 )λi

λi!

= exp(−hλ
T

)

 k10∑
q=1

c
k10
q

(hλ)q

T k
1
0+q


where Aq,k10 = {(λ1, . . . , λk10) ∈ Nk10/

∑k10
i=1 λi = q,

∑k10
i=1 iλi = k1

0} and c
k10
q ∈ R, for all q =

1, . . . , k1
0.

Using the expressions (108), (109), (110), by plugging the formal expansion Ŷ (T, z, ε) into
the problem (104), (105) and by identification of the coefficients of exp(−hλ

T ) we get that Ŷh
satisfies the problem (106), (107). 2
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4.3 Formal solutions to a sequence of regular Cauchy problems

Proposition 17 We make the assumption that

S > k1 , s ≥ 2k0

for all (s, k0, k1) ∈ S. Then, the problem (106), (107) has a unique formal solution Ŷh(T, z, ε) ∈
C[[T, z]], for all ε ∈ E. Let

Ŷh(T, z, ε) =
∑
m≥0

Yh,m(z, ε)Tm/m!,

where Yh,m(z, ε) ∈ C[[z]], be the formal solution of (106), (107) for all ε ∈ E. We denote by

Vh(τ, z, ε) =
∑
m≥0

Yh,m(z, ε)
τm

(m!)2

the formal Borel transform of Ŷh with respect to T . Then, for all h ≥ 0, Vh(τ, z, ε) satisfies the
problem

(111)

(τ + 1 + λh)∂Sz Vh(τ, z, ε) =
∑

(s,k0,k1)∈S

bs,k0,k1(z, ε)

εk0−s ∑
(r,p)∈O1

s−k0

α1
r,pτ

r∂−pτ ∂k1z Vh(τ, z, ε)

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

c
k10
q (hλ)qεk0−s

∑
(r,p)∈O2

s−k0−q

α2,q
r,pτ

r∂−pτ ∂k1z Vh(τ, z, ε)


with initial data

(112) (∂jzVh)(τ, 0, ε) = vh,j(τ, ε) =
∑
m≥0

ϕh,j,m(ε)
τm

(m!)2
∈ C[[τ ]] , 0 ≤ j ≤ S − 1

where O1
s−k0 is a finite subset of N2 such that (r, p) ∈ O1

s−k0 implies r+ p = s− k0 and O2
s−k0−q

is a finite subset of N2 such that (r, p) ∈ O2
s−k0−q implies r + p = s− k0 − q, and α1

r,p, α
2,q
r,p are

integers.

Proof The proof follows by direct computation on the problem (106), (107), using Proposition
15 and the following two lemma from [31].

Lemma 8 For all k0 ≥ 1, there exist constants ak,k0 ∈ N, k0 ≤ k ≤ 2k0, such that

(113) (τ∂2
τ + ∂τ )k0u(τ) =

2k0∑
k=k0

ak,k0τ
k−k0∂kτ u(τ)

for all holomorphic functions u : Ω→ C on an open set Ω ⊂ C.
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Lemma 9 Let a, b, c ≥ 0 be positive integers such that a ≥ b and a ≥ c. We put δ = a+ b− c.
Then, for all holomorphic functions u : Ω → C, the function ∂−aτ (τ b∂cτu(τ)) can be written in
the form

∂−aτ (τ b∂cτu(τ)) =
∑

(b′,c′)∈Oδ

αb′,c′τ
b′∂c

′
τ u(τ)

where Oδ is a finite subset of Z2 such that for all (b′, c′) ∈ Oδ, b′ − c′ = δ, b′ ≥ 0, c′ ≤ 0, and
αb′,c′ ∈ Z.

2

4.4 An auxiliary Cauchy problem

We denote by Ω1 an open star shaped domain in C (meaning that Ω1 is an open subset of C such
that for all x ∈ Ω1, the segment [0, x] belongs to Ω1). Let Ω2 be an open set in C∗ contained in
the disc D(0, ε0). We denote by Ω = Ω1 ×Ω2. For any open set D ⊂ C, we denote by O(D) the
vector space of holomorphic functions on D.

Definition 6 Let b > 1 a real number and let rb(β) =
∑β

n=0 1/(n + 1)b for all integers β ≥ 0.
Let ε ∈ Ω2 and σ > 0 be a real number. We denote by Eβ,ε,σ,Ω the vector space of all functions
v ∈ O(Ω1) such that

||v(τ)||β,ε,σ,Ω := sup
τ∈Ω1

|v(τ)|(1 +
|τ |2

|ε|2
) exp

(
− σ

2|ε|
rb(β)|τ |

)
is finite.

Proposition 18 We make the assumption that

S > k1 , s ≥ 2k0

for all (s, k0, k1) ∈ S. Moreover, we make the assumption that there exists c′, δ′ > 0 such that

(114) |τ + 1 + hλ| ≥ c′|τ + 1| > δ′ , for all τ ∈ Ω1, all h ∈ N.

For all h ≥ 0, all ε ∈ Ω2, the problem (111) with initial conditions

(∂jzVh)(τ, 0, ε) = vh,j(τ, ε) ∈ O(Ω1) , 0 ≤ j ≤ S − 1

has a unique formal series

Vh(τ, z, ε) =
∑
β≥0

vh,β(τ, ε)
zβ

β!
∈ O(Ω1)[[z]]

where vh,β(τ, ε) satisfies the following recursion

(115) (τ + 1 + hλ)vh,β+S(τ, ε)

=
∑

(s,k0,k1)∈S

∑
β1+β2=β

β!
bs,k0,k1,β1(ε)

β1!
εk0−s(

∑
(r,p)∈O1

s−k0

α1
r,pτ

r∂−pτ
vh,β2+k1(τ, ε)

β2!
)

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

∑
β1+β2=β

β!
bs,k0,k1,β1(ε)

β1!
c
k10
q (hλ)q

× εk0−s(
∑

(r,p)∈O2
s−k0−q

α2,q
r,pτ

r∂−pτ
vh,β2+k1(τ, ε)

β2!
)
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for all τ ∈ Ω1, all ε ∈ Ω2.

Proposition 19 We make the assumption that

S > k1 , s ≥ 2k0

for all (s, k0, k1) ∈ S. Let also the assumption (114) holds. Let us assume that

(116) vh,j(τ, ε) ∈ Ej,ε,σ,Ω , for all h ≥ 0, all 0 ≤ j ≤ S − 1, all ε ∈ Ω2.

Then, we have that vh,β(τ, ε) ∈ Eβ,ε,σ,Ω for all β ≥ 0, all h ≥ 0, all ε ∈ Ω2. We put vh,β(ε) =
||vh,β(τ, ε)||β,ε,σ,Ω, for all h ≥ 0, all β ≥ 0, all ε ∈ Ω2. Then, the following inequalities hold :
there exist two constants C1

18, C
2
18 > 0 (depending on S,σ,S) such that

(117) vh,β+S(ε) ≤
∑

(s,k0,k1)∈S

∑
β1+β2=β

β!
|bs,k0,k1,β1(ε)|

β1!

× C1
18((β + S + 1)b(s−k0) + (β + S + 1)b(s−k0+2))

vh,β2+k1(ε)

β2!

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

∑
β1+β2=β

β!
|bs,k0,k1,β1(ε)|

β1!
|ck

1
0
q |hq|λ|q

× |ε|−qC2
18((β + S + 1)b(s−k0−q) + (β + S + 1)b(s−k0−q+2))

vh,β2+k1(ε)

β2!

for all h ≥ 0, all β ≥ 0.

Proof The proof follows by direct computation using the recursion (115) and the next lemma.
We keep the notations of Proposition 18.

Lemma 10 There exists a constant C18 > 0 (depending on s,σ,S,k0,k1) such that

(118) ||τ r∂−pτ vh,β2+k1(τ, ε)||β+S,ε,σ,Ω

≤ |ε|r+pC18((β + S + 1)b(r+p) + (β + S + 1)b(r+p+2))||vh,β2+k1(τ, ε)||β2+k1,ε,σ,Ω

for all h ≥ 0, all β ≥ 0, 0 ≤ β2 ≤ β, all (r, p) ∈ N2 with r + p ≤ s− k0.

Proof We follow the proof of Lemma 1 from [31]. By definition, we have that ∂−1
τ vh,β2+k1(τ, ε) =∫ τ

0 vh,β2+k1(τ1, ε)dτ1, for all τ ∈ Ω1. Using the parametrization τ1 = h1τ with 0 ≤ h1 ≤ 1, we
get that

∂−1
τ vh,β2+k1(τ, ε) = τ

∫ 1

0
vh,β2+k1(h1τ, ε)M1(h1)dh1

where M1(h1) = 1. More generally, for all p ≥ 2, we have by definition

∂−pτ vh,β2+k1(τ, ε) =

∫ τ

0

∫ τ1

0
· · ·
∫ τp−1

0
vh,β2+k1(τp, ε)dτpdτp−1 · · · dτ1

for all τ ∈ Ω1. Using the parametrization τj = hjτj−1, τ1 = h1τ , with 0 ≤ hj ≤ 1, for 2 ≤ j ≤ p,
we can write

∂−pτ vh,β2+k1(τ, ε) = τp
∫ 1

0
· · ·
∫ 1

0
vh,β2+k1(hp · · ·h1τ, ε)Mp(h1, . . . , hp)dhpdhp−1 · · · dh1
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where Mp(h1, . . . , hp) is a monomial in h1, . . . , hp whose coefficient is equal to 1. Using these
latter expressions, we now write

(119) |τ r∂−pτ vh,β2+k1(τ, ε)|

= |τ r+p
∫ 1

0
· · ·
∫ 1

0
vh,β2+k1(hp · · ·h1τ, ε)(1 +

|hp · · ·h1τ |2

|ε|2
) exp

(
− σ

2|ε|
rb(β2 + k1)|hp · · ·h1τ |

)

×
exp

(
σ

2|ε|rb(β2 + k1)|hp · · ·h1τ |
)

1 + |hp · · ·h1τ |2/|ε|2
Mp(h1, . . . , hp)dhp · · · dh1|.

Therefore

(120) |τ r∂−pτ vh,β2+k1(τ, ε)|(1 +
|τ |2

|ε|2
) exp

(
− σ

2|ε|
rb(β + S)|τ |

)
≤ ||vh,β2+k1(τ, ε)||β2+k1,ε,σ,Ω|τ |r+p(1 +

|τ |2

|ε|2
) exp

(
− σ

2|ε|
(rb(β + S)− rb(β2 + k1))|τ |

)
.

By construction of rb(β) we have that

(121) rb(β + S)− rb(β2 + k1) =

β+S∑
n=β2+k1+1

1

(n+ 1)b
≥ β − β2 + S − k1

(β + S + 1)b
≥ S − k1

(β + S + 1)b

for all β ≥ 0. From (120) and (121), we get that

(122) |τ r∂−pτ vh,β2+k1(τ, ε)|(1 +
|τ |2

|ε|2
) exp

(
− σ

2|ε|
rb(β + S)|τ |

)
≤ ||vh,β2+k1(τ, ε)||β2+k1,ε,σ,Ω|τ |r+p(1 +

|τ |2

|ε|2
) exp

(
− σ

2|ε|
S − k1

(β + S + 1)b
|τ |
)

for all β ≥ 0. From (25), we deduce that

(123) |τ |r+p(1 +
|τ |2

|ε|2
) exp

(
− σ

2|ε|
S − k1

(β + S + 1)b
|τ |
)

≤ |ε|r+p
(

(
2(r + p)e−1

σ(S − k1)
)r+p(β + S + 1)b(r+p) + (

2(r + p+ 2)e−1

σ(S − k1)
)r+p+2(β + S + 1)b(r+p+2)

)
for all τ ∈ Ω1. From the estimates (122) and (123), we deduce the inequality (118) 2

2

Proposition 20 Assume that the conditions (114) and (116) hold. Assume moreover, that

(124) S ≥ b(s− k0 + 2) + k1 , s ≥ 2k0

for all (s, k0, k1) ∈ S and that the following sums converge near the origin in C,

(125) Wj(u) :=
∑
h≥0

sup
ε∈Ω2

||vh,j(τ, ε)||j,ε,σ,Ω
uh

h!
∈ C{u} , 0 ≤ j ≤ S − 1.
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We make also the hypothesis that, for all (s, k0, k1) ∈ S, one can write

(126) bs,k0,k1(z, ε) = εk0 b̃s,k0,k1(z, ε)

where b̃s,k0,k1(z, ε) =
∑

β≥0 b̃s,k0,k1,β(ε)zβ/β! is holomorphic for all ε ∈ D(0, ε0) on D(0, ρ).
Then, the problem (111) with initial data

(∂jzVh)(τ, 0, ε) = vh,j(τ, ε) , 0 ≤ j ≤ S − 1,

has a unique solution Vh(τ, z, ε) which is holomorphic with respect to (τ, z) ∈ Ω1 ×D(0, x1/2),
for all ε ∈ Ω2.

The constant x1 is such that 0 < x1 < ρ and depends on S, u0 (which denotes a common
radius of absolute convergence of the series (125)), S, b, σ, |λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0),

max(s,k0,k1)∈S |b̃|s,k0,k1(x0), where x0 < ρ and |b|s,k0,k1, |b̃|s,k0,k1 are defined below.
Moreover, the following estimates hold : there exists a constant u1 such that 0 < u1 < u0

(depending on u0, S and b,σ) and a constant C19 > 0 (depending on max0≤j≤S−1Wj(u0) (where
Wj are defined above), |λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0), S, u0, x0, S,
b) such that

(127) |Vh(τ, z, ε)| ≤ C19

1− 2|z|
x1

h!(
2

u1
)h(1 +

|τ |2

|ε|2
)−1 exp(

σ

2|ε|
ζ(b)|τ |)

for all (τ, z) ∈ Ω1 ×D(0, x1/2), all ε ∈ Ω2, all h ≥ 0.

Proof We consider the following Cauchy problem

(128) ∂SxW (u, x) =
∑

(s,k0,k1)∈S

C1
18

(
(x∂x + S + 1)b(s−k0)+

(x∂x + S + 1)b(s−k0+2)
)

(|b|s,k0,k1(x)∂k1x W (u, x))

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

C2
18|c

k10
q ||λ|q

×
(

(x∂x + S + 1)b(s−k0−q) + (x∂x + S + 1)b(s−k0−q+2)
)

(|b̃|s,k0,k1(x)(u∂u)q∂k1x W (u, x))

for given initial data

(129) (∂jxW )(u, 0) = Wj(u) =
∑
h≥0

sup
ε∈Ω2

|vh,j(ε)|
uh

h!
∈ C{u} , 0 ≤ j ≤ S − 1

where

|b|s,k0,k1(x) =
∑
β≥0

sup
ε∈D(0,ε0)

|bs,k0,k1,β(ε)|x
β

β!
, |b̃|s,k0,k1(x) =

∑
β≥0

sup
ε∈D(0,ε0)

|b̃s,k0,k1,β(ε)|x
β

β!
,

are convergent series near the origin in C with respect to x. From the assumption (124) and the
fact that b > 1, we also deduce that

S ≥ b(s− k0 − q + 2) + q + k1
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for all (s, k0, k1) ∈ S, all 0 ≤ q ≤ k0. Since the initial data (129) and the coefficients
the equation (128) are analytic near the origin, we get that all the hypotheses of the clas-
sical Cauchy Kowalevski theorem from Proposition 9 are fulfilled. We deduce the existence
of U1 with 0 < U1 < U0, where U0 denotes a common radius of absolute convergence for
the series (129), which depends on U0, S and b, and X1 with 0 < X1 < ρ (depending on
S,U0,S,b,σ,|λ|,max(s,k0,k1)∈S |b|s,k0,k1(X0), max(s,k0,k1)∈S |b̃|s,k0,k1(X0), where X0 < ρ), such that
there exist a unique formal series W (u, x) ∈ G(U1, X1) which solves the problem (128), (129).

Now, let W (u, x) =
∑

h,β≥0wh,β
uh

h!
xβ

β! be its Taylor expansion at (0, 0). Then, by construction
the sequence wh,β satisfies the following equalities:

(130) wh,β+S =
∑

(s,k0,k1)∈S

∑
β1+β2=β

β!
supε∈D(0,ε0) |bs,k0,k1,β1(ε)|

β1!
C1

18

× ((β + S + 1)b(s−k0) + (β + S + 1)b(s−k0+2))
wh,β2+k1

β2!

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

∑
β1+β2=β

β!
supε∈D(0,ε0) |b̃s,k0,k1,β1(ε)|

β1!
|ck

1
0
q |hq|λ|q

× C2
18((β + S + 1)b(s−k0−q) + (β + S + 1)b(s−k0−q+2))

wh,β2+k1

β2!

for all h ≥ 0, all β ≥ 0, with

(131) wh,j = sup
ε∈Ω2

|vh,j(ε)| , for all h ≥ 0, all 0 ≤ j ≤ S − 1.

Using the inequality (117) and the equality (130), with the initial conditions (131), one gets that

(132) sup
ε∈Ω2

|vh,β(ε)| ≤ wh,β

for all h ≥ 0, all β ≥ 0. Using the fact that W (u, x) ∈ G(U1, X1) and the estimates (75), we
deduce from (132) that there exist a constant C19 > 0 (depending on max0≤j≤S−1Wj(U0),|λ|,
max(s,k0,k1)∈S |b|s,k0,k1(X0), max(s,k0,k1)∈S |b̃|s,k0,k1(X0),S,U0,X0,S,b,σ) such that

(133) |vh,β(τ, ε)| ≤ C19(h+ β)!(
1

U1
)h(

1

X1
)β(1 +

|τ |2

|ε|2
)−1 exp(

σ

2|ε|
rb(β)|τ |)

≤ C19h!β!(
2

U1
)h(

2

X1
)β(1 +

|τ |2

|ε|2
)−1 exp(

σ

2|ε|
rb(β)|τ |)

for all τ ∈ Ω1, all ε ∈ Ω2, all h ≥ 0, all β ≥ 0. 2

4.5 Analytic solutions for a sequence of singular Cauchy problems

Assume that the conditions (124) and (126) hold. We consider the following problem

(134) T 2∂T∂
S
z Yh,Sd,E(T, z, ε) + (T + 1 + λh)∂Sz Yh,Sd,E(T, z, ε)

=
∑

(s,k0,k1)∈S

bs,k0,k1(z, ε)
(
εk0−sT s (∂k0T ∂

k1
z Yh,Sd,E)(T, z, ε)

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

c
k10
q (hλ)qεk0−sT s−(k10+q)∂

k20
T ∂

k1
z Yh,Sd,E(T, z, ε)

)
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with initial conditions

(135) (∂jzYh,Sd,E)(T, 0, ε) = ϕh,j,Sd,E(T, ε) , 0 ≤ j ≤ S − 1.

The initial conditions ϕh,j,Sd,E(T, ε), 0 ≤ j ≤ S − 1 are defined as follows. Let Sd be an open
sector centered at 0, with infinite radius and bisecting direction d ∈ [0, 2π), D(0, τ0) be an open
disc centered at 0 with radius τ0 > 0 and E be an open sector centered at 0 contained in the disc
D(0, ε0). We make the assumption that the condition (114) holds for the set Ω1 = (Sd∪D(0, τ0)).
We consider a set of functions vh,j(τ, ε) ∈ Ej,ε,σ,D(0,τ0)×(D(0,ε0)\{0}) for all ε ∈ D(0, ε0) \ {0} such
that

(136) Wj,τ0,ε0(u)

:=
∑
h≥0

sup
ε∈D(0,ε0)\{0}

||vh,j(τ, ε)||j,ε,σ,D(0,τ0)×(D(0,ε0)\{0})
uh

h!
∈ C{u} , 0 ≤ j ≤ S − 1.

We also assume that for all h ≥ 0, all 0 ≤ j ≤ S − 1, vh,j(τ, ε) has an analytic continuation
denoted by vh,j,Sd,E(τ, ε) ∈ Ej,ε,σ,(Sd∪D(0,τ0))×E for all ε ∈ E such that

(137) Wj,Sd,E(u) :=
∑
h≥0

sup
ε∈E
||vh,j,Sd,E(τ, ε)||j,ε,σ,(Sd∪D(0,τ0))×E

uh

h!
∈ C{u} , 0 ≤ j ≤ S − 1.

Let

vh,j(τ, ε) =
∑
m≥0

ϕh,j,m(ε)
τm

(m!)2

be the convergent Taylor expansion of vh,j with respect to τ on D(0, τ0), for all ε ∈ D(0, ε0)\{0}.
We consider the formal series

ϕ̂h,j(T, ε) =
∑
m≥0

ϕh,j,m(ε)
Tm

m!

for all ε ∈ D(0, ε0) \ {0}. We define ϕh,j,Sd,E(T, ε) as the 1−sum (in the sense of Definition 5) of
ϕ̂j,h(T, ε) in the direction d. From the hypotheses, we deduce that T 7→ ϕh,j,Sd,E(T, ε) defines a
holomorphic function for all T ∈ Ud,θ,ι|ε|, for all ε ∈ E , where

Ud,θ,ι|ε| = {T ∈ C∗ : |T | < ι|ε| , |d− arg(T )| < θ/2}

for some θ > π and some constant ι > 0 (independent of ε), for all 0 ≤ j ≤ S − 1.

Proposition 21 Assume that the conditions (114), (116), (124), and (126) hold.
Then, the problem (134), (135) has a solution (T, z) 7→ Yh,Sd,E(T, z, ε) which is holomorphic

and bounded on the set Ud,θ,ι′|ε| ×D(0, x1/4), for some ι′ > 0 (independent of ε), for all ε ∈ E,
where 0 < x1 < ρ depends on S, u0 (which denotes a common radius of absolute convergence
of the series (136), (137)), S, b, σ, |λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0),
where x0 < ρ.

The function Yh,Sd,E(T, z, ε) can be written as the Laplace transform of order 1 in the direction
d (in the sense of Definition 5) of a function Vh,Sd,E(τ, z, ε) which is holomorphic on the domain
(Sd ∪D(0, τ0))×D(0, x1/2)× E and satisfies the estimates:
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There exists a constant u1 such that 0 < u1 < u0 (depending on u0, S and b,σ) and a
constant CΩ(d,E) > 0 (depending on max0≤j≤S−1Wj,Sd,E(u0) (where Wj,Sd,E are defined above),

|λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0), S, u0, x0, S, b) such that

(138) |Vh,Sd,E(τ, z, ε)| ≤
CΩ(d,E)

1− 2|z|
x1

h!(
2

u1
)h(1 +

|τ |2

|ε|2
)−1 exp(

σ

2|ε|
ζ(b)|τ |)

for all (τ, z, ε) ∈ (Sd ∪D(0, τ0))×D(0, x1/2)× E, all h ≥ 0.
Moreover, the function Vh,Sd,E(τ, z, ε) is the analytic continuation of a function Vh(τ, z, ε)

which is holomorphic on the punctured polydisc D(0, τ0) × D(0, x1/2) × (D(0, ε0) \ {0}) and
verifies the following estimates :

There exists a constant CΩτ0,ε0
> 0 (depending on max0≤j≤S−1Wj,τ0,ε0(u0) (where Wj,τ0,ε0

are defined above), |λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0), S, u0, x0, S, b)
such that

(139) |Vh(τ, z, ε)| ≤
CΩτ0,ε0

1− 2|z|
x1

h!(
2

u1
)h(1 +

|τ |2

|ε|2
)−1 exp(

σ

2|ε|
ζ(b)|τ |)

for all τ ∈ D(0, τ0), all z ∈ D(0, x1/2), all ε ∈ D(0, ε0) \ {0}, all h ≥ 0.

Proof From the hypotheses of Proposition 21, we deduce from Proposition 20 applied to the
situation Ω = D(0, τ0) × (D(0, ε0) \ {0}), the existence of a holomorphic function Vh(τ, z, ε)
satisfying the estimates (139), which is the solution of the problem (111) with initial conditions
(∂jzVh)(τ, 0, ε) = vh,j(τ, ε), 0 ≤ j ≤ S− 1, on the domain D(0, τ0)×D(0, x1/2)× (D(0, ε0) \ {0}).
Likewise, from Proposition 20 applied to the situation Ω = (Sd ∪ D(0, τ0)) × E , we get the
existence of a holomorphic function Vh,Sd,E(τ, z, ε) satisfying (138) which is the solution of the

problem (111) with initial conditions (∂jzVh)(τ, 0, ε) = vh,j,Sd,E(τ, ε), 0 ≤ j ≤ S − 1, on the
domain (Sd ∪D(0, τ0))×D(0, x1/2)× E .

With the Proposition 16, we deduce that the formal solution Ŷh(T, z, ε) of the problem
(106), (107), is 1−summable with respect to T in the direction d as series in the Banach space
O(D(0, x1/4)), for all ε ∈ E . We denote by Yh,Sd,E(T, z, ε) its 1−sum which is holomorphic with
respect to T on a domain Ud,θ,ι′|ε|, due to the Definition 5 and the estimates (138). Moreover,
from the algebraic properties of the κ−summability procedure, see [2] section 6.3, we deduce
that Yh,Sd,E(T, z, ε) is a solution of the problem (134), (135). 2

4.6 Summability in a complex parameter

We recall the definition of a good covering.

Definition 7 Let ν ≥ 2 be an integer. For all 0 ≤ i ≤ ν − 1, we consider open sectors Ei
centered at 0, with radius ε0, bisecting direction κi ∈ [0, 2π) and opening π + δi, with δi > 0,
such that Ei ∩ Ei+1 6= ∅, for all 0 ≤ i ≤ ν − 1 (with the convention that Eν = E0) and such that
∪ν−1
i=0 Ei = U \ {0}, where U is some neighborhood of 0 in C. Such a set of sectors {Ei}0≤i≤ν−1 is

called a good covering in C∗.

Definition 8 Let {Ei}0≤i≤ν−1 be a good covering in C∗. Let T be an open sector centered at 0
with radius rT and consider a family of open sectors

Udi,θ,ε0rT := {t ∈ C : |t| < ε0rT , |di − arg(t)| < θ/2},
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where di ∈ [0, 2π), for 0 ≤ i ≤ ν − 1, where θ > π, which satisfy the following properties:

1) For all 0 ≤ i ≤ ν − 1, all h ∈ N, arg(di) 6= arg(−1− λh).
2) For all 0 ≤ i ≤ ν − 1, for all t ∈ T , all ε ∈ Ei, we have that εt ∈ Udi,θ,ε0rT .
3) 3.1) We assume that d0 < arg(λ) < d1. We consider the two closed sectors

Md0 = {τ ∈ C∗/arg(τ) ∈ [d0, arg(λ)]} , Md1 = {τ ∈ C∗/arg(τ) ∈ [arg(λ), d1]}.

We make the assumption that there exist two constants c′, δ′ > 0 with

|τ + 1 + λh| ≥ c′|τ + 1| > δ′

for all τ ∈Md0 ∪Md1 ∪D(0, τ0), all h ≥ 0.
3.2) There exists 0 < δT < π/2 such that arg(λ/(εt)) ∈ (−π/2+δT , π/2−δT ) for all ε ∈ E0∩E1,
all t ∈ T .

We say that the family {{Udi,θ,ε0rT }0≤i≤ν−1, T , λ} is associated to the good covering {Ei}0≤i≤ν−1.

Now, we consider a set of functions ϕh,i,j(T, ε) for 0 ≤ i ≤ ν − 1, 0 ≤ j ≤ S − 1, h ≥ 0,
constructed as follows. For all 0 ≤ i ≤ ν−1, let Sdi be an open sector of infinite radius centered
at 0, with bisecting direction di and with opening ni > θ − π. The numbers θ > π and ni > 0
are chosen in such a way that −1− λh /∈ Sdi , for all 0 ≤ i ≤ ν − 1, all h ≥ 0. Now, we put

(140) ϕh,i,j(T, ε) := ϕh,j,Sdi ,Ei(T, ε)

for all T ∈ Udi,θ,ι|ε|, all ε ∈ Ei, where ϕh,j,Sdi ,Ei(T, ε) is given by the formula (135). Recall how
these functions are constructed : we consider a set of functions

vh,j(τ, ε) ∈ Ej,ε,σ,D(0,τ0)×(D(0,ε0)\{0})

for all ε ∈ D(0, ε0) \ {0} such that

(141) Wj,τ0,ε0(u)

:=
∑
h≥0

sup
ε∈D(0,ε0)\{0}

||vh,j(τ, ε)||j,ε,σ,D(0,τ0)×(D(0,ε0)\{0})
uh

h!
∈ C{u} , 0 ≤ j ≤ S − 1.

We also assume that for all h ≥ 0, all 0 ≤ j ≤ S − 1, vh,j(τ, ε) has an analytic continuation
denoted by vh,j,Sdi ,Ei(τ, ε) ∈ Ej,ε,σ,(Sdi∪D(0,τ0))×Ei for all ε ∈ Ei such that

(142) Wj,Sdi ,Ei(u) :=
∑
h≥0

sup
ε∈Ei
||vh,j,Sdi ,Ei(τ, ε)||j,ε,σ,(Sdi∪D(0,τ0)×Ei

uh

h!
∈ C{u} , 0 ≤ j ≤ S − 1.

Let

vh,j(τ, ε) =
∑
m≥0

ϕh,j,m(ε)
τm

(m!)2

be the convergent Taylor expansion of vh,j with respect to τ on D(0, τ0), for all ε ∈ D(0, ε0)\{0}.
We consider the formal series

ϕ̂h,j(T, ε) =
∑
m≥0

ϕh,j,m(ε)
Tm

m!
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for all ε ∈ D(0, ε0) \ {0}. We define ϕh,j,Sdi ,Ei(T, ε) as the 1−sum (in the sense of Definition
5) of ϕ̂j,h(T, ε) in the direction di. We deduce that T 7→ ϕh,j,Sdi ,Ei(T, ε) defines a holomorphic
function for all T ∈ Udi,θ,ι|ε|, for all ε ∈ Ei, where

Udi,θ,ι|ε| = {T ∈ C∗ : |T | < ι|ε| , |di − arg(T )| < θ/2}

for some θ > π and some constant ι > 0 (independent of ε), for all 0 ≤ j ≤ S − 1.

From Proposition 21, for all 0 ≤ i ≤ ν − 1, we consider the solution Yh,Sdi ,Ei(T, z, ε) of the
problem (134) with initial conditions

(∂jzYh,Sdi ,Ei)(T, 0, ε) = ϕh,i,j(T, ε) , 0 ≤ j ≤ S − 1 , h ≥ 0,

which defines a bounded and holomorphic function on Udi,θ,ι′|ε| ×D(0, x1/4)× Ei.

Proposition 22 The function defined by

Xh,i(t, z, ε) = Yh,Sdi ,Ei(εt, z, ε)

is holomorphic and bounded on (T ∩D(0, ι′′))×D(0, x1/4)×Ei, for all h ≥ 0, all 0 ≤ i ≤ ν − 1,
for some 0 < ι′′ < ι′.

Moreover, the functions Gh,i : ε 7→ Xh,i(t, z, ε) from Ei into the Banach space O((T ∩
D(0, ι′′)) × D(0, x1/4)) are the 1−sums on Ei of a formal series Ĝh(ε) ∈ O((T ∩ D(0, ι′′)) ×
D(0, x1/4))[[ε]]. In other words, for all h ≥ 0, there exists a function gh(s, t, z) which is holo-
morphic on D(0, sh)× (T ∩D(0, ι′′))×D(0, x1/4) which admits for all 0 ≤ i ≤ ν−1, an analytic
continuation gh,i(s, t, z) which is holomorphic on (Gκi ∪D(0, sh))× (T ∩D(0, ι′′))×D(0, x1/4),
where Gκi is an open sector centered at 0, with infinite radius and bisecting direction κi, such
that

(143) Xh,i(t, z, ε) = ε−1

∫
Lκi

gh,i(s, t, z)e
−s/εds

along a half-line Lκi = R+e
iκi ⊂ Gκi ∪ {0}.

Proof The proof is based on a cohomological criterion for summability of formal series with
coefficients in a Banach space, see [2], page 121, which is known as the Ramis-Sibuya theorem
in the literature.

Theorem (RS) Let (E, ||.||E) be a Banach space over C and {Ei}0≤i≤ν−1 be a good covering
in C∗. For all 0 ≤ i ≤ ν − 1, let Gi be a holomorphic function from Ei into the Banach space
(E, ||.||E) and let the cocycle ∆i(ε) = Gi+1(ε)−Gi(ε) be a holomorphic function from the sector
Zi = Ei+1 ∩ Ei into E (with the convention that Eν = E0 and Gν = G0). We make the following
assumptions.

1) The functions Gi(ε) are bounded as ε ∈ Ei tends to the origin in C, for all 0 ≤ i ≤ ν − 1.

2) The functions ∆i(ε) are exponentially flat of order 1 on Zi, for all 0 ≤ i ≤ ν − 1. This means
that there exist constants Ci, Ai > 0 such that

||∆i(ε)||E ≤ Cie−Ai/|ε|

for all ε ∈ Zi, all 0 ≤ i ≤ ν − 1.
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Then, for all 0 ≤ i ≤ ν − 1, the functions Gi(ε) are the 1−sums on Ei of a 1−summable
formal series Ĝ(ε) in ε with coefficients in the Banach space E.

By the Definition 8 and the construction of Yh,Sdi ,Ei(T, z, ε) in the proposition 21, we get
that the function Xh,i(t, z, ε) = Yh,Sdi ,Ei(εt, z, ε) defines a bounded and holomorphic function on
the domain (T ∩D(0, ι′)) ×D(0, x1/4) × Ei, for all h ≥ 0, all 0 ≤ i ≤ ν − 1, where 0 < x1 < ρ
depends on S, u0 > 0 (which denotes a common radius of absolute convergence of the series
(141), (142)), S, b, σ, |λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0), where x0 < ρ.
More precisely, we have that

Lemma 11 1) There exist a constant 0 < ι′′ < ι′, a constant u1 such that 0 < u1 < u0

(depending on u0, S and b,σ), a constant x1 such that 0 < x1 < ρ (depending on S,u0,S,b,σ,|λ|,
max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0), where x0 < ρ) and a constant C̃i > 0
(depending on max0≤j≤S−1Wj,Sdi ,Ei(u0) (where Wj,Sdi ,Ei are defined above), |λ|,
max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0), S, u0, x0, S, b) such that

(144) sup
t∈T ∩D(0,ι′′),z∈D(0,x1/4)

|Xh,i(t, z, ε)| ≤ 2C̃ih!(
2

u1
)h

for all ε ∈ Ei, for all 0 ≤ i ≤ ν − 1, all h ≥ 0.
2) There exist a constant 0 < ι′′ ≤ ι′, a constant u1 such that 0 < u1 < u0 (depend-
ing on u0, S and b,σ), a constant x1 such that 0 < x1 < ρ (depending on S,u0,S,b,σ,|λ|,
max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0), where x0 < ρ), a constant Mi > 0,
a constant Ki > 0 (depending on max0≤j≤S−1Wj,Sdq ,Eq(u0), for q = i, i+ 1 (where Wj,Sdq ,Eq are
defined above), max0≤j≤S−1Wj,τ0,ε0(u0), |λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0),

max(s,k0,k1)∈S |b̃|s,k0,k1(x0), S, u0, x0, S, b) such that

(145) sup
t∈T ∩D(0,ι′′),z∈D(0,x1/4)

|Xh,i+1(t, z, ε)−Xh,i(t, z, ε)| ≤ h!(
2

u1
)h2Kie

−Mi|ε|

for all ε ∈ Ei ∩ Ei+1, for all 0 ≤ i ≤ ν − 1, all h ≥ 0 (where by convention Xh,ν = Xh,0).

Proof 1) Let i be an integer such that 0 ≤ i ≤ ν − 1. From Proposition 21, we can write

(146) Xh,i(t, z, ε) = (εt)−1

∫
Lγi

Vh,Sdi ,Ei(τ, z, ε)e
− τ
εtdτ

where Lγi = R+e
√
−1γi ⊂ Sdi ∪ {0} and Vh,Sdi ,Ei is a holomorphic function on (Sdi ∪D(0, τ0))×

D(0, x1/4) × Ei for which the estimates (138) hold. By construction, the direction γi (which
depends on εt) is chosen in such a way that cos(γi−arg(εt)) ≥ δ1, for all ε ∈ Ei, all t ∈ T ∩D(0, ι′),
for some fixed δ1 > 0. From the estimates (138), we get

(147) |Xh,i(t, z, ε)| ≤ |εt|−1

∫ +∞

0

CΩ(di,Ei)

1− 2|z|
x1

h!(
2

u1
)h(1 +

r2

|ε|2
)−1e

σζ(b)r
2|ε| e

− r
|ε||t| cos(γi−arg(εt))

dr

≤ |εt|−1

∫ +∞

0

CΩ(di,Ei)

1− 2|z|
x1

h!(
2

u1
)he

(
σζ(b)

2
− δ1|t| )

r
|ε|dr

=
CΩ(di,Ei)

1− 2|z|
x1

h!(
2

u1
)h

1

δ1 − σζ(b)
2 |t|

≤
CΩ(di,Ei)

δ2(1− 2|z|
x1

)
h!(

2

u1
)h



41

for all t ∈ T ∩D(0, ι′), with |t| < 2(δ1−δ2)/(σζ(b)), for some 0 < δ2 < δ1, and for all ε ∈ Ei+1∩Ei.
2) Let i an integer such that 0 ≤ i ≤ ν − 1. From Proposition 21, we can write again

Xh,i(t, z, ε) = (εt)−1

∫
Lγi

Vh,Sdi ,Ei(τ, z, ε)e
− τ
εtdτ,

Xi+1(t, z, ε) = (εt)−1

∫
Lγi+1

Vh,Sdi+1
,Ei+1

(τ, z, ε)e−
τ
εtdτ

where Lγi = R+e
√
−1γi ⊂ Sdi ∪ {0}, Lγi+1 = R+e

√
−1γi+1 ⊂ Sdi+1

∪ {0}, and Vh,Sdi ,Ei (resp.
Vh,Sdi+1

,Ei+1
) is a holomorphic function on (Sdi ∪D(0, τ0)) ×D(0, x1/4) × Ei (resp. on (Sdi+1

∪
D(0, τ0)) × D(0, x1/4) × Ei+1) for which the estimates (138) hold and which is moreover an
analytic continuation of a function Vh(τ, z, ε) which satisfies the estimates (139).

From the fact that τ 7→ Vh(τ, z, ε) is holomorphic on D(0, τ0) for all (z, ε) ∈ D(0, x1/4) ×
(D(0, ε0) \ {0}), the integral of τ 7→ Vh(τ, z, ε) along the union of a segment starting from 0

to (τ0/2)e
√
−1γi+1 , an arc of circle with radius τ0/2 connecting (τ0/2)e

√
−1γi+1 and (τ0/2)e

√
−1γi

and a segment starting from (τ0/2)e
√
−1γi to 0, is equal to zero. Therefore, we can rewrite the

difference Xh,i+1 −Xh,i as a sum of three integrals,

(148) Xh,i+1(t, z, ε)−Xh,i(t, z, ε) = (εt)−1

(∫
Lτ0/2,γi+1

Vh,Sdi+1
,Ei+1

(τ, z, ε)e−
τ
εtdτ

−
∫
Lτ0/2,γi

Vh,Sdi ,Ei(τ, z, ε)e
− τ
εtdτ +

∫
C(τ0/2,γi,γi+1)

Vh(τ, z, ε)e−
τ
εtdτ

)

where Lτ0/2,γi = [τ0/2,+∞)e
√
−1γi , Lτ0/2,γi+1

= [τ0/2,+∞)e
√
−1γi+1 and C(τ0/2, γi, γi+1) is an

arc of circle with radius τ0/2 connecting (τ0/2)e
√
−1γi with (τ0/2)e

√
−1γi+1 with a well chosen

orientation.

We give estimates for I1 = |(εt)−1
∫
Lτ0/2,γi+1

Vh,Sdi+1
,Ei+1

(τ, z, ε)e−
τ
εtdτ |. By construction, the

direction γi+1 (which depends on εt) is chosen in such a way that cos(γi+1 − arg(εt)) ≥ δ1, for
all ε ∈ Ei+1 ∩ Ei, all t ∈ T ∩D(0, ι′), for some fixed δ1 > 0. From the estimates (138), we get

(149) I1 ≤ |εt|−1

∫ +∞

τ0/2

CΩ(di+1,Ei+1)

1− 2|z|
x1

h!(
2

u1
)h(1 +

r2

|ε|2
)−1e

σζ(b)r
2|ε| e

− r
|ε||t| cos(γi+1−arg(εt))

dr

≤ |εt|−1

∫ +∞

τ0/2

CΩ(di+1,Ei+1)

1− 2|z|
x1

h!(
2

u1
)he

(
σζ(b)

2
− δ1|t| )

r
|ε|dr

=
CΩ(di+1,Ei+1)

1− 2|z|
x1

h!(
2

u1
)h
e
−((

δ1
|t|−

σζ(b)
2

)
τ0
2

) 1
|ε|

δ1 − σζ(b)
2 |t|

≤
CΩ(di+1,Ei+1)

δ2(1− 2|z|
x1

)
h!(

2

u1
)he
− δ2τ0/2|ε|ι′

for all t ∈ T ∩D(0, ι′), with |t| < 2(δ1−δ2)/(σζ(b)), for some 0 < δ2 < δ1, and for all ε ∈ Ei+1∩Ei.
We give estimates for I2 = |(εt)−1

∫
Lτ0/2,γi

Vh,Sdi ,Ei(τ, z, ε)e
− τ
εtdτ |. By construction, the di-

rection γi (which depends on εt) is chosen in such a way that there exists a fixed δ1 > 0 with
cos(γi − arg(εt)) ≥ δ1, for all ε ∈ Ei+1 ∩ Ei, all t ∈ T ∩ D(0, ι′). From the estimates (138), we
deduce as before that

(150) I2 ≤
CΩ(di,Ei)

δ2(1− 2|z|
x1

)
h!(

2

u1
)he
− δ2τ0/2|ε|ι′
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for all t ∈ T ∩D(0, ι′), with |t| < 2(δ1−δ2)/(σζ(b)), for some 0 < δ2 < δ1, and for all ε ∈ Ei+1∩Ei.

Finally, we get estimates for I3 = |εt|−1|
∫
C(τ0/2,γi,γi+1) Vh(τ, z, ε)e−

τ
εtdτ |. From the estimates

(139), we have

(151) I3 ≤ |εt|−1|
∫ γi+1

γi

CΩτ0,ε0

1− 2|z|
x1

h!(
2

u1
)h(1 +

(τ0/2)2

|ε|2
)−1e

σζ(b)τ0
4|ε| e

− τ0
2|ε||t| cos(θ−arg(εt)) τ0

2
dθ|

By construction, the arc of circle C(τ0/2, γi, γi+1) is chosen in such a way that that cos(θ −
arg(εt)) ≥ δ1, for all θ ∈ [γi, γi+1] (if γi < γi+1), θ ∈ [γi+1, γi] (if γi+1 < γi), for all t ∈ T , all
ε ∈ Ei ∩ Ei+1. From (151), we deduce that

(152) I3 ≤ |γi+1 − γi|
CΩτ0,ε0

1− 2|z|
x1

h!(
2

u1
)h
τ0

2

1

|εt|
e
−((

δ1
|t|−

σζ(b)
2

)
τ0
2

) 1
|ε|

≤ |γi+1 − γi|
CΩτ0,ε0

1− 2|z|
x1

h!(
2

u1
)h
τ0

2

1

|εt|
e
− δ2τ0/4|εt| e

− δ2τ0/4|ε|ι′

for all t ∈ T ∩D(0, ι′), with |t| < 2(δ1−δ2)/(σζ(b)), for some 0 < δ2 < δ1, and for all ε ∈ Ei+1∩Ei.
Using the inequality (152) and the estimates (25), we deduce that

(153) I3 ≤ |γi+1 − γi|
CΩτ0,ε0

1− 2|z|
x1

h!(
2

u1
)h

2e−1

δ2
e
− δ2τ0/4|ε|ι′

for all t ∈ T ∩D(0, ι′), with |t| < 2(δ1 − δ2)/(σζ(b)) and for all ε ∈ Ei+1 ∩ Ei.

Finally, collecting the inequalities (149), (150), (153), we deduce from (148), that

|Xi+1(t, z, ε)−Xi(t, z, ε)|

≤
h!( 2

u1
)h

1− 2|z|
x1

(
CΩ(di+1,Ei) + CΩ(di,Ei)

δ2
e
− δ2τ0/2|ε|ι′ + |γi+1 − γi|CΩτ0,ε0

2e−1

δ2
e
− δ2τ0/4|ε|ι′

)
for all t ∈ T ∩D(0, ι′), with |t| < 2(δ1 − δ2)/(σζ(b)), for some 0 < δ2 < δ1, for all ε ∈ Ei+1 ∩ Ei,
for all 0 ≤ i ≤ ν − 1. Hence the estimates (145) hold. 2

Now, let us fix h ≥ 0. For all 0 ≤ i ≤ ν − 1, we define Gh,i(ε) := (t, z) 7→ Xh,i(t, z, ε),
which is, by Lemma 11, a holomorphic and bounded function from Ei into the Banach space
E = O((T ∩ D(0, ι′′)) × D(0, x1/4)) of holomorphic and bounded functions on the set (T ∩
D(0, ι′′))×D(0, x1/4) equipped with the supremum norm. Therefore the property 1) of Theorem
(RS) is satisfied for the functions Gh,i, 0 ≤ i ≤ ν − 1. From the estimates (145), we get that
the cocycle ∆i = Gh,i+1(ε) − Gh,i(ε) is exponentially flat of order 1 on Zi = Ei+1 ∩ Ei, for all
0 ≤ i ≤ ν − 1. We deduce that the property 2) of Theorem (RS) is fulfilled for the functions
Gh,i, 0 ≤ i ≤ ν − 1. From Theorem (RS), we get that Gh,i(ε) are the 1−sums of a formal series

Ĝh(ε) with coefficients in E. In particular, from Definition 5, we deduce the existence of the
functions gh,i(s, t, z) which satisfy the expression (143). 2

4.7 Analytic transseries solutions for a singularly perturbed Cauchy problem

We keep the notations of the previous section.
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Proposition 23 The following singularly perturbed Cauchy problem

(154) εt2∂t∂
S
z Z0(t, z, ε) + (εt+ 1)∂Sz Z0(t, z, ε) =

∑
(s,k0,k1)∈S

bs,k0,k1(z, ε)ts(∂k0t ∂
k1
z Z0)(t, z, ε)

for given initial data

(155) (∂jzZ0)(t, 0, ε) = γ0,j(t, ε) =
∑
h≥0

exp(−hλ
εt )

h!
ϕh,0,j(εt, ε) , 0 ≤ j ≤ S − 1,

which are holomorphic and bounded functions on (T ∩D(0, ι′′))× (E0 ∩ E1), has a solution

Z0(t, z, ε) =
∑
h≥0

exp(−hλ
εt )

h!
Xh,0(t, z, ε)

which defines a holomorphic and bounded function on (T ∩D(0, ι′′))×D(0, δZ0)× (E0 ∩ E1), for
some ι′′, δZ0 > 0.

Proof Let h ≥ 0 and 0 ≤ j ≤ S−1. By construction, we have that ϕh,0,j(εt, ε) = (∂jzXh,0)(t, 0, ε),
for all t ∈ T , all ε ∈ E0. From Lemma 11, 1), we get that there exist a constant ι′′ > 0, a constant
u1 such that 0 < u1 < u0 (depending on u0, S and b,σ) and a constant Č0 > 0 (depending on
max0≤j≤S−1Wj,Sd0 ,E0(u0) (where Wj,Sd0 ,E0 are defined above), |λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0),

max(s,k0,k1)∈S |b̃|s,k0,k1(x0), S, u0, x0, S, b) such that

(156) sup
t∈T ∩D(0,ι′′)

|ϕh,0,j(εt, ε)| ≤ h!(
2

u1
)hČ0

for all ε ∈ E0, all 0 ≤ j ≤ S − 1, all h ≥ 0. From (156) and from the property 3) of Definition 8,
we deduce the estimates

sup
t∈T ∩D(0,ι′′)

|γ0,j(t, ε)| ≤ Č0

∑
h≥0

(
2 exp(− |λ|ε0ι′′

cos(π/2− δT ))

u1
)h,

for all ε ∈ E0 ∩ E1. This latter sum converges provided that ε0 is small enough. We deduce that
γ0,j(t, ε) defines a holomorphic and bounded function on (T ∩D(0, ι′′))× (E0 ∩ E1).

Likewise, from (144) and from the property 3) of Definition 8, we deduce that there exist
a constant ι′′ > 0, a constant u1 such that 0 < u1 < u0 (depending on u0, S and b,σ), a
constant x1 such that 0 < x1 < ρ (depending on S,u0,S,b,σ,|λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0),

max(s,k0,k1)∈S |b̃|s,k0,k1(x0), where x0 < ρ) and a constant C̃0 > 0 (depending on
max0≤j≤S−1Wj,Sd0 ,E0(u0) (where Wj,Sd0 ,E0 are defined above), |λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0),

max(s,k0,k1)∈S |b̃|s,k0,k1(x0), S, u0, x0, S, b) such that

sup
t∈T ∩D(0,ι′′),z∈D(0,δZ0

)
|Z0(t, z, ε)| ≤ C̃0

1− 2δZ0
x1

∑
h≥0

(
2 exp(− |λ|ε0ι′′

cos(π/2− δT ))

u1
)h

for all ε ∈ E0 ∩ E1. Again, this latter sum converges if ε0 is small enough and if 0 < δZ0 ≤ x1/4.
We get that Z0(t, z, ε) defines a holomorphic and bounded function on (T ∩D(0, ι′′))×D(0, δZ0)×
(E0 ∩ E1). By construction, we have that (∂jzZ0)(t, 0, ε) = γ0,j(t, ε), for 0 ≤ j ≤ S − 1. Finally,
from the proposition 16, we deduce that Z0(t, z, ε) solves the equation (154). 2
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5 Parametric Stokes relations and analytic continuation of the
Borel transform in the perturbation parameter

5.1 Assumptions on the initial data

We keep the notations of the previous section. Now, we make the following additional assumption
that there exists a sequence of unbounded open sectors Sd0,ϑn such that

(157) Sd0 ⊂ Sd0,ϑn ⊂Md0 ∪ Sd0

for all n ≥ 0 and a sequence of real numbers ζn, n ≥ 0, such that

eiζn ∈ Sd0,ϑn , lim
n→+∞

ζn = arg(λ)

with the property that arg(eiζn/εt) ∈ (−π/2 + δT , π/2− δT ) for all ε ∈ E0 ∩ E1, all t ∈ T , for all
n ≥ 0 (where T and δT were introduced in Definition 8). We also make the assumption that for
all n ≥ 0, the function vh,j,Sd0 ,E0(τ, ε) can be analytically continued to a holomorphic function
τ 7→ vh,j,Sd0,ϑn ,E0(τ, ε) on Sd0,ϑn , for all ε ∈ E0 such that

vh,j,Sd0,ϑn ,E0(τ, ε) ∈ Ej,ε,σ,(Sd0,ϑn∪D(0,τ0))×E0

with the property that

(158) Wj,Sd0,ϑn ,E0(u) :=∑
h≥0

sup
ε∈E0
||vh,j,Sd0,ϑn ,E0(τ, ε)||j,ε,σ,(Sd0,ϑn∪D(0,τ0))×E0

uh

h!
∈ C{u} , 0 ≤ j ≤ S − 1,

and have a common radius of absolute convergence (denoted by uE0 > 0), for all n ≥ 0. From the
assumption (158) we get a constant u0,j > 0 (depending on j ∈ {0, . . . , S − 1}) and a constant
Cn,j > 0 (depending on n and j ∈ {0, . . . , S − 1}) such that

sup
ε∈E0
||vh,j,Sd0,ϑn ,E0(τ, ε)||j,ε,σ,(Sd0,ϑn∪D(0,τ0))×E0 ≤ Cn,j(

1

u0,j
)hh!,

for all h ≥ 0. We deduce that

(159) |vh,j,Sd0,ϑn ,E0(reiζn , ε)| ≤ Cn,j(
1

u0,j
)hh! exp(

σ

2|ε|
rb(j)r)

for all r ≥ 0, all ε ∈ E0, all 0 ≤ j ≤ S − 1 and all h ≥ 0. In particular, we have that
r 7→ vh,j,Sd0,ϑn ,E0(reiζn , ε) belongs to the space L0,σ̃/2,ε for σ̃ > σrb(S − 1). Moreover, from

Proposition 1, we deduce that r 7→ vh,j,Sd0,ϑn ,E0(reiζn , ε) belongs to the space D′0,σ̃,ε and that
there exists a universal constant C1 > 0 such that

(160) ||vh,j,Sd0,ϑn ,E0(reiζn , ε)||0,σ̃,ε,d ≤ C1||vh,j,Sd0,ϑn ,E0(reiζn , ε)||0,σ̃/2,ε

≤ 2|ε|
σ̃ − σrb(S − 1)

C1Cn,j(
1

u0,j
)hh!

for all 0 ≤ j ≤ S − 1, all h ≥ 0, all n ≥ 0, all ε ∈ E0.
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We make the crucial assumption that for all 0 ≤ j ≤ S − 1, there exists a sequence of
distributions vh,j,Md0

,E0(r, ε) ∈ D′0,σ̃,ε, for h ≥ 0, a constant uj > 0 and a sequence In,j > 0 with
limn→+∞ In,j = 0 such that

(161) sup
ε∈E0
||vh,j,Sd0,ϑn ,E0(reiζn , ε)− vh,j,Md0

,E0(r, ε)||0,σ̃,ε,d ≤ In,jh!(
1

uj
)h

for all n ≥ 0, all h ≥ 0. From the estimates (160) and (161), we deduce that

(162)
∑
h≥0

sup
ε∈E0
||vh,j,Md0

,E0(r, ε)||0,σ̃,ε,d
uh

h!
∈ C{u} , 0 ≤ j ≤ S − 1.

Lemma 12 Let σ̃ > σrb(S−1). We can write the initial data γ0,j(t, ε) in the form of a Laplace
transform in direction arg(λ),

(163) γ0,j(t, ε) = Larg(λ)(Vj,arg(λ),Sd0 ,E0(r, ε))(εt)

where Vj,arg(λ),Sd0 ,E0(r, ε) ∈ D′0,σ̃,ε, for all 0 ≤ j ≤ S − 1, all ε ∈ E0 ∩ E1, all t ∈ T ∩D(0, ι′).

Proof For 0 ≤ j ≤ S − 1, from the definition of the initial data, we can write

(164) γ0,j(t, ε) =
∑
h≥0

exp(−hλ
εt )

h!

1

εt

∫
Lζn

vh,j,Sd0,ϑn ,E0(τ, ε) exp(− τ
εt

)dτ

=
∑
h≥0

exp(−h|λ|eiarg(λ)
εt )

h!

eiζn

εt

∫ +∞

0
vh,j,Sd0,ϑn ,E0(reiζn , ε) exp(−re

iζn

εt
)dr

for all ε ∈ E0 ∩ E1, all t ∈ T ∩D(0, ι′), all n ≥ 0. Now, we can write

Lζn(vh,j,Sd0,ϑn ,E0(reiζn , ε))(εt) = Larg(λ)(vh,j,Sd0,ϑn ,E0(reiζn , ε))(εtei(arg(λ)−ζn))

for all ε ∈ E0 ∩ E1, all t ∈ T ∩ D(0, ι′), all n ≥ 0. From the continuity estimates (83) for the
Laplace transform, we deduce that for given t ∈ T ∩D(0, ι′), ε ∈ E0 ∩E1, there exists a constant
Cε,t (depending on ε, t) such that

|Larg(λ)(vh,j,Md0
,E0(r, ε))(εt)− Larg(λ)(vh,j,Sd0,ϑn ,E0(reiζn , ε))(εtei(arg(λ)−ζn))|

≤ Cε,t||(vh,j,Md0
,E0(r, ε)− vh,j,Sd0,ϑn ,E0(reiζn , ε)||0,σ̃,ε,d

+ |Larg(λ)(vh,j,Md0
,E0(r, ε))(εtei(arg(λ)−ζn))− Larg(λ)(vh,j,Md0

,E0(r, ε))(εt)|

for all n ≥ 0. By letting n tend to +∞ in this latter inequality and using the hypothesis (161),
we get that

(165) Lζn(vh,j,Sd0,ϑn ,E0(reiζn , ε))(εt) = Larg(λ)(vh,j,Md0
,E0(r, ε))(εt)

for all ε ∈ E0 ∩ E1, all t ∈ T ∩D(0, ι′), for all n ≥ 0.
On the other hand, from Corollary 1, we have that for all h ≥ 0, the distribution

∂−hr (vh,j,Md0
,E0(r, ε)) belongs to D′0,σ̃,ε and that there exists a universal constant C3 > 0 such

that

(166) ||∂−hr (vh,j,Md0
,E0(r, ε))||0,σ̃,ε,d ≤ C3(

|ε|
σ̃

)h||vh,j,Md0
,E0(r, ε)||0,σ̃,ε,d
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for all h ≥ 0, all 0 ≤ j ≤ S − 1. From (165) and using Propositions 12 and 14, we can write

(167)
exp(−h|λ|eiarg(λ)

εt )

h!

eiζn

εt

∫ +∞

0
vh,j,Sd0,ϑn ,E0(reiζn , ε) exp(−re

iζn

εt
)dr

= (
eiarg(λ)

εt
)h

exp(−h|λ|eiarg(λ)
εt )

h!
Larg(λ)(∂

−h
r (vh,j,Md0

,E0(r, ε)))(εt)

= Larg(λ)(Vh,j,λ,Md0
,E0(r, ε))(εt)

where

Vh,j,λ,Md0
,E0(r, ε) =

(fh,j,λ,Md0
,E0(r − |λ|h, ε)1[|λ|h,+∞)(r))

(h)

h!
∈ D′0,σ̃,ε

with fh,j,λ,Md0
,E0(r, ε) = ∂−hr (vh,j,Md0

,E0(r, ε)) ∈ D′0,σ̃,ε, for all h ≥ 0, all 0 ≤ j ≤ S − 1. From
Proposition 13, we have a universal constant A > 0 and a constant B(σ̃, b, ε) (depending on σ̃,
b and ε, which tends to zero as ε→ 0) such that

(168) ||Vh,j,λ,Md0
,E0(r, ε)||0,σ̃,ε,d ≤ A

(B(σ̃, b, ε))h

h!
||fh,j,λ,Md0

,E0(r, ε)||0,σ̃,ε,d

From the estimates (162) and using (166), (168), we deduce that the distribution

Vj,arg(λ),Sd0 ,E0(r, ε) =
∑
h≥0

Vh,j,λ,Md0
,E0(r, ε) ∈ D′0,σ̃,ε,d

for all 0 ≤ j ≤ S − 1, if ε0 > 0 is chosen small enough. Finally, by the continuity estimates (83)
for the Laplace transform Larg(λ) and the formula (164), (167), we get the expression (163). 2

On the other hand, we assume the existence of a sequence of unbounded open sectors Sd1,δn
with

(169) Sd1 ⊂ Sd1,δn ⊂Md1 ∪ Sd1

for all n ≥ 0 and a sequence of real numbers ξn, n ≥ 0, such that

eiξn ∈ Sd1,δn , lim
n→+∞

ξn = arg(λ)

with the property that arg(eiξn/εt) ∈ (−π/2 + δT , π/2 − δT ) for all ε ∈ E0 ∩ E1, all t ∈ T , all
n ≥ 0 (where T and δT are introduced in Definition 8). We make the assumption that for
all n ≥ 0, the function vh,j,Sd1 ,E1(τ, ε) can be analytically continued to a holomorphic function
τ 7→ vh,j,Sd1,δn ,E1(τ, ε) on Sd1,δn , for all ε ∈ E1 such that

vh,j,Sd1,δn ,E1(τ, ε) ∈ Ej,ε,σ,(Sd1,δn∪D(0,τ0))×E1

with the property that

(170) Wj,Sd1,δn ,E1(u) :=∑
h≥0

sup
ε∈E1
||vh,j,Sd1,δn ,E1(τ, ε)||j,ε,σ,(Sd1,δn∪D(0,τ0))×E1

uh

h!
∈ C{u} , 0 ≤ j ≤ S − 1.
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and have a common radius of absolute convergence (defined by uE1 > 0), for all n ≥ 0. From the
assumption (170) we get a constant u1,j > 0 (depending on j ∈ {0, . . . , S − 1}) and a constant
Cn,1,j > 0 (depending on n and j ∈ {0, . . . , S − 1}) such that

sup
ε∈E1
||vh,j,Sd1,δn ,E1(τ, ε)||j,ε,σ,(Sd1,δn∪D(0,τ0))×E1 ≤ Cn,1,j(

1

u1,j
)hh!,

for all h ≥ 0. We deduce that

(171) |vh,j,Sd1,δn ,E1(reiξn , ε)| ≤ Cn,1,j(
1

u1,j
)hh! exp(

σ

2|ε|
rb(j)r)

for all r ≥ 0, all ε ∈ E1, all 0 ≤ j ≤ S − 1 and all h ≥ 0. In particular, we have that
r 7→ vh,j,Sd1,δn ,E1(reiξn , ε) belongs to the space L0,σ̃/2,ε for σ̃ > σrb(S − 1). Moreover, from

Proposition 1, we deduce that r 7→ vh,j,Sd1,δn ,E1(reiξn , ε) belongs to the space D′0,σ̃,ε and that
there exists a universal constant C1 > 0 such that

(172) ||vh,j,Sd1,δn ,E1(reiξn , ε)||0,σ̃,ε,d ≤ C1||vh,j,Sd1,δn ,E1(reiξn , ε)||0,σ̃/2,ε

≤ 2|ε|
σ̃ − σrb(S − 1)

C1Cn,1,j(
1

u1,j
)hh!

for all 0 ≤ j ≤ S − 1, all h ≥ 0, all n ≥ 0, all ε ∈ E1.
Now, we make the crucial assumption that for all 0 ≤ j ≤ S − 1, there exists a sequence

Jn,j > 0 with limn→+∞ Jn,j = 0 such that

(173) sup
ε∈E0∩E1

||v0,j,Sd1,δn ,E1(reiξn , ε)− Vj,arg(λ),Sd0 ,E0(r, ε)||0,σ̃,ε,d ≤ Jn,j ,

for all n ≥ 0, where Vj,arg(λ),Sd0 ,E0(r, ε) are the distributions defined in Lemma 12.

5.2 The Stokes relation and the main result

In the next proposition, we establish a connection formula for the two holomorphic solutions
X0,0(t, z, ε) and X0,1(t, z, ε) of the equation (154) constructed in Proposition 22.

Proposition 24 Let the assumptions (157), (158), (161), (169), (170), (173) hold for the
initial data. Then, there exists 0 < δD0,1 < δZ0 such that we can write the following connection
formula

(174) X0,1(t, z, ε) = Z0(t, z, ε) = X0,0(t, z, ε) +
∑
h≥1

exp(−hλ
εt )

h!
Xh,0(t, z, ε)

for all ε ∈ E0 ∩ E1, all t ∈ T ∩D(0, ι′′), all z ∈ D(0, δD0,1).

The proof of this proposition will need two long steps and will be the consequence of the formula
(213) and (245) from Lemma 15 and Lemma 18.

Step 1: In this step, we show that the function Z0(t, z, ε) can be express as a Laplace transform
of some staircase distribution in direction arg(λ) satisfying the problem (214), (215).

From the assumption (158), we deduce from Proposition 21 that the function Vh,Sd0 ,E0(τ, z, ε)
constructed in (146) has an analytic continuation denoted by Vh,Sd0,ϑn ,E0(τ, z, ε) on the domain
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(Sd0,ϑn ∪ D(0, τ0)) × D(0, δE0) × E0 which satisfies estimates of the form (138), for all n ≥ 0,
where δE0 > 0 depends on S, uE0 (which denotes a common radius of convergence of the series
(158)), S, b, σ, |λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0), where x0 < ρ. This
constant δE0 is therefore independent of n and h. Now, one defines the functions

Vh,Sd0,ϑn ,E0(r, z, ε) := Vh,Sd0,ϑn ,E0(reiζn , z, ε)

for all r ≥ 0, all z ∈ D(0, δE0), all ε ∈ E0, all n ≥ 0.

Lemma 13 Let σ̌ > σ̃ > σrb(S − 1). Then, there exists 0 < δD < δE0 (depending on
S,b,σ̌,|λ|,uj,0 ≤ j ≤ S − 1(introduced in (161)),S, uE0,ρ,µ,A,B(introduced in Lemma 14)),
there exist M1 > 0 (depending on S,S,σ̌,|λ|,uj, for 0 ≤ j ≤ S − 1,ρ,µ,A,B), M ′1 > 0 (depending
on S,S,σ̌,|λ|,ρ,µ,ρ′,µ′(introduced in Lemma 14),A,B,uj for 0 ≤ j ≤ S − 1) and a constant U1

(depending on S,S,σ̌,|λ|,ρ,µ,A,B,uE0,uj for 0 ≤ j ≤ S − 1) such that, for all h ≥ 0, all n ≥ 0,
there exists a staircase distribution Vh,Md0

,E0(r, z, ε) ∈ D′(σ̌, ε, δD) with

(175) sup
ε∈E0
||Vh,Sd0,ϑn ,E0(r, z, ε)−Vh,Md0

,E0(r, z, ε)||(σ̌,ε,d,δD) ≤ (M1 max
0≤j≤S−1

In,j +M ′1Dn)h!(
2

U1
)h

where In,j is a positive sequence (converging to 0 as n tends to ∞) introduced in the assumption
(161) and Dn is the positive sequence (tending to 0 as n → +∞) introduced in Lemma 14.
Moreover, we have that

(176)
∑
h≥0

sup
ε∈E0
||Vh,Md0

,E0(r, z, ε)||(σ̌,ε,d,δD)
uh

h!
∈ C{u}.

Proof From the estimates (133), we can write

Vh,Sd0,ϑn ,E0(τ, z, ε) =
∑
β≥0

Vh,β,Sd0,ϑn ,E0(τ, ε)
zβ

β!

where Vh,β,Sd0,ϑn ,E0(τ, ε) are holomorphic functions such that there exists a constant u1 such that
0 < u1 < uE0 (depending on uE0 , S and b,σ), a constant x1 such that 0 < x1 < ρ (depending
on S,uE0 ,S,b,σ,|λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0), where x0 < ρ) and
a constant CΩ(d0,E0),n > 0 (depending on max0≤j≤S−1Wj,Sd0,ϑn ,E0(uE0) (where Wj,Sd0,ϑn ,E0 are

defined in (158)), |λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0), S, uE0 , x0, S, b)
with

|Vh,β,Sd0,ϑn ,E0(τ, ε)| ≤ CΩ(d0,E0),nh!β!(
2

u1
)h(

2

x1
)β(1 +

|τ |2

|ε|2
)−1 exp(

σ

2|ε|
rb(β)|τ |)

for all τ ∈ Sd0,ϑn ∪D(0, τ0), ε ∈ E0, all h ≥ 0, all β ≥ 0 and all n ≥ 0. We deduce that

(177) |Vh,β,Sd0,ϑn ,E0(reiζn , ε)| ≤ CΩ(d0,E0),n(
2

u1
)h(

2

x1
)βh!β! exp(

σ

2|ε|
rb(β)r)

for all r ≥ 0, all ε ∈ E0, all β ≥ 0, all h ≥ 0 and all n ≥ 0. In particular, r 7→ Vh,β,Sd0,ϑn ,E0(reiζn , ε)

belongs to Lβ,σ̌/2,ε. From the proposition 1, we deduce that r 7→ Vh,β,Sd0,ϑn ,E0(reiζn , ε) belongs
to D′β,σ̌,ε. From Proposition 1 and (177), we get a universal constant C1 > 0 such that

(178) ||Vh,β,Sd0,ϑn ,E0(reiζn , ε)||β,σ̌,ε,d ≤ C1||Vh,β,Sd0,ϑn ,E0(reiζn , ε)||β,σ̌/2,ε

≤ C1CΩ(d0,E0),n
2|ε|
σ̌ − σ

(
2

u1
)h(

2

x1
)βh!β!
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for all β ≥ 0, all h ≥ 0, all n ≥ 0. From (178), we deduce that the distribution

Vh,Sd0,ϑn ,E0(r, z, ε) =
∑
β≥0

Vh,β,Sd0,ϑn ,E0(reiζn , ε)
zβ

β!
∈ D′(σ̌, ε, δ̌)

for all ε ∈ E0, all δ̌ < x1/2, all h ≥ 0 and all n ≥ 0.
One gets from (111), (112) and the assumption (126) that the following problem holds,

(179) (reiζn + 1 + λh)∂Sz Vh,Sd0,ϑn ,E0(r, z, ε)

=
∑

(s,k0,k1)∈S

εk0 b̃s,k0,k1(z, ε)εk0−sei(s−k0)ζn(
∑

(m,p)∈O1
s−k0

α1
m,pr

m∂−pr ∂k1z Vh,Sd0,ϑn ,E0(r, z, ε))

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

εk0 b̃s,k0,k1(z, ε)c
k10
q (hλ)qεk0−sei(s−k0−q)ζn

× (
∑

(m,p)∈O2
s−k0−q

α2,q
m,pr

m∂−pr ∂k1z Vh,Sd0,ϑn ,E0(r, z, ε))

with initial data

(180) (∂jzVh,Sd0,ϑn ,E0)(r, 0, ε) = vh,j,Sd0,ϑn ,E0(reiζn , ε) , 0 ≤ j ≤ S − 1.

On the other hand, we consider the problem

(181) (reiarg(λ) + 1 + λh)∂Sz Vh,Md0
,E0(r, z, ε)

=
∑

(s,k0,k1)∈S

εk0 b̃s,k0,k1(z, ε)εk0−sei(s−k0)arg(λ)(
∑

(m,p)∈O1
s−k0

α1
m,pr

m∂−pr ∂k1z Vh,Md0
,E0(r, z, ε))

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

εk0 b̃s,k0,k1(z, ε)c
k10
q (hλ)qεk0−sei(s−k0−q)arg(λ)

× (
∑

(m,p)∈O2
s−k0−q

α2,q
m,pr

m∂−pr ∂k1z Vh,Md0
,E0(r, z, ε))

with initial data

(182) (∂jzVh,Md0
,E0)(r, 0, ε) = vh,j,Md0

,E0(r, ε) , 0 ≤ j ≤ S − 1.

In the next lemma we give estimates for the coefficients of the equations (179) and (181).

Lemma 14 Let

b̃s,k0,k1(z, ε) =
∑
β≥0

b̃s,k0,k1,β(ε)
zβ

β!

the convergent Taylor expansion of b̃s,k0,k1 with respect to z near 0. Let α ∈ R be a real
number. Then, there exist positive constants A,B,ρ,ρ′,µ,µ′ and a sequence Dn > 0 such that
limn→+∞Dn = 0 with

(183) |∂qr (
b̃s,k0,k1,β(ε)eiαarg(λ)

reiarg(λ) + 1 + λh
)| ≤ AB−β β!q!

(ρ(r + µ))q+1
,

|∂qr (
b̃s,k0,k1,β(ε)eiαζn

reiζn + 1 + λh
)| ≤ AB−β β!q!

(ρ(r + µ))q+1
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and

(184) |∂qr (
b̃s,k0,k1,β(ε)eiαarg(λ)

reiarg(λ) + 1 + λh
)− ∂qr (

b̃s,k0,k1,β(ε)eiαζn

reiζn + 1 + λh
)| ≤ DnB

−β β!q!

(ρ′(r + µ′))q+1

for all q ≥ 0, all β ≥ 0, all n ≥ 0, all h ≥ 0, all r ≥ 0 and all ε ∈ E0.

Proof We first show (183). From the fact that b̃s,k0,k1(z, ε) is holomorphic near z = 0, we get
from the Cauchy formula that there exist A,B > 0 such that

(185) |b̃s,k0,k1,β(ε)| ≤ AB−ββ!

for all β ≥ 0, all ε ∈ E0. On the other hand, from Definition 8 3.1), there exist ρ, µ > 0 such
that |reiζn + 1 + λh| ≥ ρ(r + µ) for all r ≥ 0, all h ≥ 0, all n ≥ 0. Hence

(186) |∂qr (
eiαζn

reiζn + 1 + λh
)| ≤ q!

|reiζn + 1 + λh|q+1
≤ q!

(ρ(r + µ))q+1

for all r ≥ 0, all h ≥ 0, all q ≥ 0, all n ≥ 0. We deduce (183) from (185) and (186).
Now, we show (184). Using the classical identities ab−cd = (a−c)b+c(b−d) and bq+1−aq+1 =

(b− a)×
∑q

s=0 a
sbq−s, we get the estimates

(187) |∂qr (
eiαarg(λ)

reiarg(λ) + 1 + λh
)− ∂qr (

eiαζn

reiζn + 1 + λh
)|

≤ q!| eiαarg(λ)eiqarg(λ)

(reiarg(λ) + 1 + λh)q+1
− eiαζneiqζn

(reiζn + 1 + λh)q+1
|

≤ q!

(
|eiζn − eiarg(λ)| × (

q+1∑
s=1

r

|reiarg(λ) + 1 + λh|q+2−s|reiζn + 1 + λh|s
)

+
|eiαarg(λ) − eiαζn |+ |eiarg(λ) − eiζn |(q + 1)

|reiarg(λ) + 1 + λh|q+1

)

On the other hand, again from Definition 8 3.1), there exist ρ1, µ1 > 0 such that

(188) |reiarg(λ) + 1 + λh| ≥ ρ1(r + µ1) , |reiζn + 1 + λh| ≥ ρ1(r + µ1)

for all r ≥ 0, all h ≥ 0, all n ≥ 0. Using (187), (188) and the fact that q+ 1 ≤ 2q+1 for all q ≥ 0,
we deduce the estimates (184). 2

In the first part of the proof of Lemma 13, we show the existence of a staircase distribution
solution of the problem (181), (182) which satisfies the estimates (176). As a starting point, it
is easy to check that the problem (181), (182) has a formal solution of the form

Vh,Md0
,E0(r, z, ε) =

∑
β≥0

Vh,β,Md0
,E0(r, ε)

zβ

β!
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where r 7→ Vh,β,Md0
,E0(r, ε) are distributions on R+ for which the next recursion holds:

(189) Vh,β+S,Md0
,E0(r, ε) =

∑
(s,k0,k1)∈S

∑
β1+β2=β

β!
εk0 b̃s,k0,k1,β1(ε)

β1!
εk0−s

× ei(s−k0)arg(λ)

reiarg(λ) + 1 + λh
(

∑
(m,p)∈O1

s−k0

α1
m,pr

m∂−pr
Vh,β2+k1,Md0

,E0(r, ε)

β2!
)

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

∑
β1+β2=β

β!
εk0 b̃s,k0,k1,β1(ε)

β1!
c
k10
q (hλ)q

× εk0−s ei(s−k0−q)arg(λ)

reiarg(λ) + 1 + λh
(

∑
(m,p)∈O2

s−k0−q

α2,q
m,pr

m∂−pr
Vh,β2+k1,Md0

,E0(r, ε)

β2!
)

for all β ≥ 0, h ≥ 0, with initial conditions

Vh,j,Md0
,E0(r, ε) = vh,j,Md0

,E0(r, ε) , 0 ≤ j ≤ S − 1 , h ≥ 0.

Using Corollary 1, Propositions 4,5, the estimates (162) and the remark after Definition 2, we
deduce that Vh,β,Md0

,E0(r, ε) ∈ D′β,σ̌,ε, for all h, β ≥ 0 and that the following inequalities hold

for the real numbers Vh,β,Md0
(ε) := ||Vh,β,Md0

,E0(r, ε)||β,σ̌,ε,d: there exist constants C1
23.0, C2

23.0

(depending on S,σ̌,S,ρ,µ) with

(190) Vh,β+S,Md0
(ε) ≤

∑
(s,k0,k1)∈S

∑
β1+β2=β

C1
23.0β!AB−β1(β + S + 1)(s−k0)b

Vh,β2+k1,Md0
(ε)

β2!

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

∑
β1+β2=β

C2
23.0β!AB−β1 |ck

1
0
q ||λ|qhq

× (β + S + 1)(s−k0−q)b
Vh,β2+k1,Md0

(ε)

β2!

for all β, h ≥ 0, where A,B > 0 are defined in Lemma 14. We define the following Cauchy
problem

(191) ∂SxWMd0
(u, x) =

∑
(s,k0,k1)∈S

C1
23.0(x∂x + S + 1)b(s−k0)(

A

1− x
B

∂k1x WMd0
(u, x))

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

C2
23.0|c

k10
q ||λ|q(x∂x + S + 1)b(s−k0−q)(

A

1− x
B

(u∂u)q∂k1x WMd0
(u, x))

for given initial data

(192) (∂jxWMd0
)(u, 0) = WMd0

,j(u)

=
∑
h≥0

sup
ε∈E0
||vh,j,Md0

,E0(r, ε)||j,σ̌,ε,d
uh

h!
∈ C{u} , 0 ≤ j ≤ S − 1.
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From the assumption (124) and the fact that b > 1, we deduce that

S > b(s− k0 − q) + q + k1

for all (s, k0, k1) ∈ S, all 0 ≤ q ≤ k0. Hence the assumption (72) is satisfied in Proposition 9 for
the Cauchy problem (191), (192). Since the initial data WMd0

,j(u) is an analytic function on
a disc containing some closed disc D(0, U0), for 0 ≤ j ≤ S − 1 and since the coefficients of the
equation (191) are analytic on C × D(0, B), we deduce that all the hypotheses of Proposition
9 are fulfilled for the problem (191), (192). We deduce the existence of a formal solution
WMd0

(u, x) ∈ G(UMd0
, XMd0

) where 0 < UMd0
< U0 (depending on S) and 0 < XMd0

≤ B/2
(depending on S,σ̌,|λ|,ρ,µ,U0,S,A,B).

Now, let WMd0
(u, x) =

∑
h,β≥0wh,β,Md0

uh

h!
xβ

β! be its Taylor expansion at the origin. Then,
the sequence wh,β,Md0

satisfies the next equalities

(193) wh,β+S,Md0
=

∑
(s,k0,k1)∈S

∑
β1+β2=β

C1
23.0β!AB−β1(β + S + 1)(s−k0)b

wh,β2+k1,Md0

β2!

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

∑
β1+β2=β

C2
23.0β!AB−β1 |ck

1
0
q ||λ|qhq

× (β + S + 1)(s−k0−q)b
wh,β2+k1,Md0

β2!

for all β, h ≥ 0, with

(194) wh,j,Md0
= sup

ε∈E0
||vh,j,Md0

,E0(r, ε)||j,σ̌,ε,d , h ≥ 0 , 0 ≤ j ≤ S − 1.

Gathering the inequalities (190), the equalities (193) with the initial conditions (194), one gets

(195) sup
ε∈E0
|Vh,β,Md0

(ε)| ≤ wh,β,Md0

for all h, β ≥ 0. From (195) and the fact that WMd0
(u, x) ∈ G(UMd0

, XM0) we get a constant
CMd0

> 0 such that

(196) sup
ε∈E0
||Vh,β,Md0

,E0(r, ε)||β,σ̌,ε,d

≤ CMd0
(h+ β)!(

1

UMd0

)h(
1

XMd0

)β ≤ CMd0
h!β!(

2

UMd0

)h(
2

XMd0

)β

for all h, β ≥ 0. From this last estimates (196), we deduce that for all h ≥ 0, Vh,Md0
,E0(r, z, ε)

belongs to D′(σ̌, ε, δMd0
) for 0 < δMd0

≤ XMd0
/4 and moreover that

∑
h≥0

sup
ε∈E0
||Vh,Md0

,E0(r, z, ε)||(σ̌,ε,d,δMd0
)
uh

h!
∈ C{u}.

holds. This yields the property (176).

In the second part of the proof, we show (175). One defines the distribution

V∆
h,Sd0,ϑn ,E0

(r, z, ε) := Vh,Md0
,E0(r, z, ε)− Vh,Sd0,ϑn ,E0(r, z, ε)
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for all r ≥ 0, all z ∈ D(0, δMd0
)∩D(0, δ̌), with 0 < δ̌ < x1/2, all ε ∈ E0. If one writes the Taylor

expansion

V∆
h,Sd0,ϑn ,E0

(r, z, ε) =
∑
β≥0

V∆
h,β,Sd0,ϑn ,E0

(r, ε)
zβ

β!

for z ∈ D(0, δMd0
)∩D(0, δ̌), then the coefficients V∆

h,β,Sd0,ϑn ,E0
(r, ε) satisfy the following recursion

(197) V∆
h,β+S,Sd0,ϑn ,E0

(r, ε)

=
∑

(s,k0,k1)∈S

∑
β1+β2=β

β!
εk0 b̃s,k0,k1,β1(ε)

β1!
εk0−s(

ei(s−k0)ζn

reiζn + 1 + λh
)

× (
∑

(m,p)∈O1
s−k0

α1
m,pr

m∂−pr
V∆
h,β2+k1,Sd0,ϑn ,E0

(r, ε)

β2!
)

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

∑
β1+β2=β

β!
εk0 b̃s,k0,k1,β1(ε)

β1!
c
k10
q (hλ)q

× εk0−s ei(s−k0−q)ζn

reiζn + 1 + λh
× (

∑
(m,p)∈O2

s−k0−q

α2,q
m,pr

m∂−pr
V∆
h,β2+k1,Sd0,ϑn ,E0

(r, ε)

β2!
) + Bh,β,n(r, ε)

where

(198)

Bh,β,n(r, ε) =
∑

(s,k0,k1)∈S

∑
β1+β2=β

β!
εk0 b̃s,k0,k1,β1(ε)

β1!
εk0−s(

ei(s−k0)arg(λ)

reiarg(λ) + 1 + λh
− ei(s−k0)ζn

reiζn + 1 + λh
)

× (
∑

(m,p)∈O1
s−k0

α1
m,pr

m∂−pr
Vh,β2+k1,Md0

,E0(r, ε)

β2!
)

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

∑
β1+β2=β

β!
εk0 b̃s,k0,k1,β1(ε)

β1!
c
k10
q (hλ)q

× εk0−s( ei(s−k0−q)arg(λ)

reiarg(λ) + 1 + λh
− ei(s−k0−q)ζn

reiζn + 1 + λh
)× (

∑
(m,p)∈O2

s−k0−q

α2,q
m,pr

m∂−pr
Vh,β2+k1,Md0

,E0(r, ε)

β2!
)

for all h ≥ 0, all β ≥ 0. Now, we put V∆
h,β,n(ε) = ||V∆

h,β,Sd0,ϑn ,E0
(r, ε)||β,σ̌,ε,d. Using the corollary 1,

the propositions 4, 5 and the lemma 14, we get that there exist constants C1
23.1, C

2
23.1 (depending

on S,σ̌,S,ρ,µ) such that the following inequalities

(199) V∆
h,β+S,n(ε) ≤

∑
(s,k0,k1)∈S

∑
β1+β2=β

C1
23.1β!AB−β1(β + S + 1)(s−k0)b

V∆
h,β2+k1,n

(ε)

β2!

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

∑
β1+β2=β

C2
23.1β!AB−β1

× |ck
1
0
q ||λ|qhq(β + S + 1)(s−k0−q)b

V∆
h,β2+k1,n

(ε)

β2!
+ Bh,β,n(ε)
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hold for all h, β ≥ 0, where A,B > 0 are defined in Lemma 14 and Bh,β,n(ε) is a sequence which
satisfies the next estimates: there exist constants C3

23.1, C
4
23.1 > 0 (depending on S,σ̌,S,ρ′,µ′)

with

(200) Bh,β,n(ε) ≤
∑

(s,k0,k1)∈S

∑
β1+β2=β

C3
23.1β!DnB

−β1

× (β + S + 1)(s−k0)b
||Vh,β2+k1,Md0

,E0(r, ε)||β2+k1,σ̌,ε,d

β2!

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

∑
β1+β2=β

C4
23.1β!DnB

−β1

× |ck
1
0
q ||λ|qhq(β + S + 1)(s−k0−q)b

||Vh,β2+k1,Md0
,E0(r, ε)||β2+k1,σ̌,ε,d

β2!

for all h, β, n ≥ 0, where Dn, n ≥ 0 is the sequence defined in Lemma 14.

We consider the following sequence of Cauchy problem

(201) ∂SxW∆
n (u, x) =

∑
(s,k0,k1)∈S

C1
23.1(x∂x + S + 1)b(s−k0)(

A

1− x
B

∂k1x W∆
n (u, x))

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

C2
23.1|c

k10
q ||λ|q(x∂x + S + 1)b(s−k0−q)(

A

1− x
B

(u∂u)q∂k1x W∆
n (u, x))

+ Dn(u, x)

where

(202) Dn(u, x) =
∑

(s,k0,k1)∈S

C3
23.1(x∂x + S + 1)b(s−k0)(

Dn

1− x
B

∂k1x WMd0
(u, x))

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

C4
23.1|c

k10
q ||λ|q(x∂x + S + 1)b(s−k0−q)(

Dn

1− x
B

(u∂u)q∂k1x WMd0
(u, x))

and WMd0
(u, x) is already defined as the solution of the problem (191), (192), for given initial

data

(203) (∂jxW∆
n )(u, 0) = W∆

j,n(u)

=
∑
h≥0

sup
ε∈E0
||vh,j,Md0

,E0(r, ε)− vh,j,Sd0,ϑn ,E0(reiζn , ε)||j,σ̌,ε,d
uh

h!
∈ C{u} , 0 ≤ j ≤ S − 1,

which are convergent near the origin with respect to u due to the assumption (161) and the
remark after Definition 2. Moreover, the initial data satisfy the estimates

(204) |W∆
j,n(u)| ≤ In,j

1− |u|/uj

for all |u| < uj , 0 ≤ j ≤ S − 1, all n ≥ 0.
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From the assumption (124) and the fact that b > 1, we deduce that

S > b(s− k0 − q) + q + k1

for all (s, k0, k1) ∈ S, all 0 ≤ q ≤ k0. Therefore the assumption (72) is satisfied in Proposition 9
for the problem (201), (203).

On the other hand, from Lemma 4,5, there exist a constant DMd0
> 0 (depending on

S, σ̌, S, ρ′, µ′, |λ|, B, UMd0
, XMd0

), a constant 0 < U1,Md0
< UMd0

and a constant 0 < X1,Md0
<

XMd0
such that

(205) ||Dn(u, x)||(U1,Md0
,X1,Md0

) ≤ DnDMd0
||WMd0

(u, x)||(UMd0
,XMd0

) ≤ DnDMd0
CMd0

for all n ≥ 0, where the constant CMd0
is introduced in (196).

Since the initial data W∆
j,n(u) is an analytic function on some disc containing the closed disc

D̄(0, uj/2), for 0 ≤ j ≤ S−1 and the coefficients of the equation (201) are analytic on C×D(0, B),
we deduce that all the hypotheses of Proposition 9 for the problem (201), (203) are fulfilled.
We deduce the existence of a formal solution W∆

n (u, x) ∈ G(U1, X1) of (201), (203), where
0 < U1 < min(U1,Md0

,min0≤j≤S−1 uj/2) (depending on S) and 0 < X1 ≤ min(B/2, X1,Md0
)

(depending on S,σ̌,|λ|,uj ,for 0 ≤ j ≤ S − 1,S,A,B,ρ,µ).
Moreover, from (75) and (205), there exists constants M1 > 0 (depending on S,σ̌,λ,uj ,for

0 ≤ j ≤ S − 1,S,A,B,ρ,µ) and M2 > 0 (depending on S,uj for 0 ≤ j ≤ S − 1,B,S) such that

(206) ||W∆
n (u, x)||(U1,X1) ≤M1 max

0≤j≤S−1
In,j +DnM2DMd0

CMd0

for all n ≥ 0. Now, let W∆
n (u, x) =

∑
h,β≥0w

∆
h,β,n

uh

h!
xβ

β! be its Taylor expansion at the origin.

Then, the sequence w∆
h,β,n satisfies the following equalities:

(207) w∆
h,β+S,n =

∑
(s,k0,k1)∈S

∑
β1+β2=β

C1
23.1β!AB−β1(β + S + 1)(s−k0)b

w∆
h,β2+k1,n

β2!

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

∑
β1+β2=β

C2
23.1β!AB−β1 |ck

1
0
q ||λ|qhq(β + S + 1)(s−k0−q)b

w∆
h,β2+k1,n

β2!

+ Dh,β,n

where

(208) Dh,β,n =
∑

(s,k0,k1)∈S

∑
β1+β2=β

C3
23.1β!DnB

−β1(β + S + 1)(s−k0)b
wh,β2+k1,Md0

β2!

+
∑

k10+k20=k0,k10≥1

k0!

k1
0!k2

0!

k10∑
q=1

∑
β1+β2=β

C4
23.1β!DnB

−β1 |ck
1
0
q ||λ|qhq(β + S + 1)(s−k0−q)b

wh,β2+k1,Md0

β2!

for all h, β, n ≥ 0, with

(209) w∆
h,j,n

= sup
ε∈E0
||vh,j,Md0

,E0(r, ε)− vh,j,Sd0,ϑn ,E0(reiζn , ε)||j,σ̌,ε,d , for all h ≥ 0, all 0 ≤ j ≤ S − 1.
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Gathering the inequalities (199), (200) and the equalities (207), with the initial conditions (209),
one gets that

(210) sup
ε∈E0
|V∆
h,β,n(ε)| ≤ w∆

h,β,n

for all h, β ≥ 0, all n ≥ 0.
From (210) and the estimates (206), we deduce that

(211) sup
ε∈E0
||V ∆

h,β,Sd0,ϑn ,E0
(r, ε)||β,σ̌,ε,d

≤ (M1 max
0≤j≤S−1

In,j +DnM2DMd0
CMd0

)(h+ β)!(
1

U1
)h(

1

X1
)β

≤ (M1 max
0≤j≤S−1

In,j +DnM2DMd0
CMd0

)h!β!(
2

U1
)h(

2

X1
)β

for all h, β ≥ 0, all n ≥ 0. From (211), we get that

(212) sup
ε∈E0
||Vh,Sd0,ϑn ,E0(r, z, ε)− Vh,Md0

,E0(r, z, ε)||(σ̌,ε,d,δD)

≤ (M1 max
0≤j≤S−1

In,j +DnM2DMd0
CMd0

)h!(
2

U1
)h

for all h ≥ 0, all 0 < δD ≤ X1/4. This yields the estimates (175). 2

In the next lemma, we express Z0(t, z, ε) as Laplace transform of a staircase distribution.

Lemma 15 Let σ̌ > σ̃ > σrb(S− 1). Then, we can write the solution Z0(t, z, ε) of (154), (155)
in the form of a Laplace transform in direction arg(λ)

(213) Z0(t, z, ε) = Larg(λ)(Varg(λ),Sd0 ,E0(r, z, ε))(εt)

for all (t, z, ε) ∈ (T ∩D(0, ι′′))×D(0, δD,Z0)×(E0∩E1) where Varg(λ),Sd0 ,E0(r, z, ε) ∈ D′(σ̌, ε, δD,Z0)

(with δD,Z0 = min(δD, δZ0)) solves the following Cauchy problem

(214) (reiarg(λ) + 1)∂Sz Varg(λ),Sd0 ,E0(r, z, ε)

=
∑

(s,k0,k1)∈S

εk0−sbs,k0,k1(z, ε)(ei(s−k0)arg(λ)
∑

(m,p)∈O1
s−k0

α1
m,pr

m∂−pr ∂k1z Varg(λ),Sd0 ,E0(r, z, ε))

where the sets O1
s−k0 and the integers α1

m,p are introduced in (111), with initial data

(215) (∂jzVarg(λ),Sd0 ,E0)(r, 0, ε) = Vj,arg(λ),Sd0 ,E0(r, ε) , 0 ≤ j ≤ S − 1.

Proof From Proposition 23, we can write the solution Z0(t, z, ε) of (154), (155) in the form

(216) Z0(t, z, ε) =
∑
h≥0

exp(−hλ
εt )

h!

1

εt

∫
Lζn

Vh,Sd0,ϑn ,E0(τ, z, ε) exp(− τ
εt

)dτ

=
∑
h≥0

exp(−h|λ|eiarg(λ)
εt )

h!

eiζn

εt

∫ +∞

0
Vh,Sd0,ϑn ,E0(reiζn , z, ε) exp(−re

iζn

εt
)dr
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for all (t, z, ε) ∈ (T ∩D(0, ι′′))×D(0, δZ0)× (E0 ∩ E1), all n ≥ 0. Now, we write

Lζn(Vh,Sd0,ϑn ,E0(reiζn , z, ε))(εt) = Larg(λ)(Vh,Sd0,ϑn ,E0(reiζn , z, ε))(εtei(arg(λ)−ζn))

for all (t, z, ε) ∈ (T ∩ D(0, ι′′)) × D(0, δZ0) × (E0 ∩ E1), all n ≥ 0. Now, we define δD,Z0 =
min(δD, δZ0). From the continuity estimates (85) for the Laplace transform, we deduce that for
given ε ∈ E0 ∩ E1, t ∈ T ∩D(0, ι′′), there exists a constant Cε,t (depending on ε, t) such that

(217) |Larg(λ)(Vh,Md0
,E0(r, z, ε))(εt)− Larg(λ)(Vh,Sd0,ϑn ,E0(reiζn , z, ε))(εtei(arg(λ)−ζn))|

≤ Cε,t||Vh,Md0
,E0(r, z, ε)− Vh,Sd0,ϑn ,E0(reiζn , z, ε)||(σ̌,ε,d,δD,Z0

)

+ |Larg(λ)(Vh,Md0
,E0(r, z, ε))(εtei(arg(λ)−ζn))− Larg(λ)(Vh,Md0

,E0(r, z, ε))(εt)|

for all z ∈ D(0, δD,Z0), all n ≥ 0. By letting n tend to +∞ in this latter inequality and using
the estimates (175), we obtain

(218) Lζn(Vh,Sd0,ϑn ,E0(reiζn , z, ε))(εt) = Larg(λ)(Vh,Md0
,E0(r, z, ε))(εt)

for all (t, z, ε) ∈ (T ∩D(0, ι′′))×D(0, δD,Z0)× (E0 ∩ E1), all n ≥ 0.
On the other hand, from Corollary 1, we have that for all h ≥ 0, the distribution

∂−hr (Vh,Md0
,E0(r, z, ε)) belongs to D′(σ̌, ε, δD,Z0) and that there exists a universal constant C3 > 0

such that

(219) ||∂−hr (Vh,Md0
,E0(r, z, ε))||σ̌,ε,d,δD,Z0

≤ C3(
|ε|
σ̌

)h||Vh,Md0
,E0(r, z, ε)||σ̌,ε,d,δD,Z0

for all h ≥ 0.
From (218) and using Propositions 12 and 14, we can write

(220)
exp(−h|λ|eiarg(λ)

εt )

h!

eiζn

εt

∫ +∞

0
Vh,Sd0,ϑn ,E0(reiζn , z, ε) exp(−re

iζn

εt
)dr

= (
eiarg(λ)

εt
)h

exp(−h|λ|eiarg(λ)
εt )

h!
Larg(λ)(∂

−h
r (Vh,Md0

,E0(r, z, ε)))(εt)

= Larg(λ)(Vh,λ,Md0
,E0(r, z, ε))(εt)

where

Vh,λ,Md0
,E0(r, ε) =

(fh,λ,Md0
,E0(r − |λ|h, z, ε)1[|λ|h,+∞)(r))

(h)

h!
∈ D′(σ̌, ε, δD,Z0)

with fh,λ,Md0
,E0(r, z, ε) = ∂−hr (Vh,Md0

,E0(r, z, ε)) ∈ D′(σ̌, ε, δD,Z0), for all h ≥ 0, all 0 ≤ j ≤ S−1.
From Proposition 13, we have a universal constant A > 0 and a constant B(σ̌, b, ε) (depending
on σ̌, b and ε, which tends to zero as ε→ 0) such that

(221) ||Vh,λ,Md0
,E0(r, z, ε)||σ̌,ε,d,δD,Z0

≤ A(B(σ̌, b, ε))h

h!
||fh,λ,Md0

,E0(r, z, ε)||σ̌,ε,d,δD,Z0

From the convergence of the series (176) near the origin and using (219), (221), we deduce that
the distribution

(222) Varg(λ),Sd0 ,E0(r, z, ε) =
∑
h≥0

Vh,λ,Md0
,E0(r, z, ε) ∈ D′(σ̌, ε, δD,Z0),
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if ε0 > 0 is chosen small enough. Finally, by the continuity estimates (85) of the Laplace
transform Larg(λ) and the formula (216), (220), we get the expression (213). Moreover, from the
formulas in Proposition 12, as Z0(t, z, ε) solves the problem (154), (155), we deduce that the
distribution Varg(λ),Sd0 ,E0(r, z, ε) solves the Cauchy problem (214), (215). 2

Step 2: In this step, we show that the function X0,1(t, z, ε) can be express as a Laplace transform
of some staircase distribution in direction arg(λ) satisfying the problem (214), (215).

From the assumption (170), we deduce from Proposition 21, that the function V0,Sd1 ,E1(τ, z, ε)
constructed in (146) has an analytic continuation denoted by V0,Sd1,δn ,E1(τ, z, ε) on (Sd1,δn ∪
D(0, τ0))×D(0, δE1)×(E0∩E1) and satisfies estimates (138) for all n ≥ 0, where δE1 > 0 depends
on S,uE1 (which denotes a common radius of absolute convergence of the series (170), S, b, σ,
|λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0), where x0 < ρ. This constant δE1 is
therefore independent of n. Now, one defines the functions

V0,Sd1,δn ,E1(r, z, ε) = V0,Sd1,δn ,E1(reiξn , z, ε)

for all r ≥ 0, all z ∈ D(0, δE1), all n ≥ 0.

Lemma 16 Let σ̌ > σ̃ > σrb(S − 1) as in Lemma 13. Then, there exists 0 < δD0,1 <

min(δE1 , δD,Z0) (depending on S, S, σ̌, |λ|, A,B, ρ, µ and Ã, B̃, ρ̃, µ̃ introduced in Lemma 17), there
exist M̃1, M̃

′
1 (depending on S, S, σ̌, |λ|, A,B, ρ, µ, Ã, B̃, ρ̃, µ̃ and ρ̃′, µ̃′ introduced in Lemma 17)

such that

(223) sup
ε∈E0∩E1

||V0,Sd1,δn ,E1(r, z, ε)−Varg(λ),Sd0 ,E0(r, z, ε)||(σ̌,ε,d,δD0,1
) ≤ (M̃1 max

0≤j≤S−1
Jn,j +M̃ ′1D̃n)

for all n ≥ 0, where Varg(λ),Sd0 ,E0(r, z, ε) is defined in Lemma 15 and solves the problem (214),

(215) and D̃n is the sequence (which tends to zero as n→ +∞) defined in Lemma 17.

Proof From the estimates (133), we can write

V0,Sd1,δn ,E1(τ, z, ε) =
∑
β≥0

V0,β,Sd1,δn ,E1(τ, ε)
zβ

β!

where V0,β,Sd1,δn ,E1(τ, ε) are holomorphic functions such that there exists a constant u1 with
0 < u1 < uE1 (depending on uE1 , S and b,σ), a constant x1 such that 0 < x1 < ρ (depending
on S,uE1 ,S,b,σ,|λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0), where x0 < ρ) and
a constant CΩ(d1,E1),n > 0 (depending on max0≤j≤S−1Wj,Sd1,δn ,E1(uE1) (where Wj,Sd1,δn ,E1 are

defined in (170)), |λ|, max(s,k0,k1)∈S |b|s,k0,k1(x0), max(s,k0,k1)∈S |b̃|s,k0,k1(x0), S, uE1 , x0, S, b)
with

|V0,β,Sd1,δn ,E1(τ, ε)| ≤ CΩ(d1,E1),nβ!(
2

x1
)β(1 +

|τ |2

|ε|2
)−1 exp(

σ

2|ε|
rb(β)|τ |)

for all τ ∈ Sd1,δn ∪D(0, τ0), ε ∈ E1, all β ≥ 0, all n ≥ 0. We deduce that

(224) |V0,β,Sd1,δn ,E1(reiξn , ε)| ≤ CΩ(d1,E1),n(
2

x1
)ββ! exp(

σ

2|ε|
rb(β)r)

for all r ≥ 0, all ε ∈ E1, all β ≥ 0 and all n ≥ 0. In particular, r 7→ V0,β,Sd1,δn ,E1(reiξn , ε) belongs

to Lβ,σ̌/2,ε. From the proposition 1, we deduce that r 7→ V0,β,Sd1,δn ,E1(reiξn , ε) belongs to D′β,σ̌,ε.
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From Proposition 1 and (224), we get a universal constant C1 > 0 such that

(225) ||V0,β,Sd1,δn ,E1(reiξn , ε)||β,σ̌,ε,d ≤ C1||V0,β,Sd1,δn ,E1(reiξn , ε)||β,σ̌/2,ε

≤ C1CΩ(d1,E1),n
2|ε|
σ̌ − σ

(
2

x1
)ββ!

for all β ≥ 0, all n ≥ 0. From (225), we deduce that the distribution

V0,Sd1,δn ,E1(r, z, ε) =
∑
β≥0

V0,β,Sd1,δn ,E1(reiξn , ε)
zβ

β!
∈ D′(σ̌, ε, δ̌)

for all ε ∈ E0 ∩ E1, all δ̌ < x1/2 and all n ≥ 0.
From (111), (112), we have that the distribution V0,Sd1,δn ,E1(r, z, ε) solves the following prob-

lem

(226) (reiξn + 1)∂Sz V0,Sd1,δn ,E1(r, z, ε)

=
∑

(s,k0,k1)∈S

εk0−sbs,k0,k1(z, ε)(ei(s−k0)ξn
∑

(m,p)∈O1
s−k0

α1
m,pr

m∂−pr ∂k1z V0,Sd1,δn ,E1(r, z, ε))

where O1
s−k0 is the set and α1

m,p are the integers from (214), with initial data

(227) (∂jzV0,Sd1,δn ,E1)(r, 0, ε) = v0,j,Sd1,δn ,E1(reiξn , ε) , 0 ≤ j ≤ S − 1.

In the next lemma, we give estimates for the coefficients of the equations (226) and (214). The
proof is exactly the same as the one described for Lemma 14.

Lemma 17 Let

bs,k0,k1(z, ε) =
∑
β≥0

bs,k0,k1,β(ε)
zβ

β!

the convergent Taylor expansion of bs,k0,k1 with respect to z near 0. Then, there exist positive
constants Ã,B̃,ρ̃,ρ̃′,µ̃,µ̃′ and a sequence D̃n > 0 such that limn→+∞ D̃n = 0 with

(228) |∂qr (
bs,k0,k1,β(ε)ei(s−k0)arg(λ)

reiarg(λ) + 1
)| ≤ ÃB̃−β β!q!

(ρ̃(r + µ̃))q+1
,

|∂qr (
bs,k0,k1,β(ε)ei(s−k0)ξn

reiξn + 1
)| ≤ ÃB̃−β β!q!

(ρ̃(r + µ̃))q+1

and

(229) |∂qr (
bs,k0,k1,β(ε)ei(s−k0)arg(λ)

reiarg(λ) + 1
)− ∂qr (

bs,k0,k1,β(ε)ei(s−k0)ξn

reiξn + 1
)| ≤ D̃nB̃

−β β!q!

(ρ̃′(r + µ̃′))q+1

for all q ≥ 0, all β ≥ 0, all n ≥ 0, all r ≥ 0 and all ε ∈ E0 ∩ E1.

Now, we consider the distribution

V∆
0,Sd1,δn ,E1

(r, z, ε) := Varg(λ),Sd0 ,E0(r, z, ε)− V0,Sd1,δn ,E1(r, z, ε)
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for all r ≥ 0, all z ∈ D(0, δD,Z0) ∩D(0, δ̌), with 0 < δ̌ < x1/2 and δD,Z0 defined in Lemma 15,
for all ε ∈ E0 ∩ E1. One writes the Taylor expansions

V∆
0,Sd1,δn ,E1

(r, z, ε) =
∑
β≥0

V∆
0,β,Sd1,δn ,E1

(r, ε)
zβ

β!
,

Varg(λ),Sd0 ,E0(r, z, ε) =
∑
β≥0

Vβ,arg(λ),Sd0 ,E0(r, ε)
zβ

β!

for z ∈ D(0, δD,Z0) ∩D(0, δ̌), then the coefficients V∆
0,β,Sd1,δn ,E1

(r, ε) satisfy the next recursion

(230) V∆
0,β+S,Sd1,δn ,E1

(r, ε)

=
∑

(s,k0,k1)∈S

∑
β1+β2=β

β!
bs,k0,k1,β1(ε)

β1!
εk0−s

ei(s−k0)ξn

reiξn + 1

× (
∑

(m,p)∈O1
s−k0

α1
m,pr

m∂−pr
V∆

0,β2+k1,Sd1,δn ,E1
(r, ε)

β2!
)

+
∑

(s,k0,k1)∈S

∑
β1+β2=β

β!
bs,k0,k1,β1(ε)

β1!
εk0−s(

ei(s−k0)arg(λ)

reiarg(λ) + 1
− ei(s−k0)ξn

reiξn + 1
)

× (
∑

(m,p)∈O1
s−k0

α1
m,pr

m∂−pr
Vβ2+k1,arg(λ),Sd0 ,E0(r, ε)

β2!
)

for all h ≥ 0, all β ≥ 0. We put V∆
0,β,n,E1(ε) = ||V∆

0,β,Sd1,δn ,E1
(r, ε)||β,σ̌,ε,d. Using the corollary 1,

the propositions 4, 5 and the lemma 17, we get a constant C1
23.2 > 0 (depending on S, σ̌, S, ρ̃, µ̃)

and C2
23.2 > 0 (depending on S, σ̌, S, ρ̃′, µ̃′) such that the next inequalities

(231) V∆
0,β+S,n,E1(ε) ≤

∑
(s,k0,k1)∈S

∑
β1+β2=β

C1
23.2β!ÃB̃−β1(β + S + 1)b(s−k0)

V∆
0,β2+k1,n,E1(ε)

β2!

+
∑

(s,k0,k1)∈S

∑
β1+β2=β

C2
23.2β!D̃nB̃

−β1(β + S + 1)b(s−k0)
||Vβ2+k1,arg(λ),Sd0 ,E0(r, ε)||β2+k1,σ̌,ε,d

β2!

hold for all β ≥ 0, where Ã, B̃ > 0 and the sequence D̃n, n ≥ 0, are defined in Lemma 17.

We consider the following sequence of Cauchy problems

(232) ∂SxW∆
n,E1(x) =

∑
(s,k0,k1)∈S

C1
23.2(x∂x + S + 1)b(s−k0)(

Ã

1− x
B̃

∂k1x W∆
n,E1(x)) + D̃n(x)

where

D̃n(x) =
∑

(s,k0,k1)∈S

C2
23.2(x∂x + S + 1)b(s−k0)(

D̃n

1− x
B̃

∂k1x Warg(λ),E0(x))

with

Warg(λ),E0(x) =
∑
β≥0

sup
ε∈E0∩E1

||Vβ,arg(λ),Sd0 ,E0(x)||β,σ̌,ε,d
xβ

β!
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for given initial data

(233) (∂jxW∆
n,E1)(0)

= W∆
j,n,E1 = sup

ε∈E0∩E1
||Vj,arg(λ),Sd0 ,E0(r, ε)− v0,j,Sd1,δn ,E1(reiξn , ε)||j,σ̌,ε,d , 0 ≤ j ≤ S − 1,

which are finite positive numbers due to the assumption (173) and the remark after Definition
2. Moreover, the initial data satisfy the estimates

(234) |W∆
j,n,E1 | ≤ Jn,j

for all 0 ≤ j ≤ S − 1, all n ≥ 0.
On the other hand, we have that Warg(λ),E0(x) is convergent for all |x| ≤ XMd0

/4 (where
XMd0

is chosen in (196)). Indeed, we know, from (222), that

Vh,λ,Md0
,E0(r, z, ε) =

∑
β≥0

Vh,β,λ,Md0
,E0(r, ε)

zβ

β!

is convergent for all |z| < δD,Z0 , all r > 0, for all h ≥ 0. From (219) and (221), we know that

(235) ||Vh,β,λ,Md0
,E0(r, ε)||β,σ̌,ε,d ≤ C3A

(|ε|B(σ̌, b, ε)/σ̌)h

h!
||Vh,β,Md0

,E0(r, ε)||β,σ̌,ε,d

for all h ≥ 0, all β ≥ 0. From (196) and (235), we deduce that

||Vβ,arg(λ),Sd0 ,E0(r, ε)||β,σ̌,ε,d = ||
∑
h≥0

Vh,β,λ,Md0
,E0(r, ε)||β,σ̌,ε,d

≤ C3ACMd0
β!(

2

XMd0

)β
∑
h≥0

(
2|ε|B(σ̌, b, ε)

σ̌UMd0

)h

and this last sum is convergent provided that ε0 is small enough. We deduce that Warg(λ),E0(x)

belongs to G(U,XMd0
/4), for any U > 0. Let C̃Md0

:= ||Warg(λ),E0(x)||(U,XMd0
/4).

From Lemma 4 and 5, we get constants D̃Md0
> 0 (depending on S, σ̌, S, ρ̃′, µ̃′, B̃, U,XMd0

),

0 < Ũ1,Md0
< U and 0 < X̃1,Md0

< XMd0
/4 such that

(236) ||D̃n(x)||(Ũ1,Md0
,X̃1,Md0

) ≤ D̃nD̃Md0
C̃Md0

for all n ≥ 0.
From the assumption (124) and the fact that b > 1, we deduce that

S > b(s− k0) + k1

for all (s, k0, k1) ∈ S. Hence the assumption (72) is satisfied in Proposition 9 for the prob-
lem (232), (233). Moreover, the initial data W∆

j,n can be seen as constant functions (therefore

analytic) with respect to a variable u on the closed disc D̄(0, U) for any given U > 0 and the
coefficients of the equation (232) are analytic with respect to x on D̄(0, B̃/2) and constant (there-
fore analytic) with respect to u on D̄(0, U). We deduce that all the hypotheses of Proposition 9
for the problem (232), (233) are fulfilled. A direct computation shows that the problem (232),
(233) has a unique formal solution W∆

n,E1(x) =
∑

β≥0w
∆
β,n,E1x

β/β!, with w∆
β,n,E1 ∈ C. From
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Proposition 9, we deduce that W∆
n,E1(x) ∈ G(Ũ1, X̃1) where 0 < Ũ1 < Ũ1,Md0

(depending on S)

and 0 < X̃1 < min(B̃/2, X̃1,Md0
) (depending on S, S, σ̌, Ã, B̃, ρ̃, µ̃). Moreover, from (75) and

(236), there exist constants M̃1 > 0 (depending on S, S, σ̌, Ã, B̃, ρ̃, µ̃) and M̃2 > 0 (depending
on S, B̃, S) such that

(237) ||W∆
n,E1(x)||(Ũ1,X̃1) ≤ M̃1 max

0≤j≤S−1
Jn,j + D̃nM̃2D̃Md0

C̃Md0

for all n ≥ 0.
Now, the coefficients w∆

β,n,E1 satisfy the following equalities:

(238) w∆
β+S,n,E1 =

∑
(s,k0,k1)∈S

∑
β1+β2=β

C1
23.2β!ÃB̃−β1(β + S + 1)b(s−k0)

w∆
β2+k1,n,E1
β2!

+
∑

(s,k0,k1)∈S

∑
β1+β2=β

C2
23.2β!D̃nB̃

−β1(β + S + 1)b(s−k0)

×
supε∈E0∩E1 ||Vβ2+k1,arg(λ),Sd0 ,E0(r, ε)||β2+k1,σ̌,ε,d

β2!

for all β ≥ 0, all n ≥ 0, with

(239) w∆
j,n,E1 = W∆

j,n,E1 , 0 ≤ j ≤ S − 1.

Gathering the inequalities (231) and the equalities (238), with the initial data (239), one gets
that

(240) sup
ε∈E0∩E1

|V∆
0,β,n,E1(ε)| ≤ w∆

β,n,E1

for all β, n ≥ 0.
From (240) and the estimates (237), we deduce that

(241) sup
ε∈E0∩E1

||V∆
0,β,Sd1,δn ,E1

(r, ε)||β,σ̌,ε,d ≤ (M̃1 max
0≤j≤S−1

Jn,j + D̃nM̃2D̃Md0
C̃Md0

)β!(
1

X̃1

)β

for all β, n ≥ 0. From (241), we get that

(242) sup
ε∈E0∩E1

||V0,Sd1,δn ,E1(r, z, ε)− Varg(λ),Sd0 ,E0(r, z, ε)||(σ̌,ε,d,δD0,1
)

≤ 2(M̃1 max
0≤j≤S−1

Jn,j + D̃nM̃2D̃Md0
C̃Md0

)

for all n ≥ 0, for all 0 < δD0,1 < X̃1/2. This implies the estimates (223). 2

In the following lemma, we express the function X0,1(t, z, ε) as Laplace transform of a staircase
distribution.

Lemma 18 Let σ̌ > σ̃ > σrb(S − 1) as in Lemma 13. Then, we can write the function
X0,1(t, z, ε), which by contruction of Proposition 21, solves the singularly perturbed Cauchy prob-
lem

(243) εt2∂t∂
S
z X0,1(t, z, ε) + (εt+ 1)∂Sz X0,1(t, z, ε) =

∑
(s,k0,k1)∈S

bs,k0,k1(z, ε)ts(∂k0t ∂
k1
z X0,1)(t, z, ε)
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for given initial data

(244) (∂jzX0,1)(t, 0, ε) = ϕ0,1,j(εt, ε) , 0 ≤ j ≤ S − 1,

in the form of a Laplace transform in direction arg(λ)

(245) X0,1(t, z, ε) = Larg(λ)(Varg(λ),Sd0 ,E0(r, z, ε))(εt)

for all (t, z, ε) ∈ (T ∩D(0, ι′′))×D(0, δD0,1)×(E0∩E1), where Varg(λ),Sd0 ,E0(r, z, ε) ∈ D′(σ̌, ε, δD0,1)

solves the Cauchy problem (214), (215).

Proof From Proposition 21 and the assumption (170), we get that the function X0,1(t, z, ε) can
be expressed as a Laplace transform in the direction ξn,

(246) X0,1(t, z, ε) =
1

εt

∫
Lξn

V0,Sd1,δn ,E1(τ, z, ε) exp(− τ
εt

)dτ

=
eiξn

εt

∫ +∞

0
V0,Sd1,δn ,E1(reiξn , z, ε) exp(−re

iξn

εt
)dr

for all (t, z, ε) ∈ (T ∩ D(0, ι′′)) × D(0, δE1) × (E0 ∩ E1), all n ≥ 0. Now, let t ∈ T ∩ D(0, ι′′),
ε ∈ E0 ∩ E1. For all n ≥ 0, we can rewite X0,1(t, z, ε) as a Laplace transform in the direction
arg(λ),

(247) X0,1(t, z, ε) = Larg(λ)(V0,Sd1,δn ,E1(r, z, ε))(εtei(arg(λ)−ξn)),

for all z ∈ D(0, δE1). Using the expression (247), we deduce that from the estimates (85), there
exists a constant C(t,ε) > 0 such that

(248) |X0,1(t, z, ε)− Larg(λ)(Varg(λ),Sd0 ,E0(r, z, ε))(εt)|

≤ C(t,ε)||V0,Sd1,δn ,E1(r, z, ε)− Varg(λ),Sd0 ,E0(r, z, ε)||(σ̌,ε,d,δD0,1
)

+ |Larg(λ)(Varg(λ),Sd0 ,E0(r, z, ε))(εtei(arg(λ)−ξn))− Larg(λ)(Varg(λ),Sd0 ,E0(r, z, ε))(εt)|

for all n ≥ 0 and all z ∈ D(0, δD0,1). By letting n tend to +∞ and using the estimates (223),
we get the formula (245). 2

Now, we are in position to state the main result of our work.

Theorem 1 Let the assumptions (124), (126), (140), (141), (142), (157), (158), (161), (169),
(170) and (173) hold. Then, if we denote by op(Gκ0) (resp. op(Gκ1)) the opening of the sector
Gκ0 (resp. Gκ1), we have that for all t ∈ T ∩D(0, ι′′), z ∈ D(0, δD0,1), the function s 7→ g0(s, t, z)
(constructed in Proposition 22) can be analytically continued along any path Γ in the punctured
sector

Ṡκ0,κ1,t,λ = {s ∈ C∗/κ0 −
op(Gκ0)

2
< arg(s) < κ1 +

op(Gκ1)

2
} \ ∪∞k=1{

λk

t
},

as a function denoted by gΓ,t,z
0 (s). Moreover, for all k ≥ 1, and any path Γ0,k ⊂ Ṡκ0,κ1,t,λ from

0 to a neighborhood of λk
t , there exists a constant Ck > 0 such that

(249) |gΓ0,k,t,z
0 (s)| ≤ Ck| log(s− λk

t
)|

as s tends to λk
t in a sector centered at λk

t .
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Proof The proof is based on the following version of a result on analytic continuation of Borel
transforms obtained by A. Fruchard and R. Schäfke in [19]. This result extends a former state-
ment obtained by the same authors in [20].

Theorem (FS) Let r > 0 and let g : D(0, r) → C be a holomorphic function that can be
analytically continued as a function g+ (resp. g−) with exponentiel growth of order 1 on an
unbounded sector Sκ+,δ+ (resp. Sκ−,δ−) centered at 0, with bisecting direction κ+ (resp. κ−)
and opening δ+ (resp. δ−). Let C > r be a real number and let m ≥ 1 be an integer. Let {ak ∈
C∗, 1 ≤ k ≤ m} ⊂ D(0, C) be a set of aligned points and let α > 0 with arg(ak) = α ∈ (κ−, κ+),
for all 1 ≤ k ≤ m. For all integers 1 ≤ k ≤ m, let Sk be an unbounded open sector centered at
ak, with bisecting direction which is parallel to κ−, and opening µ > 0 such that the Sk∩D(0, C)
do not intersect for all 1 ≤ k ≤ m.

Now, for all 1 ≤ k ≤ m, let gk be a holomorphic and bounded function on a small neighbor-
hood of 0 and with exponential growth of order 1 on the sector Sk − ak = {s ∈ C/s + ak ∈ Sk}
with bisecting direction κ−. We consider the Laplace transforms

f+(ε) =

∫
Lκ+

g+(s)e−s/εds , f−(ε) =

∫
Lκ−

g−(s)e−s/εds , f−k (ε) =

∫
Lκ−

gk(s)e
−s/εds,

for all k ≥ 1, where Lκ+ is the half-line starting from 0 in the direction κ+ and Lκ− is the
half-line starting from 0 in the direction κ−. The function f+ (resp. f−) defines a holomorphic
and bounded function on an open sector E+ (resp. E−) with finite radius, with bisecting direction
κ+ (resp. κ−) and opening π+ δ+ (resp. π+ δ−). The sectors E+, E− are chosen in such a way
that E+ ∩ E− is contained in a sector with direction α and with opening less than π. Assume
that the following Stokes relation

(250) f+(ε) = f−(ε) +
m∑
k=1

e−ak/ε

k!
f−k (ε) +O(e−Ce

iα/ε)

holds for all ε ∈ E+ ∩ E−, where O(e−Ce
iα/ε) is a holomorphic function R(ε) on E+ ∩ E− such

that there exists a constant H > 0 with

|R(ε)| ≤ H|e−Ceiα/ε| = He
− C
|ε| cos(α−arg(ε))

for all ε ∈ E+ ∩ E−.
Then, the function g : D(0, r) → C can be analytically continued along any path Γ in the

punctured sector

Ṡκ−,κ+,C = {s ∈ C∗/|s| < C, κ− − δ−

2
< arg(s) < κ+ +

δ+

2
} \ ∪mk=1{ak}.

Moreover, for all 1 ≤ k ≤ m, and any path Γ0,k ⊂ Ṡκ−,κ+,C from 0 to a neighborhood of ak,
if we denote by gΓ0,k(s) the analytic continuation of g along Γ0,k, then there exists a constant
Ck > 0 such that

(251) |gΓ0,k(s)| ≤ Ck| log(s− ak)|

as s tends to ak in a sector centered at ak.

Proof For the sake of completeness, we give a sketch of proof of this theorem. In the first step,
let us consider the following sums of Cauchy integrals

h(t) =
1

2iπ

m∑
k=1

1

k!

∫
Lak,κ−,C

gk(τ − ak)
τ − t

dτ
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where Lak,κ−,C is the segment starting from ak in direction κ− with length C. The multivalued
function h(t) can be analytically continued along any path Γ in C \ {a1, . . . , am} by deforming
the path of integration Lak,κ−,C in the sector Sk and keeping the endpoints of the segment
Lak,κ−,C fixed for all 1 ≤ k ≤ m. Moreover, let 1 ≤ k ≤ m and t ∈ Lak,κ− \ {ak}, where Lak,κ−

denotes the half line starting from ak in direction κ−. We denote by hΓak,t,ρ(t) the analytic
continuation of h(t) along a loop Γak,t,ρ around ak constructed as follows : the loop follows a
segment starting from t in the direction ak then turns around ak along a circle Γak,ρ of small
radius ρ > 0 positively oriented and then goes back to t following the same segment. We have
that

(252) h(t)− hΓak,t,ρ(t) =
gk(t− ak)

k!
.

Indeed, by the Cauchy theorem, one can write h(t)− hΓak,t,ρ(t) as a Cauchy integral

Ik =
1

2iπk!

∫
Cak,C

gk(τ − ak)
τ − t

dτ

where Cak,C is a positively oriented closed curve enclosing t starting from ak and containing the

point ak + Ceiκ
−

. By the residue theorem, one gets that Ik = gk(t− ak)/k!. From the relation
(252), we also deduce the existence of a holomorphic function b(t) near ak such that

(253) h(t) = −gk(t− ak)
2iπk!

log(t− ak) + b(t)

for all t near ak, for a well chosen determination of the logarithm log(x).
In the second step, let us define the truncated Laplace transforms and Laplace transforms

H+
C′(ε) =

∫
Lκ+,C′

h(s)e−s/εds, H−C′(ε) =

∫
Lκ−,C′

h(s)e−s/εds,

H+(ε) =

∫
Lκ+

h(s)e−s/εds, H−(ε) =

∫
Lκ−

h(s)e−s/εds,

where Lκ+,C′ is the segment starting from 0 to C ′eiκ
+

and Lκ−,C′ is the segment starting from

0 to C ′eiκ
−

, for any fixed C ′ > C. By the Cauchy formula, one can write the difference
H+
C′(ε)−H

−
C′(ε) as the sum

(254) H+
C′(ε)−H

−
C′(ε)

= −
m∑
k=1

∫
Γak,ρ

h(s)e−s/εds+

∫
Lak,ρ,C′,κ−

(h(s)− hΓak,s,ρ(s))e−s/εds+O(e−Ce
iα/ε)

where Lak,ρ,C′,κ− is the segment starting from ak + ρeiκ
−

to ak + C ′eiκ
−

for any ρ > 0 small
enough. Due to the decomposition (253), h(s) is integrable at ak. By letting ρ tending to 0 and
C ′ tending to infinity, using the relation (252) in (254), ones gets that

(255) H+(ε)−H−(ε) =

m∑
k=1

1

k!

∫
Lak,κ−

gk(s− ak)e−s/εds+O(e−Ce
iα/ε)

=

m∑
k=1

e−ak/ε

k!

∫
Lκ−

gk(s)e
−s/εds+O(e−Ce

iα/ε)
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where Lak,κ− is the half-line starting from ak in the direction κ−.
Now, one considers the differences D+(ε) = f+(ε) − H+(ε) and D−(ε) = f−(ε) − H−(ε).

From the Stokes relations (250) and (255), one deduces that

(256) D+(ε)−D−(ε) = O(e−Ce
iα/ε)

for all ε ∈ E+ ∩ E−. Using a similar Borel transform integral representation as in the proof of
Theorem 1 in [20], one can show that the difference g(s)−h(s), which is by construction analytic
near the origin in C, can be analytically continued to a function G(s) which is holomorphic on the
sector Sκ−,κ+,C = {s ∈ C∗/|s| < C, κ− < arg(s) < κ+}. Since h can be analytically continued
along any path in C \ {a1, . . . , an}, one gets that the function g can be analytically continued
along any path in Ṡκ−,κ+,C and from the decomposition (253) one deduces the estimates (251).
2

Now, we return to the proof of Theorem 1. From the formula (143) and Proposition 24, the
following equality

(257)

∫
Lκ1

g0,1(s, t, z)e−s/εds =

∫
Lκ0

g0,0(s, t, z)e−s/εds

+
∑
h≥1

exp(−hλ
εt )

h!

∫
Lκ0

gh,0(s, t, z)e−s/εds

holds for all ε ∈ E0 ∩ E1, for all t ∈ T ∩ D(0, ι′′), all z ∈ D(0, δD0,1). Let t ∈ T ∩ D(0, ι′′) and
z ∈ D(0, δD0,1) fixed. Let m ≥ 1 be an integer. From the estimates (144), we get that

(258)
∑

h≥m+1

|
exp(−hλ

εt )

h!

∫
Lκ0

gh,0(s, t, z)e−s/εds| ≤ 2C̃0

∑
h≥m+1

| exp(−h λ
εt

)|( 2

u1
)h

≤ 2C̃0(
2

u1
)m+1| exp(−(m+ 1)

λ

εt
)| 1

1− 2| exp(− λ
εt)|/u1

for all ε ∈ E0 ∩ E1. From (257) and (258), we deduce that the following Stokes relation

(259)

∫
Lκ1

g0,1(s, t, z)e−s/εds =

∫
Lκ0

g0,0(s, t, z)e−s/εds

+
m∑
h=1

exp(−hλ
εt )

h!

∫
Lκ0

gh,0(s, t, z)e−s/ε +O(e−(m+1)λ/(εt))

holds where O(e−(m+1)λ/(εt)) is a holomorphic function R(ε) on E0 ∩ E1 such that there exists a
constant H > 0 with

|R(ε)| ≤ H|e−(m+1)λ/(εt)|

for all ε ∈ E0 ∩ E1. We can apply the theorem (FS) with ak = kλ/t, for 1 ≤ k ≤ m, C =
|λ|(m + 1)/|t| to get that the function s 7→ g0(s, t, z) (constructed in Proposition 22) can be
analytically continued along any path in the punctured sector

Ṡκ0,κ1,t,λ,m

= {s ∈ C∗/|s| < |λ|(m+ 1)/|t|, κ0 −
op(Gκ0)

2
< arg(s) < κ1 +

op(Gκ1)

2
} \ ∪mk=1{

λk

t
},
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as a function denoted by gΓ,t,z
0 (s). Moreover, for all 1 ≤ k ≤ m, and any path Γ0,k ⊂ Ṡκ0,κ1,t,λ,m

from 0 to a neighborhood of λk
t , there exists a constant Ck > 0 such that |gΓ0,k,t,z

0 (s)| ≤
Ck| log(s − λk

t )| as s tends to λk
t in a sector centered at λk

t . Since this result is true for all
m ≥ 1, the theorem 1 follows. 2

In the next result, we show that under the additional hypothesis that the coefficients of the
equation (154) are polynomials in the parameter ε, the function g0(s, t, z) solves a singular linear
partial differential equation in C3.

Corollary 2 Let the assumptions of Theorem 1 hold. We assume moreover that, for all tuple
(s, k0, k1) chosen in the set S, the coefficients bs,k0,k1(z, ε) belong to C{z}[ε] with the following
expansion in ε,

bs,k0,k1(z, ε) =

ds,k0,k1∑
m=k0

bms,k0,k1(z)εm

for some ds,k0,k1 ≥ k0. Then, for all K ∈ N with K ≥ 1 and K ≥ max{ds,k0,k1 ∈ N/(s, k0, k1) ∈
S}, the function g0(u, t, z) (constructed in Proposition 22) satisfies the following singular linear
partial differential equation

(260) t2∂t∂
K−1
u ∂Sz g0(u, t, z) + ∂Ku ∂

S
z g0(u, t, z)

= −t∂K−1
u ∂Sz g0(u, t, z) +

∑
(s,k0,k1)∈S

ds,k0,k1∑
m=k0

bms,k0,k1(z)ts(∂K−mu ∂k0t ∂
k1
z g0)(u, t, z)

for all (u, t, z) ∈ D(0, s0) × (T ∩ D(0, ι′′)) × D(0, δD0,1). From Theorem 1, for all (t, z) ∈
(T ∩ D(0, ι′′)) × D(0, δD0,1), this solution g0(u, t, z) can be analytically continued with respect

to u along any path in the punctured sector Ṡκ0,κ1,t,λ with logarithmic estimates (249) near the
singular points λk/t, for all k ≥ 1.

Proof From the proposition 22, we have that the function

X0,0(t, z, ε) = ε−1

∫
Lκ0

g0,0(s, t, z)e−s/εds

solves the equation (243) on (T ∩D(0, ι′′))×D(0, δD0,1)×E0. From the formulas in Proposition
15, we deduce that the function g0,0(u, t, z) solves the singular integro-differential equation

(261) t2∂t∂
−1
u ∂Sz g0,0(u, t, z) + ∂Sz g0,0(u, t, z)

= −t∂−1
u ∂Sz g0,0(u, t, z) +

∑
(s,k0,k1)∈S

ds,k0,k1∑
m=k0

bms,k0,k1(z)ts(∂−mu ∂k0t ∂
k1
z g0,0)(u, t, z)

for all (u, t, z) ∈ (Gκ0 ∪D(0, s0))× (T ∩D(0, ι′′))×D(0, δD0,1). Since g0(u, t, z) is holomorphic
on D(0, s0)× (T ∩D(0, ι′′))×D(0, δD0,1) and has g0,0(u, t, z) as analytic continuation on (Gκ0 ∪
D(0, s0))×(T ∩D(0, ι′′))×D(0, δD0,1), we get that g0(u, t, z) also solves (261). By differentiating
K times each hand side of the equation with respect to u, one gets that g0(u, t, z) solves the
partial differential equation (260). 2
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147–163.

[43] H. Yamane, Ramified Cauchy problem for a class of Fuchsian operators with tangent char-
acteristics. J. Math. Pures Appl. (9) 79 (2000), no. 3, 271–294.


