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Abstract

A new construction of linear continuous right inverses for the asymptotic Borel map is provided in the
framework of general Carleman ultraholomorphic classes in narrow sectors. Such operators were already
obtained by V. Thilliez by means of Whitney extension results for non quasianalytic ultradifferentiable
classes, due to J. Chaumat and A. M. Chollet, but our approach is completely different, resting on
the introduction of a suitable truncated Laplace-type transform. This technique is better suited for a
generalization of these results to the several variables setting. Moreover, it closely resembles the classical
procedure in the case of Gevrey classes, so indicating the way for the introduction of a concept of
summability which generalizes k—summability theory as developed by J. P. Ramis.
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1 Introduction

For sectors S of suitably small opening and vertex at 0, the Borel-Ritt-Gevrey theorem proved
by J. P. Ramis (see [24, 25, 18], [1, Thm. 2.2.1]) guarantees the existence of holomorphic functions
on S having an arbitrarily prescribed Gevrey asymptotic expansion of order e at 0. This amounts
to the surjectivity of the asymptotic Borel map, sending a function to its series of asymptotic
expansion, when considered between the corresponding spaces of Gevrey functions, respectively
Gevrey series. The proof is constructive, and basically consists in applying a truncated Laplace
transform to the formal Borel transform of the initially given Gevrey series.

For functions f holomorphic on a polysector S C C" with vertex at 0, H. Majima [14, 15]
put forward the concept of strong asymptotic developability, which has been shown [9, 7] to
amount to the boundedness of the derivatives of f on bounded proper subpolysectors of .S, just
as in the one-variable situation. The asymptotic behaviour of f is determined by the family
TA(f) (see Section 5), consisting of functions obtained as limits of the derivatives of f when
some of its variables tend to 0 (in the same way as the coefficients of the series of asymptotic
expansion in the one-variable case).

In 1989 Y. Haraoka [8] considered the space of holomorphic functions f in a polysector S that
admit Gevrey strong asymptotic expansion of order a = (avq,..., ) € [1,00)" (one order per
variable), and got two partial Borel-Ritt-Gevrey type results in this context again by applying
a (multidimensional) truncated Laplace transform.

Subsequently, in the one-variable setting V. Thilliez [27, Theorem 1.3] obtained a linear con-
tinuous version of this result by constructing extension operators (linear continuous right inverses



for the Borel map) from Banach spaces of Gevrey series into Banach spaces of functions whose
derivatives admit Gevrey-like bounds uniformly on all of S (so that they admit Gevrey asymp-
totic expansion at 0). His proof rests on Whitney type extension results for ultradifferentiable
classes by J. Chaumat and A. M. Chollet [5].

The third author of the present work re-proved in [26] Thilliez’s result in an elementary
way by a careful study of Ramis’ argument. The solution so obtained, in integral form, is
valid for vector, Banach space-valued functions, and it is also amenable to the determination
of its behaviour in case this Banach space consists precisely of Gevrey functions. Since these
Banach spaces verify an exponential-law isomorphism, one may apply a recurrent argument
on the number of variables to obtain extension operators in several variables which generalize
Thilliez’s result and provide linear continuous versions of the first interpolation result proven by
Haraoka [8, Theorem 1.(1)] and a right inverse for the map f +— TA(f).

The next step in these developments was again taken by V. Thilliez in [28], where he broad-
ens the scope of the preceding one-dimensional results on considering general ultraholomorphic
classes in sectors. Specifically, given A > 0, a sequence of positive real numbers M = (M) en,
and a sector S with vertex at 0 in the Riemann surface of the logarithm, R, Aaz 4(S) consists
of the complex holomorphic functions f defined in S such that
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The ultraholomorphic Carleman class Apg(S) is defined as UasoApr,a(5).

Accordingly, Aar a(Np) is the set of the sequences of complex numbers A = (\,)pen, such
that I
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and Aps(No) := UasoAnr a(No). (Aar,a(S), | - llar,4,5) and (Aar,a(No),| - |ar,4) are Banach
spaces, and, as the derivatives of the elements in Apz 4(S) are Lipschitzian, we may define the
(linear and continuous) asymptotic Borel map B : Apr,4(S) = Anr a(No) given by
B(f) = ( f<p>(0))p€N0 ecNo,  f®)(0) := lim fP)(2).
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Gevrey classes of order « > 1 in a sector S correspond to the sequence M, = (p!a_l)peNO. For
strongly regular sequences M (see Subsection 2.4), among which we find the sequences M,
the construction of Thilliez’s operators in the next theorem is based on a double application of
suitable Whitney’s extension results for Whitney ultradifferentiable jets on compact sets with
Lipschitz boundary, given by J. Chaumat and A. M. Chollet in [6], and on a solution of a
O-problem.

Theorem 1.1 ([28], Thm. 3.2.1). Let M = (Mp)pen, be a strongly reqular sequence with asso-
ciated growth index y(M). Let us consider v € R with 0 < v < v(M), and let S, be a sector
with opening yw. Then there exists d > 1, that only depends on M and 7y, so that for every
A > 0 there exists a linear continuous operator

Tneaqy : Ane,a(No) — Angaa(Sy)
such that B o Tar oA = X for every XA € Apg 4(No).

For Gevrey classes, 7v(M,) = a — 1, so that the condition in the theorem tells that the
opening of the sector should be less than (o — 1)x for the extension to exist, what agrees with
the classical Borel-Ritt-Gevrey statement.



This result has been extended to functions of several variables by the first and third au-
thors [13] by applying a recursive technique similar to that in [26], but resting on this new
construction of Thilliez, what makes it difficult to determine the behaviour of the derivatives of
the solution of the one dimensional problem when it takes its values in a Banach space of the
type Apnr,a(S). As indicated above, this information is crucial in the process providing a right
inverse for the map TA in this context.

With these preliminaries, the main aim in the present work is to obtain a new proof of The-
orem 1.1 which no longer depends on Whitney-type extension results, but rather makes use of
a suitable truncated integral, Laplace-like operator, in the same vein as Ramis’ original proof.
The kernel in this integral operator will be given in terms of a flat function obtained by V.
Thilliez [28, Thm. 2.3.1], playing a similar role as that played by the exponential exp(—1/z'/%)
in the Gevrey case of order «. Indeed, in the authors’ opinion the absence of an elementary
function governing null asymptotics in this general case was the reason for the use, up to this
moment, of results belonging to the ultradifferentiable setting when solving interpolation prob-
lems in non-Gevrey ultraholomorphic classes. As stated before, this new approach is better
suited for the generalization to the several variables setting, and moreover, it provides some in-
sight when searching for a summability tool in general ultraholomorphic classes which resembles
k—summability, specifically designed for the Gevrey case and which has proved itself extremely
useful in the reconstruction of analytic solutions of linear and nonlinear (systems of) mero-
morphic ordinary differential equations at irregular singular points, departing from their formal
power series solutions (see [2] and the references therein). We include in the last section some
hints in this direction, where we will make use of quasi-analyticity properties in these classes
which have been characterized (see [12]) in terms of Watson’s type lemmas. It should also be
indicated that the construction of the formal and analytic transforms incorporated into this
new technique is inspired by the study of general summability methods, equivalent in a sense to
k—summability, developed by W. Balser in [2, Section 5.5] and which have already found its ap-
plication to the analysis of formal power series solutions of different classes of partial differential
equations and so-called moment-partial differential equations (see the works of W. Balser and
Y. Yoshino [3], the second author [16, 17] and S. Michalik [19, 20, 21, 22], among others). Also,
some results on summability for non-Gevrey classes, associated to strongly regular sequences,
have been provided for difference equations by G. K. Immink in [11], whereas V. Thilliez has
obtained some results on solutions within these general classes for algebraic equations in [29].
We hope our summability theory is able to shed some light on some of these problems or on
similar ones.

2 Preliminaries

2.1 Notation

We set N:={1,2,...}, Ny := NU{0}. R stands for the Riemann surface of the logarithm, and
C[[z]] is the space of formal power series in z with complex coefficients.
For v > 0, we consider unbounded sectors

S, ={zeR:|arg(z)| < 77%}

or, in general, bounded or unbounded sectors

QT

S(d,a,r) :={z € R:|arg(z) —d| < 5

2l <r), S(doa):={zeR:|arg(z) — d| < %}



with bisecting direction d € R, opening avm and (in the first case) radius r € (0, 00).

A sectorial region G(d,«) will be a domain in R such that G(d,a) C S(d,«a), and for every
B € (0,a) there exists p = p(8) > 0 with S(d, 3, p) C G(d, a).

D(zp,r) stands for the disk centered at zy with radius r > 0.

For n € N, we put N = {1,2,...,n}. If J is a nonempty subset of N, #J denotes its cardinal
number.

A polysector is a product of sectors, S = H;L:1 Sj C R"™. The polysector H?:1 S(dj,0;, p;) (with
p; possibly equal to co) will be denoted by S = S(d, 0, p), with the obvious meaning for d,
and p. In case p; = +oo for j € N, we write S = S(d, 9).

We say a polysector T' = H?Zl T(d}, 05, p) is a bounded proper subpolysector of S = S(d, 0, p),
and we write 7' < S, if for j € N we have p; < p; (so that p}; < 400) and

(1) [d; — 0%/2,d; 4+ 07/2] C (dj — 0;/2,d; + 6;/2).

Finally, we say T = H?Zl T(d;-, 49;) is an unbounded proper subpolysector of S = S(d,8), and we
write T < S, if for j € N' we have (1). Given z € R", we write z; for the restriction of z to J,
regarding z as an element of RV.

Let J and L be nonempty disjoint subsets of A". For z; € R’ and z; € RY, (27, z1) represents
the element of R’V satisfying (2, 21)7 = 27, (27, 2L)L = z1; we also write J' = N\ J, and for
j € N we use j' instead of {j}'. In particular, we shall use these conventions for multi-indices.
For 8 = (0y,...,60,) € (0,00)", we write Sg = H?Zl Sp, and Sp, = HjEJ Sp; C R,

If z=(21,22,...,2n) ER", = (1, 02,...,0p), B=(B1,052,...,0n) € Ny, we define:

la] = a1 +ag + ... + ay, al = arlag! - ap!,
a . 0% __ glal o 7)
.D —azia -_— m7 e] —_ (07-..71,...,0).

For J € Njj, we will frequently write j = |J|.

2.2 Asymptotic expansions

Given A > 0, a sequence of positive real numbers M = (M),),en, and a sector S, for every f in
the class Anr a(S) one may put

fP0):= lim fP(z)ecC

z€S,2—0

for every p € No. Then, f admits the formal power series > z% f®(0)zP as its uniform
asymptotic expansion at 0, in the following sense.

Definition 2.1. Let M = (M))yen, be a sequence of positive real numbers and let f be a
holomorphic function in a sector S with vertex at the origin. We say f admits the formal power
series f = Z;O:o apz? € C[[2]] as its uniform M —asymptotic expansion in S of type A > 0 (when
the variable tends to 0) if there exists C' > 0 such that for every N € N, one has

N—
(2) f(z) — Z ap??| < CAYN My, zeS.

p=0

—_

We will write f ~ps Z;io apzP (uniformly in S and with type A).



Remark 2.2. Conversely, and as a consequence of Cauchy’s integral formula for the deriva-
tives, one can prove that whenever T is a proper subsector of S, there exists a constant
¢ = ¢(T,S) > 0 such that the restriction to T, fr, of functions f defined on S and admitting
uniform M —asymptotic expansion in S of type A > 0, belongs to Apz ca(T"), and moreover, if
one has (2) then || fr|a,car < C.

Remark 2.3. For sectorial regions G, f ~am > 7 ap2P in G means that f ~pr D207 ap2P
uniformly in every sector S such that S\ {0} C G.
2.3 Strongly regular sequences

The information in this subsection is taken from the work of V. Thilliez [28], which we refer to
for further details and proofs. In what follows, M = (M,),ecn, Will always stand for a sequence
of positive real numbers, and we will always assume that My = 1.

Definition 2.4. We say M is strongly regular if the following hold:
(ag) M is logarithmically convex: Mg < M,_1 My, for every p € N.
(1) M is of moderate growth: there exists A > 0 such that

Mpyp < APHM, My, p,t € No.

(v1) M satisfies the strong non-quasianalyticity condition: there exists B > 0 such that

M M
St —<B—",  peN.
= (+ 1) My My

For a strongly regular sequence M = (M,)pen,, it is direct to check from properties (cv)
and (1) that m = (my, := Mp1/M,),en, is an increasing sequence to infinity, so that the map
har @ [0,00) — R, defined by

hna(t) = inf Myt?, har(0) =0

turns out to be a non-decreasing continuous map in [0, 00), and its range is the set [0, 1]. In fact

haa(t) = 4 Mo iftG[%p,m;1>,p:1,2,...,
Mm(t) = -
1 1ft21/m0

Some properties of strongly regular sequences needed in the present work are the following.

Lemma 2.5. Let M = (Mp)pen, be a strongly reqular sequence and A > 0 the constant appear-
ing in (u). Then,

(3) My ¢ > MyMy, for every p, £ € Ny,
(4) my < AQM;/Z’, for every p € Ng,
(5) MI}/” < my, for every p € Ng.

Let s be a real number with s > 1. There exists p(s) > 1 (only depending on s and M) such
that

(6) ha(t) < (har(p(s)t))”  fort > 0.



Definition 2.6. Let M = (M)),en, be a strongly regular sequence, v > 0. We say M satisfies
property (P,) if there exist a sequence of real numbers m’ = (m;,)pen, and a constant a > 1
such that: (i) a='m, <m/, < am,, p €N, and (i) ((p+ 1) m;,) is increasing.

The growth index of M is

pENp

Y(M) :=sup{y € R : (Py) is fulfilled}.

For any strongly regular sequence M one has v(M) € (0,00). For the Gevrey sequence of
order o > 0 given by M, = (p!“)pen,, we have y(M,) = a.

Finally we describe the properties of a function that will be crucial in the construction of a
kernel for our Laplace-type operator.

Proposition 2.7 ([28], Thm. 2.3.1 and Lemma 2.3.2). Suppose M = (Mp)pen, is a strongly
reqular sequence and § € R with 0 < § < v(M). There exists a holomorphic function Gpg
defined in Ss such that for every w € Ss one has:

(i) kihpr(kolw]) < |Gar(w)| < hag(kswl|), where ki, ko and ks are positive constants that
only depend on M and 9.

(ii) For every p € Ny, |G§€I)(w)] < BUp!Myhag (ba|w|), b1 and by being positive constants that
only depend on M and §. In particular, we deduce that Gpr € Apng(Ss) and it is flat, i.e.,
Gnrr ~n 0 uniformly in Ss.

(iii) For every p € No, |(1/Gpr) P (w)] < babip! My (har(bs|w])) ™", where bz, by and bs are
positive constants that only depend on M and 6.

Remark 2.8. Let 0 < § < y(M). The function Gps is defined as follows. Take §; and s with
0 <61 <y(M) and sd; <1 < sy(M). Then

@) G (z) = exp <71T /OO log (haz=([t])) Zfz -l di

= > € Ssy,
. t—z81+t2) # 5P

with M*® := (M,)pen,, which turns out to be a strongly regular sequence too. The restriction
of Gpz to Ss is the function in Proposition 2.7.

3 Moment sequence associated to M

This section is devoted to the construction of a moment function eps, associated to a strongly
regular sequence M, which in turn will provide us with a sequence of moments m = (m(p))pen,
equivalent, in the sense of the following definition, to M.

Definition 3.1 (see [23], [6]). Two sequences M = (Mp)pen, and M’ = (M))pen, of positive
real numbers are said to be equivalent if there exist positive constants L, H such that

LPM, < M, < H’M,,  p € Np.

We note that, given a sector S and a pair of equivalent sequences M and M’, the spaces
Apn(S) and Ay (S) coincide.

Let M = (Mp)pen, be a strongly regular sequence with growth index ~(M). We take
0 <6 <y(M) and define eps : S5 — C by

(8) em(z) == 2Gprp(1/2), z € Ss,

where G ps is defined in Subsection 2.3.



Remark 3.2. There is some freedom in the choice of eps. Firstly, the factor z may be changed
into any z“ for some positive real number « (so that the assertion (i) in the next lemma holds
true), where the principal branch of the power is considered. Our choice tries to make the
following computations simpler. Secondly, as indicated in Remark 2.8, there are some constants
61 and s to be fixed in the construction of Gpy.

Lemma 3.3. The function epg satisfies the following assertions:

(i) enr is well defined in S5 and is such that z~teps(2) is integrable at the origin, it is to say,
for any to > 0 and T € R with || < %’r the integral foto t~ens (te'™)|dt is finite.

(ii) There exist C, K >0 (not depending on &) such that

9) lenr(2)] < Chas <K> . sy

2|
(iii) For x € R, x > 0, the values of epr(x) are positive real.

Proof Let tp > 0 and 7 € R with |7| < %”. From Proposition 2.7 there exists k3 > 0 such that

to T to
/ ’eM(tte)’dt < / b (ks /t)dt.
0 0

We conclude the convergence of the last integral from the fact that hps(s) = 1 when s > 77%
and its continuity in [0,00). The first part of the result is achieved.
For the second, we have

leae(2)] = |2l|Gae(1/2)] < [2[haa (ks /]2]),

for every z € Ss, so (ii) holds for |z| < M for any fixed M > 0. If |2| > M, we apply (6) for
s = 2 and the very definition of hps to get
p(2)* k3 My

V32
MM(

E

leam(2)| < \z|(hM(P(2)k3)>2 - ]z\hM(p(2)k3)M2(p(2)k3)2

E || 2]

Finally, if z > 0, then epr(z) = *Gar(1/x). From (7) we have

Gaa(1/2) =exp ([ o (o) 1 1)

. itas — 11+ 2

IN

It is immediate to check that the imaginary part of the expression inside the previous integral
is odd with respect to ¢, so that the corresponding integral is 0 and Gps(1/x) is positive and
real for x > 0. O

The role that Eulerian Gamma function played for Gevrey sequences will now be played by
the following auxiliary function.

Definition 3.4. We define the moment function associated to M as

m(\) = /0 T P len(t)dt = / T PG (1 /1)t

0



From Lemma 3.3 we have that the function m is well defined in {Re(\) > 0} and defines a
continuous function in this set, and holomorphic in {Re(A) > 0}. Moreover, m(x) is positive
real for every x > 0, so we can state the next

Definition 3.5. Let M be a strongly regular sequence and let the function eps be constructed
as in (8). The sequence of positive real numbers m = (m(p))pen,, is known as the sequence of
moments associated to M (or to epr).

Proposition 3.6. Let M = (Mp)yen, be a strongly reqular sequence and m = (m(p))pen, the

sequence of moments associated to M. Then M and m are equivalent.

Proof We recall that (m,)pen, is the sequence of quotients of M. Firstly, we prove the existence
of positive constants C1,Cy such that

(10) m(p) < C1CEM,, p € Np.
Let p € Ng. From Proposition 2.7.(7), there exists k3 > 0 with
00 Mp41 00
m(p) < / 1P hng (s /)t = / T Pl (ks /) dE + / P hng (ks /).
0 0 Mp4+1

In the first integral we take into account that hps is bounded by 1, while in the second one we
use the definition of hps. This yields

Mpt1 %) p+2 1
+1 2 Mpi2
m(p) < / tPdt +/ P8 Mo odt = ——mPT + k .
( ) 0 M1 tp+2 p+ p 1 p+1 3 7np+1

We have My, 9 = my1Mp1, and we may apply the property (u) of M and (4) to obtain that
m(p) < A2Mp+1 + ké’*?MpH < (ABM AP + AMlk‘gApkg)Mp,

as desired. This concludes the first part of the proof.
We will now show the existence of constants Cs, Cy > 0 such that m(p) > C3CY M, for every
p € Ny. Let p € Ng. From Proposition 2.7.(3), there exist k1, k2 > 0 such that

[e'S) kam
m(p) > by / P hag(ka/t)dt > ko / " P (ko /t)dt.
0 0

Since the map ¢ — hag(kz/t) decreases in (0, 00), we have that for every t € (0, kamy),

hai (k2 /t) = har(1/my) = %

hence

kamp  pr kp+1 p+1 M k?p+1
m(p) > kl/ e Y T ML A k12 My,
0 p

mp p+1 my
Now, m, M, = M,;1 and p+ 1 < 2P for every p € Ny. By applying (3) we finally conclude that
m(p) Z kleMl(k2/2)pMp.

Remark 3.7. In the Gevrey case of order o > 0, My, = (p!*)pen,, Wwe may choose
1
em. (2) = =2/ exp(—zY?), z € Sq.
!

Then we obtain that mq(A) = I'(1 + a\) for R(\) > 0. Of course, the sequences M, and
my = (Ma(p))pen, are equivalent.



4 Right inverses for the asymptotic Borel map in ultraholomor-
phic classes in sectors

The proof of the incoming result follows the same lines as the original one in the Gevrey case
(see [30], [4], [26, Thm. 4.1]). The only difficulty stems from the use of the kernel eps, linked
to a general sequence M and, to a certain extent, unknown, whereas the exponential function
linked to the Gevrey case is very well-known.

Theorem 4.1. Let M = (M,),en, be a strongly reqular sequence and let S = S(d, ) be a sector
with vertex at the origin and opening 0 < 6 < y(M). For every (ap)pen, € A (No) there exists
a function f € An(S) such that f admits f =3, %ﬁ’zp as its uniform asymptotic expansion
mn Ss.

Proof We may assume that d = 0 without loss of generality, for the case d # 0 only involves an
adequate rotation.

Let (ap)pen, € Am(Np), and let m = (m(p))pen, be the sequence of moments associated
to M. There exist positive constants C7, A1 such that

(11) lap| < C1DVp!M,, p € No.
From Proposition 3.6, the series
N Qp P
i=> - z
5, pim(p)

is convergent in a disc D(0, R) for some R > 0, and it defines a holomorphic function g there.
Let 0 < Ry < R. We define

(12) o= [ (Baw®, e,

z

where the kernel eps is constructed as in (8). By virtue of Leibnitz’s theorem on analyticity of
parametric integrals and the definition of eps, f turns out to be a holomorphic function in Ss.
Let us prove that f ~pf f uniformly in Ss.

Let N € N and z € S5. We have

N-1 2P N—-1 a 2P
f(z) ~ 22% ay oy = F) - ; R

= /RO e (E> i _k uik@ _ Nz_:l p /OO wWle (u)duﬁ
o Mz — m(k) k! u = m(p) Jo M p!’

After a change of variable v = zu in the second integral, by virtue of the estimate (3.3) one may
use Cauchy’s residue theorem in order to check that

[e.o] o0 d
zp/ uPepr(u)du :/ vPepns <B> —U,
0 0 z v

which allows us to write the preceding difference as

Ro U\ e ap uFdu phd o0 uy du 1
/0 eM()};)m(k)mu_;m(I;)/o urem (2) up!
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Then, we have

1= Y api| < file) + (),
p=0
where n i
0 U\ — ar u”du
ﬁ@ZAmd)gw@mA’
o0 u\ A=~ ap, P du
fa(z) = /Ro eM (;) pz:(:) m(l;o)?; .

We now give suitable estimates for f1(z) and f2(z). From Proposition 3.6 there exist Cy, Dy > 0
(not depending on z) such that

a Cy DY k! M,

m(k)k! —  m(k)k!
for all £ € Ny. This yields

fi(z) < 02/ 6M( )‘ Z Dsu kd;

Taking Ry < (1 —€)/D5 for some € > 0 if necessary, we get

f1(z) < eCaDy /ORO em (g)‘uNfldu.

By a double application of (7) in Proposition 2.7 we derive
2 k2| k2| 1 ks3|z|
G (2 ‘ <h — har [k <—G :
‘ M(u) - M( |u] > M<2k2u _k‘l M k‘zu
for some positive constants k1, ko, k3. This yields
Ro 1 o) k
) [ enr (4)]0tau < 0 [T Gan (B ¥
0 z kl z kgu
1 [ kst 1\ [ kslz[t\V ! ks
= — —G - —|z|dt
ki Jo ks M(t)( 2 B!

k;3 N+1 1 N o0 N 1 N N
- (2 k:71|z| /0 tNGm - dt = C3D5'm(N)|z[",

for some C3, D3 > 0. The conclusion for f; is achieved from Proposition 3.6. It only rests to
estimate fa(z). We have uP < Rbu™ /R}) for u > Ry and 0 < p < N — 1. So, according to (13),
we may write

(13) < CyD,

N-1 apuP N— 1D1p'Mpup N— uN N-1
C1DYCyDbu? < — C1DYCyDERY < C5 DY
2. Tulpp ZO Z P>

for some positive constants Cs, Ds. Then, we conclude
u

fa(z) < C5Dév/ em <—> ‘ uN " Ldu.
z

Ry
We come up to the end of the proof following similar estimates as in (14). O

oo
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Remark 4.2. Given 0 with 0 < 6 < (M), choose ¢; such that § < 01 < (M) and put
S1 = 8(d,é1). For A > 0 and for every a = (ap)pen, € Anr,a(No), we have the estimates (11)
with C1 = |a|pr,4 and Dy = A. Since the previous result is valid in S;, we obtain a function
f € Apg(S1) that admits f ZpeN ,zp as its uniform asymptotic expansion in S;. Moreover,
by taking into account in detail the Way constants are modified in the course of the proof of
Theorem 4.1, one observes that there exist constants C, D > 0, not depending on f, such that
for every N € Ny one has

N—

)_l

(15) p—pzp < (CCy)(DD)N My = Cla|ara(DAYN My, z € 8.
=0

hS]

According to Remark 2.2, there exists a constant ¢ = ¢(S,51) > 0 such that the restriction to
S of f belongs to Apnr.cpa(S), and moreover, from (15) we get || f||az,cpa,s < Cla|ar,a. So, we
have re-proved the following theorem of V. Thilliez.

Theorem 4.3. Under the hypotheses of Theorem 4.1, there exists a positive constant ¢ > 1 such
that for any A > 0, the integral operator

Tar,a: Anve,a(No) — Angca(Ss)

defined in (12) by

T .a(a = (ap)pen,) = /ORO eM(u/z)<i v lp)%
p=0

m(p) p!

18 linear and continuous and it turns out to be a right inverse for the asymptotic Borel map B.

5 An application to the several variable setting

As an application of the previous result, we will obtain a different construction of continuous
extension operators in Carleman ultraholomorphic classes in polysectors of R", obtained in [13]
by the first and the third authors as a generalization of V. Thilliez’s result (see [28, Thm. 3.2.1]).
It is worth saying that the results in Section 4 are also valid when the functions and sequences
involved take their values in a complex Banach space B. This will be crucial in the ongoing
section.

Let n € N, n > 2, and fix a sequence M = (M,),ecn, of positive real numbers. For a
polysector S in R", the space Apz (S, B) consists of the holomorphic functions f : S — (B, ||-||)
such that there exists A > 0 (depending on f) with

B L HDJf HB
(16) 1flne a8 = JeEIgEESW

(the notations adopted in Subsection 2.1 are being applied).

For fixed A > 0, Apr 4(S,B) consists of the elements in Apz (S, B) such that (16) holds, and
the norm || - H]?i/I,A,S makes it a Banach space. The space Aps a(Nj,B) consists of the multi-
sequences \ = ()\J)JGNS € N¥ such that

2
A —
Alar.ap = Jen ATJIM;
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and (Aar,a(NG,B), |- |am,48) is a Banach space.

The elements in Aps(S,B) admit strong asymptotic expansion in S as defined by H. Majima
(see [14, 15]), since this fact amounts, as shown by J. A. Herndndez [9], to having bounded
derivatives in every subpolysector 1" < S. The following facts, stated here without proof, can
be found in detail in the three previous references and in [7, 10, 13]. The asymptotic information
for such a function f is given by the family

TA(f) = {fa, : 0 # J CN,a; eNJ},
where for every nonempty subset J of A" and every ay € NJ, fq, is defined as

fay(zg) = lim D@0 f(z),  zy € Sy,

z_]~>0.]

the limit being uniform on S whenever J # N. This implies that fo, € An (S, B) (we agree
that Apz(Sn7, B) is meant to be B).

Proposition 5.1 (Coherence conditions). Let f € Apns(S,B) and
TA(f) = {fa, 0 £J CN,a; eNJ}.

Then, for every pair of nonempty disjoint subsets J and L of N', every ay € Nb] and ay, € Ng‘,
we have

(17) lim D*E00un)) fo (25) = flay.an)(Zaony):

zrp—0
the limit is uniform in S yury whenever J U L # N.

Definition 5.2. We say a family
F={fo, € AM(S;,B):0# J C N, a5 €NJ}
is coherent if it fulfills the conditions given in (17).

Definition 5.3. Let f € A(S,B). The first order family associated to f is given by
Bi(f) = {fm{j} € Ap(SjB):jEN,me NO} C TA(f).

The first order family consists of the elements in the total family that depend on n — 1
variables. For the sake of simplicity, we will write fjn, instead of fi,,, j € N, m e Ny. As it
can be seen in [7, Section 4], knowing B (f) amounts to knowing TA(f), and moreover, B;(f)
verifies what we call first order coherence conditions, emanating from the ones for TA(f). In
fact, there is a bijective correspondence between the set of coherent families (see Definition 5.2)
and the one of coherent first order families

Fir={fim € Am(Sj,B): j e N,m e No}.

Definition 5.4. Let M = (M,),en, be a sequence that fulfills property (u) for a constant Ay,
and let A > 0. We define 3}\4 4(S,B) as the set of coherent families of first order

G ={fjm € Anm244,(Sj,B) : j € N,m € No}
such that for every j € N we have

Gi = (fim)menNo € Anr244, (No, Anr 244, (S, B)) .
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It is immediate to prove that, if we put

VM,A(g) - Sélp {|gj|M QAAl,.AM QAAI(S ’ B)} g € S}W,A(SJB)’
J

then (Fis 4(S,B),var.4) is a Banach space. We may consider a generalized Borel map, say Bi,
sending any function in Apz (S, B) to its corresponding first order family. Then, one has

Proposition 5.5 ([13], Proposition 3.4). The map By : Apr,a(S,B) — 3}\/[714(5,]]33) 1s well
defined, linear and continuous.

The main purpose of the current section is to obtain a continuous right inverse for the
preceding operator. The procedure followed is similar to the one in [26] for Gevrey classes, and
it is based on our new proof of Theorem 4.3, so overcoming the technical difficulties encountered
n [13].

The first step in the proof consists of changing the problem into an equivalent one in terms
of functions in one variable with values in an appropriate Banach space of functions. In order
to do this, the following result is essential. Since the proof for a similar statement can be found
in detail in [10, Thm. 4.5], we omit it.

Theorem 5.6. Let n,m € N, M be a sequence of positive real numbers, B be a complex Banach
space, A >0 and S and V be (poly)sectors in R™ and R™, respectively. Then, we have:

(i) If M fulfills (1) and Ay is the constant involved in this property, then the map
Y1 Apoa(S x V. B) — Apnroaa, (S, An2aa, (V,B))
sending each function f € Anr a(S x V,B) to the function f* = 11(f) given by
(f"(2) (w) = f(z,w),  (z,w)eSxV,

is well defined, linear and continuous. Given f € Apga(S x V,B), for every a € N,
B € N and (z,w) € S x V we have

DO f(z,w) = D* (D*f*(2)) (w),

and so
Anr2a4, (V)B)

1 N aroanss < Ifllarasxy -
(ii) If M fulfills (o), the map
ot Apr,a (S, A a(V,B)) — Apr,a(S x V,B)

given by
(V2(f)) (w, 2) = (f(2)) (w),  (z,w) €SV,

is well defined, linear and continuous. For f € Apr.a (S, An,a(V,B)), every o € N,
B € Nj" and (z,w) € S x V we have

(18) DB (yy(f)) (z,w) = DP (D*f(2)) (w),

and consequently
B Ang,a(V.B)
U2(P)llnzasxv < 1FIarals
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Before stating the main result in this section, we need some information about the asymptotic
behaviour of the one-variable solution provided by Theorem 4.3 when it takes its values in a
Banach space of the type Aar (S, B).

Let n > 1, A >0, M = (M,),cn, be a strongly regular sequence, S a polysector in R" and
0<d<~y(M ) Suppose that for every p € Ny we are given a function f, € Anr (S, B) in such
a way that f = (f)pen, € Anr,a (No, Anr,a(S,B)). Let Ry be as in the proof of Theorem 4.1.
By Theorem 4.3, we know that the function H* := Tas a(f) : S5 — Anr,a(S,B), given by

belongs to Apg (5)4(5s, Anr,a(S;B)), for suitable ¢(6) > 1, and it admits > 4 fpz?/p! as
uniform M -asymptotic expansion in Ss. Hence, the function H : S5 xS — B given by H(w, z) =
H*(w)(z), belongs, by Theorem 5.6.(i7), to Aar a(Ss x S,B) and, for every a € Nj, we have

Ro [e) a u
(19) D(O’O‘)H(w,z):Da(H*(w))(z):/O eM(u/w)(ZD folz )pl)d ‘

= mp)
The proof of the next Lemma, extremely lengthy and awkward when following the technique

in [28], is now easy due to the new solution in integral form for Theorem 4.3.

Lemma 5.7. Let S = [[;cp Sj- If for every m,p € N and j € N, we have
(20) lim D™ f,(z) =0 wuniformly on Sy,

Z]'—>0,Zj€Sj
then, for every m € Ny and j € N one has

lim  DO™e)H(w,z) =0 uniformly on S5 x Sjr.

2;—0,z;€S;

Proof By (19) we have

DOme) H (w, z) = /ORO (u/w) <Z Dmejfp )du.

u
=0

Given € > 0, there exists pg € Ny such that, for every p > pg, every z € S and every u € [0, Ry,
one has
o0 Dmej fp(z) up

< E.
m(p) pt| ¢

p=po
From (20), there exists M > 0 such that whenever z = (z1,...,2,) € S and z; € S; N D(0, M)
we have

: em(p)p!
DM < =0,... — 1.
‘ fp(z)‘ = pORg ) p ) , PO

Hence, for every z € S with z; € S; N D(0, M) and every w € S5 we have

D(O,mEj)H(w,z)’ < /ORO \eM(u/w),< b3 % ‘ Z Dmeﬂfp . )7

Ro d 0o
< 2&«/ leng (u/w)| = = 25/
0 u 0

W|GM(w/u)|du.
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We will be done if the last integral is uniformly bounded in S5. In the following estimates we
use Proposition 2.7.(i), the fact that hps is bounded above by 1, and the very definition of hps:

| wl > 1
/0 yGM(w/u)du:/o ‘w’du+/ Lt (ks ) du

00 1 2
< 1+/ —k?,&mdu: 1+ k2 M.
\

a

We now state our extension result. The proof is partially included, for it follows similar steps
as in Theorem 3.4 in [26], or Theorem 3.6 in [13].

Theorem 5.8. Let M = (M,)yen, be a strongly reqular sequence and 8 = (91, ...,05) € (0, 00)"
with 6; < v(M) for j € N. Then, there exists a constant ¢ = ¢(M,d) > 1, a constant
C=C(M,$é) >0, and for every A > 0, a linear operator

Unt, a6 Snr.a(Ss) — Antca(Ss)

such that, for every G € S}VI’A(S(;) we have

Bi(Umas(9) =6 and  [|Unm,a6(9)|prens, < Cvar,al(G).
Proof Suppose M verifies (u) for a constant A; > 0. Let

g= {fjm € Am244,(Ss,) j EN,m € NO} € Far.a(Ss).

The proof is divided into n steps, in such a way that in the k-th step we will obtain a function
whose first order family contains the first & sequences (fjm)men,, with j < k. We will only
detail the first two steps.

Since G1 = {fim} € Am 244, (No, Ant 244, (S5, )), the vector-valued version of Theorem 4.3
provides constants ¢; > 1, C1 > 0 and a linear continuous operator

Trpan, s Anrzaa, (No, Anr2a4,(Ss,,)) — Anei244, (Ss, 5, Anvr244,(Ss,,))

such that, if we put Hl[l]* = Tn244,,5,(G1), then

o
e Jim _m [1]xAM 244, (S5,,)
H; NMZW% and ||Hj HM,cleAl,sél SCl‘gl’M,2AA1,AM,2AA1(551,)'
m=0 ’

Since
Ant 244, (S5, An 244, (Ss,,)) € A ei244, (s, AM 1244, (Ss )

(with the correspondent inequality for the norms), by Theorem 5.6.(i7) we know that the function
HM ' S5 — C given by

U (z) = H"(21)(21), 2= (21,20) € Ss,
belongs to Apr 244, (Ss) and, moreover,

1 1AM 244, (Ss.,)
1EY |ageizannss < IH Iagomah, <
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Let By(HM) = {hglr}n :j € N,m € Ng}. For every z1/ € S5, we have, by virtue of (18),

him(z) = dim o DmeHl(z) = lim (H) () (20) = fun(z).

21—>0,216551 21—>0,216551
This concludes the first step of the proof. Let H2[1]* be the function given by
' .= g S S
5 (22)(z2) = (22, 22), 22 € 05y, 22/ € 05,

From Theorem 5.6.(7), we have

HY e Ay 124124 (8635 Ang ey (241)24(55,))-

We put
1]x hg
HY o Y gl
m=0

and, for the sake of brevity, Bs := Apz ¢, (24,)24(55,, ). As H e Antc124,4(S5), Proposition 5.5
tells us that

1
(h5 )meno € Apger241)24(No, B2),
and Definition 5.4 implies

Go 1= (f?m)mENo S AM,2A1A(N07AM»2A1A(562’))'

0o, (fom — hzm)meNo € Antei(241)24(No, B2). By Theorem 4.3, we have c2 > 1, Cy > 0 and a
hnear continuous operator

Thier(241)24,8, * MAer(241)24(No, B2) — Ang coe, (241)24 (565, B2)

such that, if we define

HQ[Q}* = TM,01(2A1)2A752 ((me o h[gl,ll)mENo%
then
2 f2m — h J2m T Toom m
(21) H£ ]* Z 2
and 2]
*
| EL HMcgcl(QAl)QA 55, S Cal(fom — hzm)meNo\M c1(2A41)2A,By-

Since

AM,Czcl (2141)214(5527182) g AM,Cgcl(QAl)QA(S(527AM,CQCl(QAl)QA(S(sz/))7

H2[2]* belongs to the second of these spaces, and Theorem 5.6.(i7) ensures that the function
H?': S5 — C given by

H2(2) = HP*(2)(22), 2= (22,29) € S,

belongs to Apg e, (24,)24(5s) and

[2]x
”H HM ,c2c1(2A1)2A,Ss < HHQ HM ,c2¢1(2A41)2A,S5,”
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We write By (HP?) = {hﬁ}@ :j €N, meNy}. For j =1, due to the coherence conditions for the

families G and By (HM) we have for all m, k € Ny,

lim D™ (for — hiy))(z2r) =  lim  D*2(fy, —hlly(z0) =0,

21%07216551 22%07226552 1m

uniformly in Sg L2y So, we can apply Lemma 5.7 to guarantee that for every m € Ny, we have

lim (HE]*)(m) (21)(z1) =0  uniformly in Ss ,,

21—0,21 6551

and consequently, by (18) we deduce that for every z1- € Ss,,,

B2

im

(z1)= lim D™ HE(z z)=  lim  (HP) ™ (z)(z1) = 0.

z1—0,21 ES,;l z1—0,21 6551

On the other hand, taking (21) into account, for every zo € Ss,, we have

h[227]n (z/) = lim pmez fy12] (22, 29)

220—0,22 6552

= lim (H?l*)(m) (22)(z21) = (fom — h[Q]:r]n)(ZQ’)'

22—0,22 6352

In conclusion, the function FI& := HI + HE belongs to AN coer(24,)24(5s) and, if we put
By (FP) = {f][fll :j € N,m € Ny}, for every m € Ny we have fl[iL = fim, 2 _ fom, and the

2m
second step is completed. We are done if n = 2, otherwise we may repeat the previous argument

until the family G is completely interpolated. O

6 On M —summability

In this last section we provide some keys leading to a suitable definition of summability in general
ultraholomorphic classes. First, we need to introduce some formal and analytic transforms.

6.1 Formal and analytic M —Laplace operators

The next definition resembles that of functions of exponential growth, playing a fundamental
role when dealing with Laplace and Borel transforms in k—summability for Gevrey classes. For
convenience, we will say a holomorphic function f in a sector S is continuous at the origin if
lim, 0 »er f(2) exists for every T' < S.

Definition 6.1. Let M = (M,)yen, be a strongly regular sequence, and consider a sector S
in R. The set AM )(S ) consists of the holomorphic functions f in S, continuous at 0 and such
that for every unbounded proper subsector T' of S there exist 7, ky, k5 > 0 such that for every
z € T with |z| > r one has

k4

(22) f(2)] < m

Remark 6.2. Since continuity at 0 has been asked for, f € AM)(S) implies that for every
T < S there exist ka4, ks > 0 such that for every z € T' one has (22).
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We are ready for the introduction of the M —Laplace transform.

Definition 6.3. Let S = S(d,a), f € AM)(S), 7 € R with |7 —d| < aF and 0 < § < y(M).
Consider the function eps defined in (8). We define the M — Laplace transform of f in direction

e @ = [ enr (2) 0™,

u
for every z € R with |z| small enough and with |arg(z) — 7| < §%, and where the integral is
taken along the path parameterized by t € (0, 00) + te'”.

Proposition 6.4. Under the hypotheses of the preceding definition, L, f(z) is well-defined and
it turns out to be a holomorphic function. Moreover, {EMf}T/|T_d|<a,T/2 defines a holomorphic
function Lagf in a sectorial region G(d,a + 9).

Proof For every u, z € R with arg(u) =7 and |arg(z) — 7| < 5 we have that u/z € Ss and

%eM () fw)] < m e (5) |17l < mhM (s i)hM<Z§/|u|y

for some positive constants ks, k4, k5. From (6), the previous expression can be upper bounded
by

ka Wy (p(2)ks|z/|ul)
2| (ks /|ul)
If we assume |z| < L := k5/(p(2)ks), from the monotonicity of hps we derive

1 u k4 k5

—em (*) f| < b | -

u z |z [ul

The right part of the last inequality is an integrable function of |u| in (0,00), and Leibnitz’s

rule for parametric integrals allows us to conclude the first part of the proof. Let 0 € R with
lo —d| < af. The map L§,f is a holomorphic function in

{zeR:|arg(z) — 0| < 55, |z| small}.

Since we know that

lim |u|hM( ) 0,
Ju >0 [ul

by Cauchy’s residue theorem we easily deduce that £}, f(z) = L£,f(z) whenever both maps
are defined. Thus we can extend L}, f to a function, Lpsf, holomorphic in a sectorial region
G(d,a+9). O

Let M = (Mp)pen, be a strongly regular sequence and S = S(0,«). It is clear that for every
A € C with Re()\) > 0, the function fy(z) = z* belongs to the space AM)(S). From Proposi-
tion 6.4, one can define Lps fy(z) for every z in an appropriate sectorial region G. Moreover, for
z € G and an adequate choice of 7 € R one has

Larh(z) = /O = ens () 0 e,

In particular, for z € R with arg(z) = 7, the change of variable u/z = ¢ turns the preceding
integral into

/ e ()21 zdt = m(N) 2
0

Therefore, it is adequate to make the following definitions.
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Definition 6.5. Given a strongly regular sequence M, the formal M —Laplace transform £y :
C[[z]] = C[[#]] is given by

L Zapzp = Zm(p)apzp, Zapzp e C[[#]]-
p=0 p=0 p=0

Accordingly, we define the formal M—Borel transform B : C[[z]] — C[[z]] by

Bt Zapzp = Z &zp, Zapzp € Cl[z])-
p=0 p=0

= m(p)
The operators B M and L M are inverse to each other.

6.2 Results on quasi-analyticity in ultraholomorphic classes

We restrict our attention to the one-variable case, although the next results are available also
for functions of several variables (see [12]). First, quasi-analytic Carleman classes are defined.

Definition 6.6. Let S be a sector in R. We say that Aps(S) is quasi-analytic if the conditions:
(i) f e Am(S), and

(ii) B(f) is the null sequence (or f admits the null series as asymptotic expansion in .5),
together imply that f is the null function in S.

Characterizations of quasi-analyticity are available for general sequences M in [12], but we
will focus on the case of strongly regular sequences, in which the following version of Watson’s
lemma may be obtained.

Theorem 6.7 ([12], Thm. 4.10). Let M be strongly regular and let us suppose that

=/ M, \1/M)
2 = 0.
( 3) nz;) (Mn—H) >
Let v € (0,00). The following statements are equivalent:
(i) v>~(M).

(ii) The class Ap(S,) is quasi-analytic.

Remark 6.8. The proof of the implication (ii)=(i) does not need to assume (23). However, it
is an open problem to decide whether the condition v > (M) implies Aps(Sy) is quasi-analytic
without the additional assumption (23), which is indeed satisfied by Gevrey sequences.

6.3 A concept of M —summability in a direction

We finally put forward a definition of summability adapted to these general situation.

Definition 6.9. Let M be strongly regular sequence verifying condition (23). A formal power
fn

series f = ano o} is M —summable in direction d € R if the following conditions hold:
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(1) (fu)nen, € Ans, so that g := Basf converges in a disc, and

(ii) g admits analytic continuation in a sector S = S(d, ) for suitable ¢ > 0, and g € AM)(S).

Proposition 6.10. Let f = Y >0 &z” be M —summable in direction d € R. Then, there exists

a sectorial region G(d, 3), with 5 > 'y(M), and a function f € Apnr(G(d, B)) such that f ~pp f
in G(d, ).

Proof For g as in the previous definition, choose 6 > 0 such that § < v(M) < d+¢, and consider
the functions G ps and eps defined in Sy5. We will see that f := Lpsg solves the problem. Indeed,
by Proposition 6.4 we know that Lpsg is a holomorphic function in a sectorial region G(d, § +¢),
so that the first part of the claim is proved. In what follows we study the asymptotic behaviour
of f. Suppose g converges in the disc D(0, R), and take 0 < Ry < R. For 7 € R with [T —d| < eF
and z € R with |z| small enough and |arg(z) — 7| < 6%, we have

= [ ene (a0 = [ enr (a0 [ e (2) st

U z U Roei™ U

Repeating the arguments in the proof of Theorem 4.1, we may similarly get that

/ORo(T) onr (g) g(u)@ . f

U

uniformly for z as specified. On the other hand, since g € AM )(S ), there exist k4, k5 > 0 such
that

ky
lg(u)] < m

for every u with arg(u) = 7. Taking into account the definition of eps and Proposition 2.7.(7),
there exists k3 > 0 such that, for z as before,

[ e (£) o

Now, we apply (6) for s = 2, and observe that, since hps is non-decreasing, whenever |z| <
ks/(k3p(2)) one has

(24)

>~ 1 ky
§/ mhM(k:3|z|/u)Wdu

Ry

har (ks|z|/u h2, (k z|/u
R
By Proposition 2.7.(7), there exist k1, k2 > 0 such that
(20) aa (kap(@)|2|/u) < -G (RB2ED),

Also, for u > Ry and every n € Ny we have 1 < (u/Rg)”. So, gathering (25) and (26), the right
hand side in (24) may be bounded above by

i k3p(2)|2| ks (k3p(2)|z]\nt1 /00
? o T )T t" 1/t) dt
(27) RY[z]k: /RO Gm ( =y ) u R6L|Z|k1( s ) i G (1/t)

 kaksp(2) (k3p(2)\" n
- 4/;1@ (1:230) m(n)[z]".
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Since m and M are equivalent, from (27) we deduce that

e (2 s

RO eiT u

uniformly in A, = {z € R : |2| < ks/(k3p(2)), |arg(z) — 7| < 63} (where 0 is the null formal
power series). Since any T < G(d, 0+¢) of small radius may be covered by finitely many sets A,
the conclusion that f ~ps f in G(d,d + €) is reached.

O

Remark 6.11. In the situation of the previous result, by Theorem 6.7 we deduce that f is unique
with the property that f ~prg f in G(d, B), and it is called the M —sum off in direction d.

The properties of this concept are currently under study, as well as its application to the
study of solutions of different types of algebraic and differential equations in the complex domain
with coefficients in general ultraholomorphic classes.
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