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Abstract

Based on the work of Durhuus-Jónsson and Benedetti-Ziegler, we revisit the question of the number
of triangulations of the 3-ball. We introduce a notion of nucleus (a triangulation of the 3-ball without
internal nodes, and with each internal face having at most 1 external edge). We show that every
triangulation can be built from trees of nuclei. This leads to a new reformulation of Gromov’s
question: We show that if the number of rooted nuclei witht tetrahedra has a bound of the formCt,
then the number of rooted triangulations witht tetrahedra is bounded byCt

∗.
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1 Introduction

In this paper, we study the question of the number of triangulations of the 3-ball by tetrahedra. The
case of the 2-ball was exactly solved by Tutte in [16]. He showed in particular that the number of
rooted triangulations of the 2-sphere withN vertices isO(1)N−5/2(256/27)N . It is natural to ask
if analogous bounds are true in higher dimension. Such results could have applications in models
of Statistical Mechanics (foams [14], quantum gravity [2],or glassy dynamics [1, 3, 8, 9]) where
the exponential rate of growth can be interpreted as an entropy. In [12], Gromov asked whether
the number of triangulations of the 3-sphere is bounded byCN for some constantC when there
areN tetrahedra (facets) in the triangulation. To date, this question remains open. However Pfeifle
and Ziegler proved in [15] a super exponential lower bound for the number of triangulations of the
3-ball as a function of the number of vertices. This does not answer negatively Gromov’s question
(which is in terms of the number of tetrahedra) but makes the problem of proving an exponential
bound in terms of the number of tetrahedra even more challenging.

There are several studies in the direction of answering the question, which we summarize now.
In [7], Durhuus and Jónsson gave the construction of a classof triangulations for which they could
show a bound of the formCN . These triangulations are obtained by building a tree of tetrahedra,
which is obtained by starting from a root tetrahedron and attaching tetrahedra to its faces, and then
attaching further tetrahedra to the new open faces. Each tetrahedron is attached to the tree with just
one face. It is a common feature of tree-like constructions that they lead to bounds of the formCN :
The prime example in our context is of course the celebrated work of Tutte [16] mentioned above.
Coming back to Durhuus and Jónsson, once the tree is constructed, they now collapse adjacent
faces of the tree in such a way that at the end of the procedure atriangulation of the 3-sphere is
obtained. Their main result says that the number of ways in which to do this is again exponentially
bounded. In this way, they construct a set of triangulationsof the 3-sphere with tetrahedra which is
exponentially bounded. They ask whether these are all possible triangulations.

In a later development, Benedetti and Ziegler [4], show thatthe Durhuus and Jónsson con-
struction, which they call “locally constructible” (LC), doesnot capture all triangulations of the
3-sphere. Namely, they show that a 3-sphere with a 3-complicated knot (made by tetrahedra) is not
LC. They also carefully discuss relations between LC and other classes of constructibility.

In the present paper, we define a larger class of triangulations, with a construction similar to that
of Durhuus and Jónsson, but which uses more general basic elements than the simple tetrahedron,
which we callnuclei. We prefer to work with 3-balls, and bounds on 3-spheres can be obtained
from a bound on triangulations of a tetrahedron. This is usually done by removing a tetrahedron
from the 3-sphere (see for example [4, Section 3] ).

Nuclei are defined as triangulations of the 3-ball with the following special properties:

1. They have no internal nodes.
2. Internal faces have at mostoneexternal edge.
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Obviously, the tetrahedron is a nucleus. The Furch-Bing ball [10], [5] and [13] and the Bing 2-
room house [5] and [13], which are not nuclei, can be reduced by our procedure to one non-trivial
nucleus, each. The smallest non-trivial nucleus we know of,given in Table 1, has 12 nodes, and 37
tetrahedra, of which 17 have no external face. Nodes are numbered from 1 to 12, and Table 1 gives
a list of the 37 tetrahedra.

1 3 4 10 1 3 5 10 1 3 5 11 1 4 6 10 1 5 7 8
1 5 7 10 1 5 8 11 1 6 7 8 1 6 7 10 2 3 5 9
2 3 5 11 2 3 8 9 2 3 8 11 2 5 6 11 2 6 11 12
2 7 10 11 2 7 11 12 2 8 9 10 2 8 10 11 3 4 9 10
3 4 9 12 3 5 9 10 3 8 9 12 4 5 6 11 4 5 7 8
4 5 8 11 4 6 10 11 4 7 8 9 4 7 9 12 4 8 9 10
4 8 10 11 6 7 8 9 6 7 9 11 6 7 10 11 6 8 9 12
6 9 11 12 7 9 11 12

Table 1: A nucleus with 12 nodes, and 37 tetrahedra, of which 17 have no external face. If a
tetrahedron has an external face, its 3 nodes are shown in boldface.

Our approach is two-fold: Top-down, and bottom-up. In the top-down approach, we define a
set of elementary moves which reduces an arbitrary triangulation of the 3-ball into a tree of nuclei,
which are glued together by pairs of faces, each such face with 3 external edges. The tree can
then be cut into a disjoint union of nuclei by cutting along these faces. The construction always
transforms 3-balls to unions of 3-balls, and is thus implementable on a computer.

In the bottom-up approach, we start with any tree whose nodesare arbitrary nuclei, and we
construct 3-balls from it by gluing adequate faces together. Not all possible gluings lead to 3-balls,
but including also some inadequate gluings still leads to good bounds. Again, the procedure can be
programmed on a computer.

Our main result is Theorem 5.17. It says thatif the number̺ (t, fs) of face-rooted nuclei witht
tetrahedra andfs external faces has a bound of the form̺(t, fs) ≤ Ct then the number of rooted
triangulations of the 3-ball witht tetrahedra,f external faces andn internal nodes is bounded by
Ct+f+n

∗ .
In particular, since obviously,f ≤ 4t andn ≤ 4t, we would get a boundCt

∗∗.
In summary, our work bounds the number of triangulations in terms of the number of nuclei.

Thus, we remain with a new, but hopefully simpler, open question about the problem posed by
Gromov, namely does the number of face-rooted nuclei witht tetrahedra have an exponential bound
in t ? While we do not have any mathematical statements about thisproblem, the methodology
of the proof of Theorem 5.17 allows for quite extensive numerical experimentation. The most
important insight from this experimentation is as follows:It seems that ifT is a nucleus with a
k-complicated knot (or even braid), then the addition of (at most)k cones and decomposition with
our algorithm leads to a tree oftetrahedra. Note that the trefoil knot is 1-complicated. Furthermore,
Goodrick [11] showed that the connected sum ofk trefoil knots is at leastk-complicated.

We have analyzed a certain number of classical examples, with the following findings summa-
rized in Table 2.

1.1 The method

The bounds on the number of triangulations are obtained by studying a set of elementary moves,
detailed in Sect. 4.1. These moves either decompose the triangulation in two disjoint pieces (by
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Example knot complication # of cones added ref.
Bing 2 room no knot 1 cone [5]
1 trefoil 1-complicated 1 cone [10]
2 trefoils 2-complicated 1 cones
3 trefoils 3-complicated 2 cones [4, Figure 3]
4 trefoils 4-complicated 3 cones
5 trefoils 5-complicated 3 cones
figure 8 1-complicated 1 cones
cinquefoil knot 1-complicated 1 cones

Table 2: Experimental upper bound on the number of cones needed to decompose a triangulation
into tetrahedra (For the definition ofm-complicated, see [4]).

cutting along an interior face with 3 edges on the boundary, or taking away a tetrahedron with an
external face and one internal node). Clearly, this leaves again two 3-balls on which we continue the
decomposition. The other operations are “open” a ball alonga carefully chosen edge (which we call
“split-a-node-along-a-path”) or opening one face with 2 external edges. These operationsincrease
the number of tetrahedra in the triangulation, but they prepare the moves in which the 3-ball can
be cut, and the internal nodes can be eliminated. One of the main novelties of this construction is
the observation that this can be done withfew additional tetrahedra: This follows from a careful
analysis of cuts of the 2-dimensional hemisphere attached to any external node. Since this is an
important bound, we devote Sect. 3 to its proof. In Sect. 2, weintroduce the (standard) terminology
for the pieces of any triangulation. In Sect. 4 we combine the4 moves described above to show
how a general triangulation can be decomposed into a set of nuclei. In Sect. 5, we perform the
bottom-up procedure and show how one bounds the number of triangulations of the 3-ball in terms
of trees whose nodes are (rooted) nuclei, extending in this way the earlier work of [7] and [4].

1.2 Comparison with 2d

It is useful to compare our method to what can be done in 2d. In 2d we have a set of triangles.
Any triangulation can be obtained in the following way: First, construct a tree of triangles, adding
each triangle with only one face to the existing tree. This object has no internal nodes. Now, glue
together adjacent faces of the tree, recursively. In this way one can obtain all triangulations of any
polygon.

The inverse operation, while intuitively clear, is a littleharder to describe, and we just sketch
the procedure. Given any internal nodex at distance 1 from the polygon, say connected ton we can
split the edge (n, x) by doubling the noden into a pairn′, n′′, so that the edges (n′, x) and (x, n′′)
are now external edges andx is promoted to an external node. All internal nodes can recursively
be brought to the surface in this way. We then have a tree, and the tree can be decomposed into
triangles by cutting all internal edges with 2 external nodes. At the end, the basic objects are
triangles.

Clearly, therefore, the basic objects in 2d are

2a) internal edges with 2 external nodes
2b) internal nodes (at distance 1) from the polygonal boundary
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In 3d, there are many more possibilities, and our procedure will eliminate all those which can
be eliminated. The ones which we can deal with are

3a) internal faces with 3 external edges: this corresponds to case 2a) above and will be cut by
cut-a-3-face

3b) internal faces with 2 external edges, and therefore one internal edge with 2 external nodes.
This resembles 2b) and is dealt with by open-a-2-face.

3c) an internal nodex which is the tip of a tetrahedront whose opposite face is external. One
can just eliminatet andx becomes external. This is the second case which correspondsto
2b). We call this C0 later.

3d) an internal nodex which is the corner of a facef whose opposite edge is external (but not
C0). Again, a sub-case of 2b). This is dealt with split-a-node-along-a-path, and will be called
C1.

3e) an internal nodex which is the end of an edgee whose opposite end is external (but not C1).
Again, a sub-case of 2b). This will be called C2 and reduced toC1 with split-a-node-along-
a-path.

The elementary objects are those left over after all these decompositions are performed. In 2d,
those objects are just triangles, which makes the counting possible. In 3d these are nuclei. Non-
trivial nuclei exist, and they must carry the information about the complications of 3 dimensional
topology, since all the other problems have been eliminated. In particular, internal faces of nuclei
have 0 or 1 external edges.

2 General definitions and notations

2.1 Internal and external objects, flowers

To be precise, we redefine here some terminology which is common in the discussion of triangu-
lations. We start with triangulations ofS2. These will havefs faces,ns nodes andes edges, where
the subscript s stands for “surface”. This triangulation isthe boundary of a ball which is filled with
tetrahedra, some of which have faces among thefs external faces. We call this also a triangulation,
and we say thatt is the number of tetrahedra,ftot the number of faces,etot the number of edges, and
ntot the number of nodes. Faces, edges, and nodes which are not among those of the triangulation
of S2 are calledinternal. It will be useful to observe that tetrahedra can have up to 4 external faces,
internal faces can have up to 3 external edges, internal edges up to 2 external nodes. We will use
the subscript i for internal objects.

Obviously,

ftot = fs + fi , etot = es + ei , ntot = ns + ni .

From the Euler relations and trivial geometry, we have the relations

t− ftot + etot − ntot = −1 ,

fs − es + ns = 2 ,

3fs = 2es ,

4t = 2(ftot − fs) + fs .

(2.1)
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This leaves us with 3 free variables, which we choose as

t, fs, andni .

Note thatfs is always even.

Definition 2.1. We use the termf-vectorfor the three variables〈t, fs, ni〉 wherefs ≥ 4.

2.2 Notation and flowers

We introduce some notation which we apply to triangulationsand tetrahedrizations (which we also
call triangulations when no confusion is possible):

• If n1 andn2 are 2 distinct nodes, then we denote by (n1, n2) the edge connecting the two.
• Similarly, if ni : i = 1, 2, 3 are 3 distinct nodes, then (n1, n2, n3) is the face (triangle) with

these 3 corners.
• If e is an edge andn is a node not ine then (n, e) denotes the face (triangle) with the edgee

and the noden.

This notation is easily generalized to the case where we consider simplices of dimension 3:

• If n is a node andf is a face not containingn, then (n, f ) is the tetrahedron withf as a face
andn as the opposite corner.

• Similarly, if e is an edge andn1, n2 /∈ e are 2 distinct nodes then (n1, n2, e) is the unique
tetrahedron containing all of them.

• Finally, if e1 ande2 are two edges without common nodes, then (e1, e2) is the tetrahedron
containing both edges.

Paths of nodes connected by edges will be denoted asγ = [n1, n2, . . . , nk] and the union of 2
disjoint pathsγ1, γ2 (connected by one or both endpoints) will be denoted byγ1 ∪ γ2.

We next define what we mean byflowers. Here, we adapt the conventions to the tetrahedrization
of a triangulated sphereS2. Nodes, edges, and faces are calledexternalif they lie entirely inS2.
All others are calledinternal. Consider an external noden∗.1 We define its 2 flowers:

• Theexternal flowerE(n∗) of n∗ is the set of all edgese not containingn∗ for which (n∗, e) is
an external face. Clearly,E(n∗) is a polygon.

• The internal hemisphereI(n∗) of n∗ is the set of all facesf not containingn∗ for which
(n∗, f ) is a tetrahedron. It is easy to see thatI(n∗) is a 2d triangulation whose boundary is
the polygonE(n∗).

We will say that the external flower of aninternalnodex∗ is empty. The internal (hemi-)sphere
I(x∗) (or simply flower) ofx∗ is a triangulation ofS2.

We also define theexternal flowerE(e) of an external edgee as the 2 nodesn1, n2 for which
(ni, e) are 2 external faces. Similarly, theinternal hemisphereI(e) of the external edgee is defined
as the set of all edgese′ such that (e, e′) is a tetrahedron. By hypothesis,I(e) is a 1-d triangulation
whose boundary isE(e). Note that there might be internal nodes at distance 1 frome which are not
in I(e).

1We usen∗,m∗ and the like for external nodes, andx∗, y∗, . . . for internal ones.
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3 Some geometrical considerations: Two-colored paths in a triangulation

We describe here properties of paths in a 2d triangulation ofa polygon. These properties will play
a crucial role when we will bound the effects of moving internal nodes of a 3d triangulation to the
surface. However, they are totally independent of the remainder of the paper.

Lemma 3.1. LetK be a 2d triangulation of ap-gonP with n interior nodes. Then the number of
interior edges inK is 3n+ p− 3.

Proof. The proof follows from the Euler relations and is left to the reader.

Lemma 3.2. Consider a polygonP and letK be any triangulation ofP with k > 0 internal nodes.
For each nodex ∈ K \ P , there are at least 3 simple disjoint paths in the interior ofK connecting
it to 3 different points ofP .

Proof. Any triangulation ofS2 is 3-connected. CompleteK into a triangulation ofS2 by adding
a cone over its boundary. Letm be the apex of the cone. Then there are at least 3 disjoint simple
paths connectingx to m, [6]. Any such path must intersectP , and we take the first intersection
point.

We assume now that the nodes ofP are labeled.

Definition 3.3. A triangulationK is calledadmissibleif the following conditions are met:

K1: The boundary∂K has at least 2 different labels.
K2: The nodes with a given label form one connected arc of∂K .
K3: The ends of any edge connecting 2 nodes of∂K have different labels, unless the edge is in

∂K .

The Fig. 1 illustrates the definition.

2
22

3

3

31

1

1
1

1

1
1

1

1
1

1

1

1

1
1

Figure 1: An illustration of the conditions K1)–K3). Left: since there is only one label, K1) is
violated. Center: The region with label 1 is not connected; K2) is violated. Right: There is an
internal link (red) connecting two nodes with the same label; K3) is violated.

We first need an auxiliary lemma. We will need the following information:
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aa

bb

xx

yy

Figure 2: The 2 alternatives of finding a path connecting two different labels. Left: There is an
interior path betweena andb. Right: There is no such path, but then, one can always find an edge
connecting two different labels (by K3), (not necessarily the same asa andb). The left panel also
illustrates the necessity of choosing a shortest path. For example, choosing the magenta path, the
dashed edge will violate K3) in the next step of the procedure.

Lemma 3.4. LetK be as above and letP = ∂K. Given two boundary nodesa andb with different
labels at least one of the two alternatives below holds:

1) There is a simple pathγ joining a andb without any other node inP ,
2) There is an edge(x, y) joining the two pieces ofP \ {a, b}.

Postponing the proof of Lemma 3.4 we have

Proposition 3.5. AssumeK is an admissible triangulation in the sense of Definition 3.3with at
least 2 triangles. Then, there exists a pathγ along internal edges ofK which connects two points
in P = ∂K with different labels. It cutsK in two piecesKL andKR. The pathγ can be chosen in
such a way that labeling the new boundary piece (namely the interior nodes ofγ) in KL andKR

with a label different from the ones used so far, bothKL andKR are again admissible.

Proof. Let P = ∂K. By admissibility, we know that not all nodes onP have the same label.
Take nodesa andb with different labels and apply Lemma 3.4. If 2) holds, then we takeγ as the
edge connectingx andy. By K3) they have different labels. Otherwise, there is an interior path
connectinga andb. We take a shortest path,γ.

Cutting along the pathγ, we obtain 2 piecesKL andKR. If γ is just one edge then inspection
shows that K1)–K3) hold. In the second case, K1) and K2) are obviously true by construction.
Giving a new label, sayL, to the interior nodes ofγ, we have to show that there are no edges
connecting any two non-consecutive nodes with labelL. But if there were, the path would not be
minimal.

Proof of Lemma 3.4.The reader may want to look at Fig. 2. Assume 1) does not hold. This means
that one cannot draw 3 disjoint paths betweena andb, as the middle one would satisfy 1). We can
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take the two disjoint paths to go along the two boundary segments betweena andb. By Menger’s
theorem [6] there must then be 2 nodesx andy (other thana or b) such that all paths froma to b
must pass through at least one of them. Since the boundary paths are candidates, we see thatx and
y are inP , one per arc connectinga andb. Consider now the path froma to b alongP which goes
throughx. Modify it so that instead of going throughx it goes through the flower ofx. We get a
new path froma to b which does not go throughx. This means that the new path goes throughy
implying thaty is in the flower ofx. Thus,x andy are connected by an edge.

This completes the proof.

4 Part I: Reducing any triangulation into a set of nuclei

4.1 The elementary moves

In this section we define the elementary moves which transform any triangulation into a (set of)
nuclei. The first two moves, which we callopen-a-2-faceandcut-a-3-face, are used to transform
any triangulation with no internal nodes into a set of nuclei, and the third and fourth move, which
we call remove-1-tetraandsplit-a-node-along-a-path, are used to remove all internal nodes of a
triangulation.

Henceforth,T will denote a triangulated 3-ball with f-vector〈t, fs, ni〉.

4.1.1 Cut-a-3-face

Let (n1, n2, n3) be an internal face with its 3 edges on the surface∂T of T . Then, it cuts the 3-ball
T into 2 distinct parts. We simply separate these 2 parts and weget 2 “smaller” 3-balls. In other
words, we know that any triangulation is (uniquely) defined by the list of all its tetrahedra. We find
the two lists corresponding to the tetrahedra which are on either side of the internal face in question,
and we define 2 new 3-balls, each associated with one of these 2lists. If 〈t, f, n〉, 〈t1, f1, n1〉 and
〈t2, f2, n2〉 are the f-vectors of the initial ball and the 2 new ones, then we have

t = t1 + t2 , f = f1 + f2 − 2 , n = n1 + n2 .

4.1.2 Open-a-2-face

Consider 3 external nodesn∗, n1, n2 of T which form a triangle (n∗, n1, n2). We assume that
(n∗, n1, n2) is an internal face, with (n1, n2) an internal edge, and the two other edges external. Let
I andE be the internal and external flower of the external noden∗. As we have already stated,
I is a triangulation of the polygonE . By hypothesis, the edge (n1, n2) dividesI into 2 distinct
sets of faces. The operation open-a-2-face consists in removing n∗ and all tetrahedra attached to it,
replacing it byn∗,1 andn∗,2 and attaching each of these 2 new nodes to all faces of one of the two
parts ofI, see Fig. 3.This operation transforms a triangulation of the 3-ball into a triangulation
of the 3-ball. If 〈t, fs, ni〉 and〈t′, f ′

s, n
′
i〉 are the f-vectors of the initial ball and the resulting ball,

then we have

t′ = t , f ′
s = fs + 2 , n′

i = ni .

We will say that the f-vector changes by〈0,+2, 0〉.
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Figure 3: Sketch of open-a-2-face.

4.1.3 Remove-1-tetra

Definition 4.1. A removable tetrahedronis any tetrahedront with one internal node and one exter-
nal face.

The operation remove-1-tetra is as follows: lett∗ = (x∗, n1, n2, n3) be a removable tetrahedron
with internal nodex∗ and external face (n1, n2, n3). We simply removet∗ and its external face; the
internal nodex∗, the 3 internal edges and the 3 internal faces oft∗ all become external. The f-vector
〈t, fs, ni〉 changes to〈t− 1, fs + 2, ni − 1〉; the change of f-vector is〈−1, 2,−1〉.

4.1.4 Split-a-node-along-a-path, hemispheres and pieces

Consider an external noden∗ of T and its internal hemisphereI = I(n∗), see Fig. 4 for an illustra-
tion. By definition of a triangulation,I is a 2d triangulation of a polygon.

Definition 4.2. A splitting pathγ is any simple path which connects two different points on∂I and
contains no edge of∂I.

Let γ be a splitting path. Clearly it dividesI into 2 piecesKL andKR with I = KL ∪ KR and
KL ∩ KR = γ.
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The move split-a-node-along-a-pathγ is defined as follows:

1. Remove the noden∗ and all tetrahedra havingn∗ as a corner
2. Add 2 new nodesn∗,L andn∗,R

3. For each facef∗ ∈ KL add the tetrahedron (n∗,L, f∗)
4. For each facef∗ ∈ KR add the tetrahedron (n∗,R, f∗)
5. For each edgee ∈ γ add the tetrahedron (n∗,L, n∗,R, e)

Note that by construction, one of the nodes on∂KL is n∗,R, and the links inKL starting from
n∗,R reach (the image of)γ. Analogous statements hold forKR.

Definition 4.3. In the construction above, we refer toK(n∗,L) = KL as the leftpiece. It is simply
the subgraph obtained from the hemisphereI(n∗,L) after removing the cone connectingn∗,R to
every node ofγ. Similarly, we define the right pieceKR.

Remark 4.4. HemispheresI and piecesK will play an important role in our construction. Some
statements will be given for hemispheres, others for piecesand so it is important to be able to
distinguish between the two definitions.

Remark 4.5. A splitting pathγ is always associated with a hemisphereI and not with a pieceK.
We will see that, under some conditions, a simple pathγ̃ connecting two nodes of the boundary of
a pieceK can be extended into a splitting pathγ.

n∗,R

n∗,L

K(n∗,L)

K(n∗,R)

Figure 4: The left panel shows the internal hemisphereI(n∗) of n∗. We splitn∗ into n∗,L andn∗,R

along the green pathγ. The other 2 panels show the internal hemispheresI(n∗,L) andI(n∗,R) of the
2 new nodes. Notice that each internal node of the green pathγ is at distance 1 fromn∗,R resp.n∗,L

Also, the links leavingn∗,s, s ∈ {L,R} have been added during the split.

Lemma 4.6. The move split-a-node-along-a-path transforms a 3-ball into a 3-ball. The f-vector
〈t, fs, ni〉 is mapped to〈t+ |γ|, fs + 2, ni〉, where|γ| is the number of edges inγ.

The f-vector changes by〈|γ|,+2, 0〉. In particular, the number of tetrahedraincreases. But we
will show that this increase can be controlled.
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Proof. The count of the f-vector is as follows: Removing and adding the tetrahedra in steps 1,3,4
above does not change their number. The number of external faces increases by two, namely the
two external faces sharing the new edge (n∗,L, n∗,R). And each internal face (n∗, e) which connected
n∗ to an edgee in γ gives rise to a new tetrahedron (n∗,R, n∗,L, e). There are|γ| such faces and so
the f-vector is seen to change by〈|γ|,+2, 0〉, as asserted.

4.2 Summary

In the sequel, we want to bound the effect of removing internal nodes, since our building blocks
are the nuclei, which do not have any internal nodes. Eliminating the internal nodes will cost the
addition of tetrahedra, and the issue here is how many are needed to obtain a ball without internal
nodes. Internal nodes disappear when we perform the remove-1-tetra operation, and only then.

Before starting the bounds proper, we explain here the pointof our construction, based on the
evolution of the f-vectors〈t, fs, ni〉. Open-a-2-face costs a change〈0, 2, 0〉, and split-a-node-along-
a-path costs〈|γ|, 2, 0〉, where|γ| is the length of the path along which we cut. In principle, each
pathγ might have a length proportional to the number of nodes, which in turn would imply that the
sum of the lengths of all paths exceedsO(n2

tot). So one needs a strategy which improves this naive
bound.

While we cut, new external edges appear, and also, new external edges appear when we remove
a tetrahedron which costs〈−1, 2,−1〉. But it is only this operation which reduces the number of
internal nodes. So, there are two opposing tendencies. One is the preparation of promoting an
internal node into an external one, and itaddsmany tetrahedra, and the other is remove-1-tetra,
which reduces the number of internal nodes by 1. The real issue is thus to bound thenumber of
added tetrahedra per removed internal node. We will perform this bound in terms of the number
es of internal edges. Our main result is Corollary 4.12 which says that the number of internal edges
grows by no more thanC∆(t + ni). The Euler relations (2.1) allow to expresst as a function ofes,
fs, andni,

t = ei − ni + fs/2− 1 .

Therefore, and sinceni < 4t andfs < 4t, Corollary 4.12 implies that the elimination of allni

internal nodes leads to an f-vector of the form

〈t, fs, ni〉 → 〈t′, f ′
s, 0〉 , f ′

s < C · t , t′ < C · t ,

with a finite constantC which is independentof the triangulation.

4.3 Removing internal nodes

4.3.1 Definitions and strategy

Given any triangulation, we define thedepthDx of a nodex as the minimal number of connected
edges needed to reach the boundary, starting fromx. The strategy will consist in recursively reduc-
ing the depth of any internal node by 1. This is repeated untilno internal nodes remain.

We classify an internal nodex∗ at depth 1 in 3 flavors, which we call C0–2:

C0: x∗ is the internal node of a removable tetrahedron.
C1: x∗ is not of type C0 but is in a face (x∗, n∗, m∗) where (n∗, m∗) is an external edge.
C2: x∗ is neither of type C0 nor C1.
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We enumerate the external nodes in an arbitrary order, leading to a listL0 = {n∗,1, . . . , n∗,k}.
Similarly, for d > 0, we defineLd as the nodes at depthd from the surface. Given an external node
n∗ ∈ L0, we consider its hemisphereI(n∗).

An internal nodex∗ ∈ I(n∗) of type C2 can (only) bepromotedto an internal node of type
C1 by drawing a pathγ ⊂ I(n∗) that goes through it and splittingn∗ into n∗,L andn∗,R alongγ.
Indeed, one easily sees thatn∗,R ∈ E(n∗,L) and that (n∗,L, n∗,R, x∗) is a face.

In the same manner, we see that a nodex∗ ∈ I(n∗) of type C1 can be promoted into an internal
node of type C0 by drawing a pathγ ⊂ I(n∗) which contains the edge (x∗, y). Here,y is the
external node of the face (x∗, n∗, y) which definesx∗ as a node of type C1. Splittingn∗ alongγ,
the tetrahedron (n∗,L, n∗,R, y, x∗) becomes removable.

Finally, any internal node of type C0 can be made external by simply removing one tetrahedron.
The strategy is in 4 steps (3 sweeps). We setL = L0.

• Step 1 (Sweep C2→C1) : We promote all thex∗ of type C2 in the following order: For each
n∗ ∈ L, we promote all internal nodes ofI(n∗) of type C2 into internal nodes of type C1.
We will show that this can be done in such a way that every internal edge of the triangulation
I(n∗) belongs to at most 1 of the splitting paths (as defined in Sect. 4.1.4).
When this first step is complete, all internal nodes at depth 1are of type C1 or C0. There
appears a new setM of external nodes containing the nodes ofL which were not split and
new external nodes obtained by the splitting.

• Step 2 (Sweep C1→C0) : We promote all thex∗ of type C1 in the following order: For each
n∗ ∈ M, we promote all promotable internal nodes ofI(n∗) of type C1 into internal nodes
of type C02. We will show that this can be done in such a way that every internal edge of the
triangulationI(n∗) belongs to at most 1 of the splitting paths (as defined in Sect. 4.1.4).

• Step 3 (Sweep C0→external) : Finally, we make each node of type C0 external by removing
one tetrahedron.

• Step 4: At this point every internal node has been moved up one levelof depth. In particular,
we letL denote those nodes which have moved to the surface in step 3. (If the current step is
at leveld, then this set equalsLd+1.)
We continue until no internal nodes are left.

Since the depth of any node is bounded, the procedure will endafter a finite number of recursive
steps.

4.3.2 Reducing C2-nodes to C1-nodes

Given an external noden∗ ∈ L, we now describe in detail the recursive algorithm which promotes
the internal nodes of type C2 inI = I(n∗) to type C1. This is achieved by a succession of carefully
chosen moves of type split-a-node-along-a-path.

Each of these cuts produces a “left” and a “right” piece, which are then cut again into left and
right pieces, until only triangles remain. The pieces will be noted byKS = K(n∗,S), whereS is a
sequence of letters L and R which designate the successive choices of left and right.

Thus, we construct a binary tree of pieces (see Fig. 5). In detail:

2A nodex∗ of type C1 can be promoted to C0 only if it is connected to a nodeof E(n∗). This might not be true for
all n∗ for whichx∗ ∈ I(n∗) but there are at least twon∗ for whichx∗ is promotable.
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I(n∗) = K

K(n∗,L) K(n∗,R)

K(n∗,LL ) K(n∗,LR) K(n∗,RL) K(n∗,RR)

K(n∗,LRL) K(n∗,LRR)

K(n∗,LRLL ) K(n∗,LRLR)

Figure 5: An example of a binary tree of pieces associated with the hemisphere of an external node
n∗ containing 6 triangles.

1. Label the nodes of∂I from −1 to −|∂I|.
2. The hemisphereI is an admissible triangulation in the sense of Definition 3.3. Proposi-

tion 3.5 implies the existence of a shortest pathγ which connects two nodes of∂I (with
different labels). We choose this pathγ.

3. After splitting along this path,I is divided in two pieces, as shown in Fig. 4. The two pieces
are calledKL andKR. The splitting has replacedn∗ by n∗,L andn∗,R andI(n∗,L) is actually
justKL with the cone betweenn∗,R andγ added. This also means thatn∗,R is in the external
flower E(n∗,L) of n∗,L. Analogous terminology is used for the other half. At this point, S is
equal to L or R, and we continue withS= L (and do laterS= R).

4. If KS is a triangle, we are done (for this branch of the tree).
5. Label all nodes on∂KS which had no label with the label̂S, whereŜ is obtained fromS by

exchanging the last letter, cf. Fig. 6. In this way, the newlylabeled nodes are connected to
n∗,Ŝ in I(n∗,S).

6. ConsideringKS, Proposition 3.5 implies the existence of a new shortest path γ̃S which con-
nects two nodes of∂KS with different labels.

7. We extend the path̃γS as follows: If the end ofγS has a negative label, we do nothing, and
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n∗,Ln∗,L

n∗,RL

−7

−1

−2

−3

−4

−5

−6

L

L

L

RL

Figure 6: The left panel shows the internal flowerI(n∗) of n∗. We split it in succession along the
green, red and blue paths. We first splitn∗ into n∗,R andn∗,L along the green path. The middle
panel showsI(n∗,R) and the green node isn∗,L. The shaded region isKR and the new labels are L.
One end of the red path has a negative label, while the other has the label L and must therefore be
connected ton∗,L. We obtain the cutting pathγR, and after the cut, we obtain two piecesKRR and
KRL. In the third panel we show the hemisphere ofn∗,RR. The blue path has labels L and RL at its
extremities, which must therefore be connected ton∗,L andn∗,RL. This defines the cutting pathγRR.
Note that it always suffices to add at most 2 dashed segments.

if the label is some sequenceS′ we connect the end ton∗,S′ by one edge. Doing this for both
ends we obtain a pathγS.

8. Perform a split-a-node-along-a-path onγS and continue with step 4 for the piecesKSL and
KSR.

Remark 4.7. The boundary of a hemisphereIS = I(n∗,S) is composed of 2 types of nodes:

1. Nodes with a negative label which are part of the original boundaryE .
2. The childrenn∗,S′ of the original noden∗, whereS′ is a sequence of R’s and L’s.

The boundary of a pieceKS, which is a sub-triangulation ofIS, is also composed of 2 types of
nodes:

1. Nodes with a negative label which are part of the original boundaryE , and therefore they
are part of the boundary of the hemisphere∂IS as well.

2. The other nodes whose label is some sequenceS ′. These nodes satisfy the following two
conditions:

(a) All nodes of∂KS with the same label form a connected arc of∂KS.
(b) If a nodey ∈ ∂KS has the labelS′, theny is an internal node of the hemisphereIS seen

as a 2d triangulation. Furthermore,n∗,S′ ∈ ∂IS and(y, n∗,S′) is an internal edge of the
triangulationIS.

Theorem 4.8. The algorithm decomposes the triangulationI, and the sub-piecesKL, KR by se-
quences of pathsγs1,...,sk until all the piecesKs1,s2,...,sk with si ∈ {R, L} are reduced to simple
triangles. Furthermore,
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every edge inI \ ∂I is in at most one path.

Proof. We need to check that the different steps of the algorithm canbe performed. The steps 1–3
follow from the definition of split-a-node-along-a-path. Steps 4 and 5 need no verification. Step 6
relies on Proposition 3.5, which implies the existence of a (shortest) path̃γS, cutting the admissible
pieceKS into two admissible piecesKSL andKSR.

In step 7, we need to make sure that the pathγS connects twodifferentnodes ofE(n∗,S) which
is also∂I(n∗,S), to be distinguished from∂K(n∗,S). The whole construction of labels has been
done with this aim in mind. Note that if a nodeu has a negative label, we do nothing because any
nodeu with a negative label is part of the original boundaryE(n∗), implying that ifu ∈ I(n∗,S),
thenu ∈ E(n∗,S) for any childn∗,S of n∗. On the other hand, if the label is the sequenceS′, then
by construction (step 5),u is connected ton∗,S′ with one edge. Since the labels are different by
construction, the pathγ is a splitting path, and therefore a cut along it is possible.In step 8, we
need to verify that the cut can indeed be done, and that the algorithm can be applied to the children
of theK which was just cut. But this is the content of Proposition 3.5, which shows that the cut can
be done in such a way that the children are admissible in the sense of Definition 3.3.

Since new paths are always constructed in the interior ofK, and theK’s are cut along them, it
is obvious that no edge is covered by more than one path.

4.3.3 Reducing C1-nodes to C0-nodes

Let T be a triangulation of a ball. Consider an external noden∗ of T and letI = I(n∗) be its
internal hemisphere. Furthermore, assume that all nodes ofI are either external (with regard to
T ) or internal of type C0 or C1 but not C2. We will describe an algorithm which promotes all the
internal nodes of type C1 ofI to internal nodes of type C0. The approach is somewhat different
from that of the previous section. Indeed promoting an internal nodex of type C2 to an internal
node of type C1 is done by splitting some external noden∗ along a path going throughx. However,
let x ∈ I(n∗) be an internal node of type C1 and let (x, y, n∗) be an internal face which definesx
as C1; by hypothesis,y ∈ ∂I. Promotingx to an internal node of type C0 is done by splittingn∗

along a path which contains the edge (y, x).
For every internal nodex of type C1 inI(n∗) we choose one of they ∈ ∂I for which (x, y, n∗)

is an internal face and call ity(x). We define

Y = {(x, y(x)) | x is C1} .

We will eliminate elements in the listY by iterating an algorithm similar to the one in the previous
section, until none are left. A binary tree of left and right pieces will be formed in the process (see
Fig. 5).

At the first step of this algorithm, this tree only contains one element, namely the hemisphere
I. We will form a tree ofK’s as before, starting atK = I.

The algorithm starts with steps 1 and 2 below, and then repeats the other steps until it stops.

1. Pick an edge (x, y) = (x, y(x)) ∈ Y .
2. By hypothesis,y ∈ ∂I(n∗). By Lemma 3.2 there is a second, disjoint, simple path connecting

x to a nodez ∈ ∂I(n∗), z 6= y. This defines a splitting pathγ connecting 2 distinct nodesy
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andz of ∂I(n∗). Similarly to the previous section, we splitn∗ alongγ into n∗,R andn∗,L. We
add the 2 new piecesK(n∗,R) andK(n∗,L) as two leaves ofK in the tree. We remove the edge
(x, y) from the listY . Note that the pathγ might promote a second internal nodex′ of type
C1 into a node of type C0, if the edge (x′, z) is in the listY and in the pathγ. In that case,
both edges (x, y) and (x′, z) are removed fromY .

3. If the listY is empty, we are done.
4. Pick an edge (x, y) ∈ Y .
5. Find the pieceK(n∗,s1,...,sk), wheresi ∈ {L,R}, among the leaves of the binary tree which

contains the edge (x, y). We use the abbreviationss= {s1, . . . , sk} andn∗,s. The edge (x, y)
belongs to exactly one piece3.

6. Observe that the nodey is in ∂I(n∗,s) ∩ ∂I(n∗)4.
• If x is in the interior ofK(n∗,s), the edge (x, y) gives us the first simple path connecting
x to ∂I(n∗,s) and by Lemma 3.2 there is a second independent path connecting x to a node
z ∈ ∂K(n∗,s), z 6= y.

If z is also in∂I(n∗,s) we have found aγs along which we can cut. Note that in this case,
the pathγs might promote a second nodex′ of type C1; this happens ifz ∈ ∂I(n∗) and (x′, z)
is an edge ofγs.

If z /∈ ∂I(n∗,s), the pathγs is obtained by adding the edge which connectsz to the tip of
the cone5.
• If x is not in the interior ofK(n∗,s), γs is found by connectingx to a tip of one of the cones
attached toK(n∗,s)6 (see Footnote 5).

7. We splitn∗,s along the pathγs and add the 2 new piecesK(n∗,sR) andK(n∗,sL) to the tree
as leaves ofK(n∗,s). Note thatK(n∗,s) is no longer a leaf of the tree and will never be
encountered in the remaining steps of the algorithm. Finally, we remove the edge (x, y) (and
eventually (x′, z) if x′ is also promoted byγs) from the listY .

8. We continue with step 3.

The algorithm stops when all internal nodes of type C1 ofI(n∗) have been promoted to C0.
Since each branch of the tree is used at most once and since we never cut along the boundary of
anyKs we have shown:

Theorem 4.9.The algorithm decomposes the triangulationI along a sequence of simple paths; it
promotes all of the internal nodes ofI of type C1 into nodes of typeC0. Furthermore,

every edge inI \ ∂I is in at most one path.

4.3.4 Change of the f-vector after the entire recursion

In this section, we compute the total change in the f-vector resulting from the elimination of all
internal nodes.

3Note that the only edges which are common to more than one piece are the edges of the paths along which we
already cut. Since (x, y) is still in the listY, it cannot be such an edge.

4By hypothesis,y ∈ ∂I(n∗) and therefore alsoy ∈ ∂I(n∗,s) ∩ ∂I(n∗).
5The distance between∂I(n∗,s) and any node in∂K(n∗,s) is at most 1, see Fig. 6. The nodez belongs to a pathγS′

along which we already cut. This implies thatz is connected ton∗,S′L or n∗,S′R, called the tip of the cone associated
with z.

6Note that the nodey is not on a tip of a cone but is on the original boundary∂I(n∗).
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Note that we will compute the total increase in the number of internal edges instead of tetrahe-
dra. The two numbers are related by (2.1).

Definition 4.10. We need 3 counters at each depthd of the original triangulation:

• ad is the number of internal edges(x, y) with Dx = d andDy = d+ 1.
• bd is the number of internal edges(x, y) withDx = d andDy = d.
• cd is the number of internal faces(x, y, z) withDx = d andDy = d+1. (This impliesDz = d

or d+ 1.)

As every node is connected to nodes of the same depth or to depths differing by at most 1, the
following obvious relations hold:

∑

d

(ad + bd) = e ,

∑

d

cd ≤ fi ,
(4.1)

wheree is the number of internal edges, andfi is the number of internal faces.
Let∆d denote the increase of the number of internal edges obtainedwhen performing the steps

C2→C1→C0→external at leveld.

Proposition 4.11.There is a constantC ′
∆ such that

∆d ≤ C ′
∆(ad + bd + ad−1 + cd−1) , for d > 0 ,

∆0 ≤ C ′
∆(ad + bd + ns) , for d = 0 .

(4.2)

Corollary 4.12. Eliminating all internal nodes of a triangulationT with f-vector〈t, fs, ni〉 leads
to a total increase∆ of internal edges which is bounded by

∆ ≤ C∆(t + ni) .

Proof of the corollary.From (2.1) we deducefi = 2t − fs/2 ande = t + ni − fs/2 + 1. Also,
ns = fs/2 + 2. Using (4.1) and the proposition, we get

∆ =
∑

d≥0

∆d ≤ C ′
∆(2e+ fi + ns) ,

from which the assertion follows (the coefficient offs is negative and the additive constants can be
bounded since1 ≤ t).

Proof of Proposition 4.11.The key to the bound (4.2) is the observation that the transformations
C2→C1. . . arelocal in the depthd one considers. Indeed, as is visible from the definition of these
transformations, working at leveld only affectsad, bd, cd andad−1, cd−1.

More precisely, when starting to work at leveld, we need the value of̂ad−1, which is the number
of internal edges (connecting depthd− 1 to d) obtained when leveld− 1 has been completed.

As we work on leveld, these values continue to change. After the sweep C2→C1 at leveld we
obtaina′d, â

′
d−1, and similarly for the other variables. After the sweep C1→C0 we obtaina′′d and

other variables. The sweep of removing the tetrahedra afterC0 decreases all the counters, so we do
not introduce new notation.

The main bound is
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Lemma 4.13.One has, after completing leveld− 1:

âd−1 ≤ ad−1 + 16cd−1 . (4.3)

Postponing the proof, we recall the following facts:

• Cutting along a pathγ adds|γ| − 1 internal edges to the triangulation (see Lemma 4.6).
• Each edge of eachI(n∗) is used in at most 1 path̃γs (see Theorem 4.8 and 4.9).
• The extension of the path̃γs to a splitting pathγs adds at most 2 to its length (see step 7 for

the case C2→ C1, and step 6 for the case C1→C0). We will use this observation by saying
that |γs| − 1 ≤ 2|γ̃s|.

Using these facts and Lemma 3.1, the increase∆′
d of the number of internal edges due to the

sweep C2→C1 is bounded by

∆′
d ≤2

∑

n∗∈Ld

∑

S

|γ̃S| ≤ 2
∑

n∗∈Ld

#(edges inI(n∗))

≤6ad + 12bd + 6âd−1 + 2
∑

n∗∈Ld

(|E(n∗)| − 3) ,
(4.4)

Here, we over-count the number of added internal edges. However, one should keep in mind that if
we follow the algorithms of Sections 4.3.2 and 4.3.3, then the Theorems 4.8 and 4.9 are valid and
every new internal edge is accounted for. As a consequence, the Relation (4.4) is an upper bound
on the number of internal edges due to the sweep C2→C1.

The effect of the sweep C2→C1 at leveld is summarized by

Lemma 4.14.One has

a′d + b′d + a′d−1 ≤ ad + bd + âd−1 +∆′
d , (4.5a)

a′d ≤ ad + 2cd , (4.5b)

c′d ≤ 7cd . (4.5c)

Postponing the proof, we proceed to the sweep C1→C0. In the same manner, the increase∆′′
d

of internal edges for the sweep C1→C0 at leveld is

∆′′
d ≤2

∑

n∗∈Md

∑

S

|γ̃S| ≤ 2
∑

n∗∈Md

#(edges inI(n∗))

≤6a′d + 12b′d + 6a′d−1 + 2
∑

n∗∈Md

(|E(n∗)| − 3) .
(4.6)

To complete the proof of Proposition 4.11 we note that the external degree ofn∗ is always 3
for those nodes which have been promoted to the surface by removing a tetrahedron. (Those which
were at the surface at leveld = 0 can of course have higher degree.) Using (4.4) and Lemma 4.13
we get

∆′
d ≤6ad + 12bd + 6âd−1 + 4es · δd=0

≤6ad + 12bd + 6ad−1 + 96cd−1 + 12ns · δd=0

≤96(ad + bd + ad−1 + cd−1 + ns · δd=0) .

(4.7)
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In (4.6) the external degree of a noden∗ ∈ Md can be larger than 3. However, if we split a
noden∗ into n∗,R andn∗,L, then the external degrees satisfy

|E(n∗)| = |E(n∗,L)|+ |E(n∗,R)| − 4 . (4.8)

Therefore, we can bound
∑

n∗∈Md

(|E(n∗)| − 3) ≤ 4 ·#(splits in C2→C1) .

Since each split adds at least one internal edge, we deduce that

∑

n∗∈Md

(|E(n∗)| − 3) ≤ 4∆′
d .

Combining this with (4.5a) and Lemma 4.13, we get

∆′′
d ≤6a′d + 12b′d + 6a′d−1 + 2

∑

n∗∈Md

(|E(n∗)| − 3)

≤6ad + 12bd + 6ad−1 + 96cd−1 + 20∆′
d .

Replacing∆′
d with (4.7) yields the result we seek. The last step C0→external adds no internal

edges; in fact it reduces their number. This finishes the proof of Proposition 4.11.

Proof of Lemma 4.14.In the sweep C2→C1 at leveld, we split all (or some) nodes{n∗} ⊂ Ld into
{n∗,s} ⊂ Md. As a consequence, all∆′

d added internal edges have an endn∗,s which is the child
of some noden∗ ∈ Ld at depthd in the initial triangulation. The number of internal edges having
a corner at depthd is given byad + ad−1 + bd. This proves the relation (4.5a).

To prove (4.5b), we need to bound the added number of internaledges (n∗,s, y) such thatn∗ ∈ Ld

andy ∈ I(n∗)∩Ld+1 was at depthDy = d+1 in the original triangulation (and therefore is at depth
1 in the current step). By construction, this number is bounded by the number of pathsγs which
go through such a nodey in the 2d triangulationI(n∗). Furthermore, by Theorem 4.8, each edge
of I(n∗) is used in at most one pathγs. We deduce that, for two such nodesn∗ andy, the number
of added internal edges of type (n∗,s, y) is bounded by the degree of the edge (n∗, y) in the original
triangulation. Summing the degrees of all edges (n∗, y) such thatn∗ ∈ Ld andy ∈ I(n∗) ∩ Ld+1 is
bounded by2cd.

Finally, in order to prove (4.5c), we need to bound the added number of internal faces (n∗,s, y, z)
in the step C2→C1 at leveld whenn∗,s is obtained from splitting somen∗ ∈ Ld andy ∈ Ld+1 ∩
I(n∗). But each added internal face (n∗,s, y, z) requires the addition of the internal edge (n∗,s, y).
Furthermore, by definition of the move split-a-node-along-a-path, each new internal edge is added
along with three internal faces. We deduce thatc′d − cd ≤ 3(a′d − ad) ≤ 6cd.

Proof of Lemma 4.13.The proof follows by induction on the leveld. At level d − 1 = 0, there is
nothing to prove (since no splits have been done). When we areat leveld − 1 > 0 we can use
Proposition 4.11 (at leveld− 1). Following the same reasoning used in the proof of (4.5b), we can
write

a′′d−1 ≤ a′d−1 + 2c′d−1 .
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Replacing (4.5b) and (4.5c), we get

a′′d−1 ≤ ad−1 + 16cd−1 .

Finally, âd−1 ≤ a′′d−1 since the third step C0→external does not add internal edges (this third step
actually removes3|Ld−1| internal edges).

4.4 Reducing a triangulation with no internal nodes into a set of nuclei

Let T be any triangulation. In the previous section, we describedan algorithm which transformsT
into a new triangulationT ′ with no internal nodes. We now systematically apply the moves cut-a-
3-face and open-a-2-face on every internal face ofT ′ with less than 2 internal edges. We end up
with a collection of triangulations{Ni} satisfying the following properties:

• All nodes of any suchNi are external.
• All internal faces of any suchNi have at least 2 internal edges.

Any triangulation satisfying these two conditions is called anucleus.

5 Part II: Bounding the number of triangulations

We showed that any triangulation can be reduced into a collection of nuclei using four moves. For
the moment, we proceed without using the move cut-a-3-face.This implies that any triangulation
can be transformed into a “tree of nuclei” (the formal definition of a tree of nuclei will be given
later on) using the three remaining moves. Equivalently, this shows that any triangulation can be
constructed from a tree of nuclei, using the inverse of thesethree moves. Bounding the number of
trees of nuclei, and then bounding the number of ways one can perform the inverse moves on such
a tree yields a bound on the total number of triangulations.

5.1 Rooted triangulations

We define what we mean by a rooted triangulationT and we show that one can label all external
nodes ofT . In the sequel, we use a particular labeling described below.

Definition 5.1. A rooted triangulation (T, F ) of the 3-ball is a triangulationT with one labeled
external faceF . This labeled face is called theroot. The three nodes of the root are always labeled
0, 1, and 2.

Remark 5.2. We will only consider rooted triangulations. This means forinstance that talking
about the Christmas treeTm, m > 1 makes no sense, since there is more than one such rooted
triangulation. The exceptions are of course symmetric triangulationsT such as the tetrahedron.

Proposition 5.3. Consider the boundary of a rooted triangulation(T, F ). The root is labeled as
(0, 1, 2). One can define a way of labeling all external nodes ofT .
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Figure 7: The Christmas tree withm = 3 internal nodes. This triangulation can be rooted in more
than one way.

Proof. The proof is just the construction of this labeling. Any labeled edge can be seen as an
element (a, b) ∈ Z

2
+ with a < b.7 We consider the lexical order onZ2

+. We start with the node 0.
Its external flower is a 1d triangulation of the circleS1 and it contains the edge (1, 2) by definition.
This edge determines the direction in which we label all unlabeled nodes of the external flower of
node 0.

Next, we consider the external flower of node 1 and we look for the smallest labeled edge in
the sense of the above ordering. In this case, this edge is (0, 2). This edge fixes the direction in
which we label all the yet unlabeled nodes of the external flower of node number 1. Notice that all
unlabeled nodes which are assigned a label are part of a face along with 2 already labeled nodes.
This implies that the external flower of any labeled node contains a smallest labeled edge and as
such can be directed.

We continue with all the nodes in their natural order until all external nodes ofT are labeled.

5.2 Trees of nuclei

Since we work with rooted triangulations, from now on, we will only use rooted nuclei, namely:

Definition 5.4. A nucleusis a rooted triangulation with no internal nodes such that every internal
face has at most one external edge.

7We use the notationZ+ = {0, 1, 2, . . .}.
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5.2.1 Rooted trees of nuclei and planar rooted trees

Let N be the set of all nuclei andNt,f be the subset of all nuclei witht tetrahedra andf external
faces.

Definition 5.5. A rooted triangulationT is called arooted tree of nucleiif all nodes ofT are
external and all internal faces ofT have 0, 2, or 3 internal edges. (In other words, no internal face
has 2 external edges.)

In other words, a rooted tree of nuclei is simply a rooted triangulation which is obtained by
gluing sequentially nuclei along pairs of their external faces. This is done in such a way that each
nucleus is glued to an external face (a, b, c) of its parent through its root; 0 is identified witha,
1 with b and 2 withc. Once the tree is built, the external nodes are renumbered inthe sense of
Proposition 5.3.

Since all external faces of a rooted triangulation are ordered, this defines a bijection between
rooted trees of nuclei (T, F ) and rooted planar trees with colored vertices in the following manner:

• Each nucleus of the triangulation (T, F ) is represented by a colored vertex.
• The root-vertex of the planar tree represents the nucleus with the rootF , i.e., with the face

(0, 1, 2).
• Each internal face of the triangulation with three externaledges is shared by two nuclei and

hence it is represented in the tree by an edge linking the corresponding two colored vertices.
• Since the internal faces with three external edges are ordered, this induces an order of the

links of the planar tree, say from left to right.

5.2.2 Hypothesis on the number of rooted nuclei

We next show how the question of Gromov can be reformulated. We show that if there are not
“too many” different types of nuclei, then there is indeed anexponential bound on the number of
triangulations, when expressed in terms of the number of tetrahedra.

Hypothesis 5.6.There is a finite constantK1 > 1 such that the number̺(t, fs) of face-rooted
nuclei with f-vector〈t, fs, 0〉 is bounded byKt

1.

In order to alleviate the notation, from now on, we will denotefs by f .

Lemma 5.7. For any nucleusN ∈ Nt,f one hasf ≤ t+ 3.

Proof. If N is a tetrahedron, the assertion is obvious. IfN is non-trivial each tetrahedron ofN
can have at most 1 external face, since otherwise it would have an internal face with more than one
external edge.

5.2.3 The number of rooted trees of nuclei

We use the classical method for counting planar ordered trees, generalized to the case of a multitude
of different nodes, which are the face-rooted nuclei.

Definition 5.8. LetAv,t,f be the number of rooted trees of nuclei withv > 0 nuclei, t tetrahedra
andf external faces. We defineA0,t,f = δt,0 δf,0.
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Our main bound is:

Proposition 5.9. Under the Hypothesis 5.6 there is aK2, with 2 < K2 < ∞ such that for allt, f ,
one has

∑

v

Av,t,f ≤ Kt
2 .

Proof. Consider a tree of nuclei, and letN be the nucleus containing the rootF and assume that
N ∈ Nt0,f0 . RemovingN from the tree leads tof0 − 1 rooted trees of nuclei, some of which may
be empty. We letvi, ti, andfi denote the counters for the branchi. Note that if a branchi has 0
nuclei,i.e., if vi = 0, then, obviously,ti = fi = 0. Thus, we get the relations:

ℓ
∑

i=1

vi = v − 1 ,
ℓ

∑

i=1

ti = t− t0 ,

f0−1
∑

i=1

δfi>0(fi − 1) + δfi=0 = f − 1 . (5.1)

In the sequel, we denote by
∑′

v,t,f,t0,f0
the sum over the set

{vi, ti, fi | i = 1, . . . , f0 − 1 , vi ≥ 0, ti ≥ 0, fi ≥ 0 and satisfying (5.1)} .

This observation allows us to write a recursive relation

Av,t,f = δv,0 δt,0 δf,0 +
∑

t0>0,f0≥4

̺(t0, f0)
∑′

v,t,f,t0,f0

f0−1
∏

i=1

Avi,ti,fi . (5.2)

Fix M ∈ Z+, and assume thatv, t, f satisfy3v + 3t+ f ≤ M . By (5.1), we deduce

3vi + 3ti + fi ≤ 3v − 3 + 3t− 3t0 + f ≤ M − 1 .

We define
AM (s) =

∑

3v+3t+f≤M

Av,t,fs
3v+3t+f .

Clearly,A0(s) = 1 for all s, AM (0) = 1 for all M ≥ 0, and for a fixeds, AM (s) is an increasing
sequence inM .

Multiplying (5.2) bys3v+3t+f and summing, we get, using (5.1):

AM (s) = 1 +
∑

3v+3t+f≤M

t
∑

t0=1

f
∑

f0=4

̺(t0, f0) s
3+3t0+1−

Pf0−1

i=1
(δfi>0−δfi=0)

×
∑′

v,t,f,t0,f0

ℓ
∏

i=1

Avi,ti,fis
3vi+3ti+fi .

(5.3)

Using Lemma 5.7, we have

3 + 3t0 + 1−

f0−1
∑

i=1

(δfi>0 − δfi=0) ≥ 3 + 3t0 + 1− (f0 − 1) · 1 + 0

≥ 5 + 3t0 − f0 = 2(t0 + 3− f0) + t0 + f0 − 1
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≥ t0 + f0 − 1 .

Restricting to0 ≤ s ≤ 1, this implies

s3+3t0+1−
Pf0−1

i=1
(δfi>0−δfi=0) ≤ st0+f0−1 . (5.4)

Using now the Hypothesis 5.6,i.e., ̺(t, f ) ≤ Kt
1, we get from (5.3) and (5.4):

AM (s) − AM (0) ≤
M
∑

t0=0

(sK1)
t0

M
∑

f0−1=0

f0−1
∏

i=1

sAM−1(s) ≤
1− (sK1)M+1

1− sK1

1− (sAM−1(s))
M+1

1− (sAM−1(s))
.

Restrictings further tos ≤ 1/(2K1) this leads to

AM (s) − AM (0) ≤ 2
1− (sAM−1(s))

M+1

1− (sAM−1(s))
.

Fix s∗ = min(0.1, 1/(2K1)) and consider the mapF : x 7→ 1 + 2/(1 − s∗ · x). One easily checks
thatF maps the interval [1, 5] to itself. Furthermore, we haves∗ ·x ≤ 1 for x ∈ [1, 5]. Starting with
x = A0(s∗) = 1 we conclude that for allM one hasAM (s∗) ≤ 5. This implies that the monotone
sequenceAM (s∗) converges asM → ∞ and thus

Av,t,f ≤ 5 · (s∗)−3v−3t−f .

Summing overv and usingv ≤ t andf ≤ 4t we complete the proof.

5.3 Bound on triangulations

Having discussed the number of trees, we now study the numberof ways these trees can be made
into triangulations by identifying faces and nodes. This process is patterned after the work of [7]
and [4].

Our bounds are based on using the inverses of the moves open-a-2-face, remove-1-tetra, and
split-a-node-along-a-path. Since we are only interested in the bound, we will allow for inverse
moves which do not necessarily lead to 3-balls.

Remark 5.10. While we over-count the number of triangulations, by allowing for moves which
may not lead to 3-balls, we can in fact formulate precise conditions which guarantee that after
each move, a 3-ball is obtained. These conditions are spelled out in Lemmas 5.11 and 5.15. This
actually allows for efficient programming of the inverse operations.

5.3.1 Bounding the number of rooted triangulations with no internal nodes

LetRt,f be the set of all rooted trees of nuclei witht tetrahedra andf external faces and letTt,f,0 be
the set of all rooted triangulations witht tetrahedra,f external faces and no internal nodes. In this
section, we will define the inverse move of open-a-2-face andwe will use it to count the number of
rooted triangulations with no internal nodes.

The inverse operation of open-a-face, which we will simply call identificationwhen there is no
ambiguity, is to identify two adjacent external faces, satisfying some conditions. Indeed, identifying
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any two adjacent external faces might lead to a complex whichis not a triangulation. For instance,
assume that (n1, n2, m1) and (n1, n2, m2) are two adjacent external faces such that there exists a
nodex adjacent to bothm1 andm2. After identifying the two faces, we obtain a complex with a
double edge (x,m1) = (x,m2).

Lemma 5.11. Consider a triangulationT . Let (a, b) be an external edge and letx, y be its two
opposite external nodes. Assume that the following conditions are satisfied:

• The nodesx andy are not connected by an edge.
• The only nodesm such that(m, x) and(m, y) are edges are the two nodesa andb.

Then, one can identify the two external nodesx and y as well as the two external faces sharing
(x, y). This operation transforms a 3-ball to a 3-ball, and will be called identification (of two
adjacent external faces).

Proof. The proof is left to the reader.

Proposition 5.12.Under Hypothesis 5.6, there is a constantK3 such that for allt andf one has

|Tt,f,0| ≤ Kt
3 .

Proof. Let T ∈ Tt,f,0 be any rooted triangulation with no internal nodes. Using repetitively the
move open-a-2-face onT transforms it into a rooted triangulationT ′ with no internal nodes such
that each internal face has 0, 1 or 3 external edges. In other words,T ′ is a rooted tree of nuclei.
Equivalently, given a rooted tree of nucleiT ′ with t′ tetrahedra andf ′ external faces, one can
count the number of ways one can identify two adjacent external faces,without any conditions
guaranteeing ballness. Multiplying this number by the number of rooted trees of nuclei gives us
an upper bound on the number of rooted triangulations with nointernal nodes.

We count the number ofT ∈ Tt,f,0 obtained by identification from a rooted tree of nucleiT ′

with t′ tetrahedra andf ′ external faces. This means that we identifyD = (f ′ − f )/2 pairs of
adjacent external faces.

We first observe that choosing a pair of adjacent external faces is equivalent to choosing an
external edge. We then note that some faces which are not adjacent inT ′ might become adjacent
after some identifications are done. This means that we have asequencee1, e2, . . . , eℓ with ei ≥ 1
and

∑

i ei = D which is defined as follows:

• e1 is the number of external edges (or equivalently of pairs of adjacent external faces) ofT ′

which are identified.
• e2 is the number of pairs of faces which were not adjacent inT ′ but became so after the

first series ofe1 identifications. However, each identification of two adjacent external faces
creates exactly two new pairs of adjacent external faces, implying thate2 ≤ 2e1.

• ei is defined by analogy from theei−1 identifications, implying thatei ≤ 2ei−1.

This leads to the following bound:

|Tt,f,0| ≤
∑

f ′>f

|Rt,f ′ |

D≡(f ′−f )/2
∑

ℓ=1

∑

Pℓ
i=1

ei=D,ei≥1

(

3D

e1

)(

2e1
e2

)

. . .

(

2eℓ−1

eℓ

)

.
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Since
(

a
b

)

≤ 2a, and since the number of external facesf ′ in any rooted tree of nuclei is bounded
by four times the number of tetrahedra, we find, using Proposition 5.9 to bound|Rt,f ′ |,

|Tt,f,0| ≤
∑

f ′>f

|Rt,f ′ |25(f ′−f )/2
D≡(f ′−f )/2

∑

ℓ=1

∑

Pℓ
i=1

ei=D,ei≥1

1

≤
∑

f ′>f

|Rt,f ′ |25(f ′−f )/2
D≡(f ′−f )/2

∑

ℓ=1

(

D − 1

ℓ− 1

)

≤
∑

f ′>f

|Rt,f ′ |23(f ′−f )

≤
4t
∑

f ′=f+2

Kt
2K

3(f ′−f )
2

≤ K13t
2 = Kt

3 ,

whereK3 = K13
2 .

The proof is complete.

5.3.2 Bounding the number of rooted triangulations (internal nodes included)

In this section, we define the inverse moves of remove-1-tetra and split-a-node-along-a-path and
we use them to count the number of rooted triangulations.

Definition 5.13. We define the inverse move of remove-1-tetra, which we calladding a tetrahedron:
Consider a triangulationT . Letx be an external node with external degree equal to 3 and leta1, a2
anda3 be its external neighbors, i.e.,(x, ai) is an external edge. Adding a tetrahedron then consists
in adding the face(a1, a2, a3) and the tetrahedron(x, a1, a2, a3).

We define the inverse move of split-a-node-along-a-path.

Lemma 5.14.Consider a triangulationT . Let(a, b) be an external edge. Assume that the following
conditions are satisfied:

• For each nodem such that(m, a) and(m, b) are edges,(m, a, b) is a face.
• For each edgee such that(e, a) and(e, b) are faces,(e, a, b) is a tetrahedron.
• There are no facesf such that(f, a) and(f, b) are both tetrahedra.

Then, one can collapse the two nodesa andb, and the result is again a 3-ball. This move is called
collapse of an external edgeor simplycollapse.

Proof. The proof is left to the reader.

The three conditions of a collapse can be reformulated in thefollowing manner:

Lemma 5.15.Let e = (a, b) be an external edge. The edgee is collapsible if and only if

I(a) ∩ I(b) = I(e) ,

whereI(a) is the hemisphere ofa andI(e) is the semi-circular flower ofe.
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Proof. By definition, an edgee = (a, b) is collapsible if and only if

• For each nodem such that (m, a) and (m, b) are edges, (m, a, b) is a face.
• For each edgee such that (e, a) and (e, b) are faces, (e, a, b) is a tetrahedron.
• There are no facesf such that (f, a) and (f, b) two tetrahedra.

Any graph is defined as a set of vertices and a set of edges. A 2d triangulation is a graph that
can be defined as a set of nodes, a set of edges and a set of faces,and a 1d triangulation as a set
of nodes and a set of edges.I(a) is a 2d triangulation andI(e) is a 1d triangulation. LetV(a),
L(a) andF (a) be the sets of vertices, edges and faces ofI(a) andV(e), L(e) those ofI(e). The
proposition is equivalent to the following

V(a) ∩ V(b) = V(e) ,

L(a) ∩ L(b) = L(e) ,

F (a) ∩ F (b) = ∅ .

The two definitions are clearly equivalent.

In Sect. 4.3, we described an algorithm which transforms anytriangulation with f-vector〈t, f, n〉
into a triangulation with f-vector〈t′, f ′, 0〉. We have the following lemma:

Lemma 5.16.There is a constantK4 > 0 such that the f-vectors〈t, f, n〉 and〈t′, f ′, 0〉 satisfy the
following linear relation:

t′ ≤ K4t , f ′ ≤ K4t , (5.5)

Proof. Let e, e′ be the number of internal edges of both triangulations. By Condition 4.12, we have
e′ − e ≤ C∆(t+ ni). Using (2.1) andfs, ni ≤ 4t, the result follows.

This proves that any triangulation inTt,f,n can be obtained from a triangulation with no inter-
nal nodes inTt′,f ′,0 with a series of carefully chosen collapses and additions oftetrahedra, with
t, f, n, t′, f ′ satisfying (5.5).

We can now use a similar approach to that of the previous section. It is clear that choosing a
triplet of external faces for the move add-1-tetrahedron isequivalent to choosing an external node
x, and that choosing a couple of external nodes for collapse isequivalent to choosing an external
edge.

5.4 Combining the bounds

Before we state our main result, we recall the

Hypothesis 5.6.There is a finite constantK1 > 1 such that the number̺(t, f ) of face-rooted nuclei
with f-vector〈t, f〉 is bounded byKt

1.

Theorem 5.17.Under Hypothesis 5.6 one has the bound: There is a finite constantC such that the
number of rooted triangulations with f-vector〈t, f, n〉 is bounded by

|Tt,f,n| ≤ Ct . (5.6)
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Proof. Consider a rooted triangulationT ∈ Tt,f,n with t tetrahedra,f external faces andn internal
nodes. We showed thatT can be obtained from a rooted triangulationT ′ ∈ Tt′,f ′,0 by a series of
carefully chosen collapses and additions of tetrahedra.

Note that the algorithm of Sect. 4.3 which transformsT intoT ′ can always be stopped when the
last internal node ofT is removed. This implies that, in the inverse construction we are doing now,
we must start by adding tetrahedra toT ′, and not by collapsing external edges. So the first step is
to choosen1 external nodes (of external degree 3) out of thef ′/2 + 2 external nodes ofT ′, and to
insert a tetrahedron on each of them with one tip at the node. We call this “covering the node”.

This reduces the number of external edges from3f ′/2 to 3(f ′/2 − n1). Then, we choosem1

external edges and we collapse them.

Remark 5.18. Any labeled triangulation is simply defined by the list of itstetrahedraLt. In this
point of view, collapsing an external edgee is simply the operation where we remove fromLt all
the tetrahedra ofE(e). Let e1 ande2 be two collapsible edges. The construction implies that the
order in which we collapse them is irrelevant and so, the ideathat we simultaneously collapsem1

edges makes sense.
One should pay attention to the case where we collapse two edgese1 = (a, b1) ande2 = (a, b2)

such that(b1, b2) = e3 is an edge. In this case, all tetrahedra sharing one of the three edges are
removed. Clearly, this yields the same result regardless ofthe order in which we collapsee1 and
e2.

The next step is to choosen2 external nodes among the new possibilities which appear after
performing the first series of coverings and collapses, and cover them. For each external edgee,
we can associate four nodes: the two endpoints ofe and the two nodesx1, x2 such that (xi, e) is an
external face. Assume thatx is one of then2 chosen external nodes. The fact thatx appeared after
the first series implies thatx is either one of the four nodes associated with one of them1 collapsed
edges (note that these four nodes become three after the collapse), or that there is a nodey among
the firstn1 nodes such that (x, y) was an external edge (before coveringy with a tetrahedron). But
each suchy has exactly 3 external neighbors. This implies thatn2 ≤ 3m1 +3n1 and the number of
ways to choose these nodes is bounded by

(

3(m1 + n1)
n2

)

.

Continuing in this way, we choosem2 external edges and we collapse them. Lete be such an
edge. Again,e was not among the firstm1 edges. This implies that there must be a nodex of the
series ofn2 covered external nodes such that (e, x) formed an external face before coveringx with
a tetrahedron. But for each suchx there are exactly three external edges satisfying this condition.
We deduce thatm2 ≤ 3n2.

We continue adding tetrahedra and collapsing edges. This leads to two sequencesni, mi, i =
1, . . . , ℓ, with ℓ ≤ n, satisfying:

1 ≤ ni , 0 ≤ mi ≤ 3ni ,

ℓ
∑

i=1

ni = n ,

1 ≤ ni ≤ 3ni−1 + 3mi−1 , i > 1 ,
ℓ

∑

i=1

2ni + 2mi + f = f ′ .

(5.7)
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Note that some, or all, of themi’s might be equal to zero. Using (5.7) we get a bound

|Tt,f,n| ≤
∑

t′,f ′

|Tt′,f ′,0|
n

∑

ℓ=1

∑

Pℓ
i=1

ni=n,ni≥1

∑

Pℓ
i=1

mi=(f ′−f )/2−n,mi≥0

×

(

f ′/2 + 2

n1

)(

3(n1 +m1)
n2

)

· · ·

(

3(nℓ−1 +mℓ−1)
nℓ

)

×

(

3f ′/2

m1

)(

3n1

m2

)

· · ·

(

3nℓ−1

mℓ

)

,

where the sum overt′, f ′ is restricted by (5.5). Bounding each binomial by a power of 2and using
Proposition 5.12, (5.7) and (5.5), we get, as in the proof of Proposition 5.12,

|Tt,f,n| ≤
∑

t′,f ′≤K4t

Kt′

3 ≤ Ct .

This shows (5.6) and completes the proof.
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