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Abstract

A new construction of linear continuous right inverses for the asymptotic Borel map is provided in the
framework of general Carleman ultraholomorphic classes in narrow sectors. Such operators were already
obtained by V. Thilliez by means of Whitney extension results for non quasianalytic ultradifferentiable
classes, due to J. Chaumat and A. M. Chollet, but our approach is completely different, resting on
the introduction of a suitable truncated Laplace-type transform. This technique is better suited for a
generalization of these results to the several variables setting. Moreover, it closely resembles the classical
procedure in the case of Gevrey classes, so indicating the way for the introduction of a concept of
summability which generalizes k−summability theory as developed by J. P. Ramis.
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1 Introduction

For sectors S of suitably small opening and vertex at 0, the Borel-Ritt-Gevrey theorem proved
by J. P. Ramis (see [24, 25, 18], [1, Thm. 2.2.1]) guarantees the existence of holomorphic functions
on S having an arbitrarily prescribed Gevrey asymptotic expansion of order α at 0. This amounts
to the surjectivity of the asymptotic Borel map, sending a function to its series of asymptotic
expansion, when considered between the corresponding spaces of Gevrey functions, respectively
Gevrey series. The proof is constructive, and basically consists in applying a truncated Laplace
transform to the formal Borel transform of the initially given Gevrey series.

For functions f holomorphic on a polysector S ⊂ Cn with vertex at 0, H. Majima [14, 15]
put forward the concept of strong asymptotic developability, which has been shown [9, 7] to
amount to the boundedness of the derivatives of f on bounded proper subpolysectors of S, just
as in the one-variable situation. The asymptotic behaviour of f is determined by the family
TA(f) (see Section 5), consisting of functions obtained as limits of the derivatives of f when
some of its variables tend to 0 (in the same way as the coefficients of the series of asymptotic
expansion in the one-variable case).

In 1989 Y. Haraoka [8] considered the space of holomorphic functions f in a polysector S that
admit Gevrey strong asymptotic expansion of order α = (α1, . . . , αn) ∈ [1,∞)n (one order per
variable), and got two partial Borel-Ritt-Gevrey type results in this context again by applying
a (multidimensional) truncated Laplace transform.

Subsequently, in the one-variable setting V. Thilliez [27, Theorem 1.3] obtained a linear con-
tinuous version of this result by constructing extension operators (linear continuous right inverses
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for the Borel map) from Banach spaces of Gevrey series into Banach spaces of functions whose
derivatives admit Gevrey-like bounds uniformly on all of S (so that they admit Gevrey asymp-
totic expansion at 0). His proof rests on Whitney type extension results for ultradifferentiable
classes by J. Chaumat and A. M. Chollet [5].

The third author of the present work re-proved in [26] Thilliez’s result in an elementary
way by a careful study of Ramis’ argument. The solution so obtained, in integral form, is
valid for vector, Banach space-valued functions, and it is also amenable to the determination
of its behaviour in case this Banach space consists precisely of Gevrey functions. Since these
Banach spaces verify an exponential-law isomorphism, one may apply a recurrent argument
on the number of variables to obtain extension operators in several variables which generalize
Thilliez’s result and provide linear continuous versions of the first interpolation result proven by
Haraoka [8, Theorem 1.(1)] and a right inverse for the map f 7→ TA(f).

The next step in these developments was again taken by V. Thilliez in [28], where he broad-
ens the scope of the preceding one-dimensional results on considering general ultraholomorphic
classes in sectors. Specifically, given A > 0, a sequence of positive real numbers M = (Mp)p∈N0

and a sector S with vertex at 0 in the Riemann surface of the logarithm, R, AM ,A(S) consists
of the complex holomorphic functions f defined in S such that

∥f∥M ,A,S := sup
p∈N0,z∈S

|Dpf(z)|
App!Mp

<∞.

The ultraholomorphic Carleman class AM (S) is defined as ∪A>0AM ,A(S).
Accordingly, ΛM ,A(N0) is the set of the sequences of complex numbers λ = (λp)p∈N0 such

that

|λ|M ,A := sup
p∈N0

|λp|
App!Mp

<∞,

and ΛM (N0) := ∪A>0ΛM ,A(N0). (AM ,A(S), ∥ · ∥M ,A,S) and (ΛM ,A(N0), | · |M ,A) are Banach
spaces, and, as the derivatives of the elements in AM ,A(S) are Lipschitzian, we may define the
(linear and continuous) asymptotic Borel map B : AM ,A(S) → ΛM ,A(N0) given by

B(f) :=
(
f (p)(0)

)
p∈N0

∈ CN0 , f (p)(0) := lim
z→0

f (p)(z).

Gevrey classes of order α > 1 in a sector S correspond to the sequence Mα = (p!α−1)p∈N0 . For
strongly regular sequences M (see Subsection 2.4), among which we find the sequences Mα,
the construction of Thilliez’s operators in the next theorem is based on a double application of
suitable Whitney’s extension results for Whitney ultradifferentiable jets on compact sets with
Lipschitz boundary, given by J. Chaumat and A. M. Chollet in [6], and on a solution of a
∂-problem.

Theorem 1.1 ([28], Thm. 3.2.1). Let M = (Mp)p∈N0 be a strongly regular sequence with asso-
ciated growth index γ(M). Let us consider γ ∈ R with 0 < γ < γ(M), and let Sγ be a sector
with opening γπ. Then there exists d ≥ 1, that only depends on M and γ, so that for every
A > 0 there exists a linear continuous operator

TM ,A,γ : ΛM ,A(N0) −→ AM ,dA(Sγ)

such that B ◦ TM ,A,γλ = λ for every λ ∈ ΛM ,A(N0).

For Gevrey classes, γ(Mα) = α − 1, so that the condition in the theorem tells that the
opening of the sector should be less than (α − 1)π for the extension to exist, what agrees with
the classical Borel-Ritt-Gevrey statement.
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This result has been extended to functions of several variables by the first and third au-
thors [13] by applying a recursive technique similar to that in [26], but resting on this new
construction of Thilliez, what makes it difficult to determine the behaviour of the derivatives of
the solution of the one dimensional problem when it takes its values in a Banach space of the
type AM ,A(S). As indicated above, this information is crucial in the process providing a right
inverse for the map TA in this context.

With these preliminaries, the main aim in the present work is to obtain a new proof of The-
orem 1.1 which no longer depends on Whitney-type extension results, but rather makes use of
a suitable truncated integral, Laplace-like operator, in the same vein as Ramis’ original proof.
The kernel in this integral operator will be given in terms of a flat function obtained by V.
Thilliez [28, Thm. 2.3.1], playing a similar role as that played by the exponential exp(−1/z1/α)
in the Gevrey case of order α. Indeed, in the authors’ opinion the absence of an elementary
function governing null asymptotics in this general case was the reason for the use, up to this
moment, of results belonging to the ultradifferentiable setting when solving interpolation prob-
lems in non-Gevrey ultraholomorphic classes. As stated before, this new approach is better
suited for the generalization to the several variables setting, and moreover, it provides some in-
sight when searching for a summability tool in general ultraholomorphic classes which resembles
k−summability, specifically designed for the Gevrey case and which has proved itself extremely
useful in the reconstruction of analytic solutions of linear and nonlinear (systems of) mero-
morphic ordinary differential equations at irregular singular points, departing from their formal
power series solutions (see [2] and the references therein). We include in the last section some
hints in this direction, where we will make use of quasi-analyticity properties in these classes
which have been characterized (see [12]) in terms of Watson’s type lemmas. It should also be
indicated that the construction of the formal and analytic transforms incorporated into this
new technique is inspired by the study of general summability methods, equivalent in a sense to
k−summability, developed by W. Balser in [2, Section 5.5] and which have already found its ap-
plication to the analysis of formal power series solutions of different classes of partial differential
equations and so-called moment-partial differential equations (see the works of W. Balser and
Y. Yoshino [3], the second author [16, 17] and S. Michalik [19, 20, 21, 22], among others). Also,
some results on summability for non-Gevrey classes, associated to strongly regular sequences,
have been provided for difference equations by G. K. Immink in [11], whereas V. Thilliez has
obtained some results on solutions within these general classes for algebraic equations in [29].
We hope our summability theory is able to shed some light on some of these problems or on
similar ones.

2 Preliminaries

2.1 Notation

We set N := {1, 2, ...}, N0 := N ∪ {0}. R stands for the Riemann surface of the logarithm, and
C[[z]] is the space of formal power series in z with complex coefficients.
For γ > 0, we consider unbounded sectors

Sγ := {z ∈ R : |arg(z)| < γ π

2
}

or, in general, bounded or unbounded sectors

S(d, α, r) := {z ∈ R : |arg(z)− d| < απ

2
, |z| < r}, S(d, α) := {z ∈ R : |arg(z)− d| < απ

2
}
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with bisecting direction d ∈ R, opening απ and (in the first case) radius r ∈ (0,∞).
A sectorial region G(d, α) will be a domain in R such that G(d, α) ⊂ S(d, α), and for every
β ∈ (0, α) there exists ρ = ρ(β) > 0 with S(d, β, ρ) ⊂ G(d, α).
D(z0, r) stands for the disk centered at z0 with radius r > 0.
For n ∈ N, we put N = {1, 2, . . . , n}. If J is a nonempty subset of N , #J denotes its cardinal
number.
A polysector is a product of sectors, S =

∏n
j=1 Sj ⊂ Rn. The polysector

∏n
j=1 S(dj , θj , ρj) (with

ρj possibly equal to ∞) will be denoted by S = S(d,θ,ρ), with the obvious meaning for d, θ
and ρ. In case ρj = +∞ for j ∈ N , we write S = S(d,θ).
We say a polysector T =

∏n
j=1 T (d

′
j , θ

′
j , ρ

′
j) is a bounded proper subpolysector of S = S(d,θ,ρ),

and we write T ≪ S, if for j ∈ N we have ρ′j < ρj (so that ρ′j < +∞) and

(1) [d′j − θ′j/2, d
′
j + θ′j/2] ⊂ (dj − θj/2, dj + θj/2).

Finally, we say T =
∏n

j=1 T (d
′
j , θ

′
j) is an unbounded proper subpolysector of S = S(d,θ), and we

write T ≺ S, if for j ∈ N we have (1). Given z ∈ Rn, we write zJ for the restriction of z to J ,
regarding z as an element of RN .
Let J and L be nonempty disjoint subsets of N . For zJ ∈ RJ and zL ∈ RL, (zJ , zL) represents
the element of RJ∪L satisfying (zJ ,zL)J = zJ , (zJ , zL)L = zL; we also write J ′ = N \J , and for
j ∈ N we use j′ instead of {j}′. In particular, we shall use these conventions for multi-indices.
For θ = (θ1, . . . , θn) ∈ (0,∞)n, we write Sθ =

∏n
j=1 Sθj and SθJ

=
∏

j∈J Sθj ⊂ RJ .
If z = (z1, z2, . . . , zn) ∈ Rn, α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ Nn

0 , we define:

|α| = α1 + α2 + . . .+ αn, α! = α1!α2! · · ·αn!,

Dα = ∂α

∂zα = ∂|α|

∂z
α1
1 ∂z

α2
2 ...∂zαn

n
, ej = (0, . . . ,

j)

1, . . . , 0).

For J ∈ Nn
0 , we will frequently write j = |J |.

2.2 Asymptotic expansions

Given A > 0, a sequence of positive real numbers M = (Mp)p∈N0 and a sector S, for every f in
the class AM ,A(S) one may put

f (p)(0) := lim
z∈S,z→0

f (p)(z) ∈ C

for every p ∈ N0. Then, f admits the formal power series
∑

p∈N0

1
p!f

(p)(0)zp as its uniform
asymptotic expansion at 0, in the following sense.

Definition 2.1. Let M = (Mp)p∈N0 be a sequence of positive real numbers and let f be a
holomorphic function in a sector S with vertex at the origin. We say f admits the formal power
series f̂ =

∑∞
p=0 apz

p ∈ C[[z]] as its uniform M−asymptotic expansion in S of type A > 0 (when
the variable tends to 0) if there exists C > 0 such that for every N ∈ N, one has

(2)

∣∣∣∣∣∣f(z)−
N−1∑
p=0

apz
p

∣∣∣∣∣∣ ≤ CANMN , z ∈ S.

We will write f ∼M
∑∞

p=0 apz
p (uniformly in S and with type A).
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Remark 2.2. Conversely, and as a consequence of Cauchy’s integral formula for the deriva-
tives, one can prove that whenever T is a proper subsector of S, there exists a constant
c = c(T, S) > 0 such that the restriction to T , fT , of functions f defined on S and admitting
uniform M−asymptotic expansion in S of type A > 0, belongs to AM ,cA(T ), and moreover, if
one has (2) then ∥fT ∥M ,cA,T ≤ C.

Remark 2.3. For sectorial regions G, f ∼M
∑∞

p=0 apz
p in G means that f ∼M

∑∞
p=0 apz

p

uniformly in every sector S such that S \ {0} ⊂ G.

2.3 Strongly regular sequences

The information in this subsection is taken from the work of V. Thilliez [28], which we refer to
for further details and proofs. In what follows, M = (Mp)p∈N0 will always stand for a sequence
of positive real numbers, and we will always assume that M0 = 1.

Definition 2.4. We say M is strongly regular if the following hold:
(α0) M is logarithmically convex : M2

p ≤Mp−1Mp+1 for every p ∈ N.
(µ) M is of moderate growth: there exists A > 0 such that

Mp+ℓ ≤ Ap+ℓMpMℓ, p, ℓ ∈ N0.

(γ1) M satisfies the strong non-quasianalyticity condition: there exists B > 0 such that∑
ℓ≥p

Mℓ

(ℓ+ 1)Mℓ+1
≤ B

Mp

Mp+1
, p ∈ N0.

For a strongly regular sequence M = (Mp)p∈N0 , it is direct to check from properties (α0)
and (γ1) that m = (mp :=Mp+1/Mp)p∈N0 is an increasing sequence to infinity, so that the map
hM : [0,∞) → R, defined by

hM (t) := inf
p∈N0

Mpt
p, hM (0) = 0

turns out to be a non-decreasing continuous map in [0,∞), and its range is the set [0, 1]. In fact

hM (t) =

{
tpMp if t ∈

[
1
mp

, 1
mp−1

)
, p = 1, 2, . . . ,

1 if t ≥ 1/m0.

Some properties of strongly regular sequences needed in the present work are the following.

Lemma 2.5. Let M = (Mp)p∈N0 be a strongly regular sequence and A > 0 the constant appear-
ing in (µ). Then,

Mp+ℓ ≥MpMℓ, for every p, ℓ ∈ N0,(3)

mp ≤ A2M1/p
p , for every p ∈ N0,(4)

M1/p
p ≤ mp, for every p ∈ N0.(5)

Let s be a real number with s ≥ 1. There exists ρ(s) ≥ 1 (only depending on s and M) such
that

(6) hM (t) ≤ (hM (ρ(s)t))s for t ≥ 0.
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Definition 2.6. Let M = (Mp)p∈N0 be a strongly regular sequence, γ > 0. We say M satisfies
property (Pγ) if there exist a sequence of real numbers m′ = (m′

p)p∈N0 and a constant a ≥ 1
such that: (i) a−1mp ≤ m′

p ≤ amp, p ∈ N, and (ii)
(
(p+ 1)−γm′

p

)
p∈N0

is increasing.

The growth index of M is

γ(M) := sup{γ ∈ R : (Pγ) is fulfilled}.

For any strongly regular sequence M one has γ(M) ∈ (0,∞). For the Gevrey sequence of
order α > 0 given by Mα = (p!α)p∈N0 , we have γ(Mα) = α.

Finally we describe the properties of a function that will be crucial in the construction of a
kernel for our Laplace-type operator.

Proposition 2.7 ([28], Thm. 2.3.1 and Lemma 2.3.2). Suppose M = (Mp)p∈N0 is a strongly
regular sequence and δ ∈ R with 0 < δ < γ(M). There exists a holomorphic function GM

defined in Sδ such that for every w ∈ Sδ one has:

(i) k1hM (k2|w|) ≤ |GM (w)| ≤ hM (k3|w|), where k1, k2 and k3 are positive constants that
only depend on M and δ.

(ii) For every p ∈ N0, |G(p)
M (w)| ≤ bp1p!MphM (b2|w|), b1 and b2 being positive constants that

only depend on M and δ. In particular, we deduce that GM ∈ AM (Sδ) and it is flat, i.e.,
GM ∼M 0 uniformly in Sδ.

(iii) For every p ∈ N0, |(1/GM )(p)(w)| ≤ b3b
p
4p!Mp(hM (b5|w|))−1, where b3, b4 and b5 are

positive constants that only depend on M and δ.

Remark 2.8. Let 0 < δ < γ(M). The function GM is defined as follows. Take δ1 and s with
δ < δ1 < γ(M) and sδ1 < 1 < sγ(M). Then

(7) GM (z) = exp

(
1

π

∫ ∞

−∞
log (hMs(|t|)) itz

s − 1

it− zs
dt

1 + t2

)
, z ∈ Sδ1 ,

with M s := (M s
p )p∈N0 , which turns out to be a strongly regular sequence too. The restriction

of GM to Sδ is the function in Proposition 2.7.

3 Moment sequence associated to M

This section is devoted to the construction of a moment function eM , associated to a strongly
regular sequence M , which in turn will provide us with a sequence of moments m = (m(p))p∈N0

equivalent, in the sense of the following definition, to M .

Definition 3.1 (see [23], [6]). Two sequences M = (Mp)p∈N0 and M ′ = (M ′
p)p∈N0 of positive

real numbers are said to be equivalent if there exist positive constants L,H such that

LpMp ≤M ′
p ≤ HpMp, p ∈ N0.

We note that, given a sector S and a pair of equivalent sequences M and M ′, the spaces
AM (S) and AM ′(S) coincide.

Let M = (Mp)p∈N0 be a strongly regular sequence with growth index γ(M). We take
0 < δ < γ(M) and define eM : Sδ → C by

(8) eM (z) := zGM (1/z), z ∈ Sδ,

where GM is defined in Subsection 2.3.
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Remark 3.2. There is some freedom in the choice of eM . Firstly, the factor z may be changed
into any zα for some positive real number α (so that the assertion (i) in the next lemma holds
true), where the principal branch of the power is considered. Our choice tries to make the
following computations simpler. Secondly, as indicated in Remark 2.8, there are some constants
δ1 and s to be fixed in the construction of GM .

Lemma 3.3. The function eM satisfies the following assertions:

(i) eM is well defined in Sδ and is such that z−1eM (z) is integrable at the origin, it is to say,
for any t0 > 0 and τ ∈ R with |τ | < δπ

2 the integral
∫ t0
0 t−1|eM (teiτ )|dt is finite.

(ii) There exist C,K > 0 (not depending on δ) such that

(9) |eM (z)| ≤ ChM

(
K

|z|

)
, z ∈ Sδ.

(iii) For x ∈ R, x > 0, the values of eM (x) are positive real.

Proof Let t0 > 0 and τ ∈ R with |τ | < δπ
2 . From Proposition 2.7 there exists k3 > 0 such that∫ t0

0

|eM (teiτ )|
t

dt ≤
∫ t0

0
hM (k3/t)dt.

We conclude the convergence of the last integral from the fact that hM (s) ≡ 1 when s ≥ 1
m1

and its continuity in [0,∞). The first part of the result is achieved.
For the second, we have

|eM (z)| = |z||GM (1/z)| ≤ |z|hM (k3/|z|),

for every z ∈ Sδ, so (ii) holds for |z| < M̃ for any fixed M̃ > 0. If |z| ≥ M̃ , we apply (6) for
s = 2 and the very definition of hM to get

|eM (z)| ≤ |z|
(
hM

(ρ(2)k3
|z|

))2
≤ |z|hM

(ρ(2)k3
|z|

)
M2

(ρ(2)k3
|z|

)2 ≤ ρ(2)2k23M2

M̃
hM

(ρ(2)k3
|z|

)
.

Finally, if x > 0, then eM (x) = xGM (1/x). From (7) we have

GM (1/x) = exp

(
1

π

∫ ∞

−∞
log (hN (|t|)) it− xs

itxs − 1

dt

1 + t2

)
.

It is immediate to check that the imaginary part of the expression inside the previous integral
is odd with respect to t, so that the corresponding integral is 0 and GM (1/x) is positive and
real for x > 0. 2

The role that Eulerian Gamma function played for Gevrey sequences will now be played by
the following auxiliary function.

Definition 3.4. We define the moment function associated to M as

m(λ) :=

∫ ∞

0
tλ−1eM (t)dt =

∫ ∞

0
tλGM (1/t)dt.
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From Lemma 3.3 we have that the function m is well defined in {Re(λ) ≥ 0} and defines a
continuous function in this set, and holomorphic in {Re(λ) > 0}. Moreover, m(x) is positive
real for every x ≥ 0, so we can state the next

Definition 3.5. Let M be a strongly regular sequence and let the function eM be constructed
as in (8). The sequence of positive real numbers m = (m(p))p∈N0 , is known as the sequence of
moments associated to M (or to eM ).

Proposition 3.6. Let M = (Mp)p∈N0 be a strongly regular sequence and m = (m(p))p∈N0 the
sequence of moments associated to M . Then M and m are equivalent.

Proof We recall that (mp)p∈N0 is the sequence of quotients ofM . Firstly, we prove the existence
of positive constants C1, C2 such that

(10) m(p) ≤ C1C
p
2Mp, p ∈ N0.

Let p ∈ N0. From Proposition 2.7.(i), there exists k3 > 0 with

m(p) ≤
∫ ∞

0
tphM (k3/t)dt =

∫ mp+1

0
tphM (k3/t)dt+

∫ ∞

mp+1

tphM (k3/t)dt.

In the first integral we take into account that hM is bounded by 1, while in the second one we
use the definition of hM . This yields

m(p) ≤
∫ mp+1

0
tpdt+

∫ ∞

mp+1

tp
kp+2
3

tp+2
Mp+2dt =

1

p+ 1
mp+1

p+1 + kp+2
3

Mp+2

mp+1
.

We have Mp+2 = mp+1Mp+1, and we may apply the property (µ) of M and (4) to obtain that

m(p) ≤ A2Mp+1 + kp+2
3 Mp+1 ≤ (A3M1A

p +AM1k
2
3A

pkp3)Mp,

as desired. This concludes the first part of the proof.
We will now show the existence of constants C3, C4 > 0 such that m(p) ≥ C3C

p
4Mp for every

p ∈ N0. Let p ∈ N0. From Proposition 2.7.(i), there exist k1, k2 > 0 such that

m(p) ≥ k1

∫ ∞

0
tphM (k2/t)dt ≥ k1

∫ k2mp

0
tphM (k2/t)dt.

Since the map t 7→ hM (k2/t) decreases in (0,∞), we have that for every t ∈ (0, k2mp],

hM (k2/t) ≥ hM (1/mp) =
Mp

mp
p
,

hence

m(p) ≥ k1

∫ k2mp

0
tp
Mp

mp
p
dt = k1

kp+1
2 mp+1

p

p+ 1

Mp

mp
p
= k1

kp+1
2

p+ 1
mpMp.

Now, mpMp =Mp+1 and p+ 1 ≤ 2p for every p ∈ N0. By applying (3) we finally conclude that

m(p) ≥ k1k2M1(k2/2)
pMp.

2

Remark 3.7. In the Gevrey case of order α > 0, Mα = (p!α)p∈N0 , we may choose

eMα(z) =
1

α
z1/α exp(−z1/α), z ∈ Sα.

Then we obtain that mα(λ) = Γ(1 + αλ) for ℜ(λ) ≥ 0. Of course, the sequences Mα and
mα = (mα(p))p∈N0 are equivalent.
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4 Right inverses for the asymptotic Borel map in ultraholomor-
phic classes in sectors

The proof of the incoming result follows the same lines as the original one in the Gevrey case
(see [30], [4], [26, Thm. 4.1]). The only difficulty stems from the use of the kernel eM , linked
to a general sequence M and, to a certain extent, unknown, whereas the exponential function
linked to the Gevrey case is very well-known.

Theorem 4.1. Let M = (Mp)p∈N0 be a strongly regular sequence and let S = S(d, δ) be a sector
with vertex at the origin and opening 0 < δ < γ(M). For every (ap)p∈N0 ∈ ΛM (N0) there exists

a function f ∈ AM (S) such that f admits f̂ =
∑

p∈N0

ap
p! z

p as its uniform asymptotic expansion
in Sδ.

Proof We may assume that d = 0 without loss of generality, for the case d ̸= 0 only involves an
adequate rotation.

Let (ap)p∈N0 ∈ ΛM (N0), and let m = (m(p))p∈N0 be the sequence of moments associated
to M . There exist positive constants C1, A1 such that

(11) |ap| ≤ C1D
p
1p!Mp, p ∈ N0.

From Proposition 3.6, the series

ĝ =
∑
p∈N0

ap
p!m(p)

zp

is convergent in a disc D(0, R) for some R > 0, and it defines a holomorphic function g there.
Let 0 < R0 < R. We define

(12) f(z) :=

∫ R0

0
eM

(u
z

)
g(u)

du

u
, z ∈ Sδ,

where the kernel eM is constructed as in (8). By virtue of Leibnitz’s theorem on analyticity of
parametric integrals and the definition of eM , f turns out to be a holomorphic function in Sδ.
Let us prove that f ∼M f̂ uniformly in Sδ.

Let N ∈ N and z ∈ Sδ. We have

f(z)−
N−1∑
p=0

ap
zp

p!
= f(z)−

N−1∑
p=0

ap
m(p)

m(p)
zp

p!

=

∫ R0

0
eM

(u
z

) ∞∑
k=0

ak
m(k)

uk

k!

du

u
−

N−1∑
p=0

ap
m(p)

∫ ∞

0
up−1eM (u)du

zp

p!
.

After a change of variable v = zu in the second integral, by virtue of the estimate (3.3) one may
use Cauchy’s residue theorem in order to check that

zp
∫ ∞

0
up−1eM (u)du =

∫ ∞

0
vpeM

(v
z

) dv
v
,

which allows us to write the preceding difference as∫ R0

0
eM

(u
z

) ∞∑
k=0

ak
m(k)

uk

k!

du

u
−

N−1∑
p=0

ap
m(p)

∫ ∞

0
upeM

(u
z

) du
u

1

p!

=

∫ R0

0
eM

(u
z

) ∞∑
k=N

ak
m(k)

uk

k!

du

u
−

∫ ∞

R0

eM

(u
z

)N−1∑
p=0

ap
m(p)

up

p!

du

u
.
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Then, we have ∣∣∣∣∣∣f(z)−
N−1∑
p=0

ap
zp

p!

∣∣∣∣∣∣ ≤ f1(z) + f2(z),

where

f1(z) =

∣∣∣∣∣
∫ R0

0
eM

(u
z

) ∞∑
k=N

ak
m(k)

uk

k!

du

u

∣∣∣∣∣ ,
f2(z) =

∣∣∣∣∣∣
∫ ∞

R0

eM

(u
z

)N−1∑
p=0

ap
m(p)

up

p!

du

u

∣∣∣∣∣∣ .
We now give suitable estimates for f1(z) and f2(z). From Proposition 3.6 there exist C2, D2 > 0
(not depending on z) such that

(13)
ak

m(k)k!
≤ C1D

k
1k!Mk

m(k)k!
≤ C2D

k
2 ,

for all k ∈ N0. This yields

f1(z) ≤ C2

∫ R0

0

∣∣∣eM (u
z

)∣∣∣ ∞∑
k=N

(D2u)
k du

u
.

Taking R0 ≤ (1− ϵ)/D2 for some ϵ > 0 if necessary, we get

f1(z) ≤ ϵC2D
n
2

∫ R0

0

∣∣∣eM (u
z

)∣∣∣uN−1du.

By a double application of (i) in Proposition 2.7 we derive∣∣∣GM

( z
u

)∣∣∣ ≤ hM

(
k3|z|
|u|

)
= hM

(
k2
k3|z|
k2u

)
≤ 1

k1
GM

(
k3|z|
k2u

)
,

for some positive constants k1, k2, k3. This yields

(14)

∫ R0

0

∣∣∣eM (u
z

)∣∣∣uN−1du ≤ 1

k1

∫ ∞

0

∣∣∣u
z

∣∣∣GM

(
k3|z|
k2u

)
uN−1du

=
1

k1

∫ ∞

0

k3t

k2
GM

(
1

t

)(
k3|z|t
k2

)N−1 k3
k2

|z|dt

=

(
k3
k2

)N+1 1

k1
|z|N

∫ ∞

0
tNGM

(
1

t

)
dt = C3D

N
3 m(N)|z|N ,

for some C3, D3 > 0. The conclusion for f1 is achieved from Proposition 3.6. It only rests to
estimate f2(z). We have up ≤ Rp

0u
N/RN

0 for u ≥ R0 and 0 ≤ p ≤ N − 1. So, according to (13),
we may write

N−1∑
p=0

apu
p

m(p)p!
≤

N−1∑
p=0

C1D
p
1p!Mpu

p

m(p)p!
≤

N−1∑
p=0

C1D
p
1C2D

p
2u

p ≤ uN

RN
0

N−1∑
p=0

C1D
p
1C2D

p
2R

p
0 ≤ C5D

N
5 u

N ,

for some positive constants C5, D5. Then, we conclude

f2(z) ≤ C5D
N
5

∫ ∞

R0

∣∣∣eM (u
z

)∣∣∣uN−1du.

We come up to the end of the proof following similar estimates as in (14). 2
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Remark 4.2. Given δ with 0 < δ < γ(M), choose δ1 such that δ < δ1 < γ(M) and put
S1 = S(d, δ1). For A > 0 and for every a = (ap)p∈N0 ∈ ΛM ,A(N0), we have the estimates (11)
with C1 = |a|M ,A and D1 = A. Since the previous result is valid in S1, we obtain a function

f ∈ AM (S1) that admits f̂ =
∑

p∈N0

ap
p! z

p as its uniform asymptotic expansion in S1. Moreover,
by taking into account in detail the way constants are modified in the course of the proof of
Theorem 4.1, one observes that there exist constants C,D > 0, not depending on f , such that
for every N ∈ N0 one has

(15)

∣∣∣∣∣∣f(z)−
N−1∑
p=0

ap
p!
zp

∣∣∣∣∣∣ ≤ (CC1)(DD1)
NMN = C|a|M ,A(DA)

NMN , z ∈ S1.

According to Remark 2.2, there exists a constant c = c(S, S1) > 0 such that the restriction to
S of f belongs to AM ,cDA(S), and moreover, from (15) we get ∥f∥M ,cDA,S ≤ C|a|M ,A. So, we
have re-proved the following theorem of V. Thilliez.

Theorem 4.3. Under the hypotheses of Theorem 4.1, there exists a positive constant c ≥ 1 such
that for any A > 0, the integral operator

TM ,A : ΛM ,A(N0) −→ AM ,cA(Sδ)

defined in (12) by

TM ,A(a = (ap)p∈N0) :=

∫ R0

0
eM (u/z)

( ∞∑
p=0

ap
m(p)

up

p!

)du
u

is linear and continuous and it turns out to be a right inverse for the asymptotic Borel map B.

5 An application to the several variable setting

As an application of the previous result, we will obtain a different construction of continuous
extension operators in Carleman ultraholomorphic classes in polysectors of Rn, obtained in [13]
by the first and the third authors as a generalization of V. Thilliez’s result (see [28, Thm. 3.2.1]).
It is worth saying that the results in Section 4 are also valid when the functions and sequences
involved take their values in a complex Banach space B. This will be crucial in the ongoing
section.

Let n ∈ N, n ≥ 2, and fix a sequence M = (Mp)p∈N0 of positive real numbers. For a
polysector S in Rn, the space AM (S,B) consists of the holomorphic functions f : S → (B, ∥·∥B)
such that there exists A > 0 (depending on f) with

(16) ∥f∥BM ,A,S := sup
J∈Nn

0 ,z∈S

∥∥DJf(z)
∥∥
B

Ajj!Mj
<∞

(the notations adopted in Subsection 2.1 are being applied).
For fixed A > 0, AM ,A(S,B) consists of the elements in AM (S,B) such that (16) holds, and

the norm ∥ · ∥BM ,A,S makes it a Banach space. The space ΛM ,A(Nn
0 ,B) consists of the multi-

sequences λ = (λJ )J∈Nn
0
∈ NB

0 such that

|λ|M ,A,B := sup
J∈Nn

0

∥λJ∥B
Ajj!Mj

<∞,
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and (ΛM ,A(Nn
0 ,B), | · |M ,A,B) is a Banach space.

The elements in AM (S,B) admit strong asymptotic expansion in S as defined by H. Majima
(see [14, 15]), since this fact amounts, as shown by J. A. Hernández [9], to having bounded
derivatives in every subpolysector T ≪ S. The following facts, stated here without proof, can
be found in detail in the three previous references and in [7, 10, 13]. The asymptotic information
for such a function f is given by the family

TA(f) =
{
fαJ

: ∅ ̸= J ⊆ N ,αJ ∈ NJ
0

}
,

where for every nonempty subset J of N and every αJ ∈ NJ
0 , fαJ

is defined as

fαJ
(zJ ′) = lim

zJ→0J

D(αJ ,0J′ )f(z), zJ ′ ∈ SJ ′ ,

the limit being uniform on SJ ′ whenever J ̸= N . This implies that fαJ
∈ AM (SJ ′ ,B) (we agree

that AM (SN ′ ,B) is meant to be B).

Proposition 5.1 (Coherence conditions). Let f ∈ AM (S,B) and

TA(f) =
{
fαJ : ∅ ̸= J ⊆ N ,αJ ∈ NJ

0

}
.

Then, for every pair of nonempty disjoint subsets J and L of N , every αJ ∈ NJ
0 and αL ∈ NL

0 ,
we have

(17) lim
zL→0

D(αL,0(J∪L)′ )fαJ
(zJ ′) = f(αJ ,αL)(z(J∪L)′);

the limit is uniform in S(J∪L)′ whenever J ∪L ̸= N .

Definition 5.2. We say a family

F =
{
fαJ

∈ AM (SJ ′ ,B) : ∅ ̸= J ⊆ N ,αJ ∈ NJ
0

}
is coherent if it fulfills the conditions given in (17).

Definition 5.3. Let f ∈ A(S,B). The first order family associated to f is given by

B1(f) :=
{
fm{j} ∈ AM (Sj′ ,B) : j ∈ N ,m ∈ N0

}
⊆ TA(f).

The first order family consists of the elements in the total family that depend on n − 1
variables. For the sake of simplicity, we will write fjm instead of fm{j} , j ∈ N , m ∈ N0. As it
can be seen in [7, Section 4], knowing B1(f) amounts to knowing TA(f), and moreover, B1(f)
verifies what we call first order coherence conditions, emanating from the ones for TA(f). In
fact, there is a bijective correspondence between the set of coherent families (see Definition 5.2)
and the one of coherent first order families

F1 =
{
fjm ∈ AM (Sj′ ,B) : j ∈ N ,m ∈ N0

}
.

Definition 5.4. Let M = (Mp)p∈N0 be a sequence that fulfills property (µ) for a constant A1,
and let A > 0. We define F1

M ,A(S,B) as the set of coherent families of first order

G =
{
fjm ∈ AM ,2AA1(Sj′ ,B) : j ∈ N ,m ∈ N0

}
such that for every j ∈ N we have

Gj := (fjm)m∈N0 ∈ ΛM ,2AA1

(
N0,AM ,2AA1(Sj′ ,B)

)
.
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It is immediate to prove that, if we put

νM ,A(G) := sup
j∈N

{
|Gj |M ,2AA1,AM,2AA1

(Sj′ ,B)

}
, G ∈ F1

M ,A(S,B),

then (F1
M ,A(S,B), νM ,A) is a Banach space. We may consider a generalized Borel map, say B1,

sending any function in AM ,A(S,B) to its corresponding first order family. Then, one has

Proposition 5.5 ([13], Proposition 3.4). The map B1 : AM ,A(S,B) → F1
M ,A(S,B) is well

defined, linear and continuous.

The main purpose of the current section is to obtain a continuous right inverse for the
preceding operator. The procedure followed is similar to the one in [26] for Gevrey classes, and
it is based on our new proof of Theorem 4.3, so overcoming the technical difficulties encountered
in [13].

The first step in the proof consists of changing the problem into an equivalent one in terms
of functions in one variable with values in an appropriate Banach space of functions. In order
to do this, the following result is essential. Since the proof for a similar statement can be found
in detail in [10, Thm. 4.5], we omit it.

Theorem 5.6. Let n,m ∈ N, M be a sequence of positive real numbers, B be a complex Banach
space, A > 0 and S and V be (poly)sectors in Rn and Rm, respectively. Then, we have:

(i) If M fulfills (µ) and A1 is the constant involved in this property, then the map

ψ1 : AM ,A(S × V,B) −→ AM ,2AA1 (S,AM ,2AA1(V,B))

sending each function f ∈ AM ,A(S × V,B) to the function f⋆ = ψ1(f) given by

(f⋆(z)) (w) = f(z,w), (z,w) ∈ S × V,

is well defined, linear and continuous. Given f ∈ AM ,A(S × V,B), for every α ∈ Nn
0 ,

β ∈ Nm
0 and (z,w) ∈ S × V we have

D(α,β)f(z,w) = Dα (Dαf⋆(z)) (w),

and so
∥f⋆∥AM,2AA1

(V,B)
M ,2AA1,S

≤ ∥f∥BM ,A,S×V .

(ii) If M fulfills (α0), the map

ψ2 : AM ,A (S,AM ,A(V,B)) −→ AM ,A(S × V,B)

given by
(ψ2(f)) (w, z) = (f(z)) (w), (z,w) ∈ S × V,

is well defined, linear and continuous. For f ∈ AM ,A (S,AM ,A(V,B)), every α ∈ Nn
0 ,

β ∈ Nm
0 and (z,w) ∈ S × V we have

(18) D(α,β) (ψ2(f)) (z,w) = Dβ (Dαf(z)) (w),

and consequently

∥ψ2(f)∥BM ,A,S×V ≤ ∥f∥AM,A(V,B)
M ,A,S .
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Before stating the main result in this section, we need some information about the asymptotic
behaviour of the one-variable solution provided by Theorem 4.3 when it takes its values in a
Banach space of the type AM ,A(S,B).

Let n ≥ 1, A > 0, M = (Mp)p∈N0 be a strongly regular sequence, S a polysector in Rn and
0 < δ < γ(M). Suppose that for every p ∈ N0 we are given a function fp ∈ AM ,A(S,B) in such
a way that f = (fp)p∈N0 ∈ ΛM ,A (N0,AM ,A(S,B)). Let R0 be as in the proof of Theorem 4.1.
By Theorem 4.3, we know that the function H⋆ := TM ,A(f) : Sδ → AM ,A(S,B), given by

H⋆(w) =

∫ R0

0
eM (u/w)

( ∞∑
p=0

fp
m(p)

up

p!

)du
u
,

belongs to AM ,c(δ)A(Sδ,AM ,A(S,B)), for suitable c(δ) > 1, and it admits
∑

p≥0 fpz
p/p! as

uniform M -asymptotic expansion in Sδ. Hence, the function H : Sδ×S → B given by H(w, z) =
H⋆(w)(z), belongs, by Theorem 5.6.(ii), to AM ,A(Sδ × S,B) and, for every α ∈ Nn

0 , we have

(19) D(0,α)H(w, z) = Dα(H⋆(w))(z) =

∫ R0

0
eM (u/w)

( ∞∑
p=0

Dαfp(z)

m(p)

up

p!

)du
u
.

The proof of the next Lemma, extremely lengthy and awkward when following the technique
in [28], is now easy due to the new solution in integral form for Theorem 4.3.

Lemma 5.7. Let S =
∏

j∈N Sj. If for every m, p ∈ N0 and j ∈ N , we have

(20) lim
zj→0,zj∈Sj

Dmejfp(z) = 0 uniformly on Sj′ ,

then, for every m ∈ N0 and j ∈ N one has

lim
zj→0,zj∈Sj

D(0,mej)H(w,z) = 0 uniformly on Sδ × Sj′ .

Proof By (19) we have

D(0,mej)H(w, z) =

∫ R0

0
eM (u/w)

( ∞∑
p=0

Dmejfp(z)

m(p)

up

p!

)du
u
.

Given ε > 0, there exists p0 ∈ N0 such that, for every p ≥ p0, every z ∈ S and every u ∈ [0, R0],
one has ∥∥∥∥∥

∞∑
p=p0

Dmejfp(z)

m(p)

up

p!

∥∥∥∥∥ < ε.

From (20), there exists M > 0 such that whenever z = (z1, ..., zn) ∈ S and zj ∈ Sj ∩D(0,M)
we have

|Dmejfp(z)| ≤
εm(p)p!

p0R
p
0

, p = 0, . . . , p0 − 1.

Hence, for every z ∈ S with zj ∈ Sj ∩D(0,M) and every w ∈ Sδ we have

∣∣∣D(0,mej)H(w, z)
∣∣∣ ≤ ∫ R0

0
|eM (u/w)|

(∣∣∣ p0−1∑
p=0

Dmejfp(z)

m(p)

up

p!

∣∣∣+ ∣∣∣ ∞∑
p=p0

Dmejfp(z)

m(p)

up

p!

∣∣∣)du
u

≤ 2ε

∫ R0

0
|eM (u/w)|du

u
= 2ε

∫ ∞

0

1

|w|
|GM (w/u)|du.
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We will be done if the last integral is uniformly bounded in Sδ. In the following estimates we
use Proposition 2.7.(i), the fact that hM is bounded above by 1, and the very definition of hM :∫ ∞

0

1

|w|
|GM (w/u)|du =

∫ |w|

0

1

|w|
du+

∫ ∞

|w|

1

|w|
hM (k3|w|/u)du

≤ 1 +

∫ ∞

|w|

1

|w|
k23

|w|2

u2
M2du = 1 + k23M2.

2

We now state our extension result. The proof is partially included, for it follows similar steps
as in Theorem 3.4 in [26], or Theorem 3.6 in [13].

Theorem 5.8. Let M = (Mp)p∈N0 be a strongly regular sequence and δ = (δ1, ..., δn) ∈ (0,∞)n

with δj < γ(M) for j ∈ N . Then, there exists a constant c = c(M , δ) > 1, a constant
C = C(M , δ) > 0, and for every A > 0, a linear operator

UM ,A,δ : F1
M ,A(Sδ) −→ AM ,cA(Sδ)

such that, for every G ∈ F1
M ,A(Sδ) we have

B1 (UM ,A,δ(G)) = G and ∥UM ,A,δ(G)∥M ,cA,Sδ
≤ CνM ,A(G).

Proof Suppose M verifies (µ) for a constant A1 > 0. Let

G =
{
fjm ∈ AM ,2AA1(Sδj′ ) : j ∈ N ,m ∈ N0

}
∈ F1

M ,A(Sδ).

The proof is divided into n steps, in such a way that in the k-th step we will obtain a function
whose first order family contains the first k sequences (fjm)m∈N0 , with j ≤ k. We will only
detail the first two steps.

Since G1 := {f1m} ∈ ΛM ,2AA1

(
N0,AM ,2AA1(Sδ1′ )

)
, the vector-valued version of Theorem 4.3

provides constants c1 ≥ 1, C1 > 0 and a linear continuous operator

TM ,2AA1,δ1 : ΛM ,2AA1(N0,AM ,2AA1(Sδ1′ )) −→ AM ,c12AA1(Sδ1 ,AM ,2AA1(Sδ1′ ))

such that, if we put H
[1]⋆
1 := TM ,2AA1,δ1(G1), then

H
[1]⋆
1 ∼M

∞∑
m=0

f1m
m!

zm1 and ∥H [1]⋆
1 ∥

AM,2AA1
(Sδ1′

)

M ,c12AA1,Sδ1
≤ C1|G1|M ,2AA1,AM,2AA1

(Sδ1′
).

Since
AM ,c12AA1(Sδ1 ,AM ,2AA1(Sδ1′ )) ⊆ AM ,c12AA1(Sδ1 ,AM ,c12AA1(Sδ1′ ))

(with the correspondent inequality for the norms), by Theorem 5.6.(ii) we know that the function
H [1] : Sδ → C given by

H [1](z) := H
[1]⋆
1 (z1)(z1′), z = (z1,z1′) ∈ Sδ,

belongs to AM ,c12AA1(Sδ) and, moreover,

∥H [1]∥M ,c12AA1,Sδ
≤ ∥H [1]⋆

1 ∥
AM,2AA1

(Sδ1′
)

M ,c12AA1,Sδ1
.
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Let B1(H
[1]) = {h[1]jm : j ∈ N ,m ∈ N0}. For every z1′ ∈ Sδ1′ we have, by virtue of (18),

h
[1]
1m(z1′) = lim

z1→0,z1∈Sδ1

Dme1H [1](z) = lim
z1→0,z1∈Sδ1

(H
[1]⋆
1 )(m)(z1)(z1′) = f1m(z1′).

This concludes the first step of the proof. Let H
[1]⋆
2 be the function given by

H
[1]⋆
2 (z2)(z2′) := H [1](z2, z2′), z2 ∈ Sδ2 , z2′ ∈ Sδ2′ .

From Theorem 5.6.(i), we have

H
[1]⋆
2 ∈ AM ,c1(2A1)2A(Sδ2 ,AM ,c1(2A1)2A(Sδ2′ )).

We put

H
[1]⋆
2 ∼M

∞∑
m=0

h
[1]
2m

m!
zm2

and, for the sake of brevity, B2 := AM ,c1(2A1)2A(Sδ2′ ). As H [1] ∈ AM ,c12A1A(Sδ), Proposition 5.5
tells us that

(h
[1]
2m)m∈N0 ∈ ΛM ,c1(2A1)2A(N0,B2),

and Definition 5.4 implies

G2 := (f2m)m∈N0 ∈ ΛM ,2A1A(N0,AM ,2A1A(Sδ2′ )).

So, (f2m − h
[1]
2m)m∈N0 ∈ ΛM ,c1(2A1)2A(N0,B2). By Theorem 4.3, we have c2 ≥ 1, C2 > 0 and a

linear continuous operator

TM ,c1(2A1)2A,δ2 : ΛM ,c1(2A1)2A(N0,B2) −→ AM ,c2c1(2A1)2A(Sδ2 ,B2)

such that, if we define

H
[2]⋆
2 := TM ,c1(2A1)2A,δ2

(
(f2m − h

[1]
2m)m∈N0

)
,

then

(21) H
[2]⋆
2 ∼M

∞∑
m=0

f2m − h
[1]
2m

m!
zm2

and
∥H [2]⋆

2 ∥B2

M ,c2c1(2A1)2A,Sδ2
≤ C2|(f2m − h

[1]
2m)m∈N0 |M ,c1(2A1)2A,B2

.

Since
AM ,c2c1(2A1)2A(Sδ2 ,B2) ⊆ AM ,c2c1(2A1)2A(Sδ2 ,AM ,c2c1(2A1)2A(Sδ2′ )),

H
[2]⋆
2 belongs to the second of these spaces, and Theorem 5.6.(ii) ensures that the function

H [2] : Sδ → C given by

H [2](z) := H
[2]⋆
2 (z2)(z2′), z = (z2,z2′) ∈ Sδ,

belongs to AM ,c2c1(2A1)2A(Sδ) and

∥H [2]∥M ,c2c1(2A1)2A,Sδ
≤ ∥H [2]⋆

2 ∥B2

M ,c2c1(2A1)2A,Sδ2
.
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We write B1(H
[2]) = {h[2]jm : j ∈ N ,m ∈ N0}. For j = 1, due to the coherence conditions for the

families G and B1(H
[1]) we have for all m, k ∈ N0,

lim
z1→0,z1∈Sδ1

Dme1(f2k − h
[1]
2k)(z2′) = lim

z2→0,z2∈Sδ2

Dke2(f1m − h
[1]
1m)(z1′) = 0,

uniformly in Sδ{1,2}′ . So, we can apply Lemma 5.7 to guarantee that for every m ∈ N0, we have

lim
z1→0,z1∈Sδ1

(
H

[2]⋆
2

)(m)
(z1)(z1′) = 0 uniformly in Sδ1′ ,

and consequently, by (18) we deduce that for every z1′ ∈ Sδ1′ ,

h
[2]
1m(z1′) = lim

z1→0,z1∈Sδ1

Dme1H [2](z1, z1′) = lim
z1→0,z1∈Sδ1

(
H

[2]⋆
2

)(m)
(z1)(z1′) = 0.

On the other hand, taking (21) into account, for every z2′ ∈ Sδ2′ we have

h
[2]
2m(z2′) = lim

z2→0,z2∈Sδ2

Dme2H [2](z2, z2′)

= lim
z2→0,z2∈Sδ2

(H
[2]⋆
2 )(m)(z2)(z2′) = (f2m − h

[1]
2m)(z2′).

In conclusion, the function F [2] := H [1] + H [2] belongs to AM ,c2c1(2A1)2A(Sδ) and, if we put

B1(F
[2]) = {f [2]jm : j ∈ N ,m ∈ N0}, for every m ∈ N0 we have f

[2]
1m = f1m, f

[2]
2m = f2m, and the

second step is completed. We are done if n = 2, otherwise we may repeat the previous argument
until the family G is completely interpolated. 2

6 On M−summability

In this last section we provide some keys leading to a suitable definition of summability in general
ultraholomorphic classes. First, we need to introduce some formal and analytic transforms.

6.1 Formal and analytic M−Laplace operators

The next definition resembles that of functions of exponential growth, playing a fundamental
role when dealing with Laplace and Borel transforms in k−summability for Gevrey classes. For
convenience, we will say a holomorphic function f in a sector S is continuous at the origin if
limz→0, z∈T f(z) exists for every T ≪ S.

Definition 6.1. Let M = (Mp)p∈N0 be a strongly regular sequence, and consider a sector S
in R. The set A(M)(S) consists of the holomorphic functions f in S, continuous at 0 and such
that for every unbounded proper subsector T of S there exist r, k4, k5 > 0 such that for every
z ∈ T with |z| ≥ r one has

(22) |f(z)| ≤ k4
hM (k5/|z|)

.

Remark 6.2. Since continuity at 0 has been asked for, f ∈ A(M)(S) implies that for every
T ≺ S there exist k4, k5 > 0 such that for every z ∈ T one has (22).
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We are ready for the introduction of the M−Laplace transform.

Definition 6.3. Let S = S(d, α), f ∈ A(M)(S), τ ∈ R with |τ − d| < απ
2 and 0 < δ < γ(M).

Consider the function eM defined in (8). We define the M−Laplace transform of f in direction
τ as

(Lτ
Mf) (z) :=

∫ ∞(τ)

0
eM

(u
z

)
f(u)

du

u
,

for every z ∈ R with |z| small enough and with |arg(z) − τ | < δ π2 , and where the integral is
taken along the path parameterized by t ∈ (0,∞) 7→ teiτ .

Proposition 6.4. Under the hypotheses of the preceding definition, Lτ
Mf(z) is well-defined and

it turns out to be a holomorphic function. Moreover, {Lτ
Mf}τ/|τ−d|<απ/2 defines a holomorphic

function LMf in a sectorial region G(d, α+ δ).

Proof For every u, z ∈ R with arg(u) = τ and |arg(z)− τ | < δ π2 we have that u/z ∈ Sδ and∣∣∣∣1ueM (u
z

)
f(u)

∣∣∣∣ ≤ 1

|u|

∣∣∣u
z

∣∣∣ ∣∣∣GM

( z
u

)∣∣∣ |f(u)| ≤ 1

|z|
hM

(
k3

∣∣∣ z
u

∣∣∣) k4
hM (k5/|u|)

,

for some positive constants k3, k4, k5. From (6), the previous expression can be upper bounded
by

k4
|z|
h2M (ρ(2)k3|z|/|u|)

hM (k5/|u|)
.

If we assume |z| ≤ L := k5/(ρ(2)k3), from the monotonicity of hM we derive∣∣∣∣1ueM (u
z

)
f(u)

∣∣∣∣ ≤ k4
|z|
hM

(
k5
|u|

)
.

The right part of the last inequality is an integrable function of |u| in (0,∞), and Leibnitz’s
rule for parametric integrals allows us to conclude the first part of the proof. Let σ ∈ R with
|σ − d| < απ

2 . The map Lσ
Mf is a holomorphic function in

{z ∈ R : |arg(z)− σ| < δ
π

2
, |z| small}.

Since we know that

lim
|u|→∞

|u|hM
(
k5
|u|

)
= 0,

by Cauchy’s residue theorem we easily deduce that Lτ
Mf(z) ≡ Lσ

Mf(z) whenever both maps
are defined. Thus we can extend Lτ

Mf to a function, LMf , holomorphic in a sectorial region
G(d, α+ δ). 2

Let M = (Mp)p∈N0 be a strongly regular sequence and S = S(0, α). It is clear that for every
λ ∈ C with Re(λ) ≥ 0, the function fλ(z) = zλ belongs to the space A(M)(S). From Proposi-
tion 6.4, one can define LMfλ(z) for every z in an appropriate sectorial region G. Moreover, for
z ∈ G and an adequate choice of τ ∈ R one has

LMfλ(z) =

∫ ∞(τ)

0
eM

(u
z

)
uλ−1du.

In particular, for z ∈ R with arg(z) = τ , the change of variable u/z = t turns the preceding
integral into ∫ ∞

0
eM (t)zλ−1tλ−1zdt = m(λ)zλ.

Therefore, it is adequate to make the following definitions.
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Definition 6.5. Given a strongly regular sequence M , the formal M−Laplace transform L̂M :
C[[z]] → C[[z]] is given by

L̂M

 ∞∑
p=0

apz
p

 :=

∞∑
p=0

m(p)apz
p,

∞∑
p=0

apz
p ∈ C[[z]].

Accordingly, we define the formal M−Borel transform B̂ : C[[z]] → C[[z]] by

B̂M

 ∞∑
p=0

apz
p

 :=

∞∑
p=0

ap
m(p)

zp,

∞∑
p=0

apz
p ∈ C[[z]].

The operators B̂M and L̂M are inverse to each other.

6.2 Results on quasi-analyticity in ultraholomorphic classes

We restrict our attention to the one-variable case, although the next results are available also
for functions of several variables (see [12]). First, quasi-analytic Carleman classes are defined.

Definition 6.6. Let S be a sector in R. We say that AM (S) is quasi-analytic if the conditions:

(i) f ∈ AM (S), and

(ii) B(f) is the null sequence (or f admits the null series as asymptotic expansion in S),

together imply that f is the null function in S.

Characterizations of quasi-analyticity are available for general sequences M in [12], but we
will focus on the case of strongly regular sequences, in which the following version of Watson’s
lemma may be obtained.

Theorem 6.7 ([12], Thm. 4.10). Let M be strongly regular and let us suppose that

(23)
∞∑
n=0

( Mn

Mn+1

)1/γ(M)
= ∞.

Let γ ∈ (0,∞). The following statements are equivalent:

(i) γ ≥ γ(M).

(ii) The class AM (Sγ) is quasi-analytic.

Remark 6.8. The proof of the implication (ii)⇒(i) does not need to assume (23). However, it
is an open problem to decide whether the condition γ ≥ γ(M) implies AM (Sγ) is quasi-analytic
without the additional assumption (23), which is indeed satisfied by Gevrey sequences.

6.3 A concept of M−summability in a direction

We finally put forward a definition of summability adapted to these general situation.

Definition 6.9. Let M be strongly regular sequence verifying condition (23). A formal power

series f̂ =
∑

n≥0

fn
n!
zn is M−summable in direction d ∈ R if the following conditions hold:
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(i) (fn)n∈N0 ∈ ΛM , so that g := B̂M f̂ converges in a disc, and

(ii) g admits analytic continuation in a sector S = S(d, ε) for suitable ε > 0, and g ∈ A(M)(S).

Proposition 6.10. Let f̂ =
∑

n≥0

fn
n!
zn be M−summable in direction d ∈ R. Then, there exists

a sectorial region G(d, β), with β > γ(M), and a function f ∈ AM (G(d, β)) such that f ∼M f̂
in G(d, β).

Proof For g as in the previous definition, choose δ > 0 such that δ < γ(M) < δ+ε, and consider
the functions GM and eM defined in Sδ. We will see that f := LMg solves the problem. Indeed,
by Proposition 6.4 we know that LMg is a holomorphic function in a sectorial region G(d, δ+ε),
so that the first part of the claim is proved. In what follows we study the asymptotic behaviour
of f . Suppose g converges in the disc D(0, R), and take 0 < R0 < R. For τ ∈ R with |τ−d| < επ2
and z ∈ R with |z| small enough and |arg(z)− τ | < δ π2 , we have

f(z) =

∫ ∞(τ)

0
eM

(u
z

)
g(u)

du

u
=

∫ R0eiτ

0
eM

(u
z

)
g(u)

du

u
+

∫ ∞(τ)

R0eiτ
eM

(u
z

)
g(u)

du

u
.

Repeating the arguments in the proof of Theorem 4.1, we may similarly get that∫ R0(τ)

0
eM

(u
z

)
g(u)

du

u
∼M f̂

uniformly for z as specified. On the other hand, since g ∈ A(M)(S), there exist k4, k5 > 0 such
that

|g(u)| ≤ k4
hM (k5/|u|)

for every u with arg(u) = τ . Taking into account the definition of eM and Proposition 2.7.(i),
there exists k3 > 0 such that, for z as before,

(24)

∣∣∣∣∣
∫ ∞(τ)

R0eiτ
eM

(u
z

)
g(u)

du

u

∣∣∣∣∣ ≤
∫ ∞

R0

1

|z|
hM

(
k3|z|/u

) k4
hM (k5/u)

du.

Now, we apply (6) for s = 2, and observe that, since hM is non-decreasing, whenever |z| <
k5/(k3ρ(2)) one has

(25)
hM

(
k3|z|/u

)
hM (k5/u)

≤
h2M

(
k3ρ(2)|z|/u

)
hM (k5/u)

≤ hM
(
k3ρ(2)|z|/u

)
.

By Proposition 2.7.(i), there exist k1, k2 > 0 such that

(26) hM
(
k3ρ(2)|z|/u

)
≤ 1

k1
GM

(k3ρ(2)|z|
k2u

)
.

Also, for u > R0 and every n ∈ N0 we have 1 ≤ (u/R0)
n. So, gathering (25) and (26), the right

hand side in (24) may be bounded above by

(27)
k4

Rn
0 |z|k1

∫ ∞

R0

unGM

(k3ρ(2)|z|
k2u

)
du =

k4
Rn

0 |z|k1

(k3ρ(2)|z|
k2

)n+1
∫ ∞

0
tnGM (1/t) dt

=
k4k3ρ(2)

k1k2

(k3ρ(2)
k2R0

)n
m(n)|z|n.
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Since m and M are equivalent, from (27) we deduce that∫ ∞(τ)

R0eiτ
eM

(u
z

)
g(u)

du

u
∼M 0̂

uniformly in Aτ = {z ∈ R : |z| < k5/(k3ρ(2)), |arg(z) − τ | < δ π2 } (where 0̂ is the null formal
power series). Since any T ≪ G(d, δ+ε) of small radius may be covered by finitely many sets Aτ ,
the conclusion that f ∼M f̂ in G(d, δ + ε) is reached.

2

Remark 6.11. In the situation of the previous result, by Theorem 6.7 we deduce that f is unique
with the property that f ∼M f̂ in G(d, β), and it is called the M−sum of f̂ in direction d.

The properties of this concept are currently under study, as well as its application to the
study of solutions of different types of algebraic and differential equations in the complex domain
with coefficients in general ultraholomorphic classes.
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R. Acad. Sci. Paris 315 (1992), 901–906.
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