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Abstract

Based on the work of Durhuus-Jénsson and Benedetti-Zjegéerevisit the question of the number
of triangulations of the 3-ball. We introduce a notion of lews (a triangulation of the 3-ball without
internal nodes, and with each internal face having at mostidreal edge). We show that every
triangulation can be built from trees of nuclei. This leadsatnew reformulation of Gromov’s
question: We show that if the number of rooted nuclei witbtrahedra has a bound of the fo€it,
then the number of rooted triangulations wittetrahedra is bounded ly:.
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1 Introduction

In this paper, we study the question of the number of triasiguhs of the 3-ball by tetrahedra. The
case of the 2-ball was exactly solved by Tutte in [16]. He sédm particular that the number of
rooted triangulations of the 2-sphere withvertices isO(1) N=°/2(256/27)". It is natural to ask
if analogous bounds are true in higher dimension. Suchtgesauld have applications in models
of Statistical Mechanics (foams [14], quantum gravity [@],glassy dynamics [1, 3, 8, 9]) where
the exponential rate of growth can be interpreted as an @ntrim [12], Gromov asked whether
the number of triangulations of the 3-sphere is bounded'Byfor some constant’ when there
are N tetrahedra (facets) in the triangulation. To date, thisstjae remains open. However Pfeifle
and Ziegler proved in [15] a super exponential lower boumdtie number of triangulations of the
3-ball as a function of the number of vertices. This does neter negatively Gromov’s question
(which is in terms of the number of tetrahedra) but makes thblpm of proving an exponential
bound in terms of the number of tetrahedra even more chatigng

There are several studies in the direction of answering tlestipn, which we summarize now.
In [7], Durhuus and Jonsson gave the construction of a dégsngulations for which they could
show a bound of the forr@¥. These triangulations are obtained by building a tree odhetdra,
which is obtained by starting from a root tetrahedron anaching tetrahedra to its faces, and then
attaching further tetrahedra to the new open faces. Eaehextron is attached to the tree with just
one face. Itis a common feature of tree-like constructibasthey lead to bounds of the for@":
The prime example in our context is of course the celebrata#t wf Tutte [16] mentioned above.
Coming back to Durhuus and Jonsson, once the tree is cotediithey now collapse adjacent
faces of the tree in such a way that at the end of the proceduiangulation of the 3-sphere is
obtained. Their main result says that the number of ways iclwto do this is again exponentially
bounded. In this way, they construct a set of triangulatafribe 3-sphere with tetrahedra which is
exponentially bounded. They ask whether these are all lpledsiangulations.

In a later development, Benedetti and Ziegler [4], show thatDurhuus and Jonsson con-
struction, which they call “locally constructible” (LC),ogsnot capture all triangulations of the
3-sphere. Namely, they show that a 3-sphere with a 3-coatplicknot (made by tetrahedra) is not
LC. They also carefully discuss relations between LC andrattasses of constructibility.

In the present paper, we define a larger class of triangastwith a construction similar to that
of Durhuus and Jonsson, but which uses more general basieats than the simple tetrahedron,
which we callnuclei We prefer to work with 3-balls, and bounds on 3-spheres eaahltained
from a bound on triangulations of a tetrahedron. This is Upune by removing a tetrahedron
from the 3-sphere (see for example [4, Section 3] ).

Nuclei are defined as triangulations of the 3-ball with the follogvapecial properties:

1. They have no internal nodes.
2. Internal faces have at masmteexternal edge.
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Obviously, the tetrahedron is a nucleus. The Furch-Bing[8l, [5] and [13] and the Bing 2-
room house [5] and [13], which are not nuclei, can be redugeaiip procedure to one non-trivial
nucleus, each. The smallest non-trivial nucleus we knowigén in Table 1, has 12 nodes, and 37
tetrahedra, of which 17 have no external face. Nodes are ergdlfrom 1 to 12, and Table 1 gives
a list of the 37 tetrahedra.

13 4101 3 5 10/1 3 5 111 4 6 101 5 7 8
15 7 101 5 8 111 6 7 8,1 6 7 102 3 5 9
23 5112 3 8 9238 1125 6 112 6 11 12
2 7 10 112 7 11 12,2 8 9 10|2 8 10 11/3 4 9 10
34 9 12|35 9 103 8 9 12/4 5 6 11|45 7 8
4 5 8 1114 6 10 11/4 7 8 9|4 7 9 12/4 8 9 10
4 8 10 1116 7 8 9|6 7 9 11/6 7 10 11j6 8 9 12
6 9 11 127 9 11 12

Table 1: A nucleus with 12 nodes, and 37 tetrahedra, of whitlhdve no external face. If a
tetrahedron has an external face, its 3 nodes are showndfabel

Our approach is two-fold: Top-down, and bottom-up. In the-down approach, we define a
set of elementary moves which reduces an arbitrary triaatigul of the 3-ball into a tree of nuclei,
which are glued together by pairs of faces, each such fade 3véxternal edges. The tree can
then be cut into a disjoint union of nuclei by cutting alongsk faces. The construction always
transforms 3-balls to unions of 3-balls, and is thus impletalele on a computer.

In the bottom-up approach, we start with any tree whose nadesrbitrary nuclei, and we
construct 3-balls from it by gluing adequate faces togetNet all possible gluings lead to 3-balls,
but including also some inadequate gluings still leads wddmounds. Again, the procedure can be
programmed on a computer.

Our main result is Theorem 5.17. It says tiHahe numbero(t, fs) of face-rooted nuclei with
tetrahedra andfs external faces has a bound of the fopt, fs) < C' then the number of rooted
triangulations of the 3-ball with tetrahedra,f external faces and internal nodes is bounded by
Clt+n,

In particular, since obviously;, < 4t andn < 4¢, we would get a bound”,.

In summary, our work bounds the number of triangulationemims of the number of nuclei.
Thus, we remain with a new, but hopefully simpler, open goasabout the problem posed by
Gromov, namely does the number of face-rooted nuclei wigtrahedra have an exponential bound
in t? While we do not have any mathematical statements abouptbidem, the methodology
of the proof of Theorem 5.17 allows for quite extensive nuoarexperimentation. The most
important insight from this experimentation is as followsseems that ifl" is a nucleus with a
k-complicated knot (or even braid), then the addition of (asthk cones and decomposition with
our algorithm leads to a tree tdtrahedra Note that the trefoil knot is 1-complicated. Furthermore,
Goodrick [11] showed that the connected sunk eifefoil knots is at least-complicated.

We have analyzed a certain number of classical examplds tintfollowing findings summa-
rized in Table 2.

1.1 The method

The bounds on the number of triangulations are obtainedumystg a set of elementary moves,
detailed in Sect. 4.1. These moves either decompose tmguatation in two disjoint pieces (by
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Example knot complication| # of cones added ref.
Bing 2 room no knot 1 cone [5]

1 trefoil 1-complicated 1 cone [10]

2 trefoils 2-complicated 1 cones

3 trefoils 3-complicated 2 cones [4, Figure 3]
4 trefoils 4-complicated 3 cones

5 trefoils 5-complicated 3 cones

figure 8 1-complicated 1 cones

cinquefoil knot| 1-complicated 1 cones

Table 2: Experimental upper bound on the number of conesedeteddecompose a triangulation
into tetrahedra (For the definition ef-complicated, see [4]).

cutting along an interior face with 3 edges on the boundariaking away a tetrahedron with an
external face and one internal node). Clearly, this leagagd@wo 3-balls on which we continue the
decomposition. The other operations are “open” a ball aboogrefully chosen edge (which we call
“split-a-node-along-a-path”) or opening one face with Beexal edges. These operationsrease
the number of tetrahedra in the triangulation, but they arephe moves in which the 3-ball can
be cut, and the internal nodes can be eliminated. One of tle mo&elties of this construction is
the observation that this can be done wiv additional tetrahedra: This follows from a careful
analysis of cuts of the 2-dimensional hemisphere attacheahy external node. Since this is an
important bound, we devote Sect. 3 to its proof. In Sect. 2niveduce the (standard) terminology
for the pieces of any triangulation. In Sect. 4 we combinedthmoves described above to show
how a general triangulation can be decomposed into a setaéinun Sect. 5, we perform the
bottom-up procedure and show how one bounds the numbeaogtrlations of the 3-ball in terms
of trees whose nodes are (rooted) nuclei, extending in taisthve earlier work of [7] and [4].

1.2 Comparison with 2d

It is useful to compare our method to what can be done in 2d.dlw@ have a set of triangles.
Any triangulation can be obtained in the following way: Eirsonstruct a tree of triangles, adding
each triangle with only one face to the existing tree. Thigctthas no internal nodes. Now, glue
together adjacent faces of the tree, recursively. In thig ovee can obtain all triangulations of any
polygon.

The inverse operation, while intuitively clear, is a litdarder to describe, and we just sketch
the procedure. Given any internal nodat distance 1 from the polygon, say connected ¥ee can
split the edge, =) by doubling the node into a pairn’, n”, so that the edges/( ) and (, n")
are now external edges ands promoted to an external node. All internal nodes can seely
be brought to the surface in this way. We then have a tree, l@trée can be decomposed into
triangles by cutting all internal edges with 2 external reodét the end, the basic objects are
triangles.

Clearly, therefore, the basic objects in 2d are

2a) internal edges with 2 external nodes
2b) internal nodes (at distance 1) from the polygonal boonda
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In 3d, there are many more possibilities, and our procediiteeliminate all those which can
be eliminated. The ones which we can deal with are

3a) internal faces with 3 external edges: this correspomadase 2a) above and will be cut by
cut-a-3-face

3b) internal faces with 2 external edges, and therefore mieenal edge with 2 external nodes.
This resembles 2b) and is dealt with by open-a-2-face.

3c) an internal node which is the tip of a tetrahedronwhose opposite face is external. One
can just eliminateé andz becomes external. This is the second case which corresponds
2b). We call this CO later.

3d) an internal node which is the corner of a facg whose opposite edge is external (but not
CO0). Again, a sub-case of 2b). This is dealt with split-a-exatbng-a-path, and will be called
C1.

3e) an internal node which is the end of an edgewhose opposite end is external (but not C1).
Again, a sub-case of 2b). This will be called C2 and reducedltovith split-a-node-along-
a-path.

The elementary objects are those left over after all theserdpositions are performed. In 2d,
those objects are just triangles, which makes the countisgiple. In 3d these are nuclei. Non-
trivial nuclei exist, and they must carry the informatioroabthe complications of 3 dimensional
topology, since all the other problems have been elimindte@articular, internal faces of nuclei
have 0 or 1 external edges.

2 General definitions and notations

2.1 Internal and external objects, flowers

To be precise, we redefine here some terminology which is cmmimthe discussion of triangu-
lations. We start with triangulations 6. These will havefs faces,ns nodes ands edges, where
the subscript s stands for “surface”. This triangulatiothesboundary of a ball which is filled with
tetrahedra, some of which have faces amongfttexternal faces. We call this also a triangulation,
and we say thatis the number of tetrahedr#e: the number of faces,; the number of edges, and
nyt the number of nodes. Faces, edges, and nodes which are niog dnose of the triangulation
of 52 are callednternal. It will be useful to observe that tetrahedra can have up taéreal faces,
internal faces can have up to 3 external edges, internakadggéo 2 external nodes. We will use
the subscript i for internal objects.

Obviously,

ftot:fs"‘fia €iot = s+ € , Nt = Ns + N -

From the Euler relations and trivial geometry, we have thegiens

t— frot + €tot — Mot = —1,
fs_€s+ns:27
3fs = 2es,
4t:2(ftot_fs)+fs-

(2.1)
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This leaves us with 3 free variables, which we choose as
t, fs,andn; .

Note thatf is always even.

Definition 2.1. We use the terrfivectorfor the three variablest, fs, ni) wherefs > 4.

2.2 Notation and flowers

We introduce some notation which we apply to triangulati@nd tetrahedrizations (which we also
call triangulations when no confusion is possible):

e If n; andn, are 2 distinct nodes, then we denote hy, {2,) the edge connecting the two.

e Similarly, if n; : i = 1,2, 3 are 3 distinct nodes, them, n,, n3) is the face (triangle) with
these 3 corners.

e If eis an edge and is a node not ire then (2, ¢) denotes the face (triangle) with the edge
and the node.

This notation is easily generalized to the case where waaensimplices of dimension 3:

e If nis anode and is a face not containing, then (., f) is the tetrahedron witlf as a face
andn as the opposite corner.

e Similarly, if e is an edge and,n, ¢ e are 2 distinct nodes them{; n,, €) is the unique
tetrahedron containing all of them.

e Finally, if e; ande, are two edges without common nodes, then ;) is the tetrahedron
containing both edges.

Paths of nodes connected by edges will be denoted as[nq, ns, ..., n;] and the union of 2
disjoint pathsy,, 7, (connected by one or both endpoints) will be denoted-by ~s.

We next define what we mean Bgwers Here, we adapt the conventions to the tetrahedrization
of a triangulated spherg®. Nodes, edges, and faces are cabi&ternalif they lie entirely in.S2.
All others are callednternal. Consider an external node.! We define its 2 flowers:

e Theexternal flowel€(n,) of n, is the set of all edgesnot containing:, for which (., €) is
an external face. Clearly,(n,) is a polygon.

e Theinternal hemispher&(n,) of n, is the set of all faceg” not containingn. for which
(n4, f) is a tetrahedron. It is easy to see tlgt,) is a 2d triangulation whose boundary is
the polygoné(n,).

We will say that the external flower of anternalnodez, is empty. The internal (hemi-)sphere
Z(z.) (or simply flower) ofz, is a triangulation of52.

We also define thexternal flowerE(e) of an external edge as the 2 nodes,, n, for which
(n;, €) are 2 external faces. Similarly, tiveernal hemispher&(e) of the external edgeis defined
as the set of all edges such that{, ¢') is a tetrahedron. By hypothesi&g) is a 1-d triangulation
whose boundary i§(e). Note that there might be internal nodes at distance 1 fravhich are not
inZ(e).

We usen., m, and the like for external nodes, ang, y., ... for internal ones.
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3 Some geometrical considerations: Two-colored paths in aiangulation

We describe here properties of paths in a 2d triangulatianpaflygon. These properties will play
a crucial role when we will bound the effects of moving intrnodes of a 3d triangulation to the
surface. However, they are totally independent of the redeiof the paper.

Lemma 3.1. Let K be a 2d triangulation of @-gon P with n interior nodes. Then the number of
interior edges inC is 3n + p — 3.

Proof. The proof follows from the Euler relations and is left to teader. ]

Lemma 3.2. Consider a polygo® and let/C be any triangulation o’ with £ > 0 internal nodes.
For each noder € I\ P, there are at least 3 simple disjoint paths in the interiokb€onnecting
it to 3 different points of".

Proof. Any triangulation ofS? is 3-connected. Complet€ into a triangulation of5? by adding

a cone over its boundary. Let be the apex of the cone. Then there are at least 3 disjoinlsimp
paths connecting to m, [6]. Any such path must interseét, and we take the first intersection
point. O

We assume now that the nodesroaire labeled.
Definition 3.3. A triangulationK is calledadmissibldf the following conditions are met:

K1: The boundary)kC has at least 2 different labels.
K2: The nodes with a given label form one connected argof

K3: The ends of any edge connecting 2 nodegd/othave different labels, unless the edge is in
oK .

The Fig. 1 illustrates the definition.

1 1 1
1 1 1

1 2 2
1 2

Figure 1: An illustration of the conditions K1)-K3). Leftinge there is only one label, K1) is
violated. Center: The region with label 1 is not connected) I§ violated. Right: There is an
internal link (red) connecting two nodes with the same 1aK8) is violated.

We first need an auxiliary lemma. We will need the followinépmmation:
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Figure 2: The 2 alternatives of finding a path connecting twfei@nt labels. Left: There is an
interior path between andb. Right: There is no such path, but then, one can always findlge e
connecting two different labels (by K3), (not necessatily same as andb). The left panel also
illustrates the necessity of choosing a shortest path. ¥ample, choosing the magenta path, the
dashed edge will violate K3) in the next step of the procedure

Lemma 3.4. Let K be as above and It = 0K. Given two boundary nodesandb with different
labels at least one of the two alternatives below holds:

1) There is a simple path joining a andb without any other node i#,
2) There is an edgér, y) joining the two pieces aP \ {a, b}.

Postponing the proof of Lemma 3.4 we have

Proposition 3.5. Assume( is an admissible triangulation in the sense of Definition &igh at
least 2 triangles. Then, there exists a pathlong internal edges of which connects two points
in P = 0K with different labels It cuts I in two piecesC. and KCr. The pathy can be chosen in
such a way that labeling the new boundary piece (namely ttegian nodes ofy) in X and g
with a label different from the ones used so far, blSthand Kr are again admissible.

Proof. Let P = 0K. By admissibility, we know that not all nodes dn have the same label.
Take nodes andb with different labels and apply Lemma 3.4. If 2) holds, thes takey as the
edge connecting andy. By K3) they have different labels. Otherwise, there is aerior path
connecting: andb. We take a shortest pati,

Cutting along the path, we obtain 2 piece&’; and/g. If v is just one edge then inspection
shows that K1)-K3) hold. In the second case, K1) and K2) axeooBly true by construction.
Giving a new label, say, to the interior nodes of, we have to show that there are no edges
connecting any two non-consecutive nodes with lgbheBut if there were, the path would not be
minimal. O

Proof of Lemma 3.4The reader may want to look at Fig. 2. Assume 1) does not hdl. Means
that one cannot draw 3 disjoint paths betweeandb, as the middle one would satisfy 1). We can



PART |: REDUCING ANY TRIANGULATION INTO A SET OF NUCLEI 9

take the two disjoint paths to go along the two boundary segsriegetweer andb. By Menger’s
theorem [6] there must then be 2 nodeandy (other tham: or b) such that all paths from to b
must pass through at least one of them. Since the bounddry @ candidates, we see thatnd
y are in P, one per arc connectingandb. Consider now the path fromto b along P which goes
throughx. Modify it so that instead of going throughit goes through the flower af. We get a
new path fromu to b which does not go through. This means that the new path goes throygh
implying thaty is in the flower ofr. Thus,r andy are connected by an edge.

This completes the proof. O

4 Part |: Reducing any triangulation into a set of nuclei

4.1 The elementary moves

In this section we define the elementary moves which transtmy triangulation into a (set of)
nuclei. The first two moves, which we capen-a-2-facendcut-a-3-face are used to transform
any triangulation with no internal nodes into a set of ny@ded the third and fourth move, which
we call remove-1-tetraand split-a-node-along-a-pathare used to remove all internal nodes of a
triangulation.

Henceforth,I" will denote a triangulated 3-ball with f-vectdt, fs, n;).

4.1.1 Cut-a-3-face

Let (n1, 12, n3) be an internal face with its 3 edges on the surf@€eof 7". Then, it cuts the 3-ball
T into 2 distinct parts. We simply separate these 2 parts andew@ “smaller” 3-balls. In other
words, we know that any triangulation is (uniquely) defingdhe list of all its tetrahedra. We find
the two lists corresponding to the tetrahedra which arethieeside of the internal face in question,
and we define 2 new 3-balls, each associated with one of thists.2If (¢, f,n), (t1, f1,n1) and
(ts, f2,m2) are the f-vectors of the initial ball and the 2 new ones, therhewe

t =11+ 12, f=hH+f—-2, n=mni+ny.

4.1.2 Open-a-2-face

Consider 3 external nodes,, n,,n, of T which form a triangle #., ni,n,). We assume that
(n«, n1,n2) is an internal face, withr(;, n,) an internal edge, and the two other edges external. Let
7 and & be the internal and external flower of the external node As we have already stated,

7 is a triangulation of the polygoé. By hypothesis, the edge{, ny) dividesZ into 2 distinct
sets of faces. The operation open-a-2-face consists inviegno, and all tetrahedra attached to it,
replacing it byn, ; andn, » and attaching each of these 2 new nodes to all faces of one ofvth
parts ofZ, see Fig. 3.This operation transforms a triangulation of the 3-ballord triangulation

of the 3-ball. If (¢, fs,n;) and (¢, fi,n{) are the f-vectors of the initial ball and the resulting ball,
then we have

t/:tv fS,:fS+27 nI/:nI

We will say that the f-vector changes Ky, +2, 0).
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Figure 3: Sketch of open-a-2-face.

4.1.3 Remove-1-tetra

Definition 4.1. Aremovable tetrahedrds any tetrahedrom with one internal node and one exter-
nal face.

The operation remove-1-tetra is as follows:tet (z., n1, no, n3) be a removable tetrahedron
with internal noder,, and external facen(, ny, n3). We simply remove, and its external face; the
internal noder,, the 3 internal edges and the 3 internal facefs afl become external. The f-vector
(t, fs,ni) changes tdt — 1, fs + 2, n; — 1); the change of f-vector i6-1,2, —1).

4.1.4 Split-a-node-along-a-path, hemispheres and pieces

Consider an external node of 7" and its internal hemisphefe= Z(n.), see Fig. 4 for an illustra-
tion. By definition of a triangulatior is a 2d triangulation of a polygon.

Definition 4.2. A splitting pathy is any simple path which connects two different point®drand
contains no edge aiZ.

Let v be a splitting path. Clearly it divides into 2 piecesC, andKr with Z = £ U Kr and
ICL N ]CR =.
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The move split-a-node-along-a-patlis defined as follows:

Remove the node, and all tetrahedra having, as a corner
Add 2 new nodes.; andn,g

For each fac¢, € £, add the tetrahedromy( , f.)

For each fac¢, € Kr add the tetrahedrom(g, f.)

For each edge € ~ add the tetrahedrom( , n. g, €)

AR

Note that by construction, one of the nodesa@ty is n. g, and the links inC_ starting from
n.r reach (the image ofy. Analogous statements hold fiix.

Definition 4.3. In the construction above, we referkdn. ) = K, as the leftpiece. It is simply
the subgraph obtained from the hemisph&(e...) after removing the cone connectingr to
every node ofy. Similarly, we define the right piedéx.

Remark 4.4. Hemisphere§ and piecesC will play an important role in our construction. Some
statements will be given for hemispheres, others for piaoeksso it is important to be able to
distinguish between the two definitions.

Remark 4.5. A splitting pathy is always associated with a hemisph&rand not with a piecéC.
We will see that, under some conditions, a simple gatbnnecting two nodes of the boundary of
a piecelC can be extended into a splitting path

. y n*’L

\ '
Figure 4: The left panel shows the internal hemispligre ) of n.. We splitn, into n,; andn, g
along the green path The other 2 panels show the internal hemisph&(es, ) andZ(n.. r) of the

2 new nodes. Notice that each internal node of the greempiatht distance 1 from. g resp.n...
Also, the links leavingu, 5, s € {L, R} have been added during the split.

V

S
Vs d

n*,R

Lemma 4.6. The move split-a-node-along-a-path transforms a 3-bath i 3-ball. The f-vector
(t, fs,n;) is mapped tdt + ||, fs + 2, ni), where|v| is the number of edges in

The f-vector changes by, +2, 0). In particular, the number of tetrahedrereases But we
will show that this increase can be controlled.
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Proof. The count of the f-vector is as follows: Removing and addhmgtetrahedra in steps 1,3,4
above does not change their number. The number of exterced facreases by two, namely the
two external faces sharing the new edgey(, n..r). And each internal face(, ) which connected
n. to an edges in  gives rise to a new tetrahedron, g, n. ., ¢). There argy| such faces and so
the f-vector is seen to change By, +2, 0), as asserted.

(]

4.2 Summary

In the sequel, we want to bound the effect of removing intenodes, since our building blocks
are the nuclei, which do not have any internal nodes. Elitmgahe internal nodes will cost the
addition of tetrahedra, and the issue here is how many aedde obtain a ball without internal
nodes. Internal nodes disappear when we perform the rethdeta operation, and only then.

Before starting the bounds proper, we explain here the pdiatir construction, based on the
evolution of the f-vectorst, fs, ni). Open-a-2-face costs a chan@e2, 0), and split-a-node-along-
a-path costg|/|, 2, 0), where|v| is the length of the path along which we cut. In principle,feac
pathy might have a length proportional to the number of nodes, vimi¢urn would imply that the
sum of the lengths of all paths exce&§:2,). So one needs a strategy which improves this naive
bound.

While we cut, new external edges appear, and also, new @xeatges appear when we remove
a tetrahedron which costs-1,2, —1). But it is only this operation which reduces the number of
internal nodes. So, there are two opposing tendencies. ©tie ipreparation of promoting an
internal node into an external one, angddsmany tetrahedra, and the other is remove-1-tetra,
which reduces the number of internal nodes by 1. The reat¢issthus to bound theumber of
added tetrahedra per removed internal nod&e will perform this bound in terms of the number
es Of internal edges. Our main result is Corollary 4.12 whicyssaat the number of internal edges
grows by no more tha@'a(t + n;). The Euler relations (2.1) allow to expresas a function oks,
fs andn,

t=¢ —ni+fs/2—1.

Therefore, and since; < 4t and fs < 4t, Corollary 4.12 implies that the elimination of al|
internal nodes leads to an f-vector of the form
<t7f57n|>—><t/7f5,70>7 fS’<Ct7 t,<Ct7

with a finite constan’ which isindependenof the triangulation.

4.3 Removing internal nodes
4.3.1 Definitions and strategy

Given any triangulation, we define tldepthD, of a noder as the minimal number of connected
edges needed to reach the boundary, starting froihe strategy will consist in recursively reduc-
ing the depth of any internal node by 1. This is repeated antihternal nodes remain.

We classify an internal node, at depth 1 in 3 flavors, which we call CO-2:

CO: z, is the internal node of a removable tetrahedron.
Cl: z, is not of type CO but is in a face:(, n., m,) where ., m,) is an external edge.
C2: z, is neither of type CO nor C1.
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We enumerate the external nodes in an arbitrary order,dgadia listCy = {n.1,...,n.x}.
Similarly, ford > 0, we defineL, as the nodes at depiéhfrom the surface. Given an external node
n. € Ly, we consider its hemisphergn.,).

An internal noder, € Z(n,) of type C2 can (only) b@romotedto an internal node of type
C1 by drawing a path C Z(n,) that goes through it and splitting. into n, ;| andn, g along-~.
Indeed, one easily sees thatg € £(n, ) and that ¢, n. g, z,) is a face.

In the same manner, we see that a nede Z(n.) of type C1 can be promoted into an internal
node of type CO by drawing a path C Z(n.) which contains the edger(, y). Here,y is the
external node of the face:(, n., y) which definesr, as a node of type C1. Splitting, along~,
the tetrahedrond,  , n.r, y, x.) becomes removable.

Finally, any internal node of type CO can be made externairhply removing one tetrahedron.

The strategy is in 4 steps (3 sweeps). Wesset L.

e Step 1 (Sweep C2:C1): We promote all the:, of type C2 in the following order: For each
n, € L, we promote all internal nodes @{n.) of type C2 into internal nodes of type C1.
We will show that this can be done in such a way that everymatexdge of the triangulation
Z(n.) belongs to at most 1 of the splitting paths (as defined in.gett4).

When this first step is complete, all internal nodes at depdnelof type C1 or CO. There
appears a new se¢! of external nodes containing the nodesfoivhich were not split and
new external nodes obtained by the splitting.

e Step 2 (Sweep C+:CO0): We promote all the:, of type C1 in the following order: For each
n. € M, we promote all promotable internal nodesZgf.,) of type C1 into internal nodes
of type CG. We will show that this can be done in such a way that everymaleedge of the
triangulationZ(n.) belongs to at most 1 of the splitting paths (as defined in.geti4).

e Step 3 (Sweep COsexternal) : Finally, we make each node of type CO external by removing
one tetrahedron.

e Step 4: At this point every internal node has been moved up one tEapth. In particular,
we let £ denote those nodes which have moved to the surface in stépf#e Current step is
at leveld, then this set equal§, ;.)

We continue until no internal nodes are left.

Since the depth of any node is bounded, the procedure wikh&ada finite number of recursive
steps.

4.3.2 Reducing C2-nodes to C1-nodes

Given an external node, € £, we now describe in detail the recursive algorithm whichnpotes
the internal nodes of type C2 ih= Z(n,) to type C1. This is achieved by a succession of carefully
chosen moves of type split-a-node-along-a-path.

Each of these cuts produces a “left” and a “right” piece, Whace then cut again into left and
right pieces, until only triangles remain. The pieces wélioted byKs = K(n.s), whereSis a
sequence of letters L and R which designate the successieestof left and right.

Thus, we construct a binary tree of pieces (see Fig. 5). laildet

2A nodez, of type C1 can be promoted to CO only if it is connected to a rafdn..). This might not be true for
all n, for whichz, € Z(n.) but there are at least twa. for which z,. is promotable.
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I(n,) = K
/ \
K(n..) K(n.r)
A\ [ T
K1) K(n.1r) K(n.rL) K(n.rr)
/ \
K (. LrL) K(n.1rr)
N\
K LrLL) K(n.1rir)

Figure 5: An example of a binary tree of pieces associateu té hemisphere of an external node
n, containing 6 triangles.

H

. Label the nodes afZ from —1 to —|0Z]|.

2. The hemispher& is an admissible triangulation in the sense of Definition 320oposi-
tion 3.5 implies the existence of a shortest pativhich connects two nodes ofZ (with
different labels). We choose this path

3. After splitting along this patly, is divided in two pieces, as shown in Fig. 4. The two pieces
are calledC, andKr. The splitting has replaced. by n., andn. g andZ(n. ) is actually
just . with the cone between, g andy added. This also means thatr is in the external
flower £(n.) of n, . Analogous terminology is used for the other half. At thisnpoS is
equal to L or R, and we continue with= L (and do latelS = R).

4. If Ksis atriangle, we are done (for this branch of the tree).

5. Label all nodes 0AKs which had no label with the lab&, whereS is obtained frons by
exchanging the last letter, cf. Fig. 6. In this way, the nelalyeled nodes are connected to
n,sinZ(n.s).

6. ConsideringCs, Proposition 3.5 implies the existence of a new shortest patvhich con-
nects two nodes alKs with different labels.

7. We extend the paths as follows: If the end ofys has a negative label, we do nothing, and
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-7 —6

-3

Figure 6: The left panel shows the internal flow#r.,) of n.. We split it in succession along the
green, red and blue paths. We first splitinto n, g andn. . along the green path. The middle
panel showg (n, g) and the green nodeis, . The shaded region iSg and the new labels are L.
One end of the red path has a negative label, while the otlsethledabel L and must therefore be
connected ta, . We obtain the cutting pathk, and after the cut, we obtain two piedeggr and
Kre. In the third panel we show the hemispherexokr. The blue path has labels L and RL at its
extremities, which must therefore be connected.tp andn, g, . This defines the cutting patixr.
Note that it always suffices to add at most 2 dashed segments.

if the label is some sequen&ewe connect the end te, ¢ by one edge. Doing this for both
ends we obtain a pati.

8. Perform a split-a-node-along-a-path gnand continue with step 4 for the pieckEs_ and
Ksr.

Remark 4.7. The boundary of a hemisphefe = Z(n..s) is composed of 2 types of nodes:

1. Nodes with a negative label which are part of the originalibdary€.
2. The childrem, g of the original nodez.., whereS' is a sequence of R’s and L's.

The boundary of a piec€s, which is a sub-triangulation dfs, is also composed of 2 types of
nodes:

1. Nodes with a negative label which are part of the originalbdary€&, and therefore they
are part of the boundary of the hemisphéXgs as well.

2. The other nodes whose label is some sequéhca hese nodes satisfy the following two
conditions:

(&) All nodes obDKs with the same label form a connected arcéis.

(b) If anodey € OKs has the labeE, theny is an internal node of the hemisphéfgseen
as a 2d triangulation. Furthermore,, s € dZs and(y, n. g) is an internal edge of the
triangulationZs.

Theorem 4.8. The algorithm decomposes the triangulatibnand the sub-piecek, , Kr by se-
quences of paths,,  until all the piecesy, ,, ., Withs; € {R,L} are reduced to simple
triangles. Furthermore,

.....
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every edge ilf \ 07 is in at most one path.

Proof. We need to check that the different steps of the algorithmbegperformed. The steps 1-3
follow from the definition of split-a-node-along-a-pathtefs 4 and 5 need no verification. Step 6
relies on Proposition 3.5, which implies the existence afen(test) paths, cutting the admissible
pieceKs into two admissible pieceSs. and/Cqr.

In step 7, we need to make sure that the patbonnects twalifferentnodes of€ (n.. s) which
is alsodZ(n.s), to be distinguished fromd/C(n, s). The whole construction of labels has been
done with this aim in mind. Note that if a nodehas a negative label, we do nothing because any
nodeu with a negative label is part of the original bounddify...), implying that ifu € Z(n..s),
thenu € £(n.s) for any childn, s of n,. On the other hand, if the label is the sequeScehen
by construction (step 5) is connected ta, g with one edge. Since the labels are different by
construction, the path is a splitting path, and therefore a cut along it is possilestep 8, we
need to verify that the cut can indeed be done, and that tloeitign can be applied to the children
of the L which was just cut. But this is the content of Proposition 8:bich shows that the cut can
be done in such a way that the children are admissible in thgesaf Definition 3.3.

Since new paths are always constructed in the interidf,aind theX’s are cut along them, it
is obvious that no edge is covered by more than one path.

(]

4.3.3 Reducing C1-nodes to CO-nodes

Let T" be a triangulation of a ball. Consider an external nedef 7" and letZ = Z(n,) be its
internal hemisphere. Furthermore, assume that all nod&sané either external (with regard to
T) or internal of type CO or C1 but not C2. We will describe anoaihm which promotes all the
internal nodes of type C1 df to internal nodes of type CO. The approach is somewhat driter
from that of the previous section. Indeed promoting an imdkenodex of type C2 to an internal
node of type C1 is done by splitting some external nedalong a path going through However,
let z € Z(n,) be an internal node of type C1 and let {, n,) be an internal face which defines
as C1; by hypothesig, € dZ. Promotingz to an internal node of type CO is done by splitting
along a path which contains the edgex).

For every internal node of type C1 inZ(n.) we choose one of the € 9Z for which (z, v, n.,)
is an internal face and callit(x). We define

Y =A{(z,y(x)) | zisC1l}.

We will eliminate elements in the ligf by iterating an algorithm similar to the one in the previous
section, until none are left. A binary tree of left and rigiegqes will be formed in the process (see
Fig. 5).

At the first step of this algorithm, this tree only containe@iement, namely the hemisphere
Z. We will form a tree ofC’s as before, starting &t = 7.

The algorithm starts with steps 1 and 2 below, and then replkatother steps until it stops.

1. Pick an edgex(, ) = (z, y(x)) € V.
2. By hypothesisy € 0Z(n.). By Lemma 3.2 there is a second, disjoint, simple path cotimg
x to anodez € 9Z(n.), z # y. This defines a splitting path connecting 2 distinct nodes
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hw

8.

andz of 9Z(n.). Similarly to the previous section, we split along~y into n, g andn, ;. We
add the 2 new piecés(n, g) and/C(n.. ) as two leaves ok in the tree. We remove the edge
(z,y) from the list). Note that the path might promote a second internal nodeof type
C1 into a node of type CO, if the edg€ (=) is in the list) and in the pathy. In that case,
both edgesx, y) and @', =) are removed fron) .

If the list) is empty, we are done.

Pick an edgex(, y) € .
Find the piecéC(n. s, . s, ), Wheres; € {L,R}, among the leaves of the binary tree which
contains the edger(y). We use the abbreviatioss= {s1, ..., sy} andn,s. The edgex, y)
belongs to exactly one piete
Observe that the nodgis in 9Z(n. s) N OZ(n.)*.
e If z is in the interior ofC(n.s), the edge £, y) gives us the first simple path connecting
x 10 0Z(n.s) and by Lemma 3.2 there is a second independent path congectd a node
z € OK(nys), 2 # .

If 2 is also in0Z(n. s) we have found a5 along which we can cut. Note that in this case,
the pathys might promote a second nodaéof type C1; this happens if € 9Z(n,) and ', z)
is an edge ofs.

If = ¢ 0Z(n.s), the pathys is obtained by adding the edge which connects the tip of
the coné.
e If = is not in the interior ofC(n. ), s is found by connecting to a tip of one of the cones
attached tdC(n. s)° (see Footnote 5).

. We splitn, s along the pathys and add the 2 new piecéS(n. ) and C(n. g ) to the tree

as leaves ofC(n.s). Note thatC(n.s) is no longer a leaf of the tree and will never be
encountered in the remaining steps of the algorithm. Rinak remove the edge:(y) (and
eventually ¢, 2) if 2’ is also promoted bys) from the list) .

We continue with step 3.

The algorithm stops when all internal nodes of type CIL6f,) have been promoted to CO.
Since each branch of the tree is used at most once and sincewsecaut along the boundary of
any s we have shown:

Theorem 4.9. The algorithm decomposes the triangulatibalong a sequence of simple paths; it
promotes all of the internal nodes Bfof type C1 into nodes of tyge0. Furthermore,
every edge ilf \ 07 is in at most one path.

4.3.4 Change of the f-vector after the entire recursion

In this section, we compute the total change in the f-veasulting from the elimination of all
internal nodes.

3Note that the only edges which are common to more than one piecthe edges of the paths along which we
already cut. Sincex, y) is still in the list), it cannot be such an edge.

4By hypothesisy € 9Z(n.) and therefore alsg € 9Z(n..s) N IL(n.).

®The distance betweeiZ(n.. s) and any node id(n. s) is at most 1, see Fig. 6. The nodéelongs to a pathy
along which we already cut. This implies thats connected ta.. g, or n, gg, called the tip of the cone associated

with z.

5Note that the nodg is noton a tip of a cone but is on the original boundaf(n..).
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Note that we will compute the total increase in the numbentdrnal edges instead of tetrahe-
dra. The two numbers are related by (2.1).

Definition 4.10. We need 3 counters at each degtbf the original triangulation:

e a4 is the number of internal edgés, y) with D, = dandD, = d + 1.

e b, is the number of internal edg¢s, y) with D, = d andD,, = d.

e ¢y isthe number of internal fac€s, v, z) with D, = dandD, = d+1. (ThisimpliesD, = d
ord+1.)

As every node is connected to nodes of the same depth or thdéiffiering by at most 1, the
following obvious relations hold:

Z(a'd + bd) =e,
d (4.1)

o<,

d

wheree is the number of internal edges, afids the number of internal faces.
Let A, denote the increase of the number of internal edges obtaihed performing the steps
C2—C1—CO0O—external at leved.

Proposition 4.11. There is a constant’y such that

Ay < C'A(ad+bd+ad_1 +cq_1), ford >0,
AOSC”A(ad—i—bd—l—ns), ford=0.

Corollary 4.12. Eliminating all internal nodes of a triangulatioi with f-vector (¢, fs, ni) leads
to a total increase\ of internal edges which is bounded by

(4.2)

A < Ca(t +ni)

Proof of the corollary.From (2.1) we deducg = 2t — f,/2 ande = ¢t + nj — fs/2 + 1. Also,
ns = fs/2 + 2. Using (4.1) and the proposition, we get

A= Ay <CAQRe+ fi+ng),

d>0

from which the assertion follows (the coefficient fis negative and the additive constants can be
bounded sincé < t). O

Proof of Proposition 4.11The key to the bound (4.2) is the observation that the tramsftions
C2—C1 .. arelocal in the depth/ one considers. Indeed, as is visible from the definition e$éh
transformations, working at levélonly affectsa,, by, cq anday_1, cq_1.

More precisely, when starting to work at levelwe need the value @f;_;, which is the number
of internal edges (connecting depth- 1 to d) obtained when level — 1 has been completed.

As we work on levell, these values continue to change. After the sweep-C2 at leveld we
obtaina), a),_,, and similarly for the other variables. After the sweep-&10 we obtain:; and
other variables. The sweep of removing the tetrahedra @fatecreases all the counters, so we do
not introduce new notation.

The main bound is
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Lemma 4.13. One has, after completing levél- 1:
Ag—1 < ag—1 + 16¢cq_1 . (4.3)
Postponing the proof, we recall the following facts:

e Cutting along a path adds|y| — 1 internal edges to the triangulation (see Lemma 4.6).

e Each edge of each(n.) is used in at most 1 path (see Theorem 4.8 and 4.9).

e The extension of the path to a splitting pathys adds at most 2 to its length (see step 7 for
the case C2 C1, and step 6 for the case ©1C0). We will use this observation by saying
thaths‘ —1< 2"5/5"

Using these facts and Lemma 3.1, the increa§ef the number of internal edges due to the
sweep C2+C1 is bounded by

AL<2 Y > sl <2 ) # (edgesirZ(n.))
n«€Ly S n«E€Ly (4.4)
<6ag+ 12bg + 6ag_1 +2 Y (1E(n.)| —3)

n«€Ly

Here, we over-count the number of added internal edges. tawene should keep in mind that if
we follow the algorithms of Sections 4.3.2 and 4.3.3, thenTtheorems 4.8 and 4.9 are valid and
every new internal edge is accounted for. As a consequeme&dlation (4.4) is an upper bound
on the number of internal edges due to the sweep>C2.

The effect of the sweep C2C1 at leveld is summarized by

Lemma 4.14.0ne has

g+ by + gy < ag+bg+ a1+ Ay, (4.53)
ay, < ag+2cy, (4.5b)
ch <Tey. (4.5¢)

Postponing the proof, we proceed to the sweepsCD. In the same manner, the incredsg
of internal edges for the sweep ©1C0 at leveld is

Aj<2 Y > 1sl<2 ) #(edgesir(n.))

n«€My S n«€EMy (4 6)
<6aly + 120, + 6aj_, +2 Y (€M)~ 3) '
=Y d d—1 * :

n*EMd

To complete the proof of Proposition 4.11 we note that theree degree of., is always 3
for those nodes which have been promoted to the surface byviegia tetrahedron. (Those which
were at the surface at levél= 0 can of course have higher degree.) Using (4.4) and Lemma 4.13
we get

AZJ §6ad + 12bd + 6dd_1 + 465 . (Sd:()
<6ag + 12bd + 6ag-—1 + 96¢c4_1 + 12ng - 5d:0 (47)
§96(ad + by + ag—1 + cqg—1 + ns - 5d:0) .
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In (4.6) the external degree of a nodge € M, can be larger than 3. However, if we split a
noden, into n, g andn, ., then the external degrees satisfy

|€(n*)| = |€(n*,L)| + |5(n*7R)| —4. (48)
Therefore, we can bound

3" (€(m)| - 3) < 4- # (splits in C2-+C1) .

n«EMy

Since each split adds at least one internal edge, we dedaice th

> (€M) —3) <44y,

n*EMd

Combining this with (4.5a) and Lemma 4.13, we get

A} <6aj+ 126, +6a,  +2 Y (1E(n.)] — 3)
n«EMy
<6ayg + 12b; + 6a4—1 + 96¢c4—1 + QOA; .

ReplacingA!, with (4.7) yields the result we seek. The last step&xternal adds no internal
edges; in fact it reduces their number. This finishes thefggbBroposition 4.11. O

Proof of Lemma 4.14In the sweep C2;C1 at leveld, we split all (or some) nodes,.} C L, into
{n.s} € M,. As a consequence, al/, added internal edges have an end which is the child
of some noder, € L, at depthd in the initial triangulation. The number of internal edgewing
a corner at depth is given bya, + a4_1 + bs. This proves the relation (4.5a).

To prove (4.5b), we need to bound the added number of intedw@s .. s, y) such that, € £,
andy € Z(n.)N L4, was at depttD, = d+1 in the original triangulation (and therefore is at depth
1 in the current step). By construction, this number is baahidy the number of pathg which
go through such a nodgin the 2d triangulatiorZ(n,). Furthermore, by Theorem 4.8, each edge
of Z(n,) is used in at most one patlh. We deduce that, for two such nodesandy, the number
of added internal edges of type.(s, v) is bounded by the degree of the edge, /) in the original
triangulation. Summing the degrees of all edges ¢) such that., € £, andy € Z(n,) N L4, IS
bounded by2c,.

Finally, in order to prove (4.5c), we need to bound the addedber of internal facesi( s, v, )
in the step C2+C1 at leveld whenn, s is obtained from splitting some, € £; andy € L4411 N
Z(n.). But each added internal face.(, v, ) requires the addition of the internal edge £, ).
Furthermore, by definition of the move split-a-node-al@apath, each new internal edge is added
along with three internal faces. We deduce tat c; < 3(a), — aq) < 6¢,. O

Proof of Lemma 4.13The proof follows by induction on the level At leveld — 1 = 0, there is
nothing to prove (since no splits have been done). When watdeyeld — 1 > 0 we can use
Proposition 4.11 (at level — 1). Following the same reasoning used in the proof of (4.5k)can
write

Gy < Qg+ 265 .
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Replacing (4.5b) and (4.5c), we get
alj < ag_q+16c4_ 1 .

Finally, a;—1 < a!j_, since the third step GBexternal does not add internal edges (this third step
actually removes8|L,_,| internal edges).
(]

4.4 Reducing a triangulation with no internal nodes into a seof nuclei

Let 7" be any triangulation. In the previous section, we descréredlgorithm which transforms
into a new triangulatiofl™” with no internal nodes. We now systematically apply the nsaug-a-
3-face and open-a-2-face on every internal fac& ofvith less than 2 internal edges. We end up
with a collection of triangulation§V; } satisfying the following properties:

¢ All nodes of any suchV; are external.
¢ All internal faces of any such; have at least 2 internal edges.

Any triangulation satisfying these two conditions is cdlEenucleus

5 Part Il: Bounding the number of triangulations

We showed that any triangulation can be reduced into a ¢mkeof nuclei using four moves. For
the moment, we proceed without using the move cut-a-3-fibes implies that any triangulation
can be transformed into a “tree of nuclei” (the formal defamtof a tree of nuclei will be given
later on) using the three remaining moves. Equivalentig, shows that any triangulation can be
constructed from a tree of nuclei, using the inverse of thiess®e moves. Bounding the number of
trees of nuclei, and then bounding the number of ways one ediarm the inverse moves on such
a tree yields a bound on the total number of triangulations.

5.1 Rooted triangulations

We define what we mean by a rooted triangulatiband we show that one can label all external
nodes off". In the sequel, we use a particular labeling described below

Definition 5.1. A rooted triangulation{, F') of the 3-ball is a triangulatiori” with one labeled
external faceF'. This labeled face is called threot The three nodes of the root are always labeled
0,1, and 2.

Remark 5.2. We will only consider rooted triangulations. This means ifstance that talking
about the Christmas tre@,,, m > 1 makes no sense, since there is more than one such rooted
triangulation. The exceptions are of course symmetricwgiaations?” such as the tetrahedron.

Proposition 5.3. Consider the boundary of a rooted triangulati@fi, /). The root is labeled as
(0,1, 2). One can define a way of labeling all external node% of
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Figure 7: The Christmas tree with = 3 internal nodes. This triangulation can be rooted in more
than one way.

Proof. The proof is just the construction of this labeling. Any lEzeedge can be seen as an
element ¢, b) € Z3 with « < b.” We consider the lexical order dff.. We start with the node 0.
Its external flower is a 1d triangulation of the cirdé and it contains the edgé,(2) by definition.
This edge determines the direction in which we label all beled nodes of the external flower of
node 0.

Next, we consider the external flower of node 1 and we lookHerdmallest labeled edge in
the sense of the above ordering. In this case, this edde 33. (This edge fixes the direction in
which we label all the yet unlabeled nodes of the externaldlosf node number 1. Notice that all
unlabeled nodes which are assigned a label are part of alfacg with 2 already labeled nodes.
This implies that the external flower of any labeled node amsta smallest labeled edge and as
such can be directed.

We continue with all the nodes in their natural order untiéaternal nodes df’ are labeled. [

5.2 Trees of nuclei

Since we work with rooted triangulations, from now on, wel witly use rooted nuclei, namely:

Definition 5.4. A nucleuds arooted triangulation with no internal nodes such that every int&rn
face has at most one external edge.

"We use the notatiofi, = {0,1,2,...}.
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5.2.1 Rooted trees of nuclei and planar rooted trees

Let A/ be the set of all nuclei andl’; ; be the subset of all nuclei withtetrahedra ang external
faces.

Definition 5.5. A rooted triangulation? is called arooted tree of nucleif all nodes of7" are
external and all internal faces @f have 0, 2, or 3 internal edges. (In other words, no internakfa
has 2 external edges.)

In other words, a rooted tree of nuclei is simply a rootedntyidation which is obtained by
gluing sequentially nuclei along pairs of their externalga This is done in such a way that each
nucleus is glued to an external face &, c) of its parent through its root; O is identified with
1 with b and 2 withe. Once the tree is built, the external nodes are renumberdtkisense of
Proposition 5.3.

Since all external faces of a rooted triangulation are @udlethis defines a bijection between
rooted trees of nucleil(, F') and rooted planar trees with colored vertices in the falhgwmanner:

e Each nucleus of the triangulatioi’,(F') is represented by a colored vertex.

e The root-vertex of the planar tree represents the nuclethstiwe rootf’, i.e., with the face
0,1,2).

e Each internal face of the triangulation with three exteeddes is shared by two nuclei and
hence it is represented in the tree by an edge linking thespanding two colored vertices.

e Since the internal faces with three external edges are endénis induces an order of the
links of the planar tree, say from left to right.

5.2.2 Hypothesis on the number of rooted nuclei

We next show how the question of Gromov can be reformulated. siiéw that if there are not
“too many” different types of nuclei, then there is indeedeaponential bound on the number of
triangulations, when expressed in terms of the number Hhetira.

Hypothesis 5.6.There is a finite constank’; > 1 such that the numbes(t, fs) of face-rooted
nuclei with f-vector(t, fs, 0) is bounded bys?.

In order to alleviate the notation, from now on, we will demdi by f.
Lemma 5.7. For any nucleusV € A, ; one hasf <t + 3.

Proof. If NV is a tetrahedron, the assertion is obvious/NlIfis non-trivial each tetrahedron &f
can have at most 1 external face, since otherwise it would haunternal face with more than one
external edge. O

5.2.3 The number of rooted trees of nuclei

We use the classical method for counting planar ordered,tgemeralized to the case of a multitude
of different nodes, which are the face-rooted nuclei.

Definition 5.8. Let A, , ; be the number of rooted trees of nuclei with> 0 nuclei, ¢ tetrahedra
and f external faces. We defink ; ; = 9,0 6,.
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Our main bound is:

Proposition 5.9. Under the Hypothesis 5.6 there is&, with2 < K, < oo such that for allt, f,

one has
ZAvvtvf S K; *
v

Proof. Consider a tree of nuclei, and I8t be the nucleus containing the robtand assume that
N € Ny, ,- RemovingN from the tree leads t@, — 1 rooted trees of nuclei, some of which may
be empty. We let;, t;, and f; denote the counters for the branchNote that if a branch has 0
nuclei,i.e,, if v; = 0, then, obviouslyt; = f; = 0. Thus, we get the relations:

14 fo—1

¢
Zvi:v—l, Zti:t_t0> Zafi>0(fi_1)+5fi:0:f_1' (5.1)
=1 1=1

i=1

/

vt f.t0.fo tE SUM OVer the set

In the sequel, we denote By
{Ui7ti7fi | 1=1,.. .,fo —1,v,>0,t > O,fl > 0and SatiSfying (5]})

This observation allows us to write a recursive relation

Jo—1
/
Aut,p = 000010050 + Z o(to, fo) thfto i H Avitirfs - (5.2)
1rd b Z,:1

to>0,fo>4

Fix M € Z., and assume that ¢, f satisfy3v + 3t + f < M. By (5.1), we deduce
3v; + 3t + f; <3v—3+3t—-3tg+f<M—1.

We define
AM(S) _ Z Av,t,f53U+3t+f )
3v+3t+f<M
Clearly, Ag(s) = 1 forall s, Ay,(0) = 1forall M > 0, and for a fixeds, A,,(s) is an increasing
sequence /.
Multiplying (5.2) by s**3*+f and summing, we get, using (5.1):

t f
A =1+ 5 303 olte, ) $HH0H T Gt
3v+3t+f<M to=1 fo=4
14

/
> E : H Ay, g, g 808+
v,t, f,to, fo 1

=

(5.3)

Using Lemma 5.7, we have

fo—1
34+3to+1— Y (550 — 0pm0) = 3+3tg+1—(fo—1)-1+0
i=1
>5+4+3tg—fo=20o+3— fo)+to+ fo—1
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>to+ fo—1.
Restricting ta) < s < 1, this implies
S3+3t0+1—25211(5fi>o—5fi:o) < glotfo—1 (5.4)

Using now the Hypothesis 5.6¢., o(t, f) < K!, we get from (5.3) and (5.4):

M fo—1

M . 1— (sK)MH 1 — (sAp_1(s)MH
Ani(s) — Ay (0) < tOX:jO(sKl) f(;:o 1:11 sAu-(8) € — 0 A

Restrictings further tos < 1/(2K;) this leads to

— (sAnr—a(s)MH!
1 — (sAnm—1(5))

An(s) — Au(0) < 21

Fix s* = min(0.1,1/(2K;)) and consider the map : x — 1+ 2/(1 — s* - x). One easily checks
that /' maps the intervall], 5] to itself. Furthermore, we have -z < 1 for z € [1, 5]. Starting with
x = Ap(s*) = 1 we conclude that for alM one hasA,,(s*) < 5. This implies that the monotone
sequenced ;(s*) converges asd/ — oo and thus

Av,t,f S 5 . (S*)—?w—?;t—f )
Summing ovew and usingy < t and f < 4t we complete the proof. O

5.3 Bound on triangulations

Having discussed the number of trees, we now study the nuaflvesys these trees can be made
into triangulations by identifying faces and nodes. Thisgasss is patterned after the work of [7]
and [4].

Our bounds are based on using the inverses of the moves epdaca, remove-1-tetra, and
split-a-node-along-a-path. Since we are only interestetthé bound, we will allow for inverse
moves which do not necessarily lead to 3-balls.

Remark 5.10. While we over-count the number of triangulations, by alloyvfor moves which
may not lead to 3-balls, we can in fact formulate precise @ios which guarantee that after
each move, a 3-ball is obtained. These conditions are gpelle in Lemmas 5.11 and 5.15. This
actually allows for efficient programming of the inverse @hens.

5.3.1 Bounding the number of rooted triangulations with no nternal nodes

LetR,; ; be the set of all rooted trees of nuclei wittetrahedra and external faces and 16f ;, be
the set of all rooted triangulations withtetrahedraf external faces and no internal nodes. In this
section, we will define the inverse move of open-a-2-faceve@avill use it to count the number of
rooted triangulations with no internal nodes.

The inverse operation of open-a-face, which we will sim@if @entificationwhen there is no
ambiguity, is to identify two adjacent external faces,sfgithg some conditions. Indeed, identifying
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any two adjacent external faces might lead to a complex wikialot a triangulation. For instance,
assume that(;, no, m1) and (1, ne, mo) are two adjacent external faces such that there exists a
nodex adjacent to bothn,; andm,. After identifying the two faces, we obtain a complex with a
double edgex, m1) = (x, m5).

Lemma 5.11. Consider a triangulatioril’. Let(a,b) be an external edge and lety be its two
opposite external nodes. Assume that the following canditare satisfied:

e The nodes andy are not connected by an edge.
e The only nodes: such that(m, ) and(m, y) are edges are the two nodesandb.

Then, one can identify the two external nodeand y as well as the two external faces sharing
(r,y). This operation transforms a 3-ball to a 3-ball, and will belled identification (of two
adjacent external faces).

Proof. The proof is left to the reader. O

Proposition 5.12. Under Hypothesis 5.6, there is a constdf such that for allt and f one has
|Te g0l < K3

Proof. Let T" € 7, s, be any rooted triangulation with no internal nodes. Usinggetitively the
move open-a-2-face dfi transforms it into a rooted triangulatiar with no internal nodes such
that each internal face has 0, 1 or 3 external edges. In otbetsyl” is a rooted tree of nuclei.
Equivalently, given a rooted tree of nucléi with ¢ tetrahedra and’ external faces, one can
count the number of ways one can identify two adjacent eatdactes,without any conditions
guaranteeing ballnessMultiplying this number by the number of rooted trees of leugives us
an upper bound on the number of rooted triangulations witimtesnal nodes.

We count the number df € 7, s, obtained by identification from a rooted tree of nudéi
with t' tetrahedra ang”’ external faces. This means that we identily= (f' — f)/2 pairs of
adjacent external faces.

We first observe that choosing a pair of adjacent externasfas equivalent to choosing an
external edge. We then note that some faces which are natesdjgn 7’ might become adjacent
after some identifications are done. This means that we hagg@ence, e,, ..., e, Withe; > 1
and) . e; = D which is defined as follows:

e ¢; is the number of external edges (or equivalently of pairsdpd@ent external faces) af
which are identified.

e ¢ is the number of pairs of faces which were not adjacerit’itbut became so after the
first series ok, identifications. However, each identification of two adjatcexternal faces
creates exactly two new pairs of adjacent external facgsying thate; < 2e;.

e ¢, is defined by analogy from the_; identifications, implying that; < 2¢;_;.

This leads to the following bound:

D=(f"-1)/2

3D\ (2 2ep—
‘7;7f’0‘ < Z ‘Rt7f/| Z Z (61 ) <:21) < 662 1) .

I">f =1 S ei=Dyei>1
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Since(g) < 2%, and since the number of external fagésn any rooted tree of nuclei is bounded
by four times the number of tetrahedra, we find, using Prdjoosb.9 to boundR, s|,

D=(f'-1)/2
Togol <D IR p22002 %" >
I'>f =1 S ei=Diei>1
o D=2 s
ST VR
>f =1
< Z |Rt7f/|23(fl_f)
f>f
4t
< Z K;Kg(f/_f)
J'=f+2
< Ky = K3,
whereK; = K3°.
The proof is complete. ]

5.3.2 Bounding the number of rooted triangulations (interral nodes included)

In this section, we define the inverse moves of remove-&tmtd split-a-node-along-a-path and
we use them to count the number of rooted triangulations.

Definition 5.13. We define the inverse move of remove-1-tetra, which waddlhg a tetrahedron:
Consider a triangulatior?’. Letx be an external node with external degree equal to 3 and,let,
andas be its external neighbors, i.€z;, a;) is an external edge. Adding a tetrahedron then consists
in adding the facéa,, a2, a3) and the tetrahedrof, a4, as, as).

We define the inverse move of split-a-node-along-a-path.

Lemma 5.14.Consider a triangulatiorf’. Let(a, b) be an external edge. Assume that the following
conditions are satisfied:

e For each noden such that(m, a) and(m, b) are edges(m, a, b) is a face.
e For each edge such that(e, a) and (e, b) are faces(e, a, b) is a tetrahedron.
e There are no faceg such that(f, a) and(f, b) are both tetrahedra.

Then, one can collapse the two nodesndb, and the result is again a 3-ball. This move is called
collapse of an external edge simplycollapse

Proof. The proof is left to the reader. O
The three conditions of a collapse can be reformulated ifalh@ving manner:
Lemma 5.15. Lete = (a, b) be an external edge. The edges collapsible if and only if
Z(a) NZ(b) = Z(e) ,

whereZ(a) is the hemisphere afandZ(e) is the semi-circular flower of.
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Proof. By definition, an edge = (a, b) is collapsible if and only if

e For each node: such thatz, a) and ¢n, b) are edges;, a, b) is a face.
e For each edge such that¢, ) and ¢, b) are faces,d; a, b) is a tetrahedron.
e There are no faceg such that (, a) and (f, b) two tetrahedra.

Any graph is defined as a set of vertices and a set of edges. Aabdulation is a graph that
can be defined as a set of nodes, a set of edges and a set ofafades;1d triangulation as a set
of nodes and a set of edge®(a) is a 2d triangulation and(e) is a 1d triangulation. LeV(a),
L(a) and F(a) be the sets of vertices, edges and face®(aj andV(e), L(e) those ofZ(e). The
proposition is equivalent to the following

V(a) N V() = V(e) ,
L(a) N L) = L(e) ,
Fl@)nF@b)=0.

The two definitions are clearly equivalent. O

In Sect. 4.3, we described an algorithm which transformgiéaygulation with f-vecto(t, f, n)
into a triangulation with f-vectoft’, f’, 0). We have the following lemma:

Lemma 5.16. There is a constank’y > 0 such that the f-vectorg, f,n) and (¢, f’,0) satisfy the
following linear relation:
t/ S K4t ) f, S K4t ) (55)

Proof. Lete, ¢’ be the number of internal edges of both triangulations. Bydtmn 4.12, we have
¢/ — e < Ca(t + nj). Using (2.1) andfs, n; < 4t, the result follows. O

This proves that any triangulation 1 ;,, can be obtained from a triangulation with no inter-
nal nodes in7; ;o with a series of carefully chosen collapses and additionetihedra, with
t, f,n,t', f' satisfying (5.5).

We can now use a similar approach to that of the previousaectt is clear that choosing a
triplet of external faces for the move add-1-tetrahedragnigivalent to choosing an external node
x, and that choosing a couple of external nodes for collapsgussalent to choosing an external
edge.

5.4 Combining the bounds
Before we state our main result, we recall the

Hypothesis 5.6.There is a finite constarit; > 1 such that the numbeix(¢, f) of face-rooted nuclei
with f-vector(t, f) is bounded byx?.

Theorem 5.17.Under Hypothesis 5.6 one has the bound: There is a finite aobStsuch that the
number of rooted triangulations with f-vectqr, f, n) is bounded by

| Tifnl < C*. (5.6)
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Proof. Consider a rooted triangulatidh € 7; ;,, with ¢ tetrahedraf external faces and internal
nodes. We showed thdt can be obtained from a rooted triangulatibhe 7, o by a series of
carefully chosen collapses and additions of tetrahedra.

Note that the algorithm of Sect. 4.3 which transforfimito 7" can always be stopped when the
last internal node ot is removed. This implies that, in the inverse constructi@enare doing now,
we must start by adding tetrahedralt and not by collapsing external edges. So the first step is
to choosen, external nodes (of external degree 3) out of the& + 2 external nodes df”, and to
insert a tetrahedron on each of them with one tip at the nodecaV this “covering the node”.

This reduces the number of external edges f&)fify2 to 3(f'/2 — ny). Then, we choose,
external edges and we collapse them.

Remark 5.18. Any labeled triangulation is simply defined by the list oftésahedral;. In this
point of view, collapsing an external edges simply the operation where we remove framall

the tetrahedra of (¢). Lete; ande, be two collapsible edges. The construction implies that the
order in which we collapse them is irrelevant and so, the ithedt we simultaneously collapse,
edges makes sense.

One should pay attention to the case where we collapse twesedg- (a, b;) andes; = (a, bs)
such that(b,, by) = e3 is an edge. In this case, all tetrahedra sharing one of thedhedges are
removed. Clearly, this yields the same result regardlesh@brder in which we collapsg and
€9.

The next step is to choose external nodes among the new possibilities which appear aft
performing the first series of coverings and collapses, awvercthem. For each external edge
we can associate four nodes: the two endpointsarfd the two nodes;, x; such thatg;, ) is an
external face. Assume thatis one of then, chosen external nodes. The fact thatppeared after
the first series implies thatis either one of the four nodes associated with one ofitheollapsed
edges (note that these four nodes become three after tlap®e)| or that there is a nogeamong
the firstn; nodes such that:(y) was an external edge (before coveringith a tetrahedron). But
each sucly has exactly 3 external neighbors. This implies that 3m, + 3n; and the number of
ways to choose these nodes is bounded by

(3(7”1 + nl))

Continuing in this way, we choose, external edges and we collapse them. tdte such an
edge. Againg was not among the first;; edges. This implies that there must be a nod#d the
series ofn, covered external nodes such thatx() formed an external face before coveringvith
a tetrahedron. But for each suchhere are exactly three external edges satisfying thisitond
We deduce thati, < 3ns,.

We continue adding tetrahedra and collapsing edges. Téis I two sequences, m;, i =
1,..., ¢, with ¢ < n, satisfying:

l
1§ni7 Ogmlg‘gnl) Zni:n7
=1
1<n, <3n;_1+3m;_1, 1>1, (57)

J4
ZQnZ—FQmZ—Ff:f'
i=1
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Note that some, or all, of they;,’s might be equal to zero. Using (5.7) we get a bound

Tognl <D [ Togrol Y > >

v, f =1 Ele n;=n,n;>1 Zf:l m;=(f'"—f)/2—n,m; >0

y (f,/2 + 2) (3(n1 + ml)) o (3(715—1 + mz—l))
nq N9 Ny
(L) ()
my ma my
where the sum ovef, [’ is restricted by (5.5). Bounding each binomial by a power ah@ using
Proposition 5.12, (5.7) and (5.5), we get, as in the proofropBsition 5.12,

Tognl < > K§<C'.

' f <Kat

This shows (5.6) and completes the proof.
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