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Abstract. We consider a curve in the three dimensional Eu-
clidean space and provide sufficient conditions on the curvature
and the torsion for the curve to be unbounded.

We also present sufficient conditions on the curvatures for the
curve to be bounded in the four dimensional Euclidean space.

1. Introduction

In this short note we concern a smooth curve γ in the standard
three dimensional Euclidean space R3. Let this curve be defined (up to
translations and rotations of R3) by its curvature κ(s) and its torsion
τ(s), the argument s is the arc-length parameter. The pair (κ(s), τ(s))
is called the intrinsic equation of the curve.

In the sequel we assume that κ, τ ∈ C[0,+∞).
To obtain the radius-vector of the curve γ one must solve the system

of Frenet-Serret equations:

v′(s) = κ(s)n(s),

n′(s) = −κ(s)v(s) + τ(s)b(s), (1.1)

b′(s) = −τ(s)n(s).

The vectors v(s),n(s),b(s) stand for the Frenet-Serret frame at the
point with parameter s. Then the radius-vector of the curve is com-
puted as follows r(s) =

∫ s

0
v(ξ)dξ + r(0).
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So we obtain very natural and pretty problem: having the curvature
κ(s) and the torsion τ(s) to restore the properties of the curve γ .

For example, which conditions should be imposed on the functions
κ, τ so that the curve γ is closed? This is a hard open problem. There
may by another question: on which conditions does the curve lie on
a sphere? This question is much simpler. Such a type questions have
been discussed in [4], [3], [5].

There is sufficient condition for a curve to be unbounded given in
terms of curvature only [1]. The corresponding condition in terms of
curvature alone is sufficient in a much broader class of spaces, including
Hilbert spaces and Riemannian manifolds of nonpositive curvature.

The curve γ is a planar curve if and only if τ(s) = 0 and system
(1.1) is integrated explicitly. This case is not very interesting.

In the general case, (1.1) is a linear system of ninth order with matrix
depending on s. To describe the properties of γ one must study this
system.

In this note we formulate and prove some sufficient conditions for
unboundedness of the curve γ.

We also present sufficient conditions on the curvatures for the curve
to be bounded in the four dimensional Euclidean space.

2. Main Theorem

We shall say that γ is unbounded if sups≥0 |r(s)| = ∞.

Theorem 2.1. Suppose there exists a function λ(s) such that functions

k(s) = λ(s)κ(s), t(s) = λ(s)τ(s)

are monotone1 and belong to C[0,∞).
Introduce a function T (s) =

∫ s

0
t(ξ)dξ.

Suppose also that the following equalities hold

lim
s→∞

T (s) = ∞, lim
s→∞

k(s)

T (s)
= lim

s→∞

t(s)

T (s)
= 0. (2.1)

Then the curve γ is unbounded.

The proof of this theorem is contained in Section 4.1.
Putting in this Theorem λ = 1/τ , we deduce the following corollary.

1i.e. one of these functions, for example k(s) is monotonically increased:
s′ < s′′ ⇒ k(s′) ≤ k(s′′), s′, s′′ ∈ [0,∞) while another one t(s) is monotoni-
cally decreased: s′ < s′′ ⇒ t(s′) ≥ t(s′′), s′, s′′ ∈ [0,∞). The inverse situation is
also allowed, or the both functions can be increased or decreased simultaneously .
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Corollary 1. Suppose that a function κ(s)/τ(s) is monotone and

lim
s→∞

κ(s)

s · τ(s)
= 0. (2.2)

Then the curve γ is unbounded.

Note that the geodesic curvature of the tantrix2 κT (s) is equal to
τ(s)/κ(s) [3]. So that formula (2.2) can be rewritten as follows

lim
s→∞

κT (s)s = ∞.

Theorem 2.1 is not reduced to Corollary 1. Consider an example.
Let the curve γ be given by

κ(s) = 1, τ(s) =
1

1 + s
.

Since τ(s) → 0 as s → ∞ it may seem that this curve is about a circle
with κ(s) = 1. Nevertheless applying Theorem 2.1 with λ = 1 we see
that the curve γ is unbounded.

Consider a system which consists of (1.1) together with the equation
r′(s) = v(s). From the stability theory viewpoint Theorem 2.1 states
that under certain conditions this system is unstable.

Since |r(s)| = O(s) as s → ∞, this instability is too mild to study it
by standard methods such as the Lyapunov exponents method.

3. Supplementary Remarks: Bounded Curves in R4

Actually the above developed technique can be generalized to the
curves in any multidimensional Euclidean space Rm. For the case of
the odd m we can prove a theorem similar to Theorem 2.1. But for the
case when m is even our method allows to obtain sufficient conditions
for the curve to be bounded.

In this section we illustrate such an effect. To avoid of big formulas
we consider only the case m = 4.

So let a curve γ ⊂ R4 be given by its curvatures

κi(s) ∈ C[0,∞), i = 1, 2, 3.

And let vj(s), j = 1, 2, 3, 4 be the Frenet-Serret frame.

2The tangential spherical image of the curve γ is the curve on the unit sphere.
This curve has the radius-vector r′(s).
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Then the Frenet-Serret equations are

d

ds


v1

v2

v3

v4

 (s) = A(s)


v1

v2

v3

v4

 (s),

A(s) =


0 κ1(s) 0 0

−κ1(s) 0 κ2(s) 0
0 −κ2(s) 0 κ3(s)
0 0 −κ3(s) 0


Theorem 3.1. Suppose that the function κ1(s)κ3(s) does not take the
zero value. The functions

f1(s) =
1

κ1(s)
, f2(s) =

κ2(s)

κ1(s)κ3(s)

are monotone and

sup
s≥0

|fi(s)| < ∞, i = 1, 2.

Then the curve γ is bounded.

The proof of this theorem is contained in Section 4.2.

4. Proofs

4.1. Proof of Theorem 2.1. Let us write the formula

r(s) = r1(s)v(s) + r2(s)n(s) + r3(s)b(s).

Differentiating this formula we obtain

v(s) = r′1(s)v(s) + r′2(s)n(s) + r′3(s)b(s)

+ r1(s)v
′(s) + r2(s)n

′(s) + r3(s)b
′(s).

This formula is easily solved for (r′1, r
′
2, r

′
3) by using the orthogonality

of the coefficient matrix (v,n,b) and the system (1.1). So we obtain

r′(s) =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 r(s) +

1
0
0

 , r =

r1
r2
r3

 . (4.1)

The author was informed about system (4.1) by Professor Ya. V.
Tatarinov.

Let us multiply both sides of system (4.1) on the left by the row
vector (λ(s)(τ(s), 0, κ(s)):

t(s)r′1(s) + k(s)r′3(s) = t(s).
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Then we integrate this equality:∫ s

0

t(a)r′1(a)da+

∫ s

0

k(a)r′3(a)da = T (s). (4.2)

From the Second Mean Value Theorem [2], we know that there is a
parameter ξ ∈ [0, s] such that∫ s

0

t(a)r′1(a)da = t(0)

∫ ξ

0

r′1(a)da+ t(s)

∫ s

ξ

r′1(a)da

= t(0)
(
r1(ξ)− r1(0)

)
+ t(s)

(
r1(s)− r1(ξ)

)
By the same argument for some η ∈ [0, s] we have∫ s

0

k(a)r′3(a)da = k(0)
(
r3(η)− r3(0)

)
+ k(s)

(
r3(s)− r3(η)

)
.

Thus formula (4.2) takes the form

t(0)
(
r1(ξ)− r1(0)

)
+ t(s)

(
r1(s)− r1(ξ)

)
+ k(0)

(
r3(η)− r3(0)

)
+ k(s)

(
r3(s)− r3(η)

)
= T (s). (4.3)

Since the Frenet-Serret frame is orthonormal we have

|r(s)|2 = r21(s) + r22(s) + r23(s) = |r(s)|2.
Assume the converse: the curve γ is bounded i.e. sups≥0 |r(s)| < ∞.

Then due to conditions (2.1) the left side of formula (4.3) is o(T (s)) as
s → ∞. This is the contradiction.

The Theorem is proved.

4.2. Proof of Theorem 3.1. Let r(s) be the radius-vector of the
curve γ. Then one can write

r(s) =
4∑

i=1

rivi(s), r′(s) = v1(s).

Similarly as in the previous section, by the Frenet-Serret equations this
gives

r′(s) = A(s)r(s) +


1
0
0
0

 , r =


r1
r2
r3
r4

 .

First we multiply this equation by r′T (s)A−1(s), (detA = (κ1κ3)
2):

r′T (s)A−1(s)r′(s) = r′T (s)r(s) + r′T (s)A−1(s)


1
0
0
0

 . (4.4)
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Since A−1 is a skew-symmetric matrix we have r′T (s)A−1(s)r′(s) = 0,
and some calculation yields

r′T (s)A−1(s)


1
0
0
0

 = r′2(s)f1(s) + r′4(s)f2(s).

Then formula (4.4) takes the form

−1

2

(
|r(s)|2

)′
= r′2(s)f1(s) + r′4(s)f2(s).

Integrating this formula we obtain

−1

2

(
|r(s)|2 − |r(0)|2

)
=

∫ s

0

r′2(a)f1(a) + r′4(a)f2(a)da.

By the same argument which was employed to obtain formula (4.3) it
follows that

−1

2

(
|r(s)|2 − |r(0)|2

)
=

f1(0)
(
r2(ξ)− r2(0)

)
+ f1(s)

(
r2(s)− r2(ξ)

)
+

f2(0)
(
r4(η)− r4(0)

)
+ f2(s)

(
r4(s)− r4(η)

)
, (4.5)

here ξ, η ∈ [0, s].
To proceed with the proof assume the converse. Let the curve γ be

unbounded: sups≥0 |r(s)| = ∞. Take a sequence sk such that

|r(sk)| = max
s∈[0,k]

|r(s)|, k ∈ N, sk ∈ [0, k].

It is easy to see that

sk → ∞, |r(s)| ≤ |r(sk)|, s ∈ [0, sk]

and |r(sk)| → ∞ as k → ∞.
Substitute this sequence to formula (4.5):

−1

2

(
|r(sk)|2 − |r(0)|2

)
=

f1(0)
(
r2(ξk)− r2(0)

)
+ f1(sk)

(
r2(sk)− r2(ξk)

)
+

f2(0)
(
r4(ηk)− r4(0)

)
+ f2(sk)

(
r4(sk)− r4(ηk)

)
, (4.6)

here ξk, ηk ∈ [0, sk] and thus |r2(ξk)| ≤ |r(sk)|, |r4(ηk)| ≤ |r(sk)| .
Due to conditions of the Theorem and the choice of the sequence sk

the right-hand side of formula (4.6) grows not faster than O(|r(sk)|)
as k → ∞. But the left-hand one is of order −|r(sk)|2/2. This is the
contradiction.

The Theorem is proved.
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