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the perturbation probability decays according to a power law in the absolute value of
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which the walk is almost surely recurrent and below which is almost surely transient.
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1 Introduction

1.1 Motivations

We term, as usual, simple random walk on a connected (finitely or infinitely)
denumerable graph the vertex-valued Markov chain jumping from vertex v
to any vertex v′, adjacent to v, with uniform probability on the set of neigh-
bours. We say the lattice is undirected when the adjacency matrix of the
graph is symmetric. Simple random walks on connected and undirected
graphs are irreducible Markov chains; therefore the probability that such a
walk visits any particular vertex is strictly positive. There is a closely inter-
play between the combinatorial exploration of the graph and the asymptotic
behaviour of the random walk.

Although general graphs are merely one-dimensional simplicial complexes,
regular undirected graphs are very often interpreted as the Cayley graphs of
finitely generated groups Γ. Among them the simplest examples are provided
by the family of d-dimensional lattices (Abelian groups) Zd, for some d; they
admit the presentation 〈S 〉, where S = {e1,−e1, . . . , ed,−ed} is the symmet-
ric set composed from the standard basis of Rd and their inverses, i.e. a finite
set of generators of Zd. Simple random walks on Zd, for d = 1, 2, or 3, were
introduced and studied by Pólya [19]; in that seminal paper, he solves the
type problem of the simple random walk on Zd. Namely he shows that the
walk is recurrent (returns almost surely infinitely often to its starting point)
in d ≤ 2 and is transient (returns almost surely only a finite number of times
to its starting point) in d = 3 (and later shown for all d ≥ 3). The connec-
tion of undirected graphs with Cayley graphs of groups has been extended
to non-commutative groups, leading to a theory of random walks intercon-
nected with algebraic and geometric properties of the underlying groups and
their amenability properties. Properties such as the rate of growth of the
size of balls in the underlying group determine the type of the random walk.

Another characteristic of simple random walks on undirected graphs is
their reversibility. Roughly, reversibility means that observing the evolution
of the Markov chain in the normal flow of time is statistically indistinguish-
able from the evolution with reverted arrow of time flow. Reversibility is
closely connected with the existence of an invariant measure (not necessarily
a probability) verifying the condition of detailed balance2 on the set of ver-

2In most textbooks, reversibility is connected with the existence of an invariant prob-
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tices and with the possibility of establishing a close analogy (a bijection as a
matter of fact) between all probabilistic quantities pertinent to the random
walk and corresponding currents and voltages on a network of resistors hav-
ing the same adjacency matrix as the graph and whose edge conductance is
determined by the stochastic matrix and the invariant measure (see [12] and
the monograph [8] for a more pedagogical review of the topic). Existence of
current flows of finite energy induced by a unit voltage difference between
a vertex and infinity is equivalent to a random walk of transient type. In
that way, random walks become interconnected with harmonic analysis and
potential theory.

Finally, another interesting feature of undirected graphs is the spectrum
of the discrete Laplacian; isoperimetric inequalities and Cheeger’s bound
provide lower bounds on the spectrum of the Laplacian leading to criteria of
transience of the random walk [7].

All the aforementioned techniques fail when the underlying graph is di-
rected (the corresponding simple random walk can never be a reversible
Markov chain). Although random walks on partially directed lattices have
been introduced long-time ago to study the hydrodynamic dispersion of a
tracer particle in a porous medium [15] very little was known on them beyond
some computer simulation heuristics [21] and estimates of the persistence of
random walkers studied in [13]. Therefore, it arose as a surprise for us that so
little was rigourously known when we first considered simple random walks
on partially directed 2-dimensional lattices in [2, 3]. In those papers, we
determined the type of simple random walks on lattices obtained from Z2 by
keeping vertical edges bi-directional while horizontal edges become one-way.
Depending on how the horizontal allowed direction to the left or the right is
determined we obtain dramatically different behaviour, namely:

• if the direction to the left or the right is chosen by the parity of the
ordinate3, then the random walk remains recurrent;

ability measure. We follow here the convention (of [24] or [9] for instance) consisting to
use the term reversibility in the more general situation where the invariant measure is not
necessarily of finite mass. The thus extended notion of reversibility is sometimes called
local reversibility in the literature. As a matter of fact, if µ is an invariant measure (not
necessarily a probability), then c(x, y) = µ(x)P (x, y) is called the conductance between x
and y. Detailed balance µ(x)P (x, y) = µ(y)P (x, y) implies that c(x, y) = c(y, x) i.e. elec-
tric flow can be reverted locally as is the case in an electrical circuit with passive elements
only. Finiteness of the total mass of µ is not necessary for this analogy to hold.

3This is precisely the model considered in [15].
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• if the whole upper half plane is composed by eastward lines while the
lower half-plane by westward lines, the random walk is transient;

• when the direction of the horizontal lines is chosen by tossing a honest
coin, then the random walk is transient for almost every choice of the
orientation.

This result triggered several developments by various authors. In [10], the
choice of the orientation is made by means of a correlated sequence or by
a dynamical system; in both cases, provided that some variance condition
holds, almost sure transience is established and additionally a functional limit
theorem is obtained. In [17], the case of orientations chosen according to a
stationary sequence is treated. In [18], our results of [2, 3] are used to study
corner percolation on Z2. In [4], the Martin boundary of these walks has been
studied for the models that are transient and proved to be trivial, i.e. the
only positive harmonic functions for the Markov kernel of these walks are the
constants. In [6] a model where the horizontal directions are chosen according
to an arbitrary (deterministic or random) sequence but the probability of
performing a horizontal or vertical move is not determined by the degree but
by a sequence of non-degenerate random variables is considered and shown
to be a.s. transient.

It is worth noting that all the previous directed lattices are regular in
the sense that both the inward and the outward degrees are constant (and
equal to 3) all over the lattice. Therefore, the dramatic change of type is
due only to the directedness. However, the type result was always either
recurrent or transient. Not a single example was known where the type
could be controlled by some continuous parameter so that a transition from
recurrence to transience could be observed by fine tuning this parameter.
The present paper provides such an example improving the insight we have
on those non reversible random walks. Let us mention also that beyond their
theoretical interest (a short list of problems remaining open in the context
of such random walks is given in the conclusion section), directed random
walks are much more natural models of propagation on large networks like
internet than reversible ones. As a matter of fact, lattice directedness can be
seen as discretisation of the notion of causality [16, 14]. Therefore, advances
in the theoretical understanding will have numerous implications in applied
domains.
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1.2 Notation and definitions

A directed graph4 G = (G0,G1, r, s) is the quadruple of a denumerable set G0

of vertices, a denumerable set G1 of directed edges, and a pair of range and a
source functions, denoted respectively r and s, i.e. mappings r, s : G1 → G0.
In the sequel, we only consider graphs without loops (i.e. not containing
edges α ∈ G1 such that r(α) = s(α)) and without multiple edges (i.e. if α
and β are edges verifying simultaneously s(α) = s(β) and r(α) = r(β) then
α = β, in other words, the compound map (s, r) : G1 → G0×G0 is injective).
With these restrictions in force, G1 can be identified with a particular subset
of G0 × G0 and the functions r and s become superfluous because they are
trivial i.e. s((u,v)) = u and r((u,v)) = v). The corresponding directed
graph is then termed simple. All the graphs we consider in this paper will
be simple without explicitly stating so.

We can therefore define, for each vertex v ∈ G0, its inwards degree d+
v =

card{a ∈ G1 : r(a) = v} and its outwards degree d−v = card{a ∈ G1 : s(a) =
v}. All the graphs we consider are transitive in the sense that for any two
distinct vertices u,v ∈ G0, there is a finite sequence α = (α1, . . . , αk) of
composable edges αi ∈ G1, for i = 1, . . . , k, k ∈ N, with s(α1) = u and
r(αk) = v, such that r(αi) = s(αi+1) ∈ G0,∀i = 1, . . . , k − 1. The above
sequence α is called a path of length k = |α| from u to v, the set of all paths
of lenght k is denoted5 by Gk. Finite transitivity implies in particular the
no sink condition: d−v ≥ 1 for all v ∈ G0. We always consider graphs that
are genuinely directed in the sense that there exist vertices u and v with
(u,v) ∈ G1 but (v,u) 6∈ G1.

Definition 1.1. [Simple random walk on a directed graph] Let G be a
directed graph. A simple random walk on G is a G0-valued Markov chain

4Although often used interchangeably in common language, directedness and orien-
tation denote distinct notions in graph theory: directedness is a property encoded into
the set G1 of allowed edges; orientation is an assignement of plus or minus sign to every
edge (viewed as the set — not the ordered pair — of its endpoints). On defining a map
ι : G0 × G0 → G0 × G0 by G0 × G0 3 (u,v) 7→ ι((u,v)) = (v,u) ∈ G0 × G0 (this map
reverts the order of the pair), we observe that for an oriented but undirected graph, the
image of G1 by ι can be identified with G1; for a directed graph, the image of G1 can
contain elements in G0 ×G0 \G1. In both cases ι is involutive. An undirected graph can
be viewed as a directed one such that if α := (u,v) ∈ G1 then ι(α) = (v,u) ∈ G1, i.e. the
set of edges G1 is a symmetric subset of the Cartesian product G0 ×G0.

5Notice that Gk is the set of paths composed from k composable edges, in general
strictly contained into the Cartesian product ×k

l=1G1.
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(Mn)n∈N with transition probability matrix P having as matrix elements

P (u,v) = P(Mn+1 = v|Mn = u) =

{ 1
d−u

if (u,v) ∈ G1

0 otherwise.

Remark: When the underlying graph is genuinely directed, the Markov
chain (Mn)n∈N cannot be reversible. Therefore, all the powerful techniques
based on the analogy with electrical circuits (see [8, 22] for instance) do not
apply. The failure of this criterion is based on the following observation: for
an undirected graph we have d−v = dv for all v and for f ∈ `2(G0) the Markov
operator of the simple random walk E (f(Mn+1)− f(Mn) |Mn = u) =

∑
v P (u,v)f(v)−

f(u) = 1
d−u

∑
v∈t(s−1(u) f(v)− f(u) = 1

du
∆f(u) is immediately expressible in

terms of the Laplace-Beltrami operator ∆. Now, choosing an orientation on
the graph, we can express ∆ = −D∗D where D : `2(G0) → `2(G1) is the
Dirac operator, defined by Df(α) = f(s(α)) − f(t(α)) and D∗ : `2(G1) →
G0 is its adjoint (for the Hilbert scalar product) defined by D∗φ(v) =∑

α∈s−1(v) φ(α) −
∑

α∈t−1(v) φ(α). For directed graphs, the Markov opera-

tor is expressible merely as 1
d−u

∑
α∈s−1(u) Df(α) but the Laplace-Beltrami

operator is not defined on this lattice.

All the graphs that we shall consider in this paper are two-dimensional
lattices, i.e. G0 = Z2 and G1 is a subset of the set of nearest neighbours in
Z2. We often write G0 = G0

1 × G0
2, with G0

1 and G0
2 isomorphic to Z when

we wish to specify horizontal and vertical directions.

Let ε = (εy)y∈G0
2

be a {−1, 1}-valued sequence of variables assigned to
each ordinate. The sequence ε can be deterministic or random as it will be
specified later.

Definition 1.2. [Two-dimensional ε-horizontally directed lattice] Let G0 =
G0

1 × G0
2 = Z2, with G0

1 and G0
2 isomorphic to Z and ε = (εy)y∈G0

2
be a

sequence of {−1, 1}-valued variables assigned to each ordinate. We call two-
dimensional ε-horizontally directed lattice G = G(G0, ε), the directed graph
with vertex set G0 = Z2 and edge set G1 defined by the condition (u,v) ∈ G1

if, and only if, u and v are distinct vertices satisfying one of the following
conditions:

1. either v1 = u1 and v2 = u2 ± 1,

2. or v2 = u2 and v1 = u1 + εu2 .
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Remark: Notice that the ε-horizontally directed lattice is regular; this means
that the vertex degrees (both inwards and outwards) are constant d−v = d+

v =
d = 3, ∀v ∈ G0. The vertical directions of the graph are both-ways; the
horizontal directions are one-way, the sign of εy determining whether the
horizontal line at level y is left- or right-going.

Several ε-horizontally directed lattices have been introduced in [2], where
the following theorem has been established.

Theorem 1.3 ([2]). Let G0 = Z2 and consider an ε-horizontally directed
lattice in dimension 2.

1. If the lattice is alternatively directed, i.e. εy = (−1)y, for y ∈ G0
2 ∼ Z,

then the simple random walk on it is recurrent.

2. If the lattice has directed half-planes i.e.

εy =

{
1 if y ≥ 0
−1 if y < 0,

then the simple random walk on it is transient.

3. If ε := (εy)y∈G0
2

is a sequence of {−1, 1}-valued random variables, inde-
pendent and identically distributed with uniform probability, the simple
random walk on it is transient for almost all possible choices of the
horizontal directions.

Notice that the above simple random walks are defined on topologically
non-trivial directed graphs in the sense that

lim
N→∞

1

N

N∑
y=−N

εy = 0.

For the two first cases, this is shown by a simple calculation and for the third
case this is an almost sure statement stemming from the independence of the
sequence ε. The above condition guarantees that transience is not a trivial
consequence of a non-zero drift but an intrinsic property of the walk in spite
of its jumps being statistically symmetric.
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1.3 Results

In this paper, we consider a different model. Again the lattice is a two-
dimensional ε-horizontally directed lattice. The difference is that the hori-
zontal directions are given by a decaying random perturbation of the periodic
situtation. More precisely we have the following

Definition 1.4. Let f : G0
2 → {−1, 1} be a Q-periodic function with

some even integer Q ≥ 2 verifying
∑Q

y=1 f(y) = 0 and ρ = (ρy)y∈G0
2

a
Rademacher sequence of independent and identically distributed {−1, 1}-
valued random variables. Let λ = (λy)y∈G0

2
be a {0, 1}-valued sequence of

independent random variables and suppose there exist constants β (and c)
such that P(λy = 1) = c

|y|β for large |y|. We define the horizontal orientations

ε = (εy)y∈G0
2

through εy = (1 − λy)f(y) + λyρy. Then the ε-directed lattice
defined above is termed a randomly horizontally directed lattice with
randomness decaying in power β.

Theorem 1.5. Consider the two-dimensional ε-randomly horizontally di-
rected lattice with randomness decaying in power β.

1. If β < 1 then the simple random walk is transient for almost all reali-
sations of the sequence (λy, ρy).

2. If β > 1 then the simple random walk is recurrent for almost all reali-
sations of the sequence (λy, ρy).

2 Technical preliminaries

Since the general framework developed in [2] is still useful here, we only recall
here the basic facts. It is always possible to choose a sufficiently large abstract
probability space (Ω,A,P) on which are defined all the sequences of random
variables we shall use, namely (ρy), (λy), etc. and, in particular the Markov
chain (Mn)n∈N itself. When the initial probability of the chain is µ then,
obviously P := Pµ i.e. depends on µ. The idea of the proof is to consider the
components of the stochastic process (Mn)n∈N termed respectively vertical
skeleton and horizontal component at precisely chosen instants.

Definition 2.1. Let (ψn)n∈N∗ be a sequence of independent, identically
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distributed, {−1, 1}-valued symmetric Bernoulli variables and

Yn =
n∑
k=1

ψk, n = 1, 2, . . .

with Y0 ≡ 0, the simple G0
2-valued symmetric one-dimensional random walk.

We call the process (Yn)n∈N the vertical skeleton. We denote by

ηn(A) =
n∑
k=0

1 {Yk∈A}, n ∈ N, A ⊆ G0
2

the corresponding occupation measure of the set A up to time n. More
generally, consider for 0 ≤ m < n the occupation measure of the set A
between times m and n defined by ηm,n(A) =

∑n
k=m 1 {Yk∈A}. For y ∈ G0

2, we
use the simplified notation ηn(y) (resp. ηm,n(y)) for ηn({y}) (resp. ηm,n({y})).

Definition 2.2. Suppose the vertical skeleton and the environments of the
orientations are given. Let (ξ

(y)
n )n∈N∗,y∈G0

2
be a doubly infinite sequence of

independent identically distributed N-valued geometric random variables of
parametres p = 1/3 and q = 1 − p. Let (ηn(y)) be the occupation times of
the vertical skeleton. We call horizontally embedded random walk the process
(Xn)n∈N with

Xn =
∑
y∈G0

2

εy

ηn−1(y)∑
i=1

ξ
(y)
i , n ∈ N.

Remark: The significance of the random variable Xn is the horizontal dis-
placement after n − 1 vertical moves of the skeleton (Yl). Notice that the
random walk (Xn) has unbounded (although integrable) increments. As a
matter of fact, they are signed integer-valued geometric random variables.

Lemma 2.3 ([2]). Let

Tn = n+
∑
y∈G0

2

ηn−1(y)∑
i=1

ξ
(y)
i

be the instant just after the random walk (Mk) has performed its nth vertical
move (with the convention that the sum

∑
i vanishes whenever ηn−1(y) = 0.)

Then
MTn = (Xn, Yn).

9



Define σ0 = 0 and recursively, for n = 1, 2, . . ., σn = inf{k ≥ σn−1 :
Yk = 0} > σn−1, the nth return to the origin for the vertical skeleton. Then
obviously, MTσn = (Xσn , 0). To study the recurrence or the transience of
(Mk), we must study how often Mk = (0, 0). Now, Mk = (0, 0) if and only if
Xk = 0 and Yk = 0. Since (Yk) is a simple random walk, the event {Yk = 0}
is realised only at the instants σn, n = 0, 1, 2, . . ..

Recall that all random variables are defined on the same probability space
(Ω,A,P); introduce the following sub-σ-algebras:

H = σ(ξ
(y)
i , i ∈ N, y ∈ G0

2),

G = σ(ρy, λyy ∈ G0
2),

Fn = σ(ψi, i = 1, . . . , n),

with F ≡ F∞.

Lemma 2.4 ([2]).

∞∑
l=0

P(Ml = (0, 0)|F ∨ G) =
∞∑
n=0

P(I(Xσn , ε0ξ0) 3 0|F ∨ G),

where, for x ∈ Z, z ∈ N, and ε = ±1, I(x, εz) = {x, . . . , x + z} if ε = +1
and {x− z, . . . , x} if ε = −1.

Remark: The recurrence/transience properties of the random walk (Ml)
on the two-dimensional directed lattice are essentially given by the recur-
rence/transience properties of the embedded random walk (Xσn) which is an
one-dimensional random walk with unbounded jumps in a random scenery.
Notice however that this situation is fundamentally different from the ran-
dom walk in a random scenery studied in [11]. Therefore, although all the
subsequent estimates for recurrence/transience of the process can be carried
on by using the right hand side expression of the formula in lemma 2.4, some
can be simplified if we take advantage of the following

Lemma 2.5 ([2]). 1. If
∑∞

n=0 P0(Xσn = 0|F∨G) =∞ then
∑∞

l=0 P(Ml =
(0, 0)|F ∨ G) =∞.

2. If (Xσn)n∈N is transient then (Mn)n∈N is also transient.

Let ξ be a geometric random variable equidistributed with ξ
(y)
i . Denote

χ(θ) = E exp(iθξ) =
p

1− q exp(iθ)
= r(θ) exp(iα(θ)), θ ∈ [−π, π]

10



its characteristic function, where

r(θ) = |χ(θ)| = p√
p2 + 2q(1− cos θ)

= r(−θ)

and

α(θ) = arctan
q sin θ

1− q cos θ
= −α(−θ).

Notice that r(θ) < 1 for θ ∈ [−π, π] \ {0}. Recall that we denote F =
σ(ψi, i ∈ N) and G = σ(ρy, λy, y ∈ G0

2). Then

E exp(iθXn) = E (E(exp(iθXn)|F ∨ G))

= E

E(exp(iθ
∑
y∈G0

2

εy

ηn−1(y)∑
i=1

ξ
(y)
i |F ∨ G)


= E

∏
y∈G0

2

χ(θεy)
ηn−1(y)

 .

3 Proof of transience

Introduce, as was the case in [2], constants δi > 0 for i = 1, 2, 3 and for n ∈ N
the sequence of events An = An,1 ∩ An,2 and Bn defined by

An,1 =

{
ω ∈ Ω : max

0≤k≤2n
|Yk| < n

1
2

+δ1

}
,

An,2 =

{
ω ∈ Ω : max

y∈G0
2

η2n−1(y) < n
1
2

+δ2

}
,

Bn =

ω ∈ An :

∣∣∣∣∣∣
∑
y∈G0

2

εyη2n−1(y)

∣∣∣∣∣∣ > n
1
2

+δ3

 ;

the range of possible values for δi, i = 1, 2, 3, will be chosen later (see end
of the proof of proposition 3.3). Obviously An,1, An,2 and hence An belong
to F2n; moreover Bn ⊆ An and Bn ∈ F2n ∨ G. We denote in the sequel
generically dn,i = n

1
2

+δi , for i = 1, 2, 3.

Since Bn ⊆ An and both sets are F2n ∨ G-measurable, decomposing the
unity as

1 = 1Bn + 1An\Bn + 1Acn ,
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we have

P(X2n = 0;Y2n = 0|F ∨ G) = 1Bn1 {Y2n=0}P(X2n = 0|F ∨ G)

+1An\Bn1 {Y2n=0}P(X2n = 0|F ∨ G)

+1Acn1 {Y2n=0}P(X2n = 0|F ∨ G),

and taking expectations on both sides of the equality, we get

pn = pn,1 + pn,2 + pn,3,

where

pn = P(X2n = 0;Y2n = 0)

pn,1 = P(X2n = 0;Y2n = 0;Bn)

pn,2 = P(X2n = 0;Y2n = 0;An \Bn)

pn,3 = P(X2n = 0;Y2n = 0;Acn).

By repeating verbatim the reasoning in [2], we get

Proposition 3.1. For large n, there exist δ > 0 and δ′ > 0 and c > 0 and
c′ > 0 such that

pn,1 = O(exp(−cnδ)) and pn,3 = O(exp(−c′nδ′)).

Consequently
∑

n∈N(pn,1 + pn,3) < ∞. The proof will be complete if we
show that

∑
n∈N pn,2 <∞.

Recall that we have

X2n =
∑
y∈G0

2

εy

η2n−1(y)∑
i=1

ξ
(y)
i =

2n∑
k=1

εYkξk.

Introduce the random variables:

N+ =
2n∑
k=1

1 {εYk=1}

N− =
2n∑
k=1

1 {εYk=−1}

∆n = N+ −N− =
∑
y∈G0

2

εyη2n−1(y).
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Lemma 3.2. On the set An \Bn, we have

P(X2n = 0|F ∨ G) = O(

√
lnn

n
).

Proof. Use the F∨G-measurability of the variables (εy)y∈G0
2

and (ηn(y))y∈G0
2,n∈N

to express the conditional characteristic function of the variable X2n as fol-
lows:

χ1(θ) = E(exp(iθX2n)|F ∨ G) =
∏
y∈G0

2

χ(θεy)
η2n−1(y).

Hence,

P(X2n = 0|F ∨ G) =
1

2π

∫ π

−π
χ1(θ)dθ.

Now use the decomposition of χ into a the modulus part, r(θ) — that is an
even function of θ — and the angular part of α(θ) and the fact that there
is a constant K < 1 such that for θ ∈ [−π,−π/2] ∪ [π/2, π] we can bound
r(θ) < K to majorise

P(X2n = 0|F ∨ G) ≤ 1

π

∫ π/2

0

r(θ)2ndθ +O(Kn).

Fix an =
√

lnn
n

and split the above integral over [0, π/2] = [0, an]∪ [an, π/2].

For the first part, we majorise the integrand by 1, so that∫ an

0

r(θ)2ndθ ≤ an.

For the second part, use the majorisation r(θ) ≤ exp(−3
8
θ2) valid for θ ∈

]0, π/2] to estimate

1

π

∫ π/2

an

r(θ)2ndθ = O(n−3/4).

Since the estimate of the first part dominates, the result follows.

It remains to estimate pn,2.

Let (ak)k∈N be a complex sequence such that its generating function

A(t) :=
∑∞

k=0 ak
tk

k!
is well defined in a neighbourhood of 0. Then the gener-

ating function K of its semi-invariants (cumulants) is defined by A(t) =

exp(K(t)) with K(t) =
∑

k≥1 κk
tk

k!
. Let Z be a random variable; if Z has

exponential moments, we can use the previous formula for A(t) = E exp(tZ),
or ak = EZk; otherwise K is always defined (formally) for A(t) = E exp(itZ).
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Proposition 3.3. For all δ5 > 0, and for large n

P(An \Bn|F) = O(n−
1
4

+δ5).

Proof. The required probability is an estimate, on the event An, of the condi-
tional probability P(|

∑
y∈G0

2
ζy| ≤ dn,3|F), where we denote ζy = εyη2n−1(y).

Extend the probability space (Ω,A,P) to carry an auxilliary variable G as-
sumed to be centred Gaussian with variance d2

n,3, (conditionally on F) in-
dependent of the ζy’s. Since both G is a symmetric random variable and
[−dn,3, dn,3] is a symmetric set around 0, then by Anderson’s inequality, there
exists a positive constant c such that

P(|
∑
y∈G0

2

ζy| ≤ dn,3|F) ≤ cP(|
∑
y∈G0

2

ζy +G| ≤ dn,3|F).

Let
χ2(t) = E(exp(it

∑
y

ζy)|F) =
∏
y

Ay(t),

where Ay(t) = E (exp(itζy|F), and

χ3(t) = E(exp(itG)|F) = exp(−t2d2
n,3/2).

Therefore,

E(exp(it(
∑
y

ζy +G))|F) = χ2(t)χ3(t),

and using the Plancherel’s formula,

P(|
∑
y∈G0

2

ζy +G| ≤ dn,3|F) =
dn,3
π

∫
sin(tdn,3)

tdn,3
χ2(t)χ3(t)dt ≤ Cdn,3I,

where

I =

∫
|χ2(t)| exp(−t2d2

n,3/2)dt.

Fix bn = nδ4
dn,3

, for some δ4 > 0 and split the integral defining I into I1 + I2,

the first part being for |t| ≤ bn and the second for |t| > bn.

We have

I2 ≤ C

∫
|t|>bn

exp(−t2d2
n,3/2)

dt

2π

=
C

dn,3

∫
|s|>nδ4

exp(−s2/2)
ds

2π

≤ 2
C

dn,3

1

nδ4
exp(−n2δ4/2)

2π
,
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because the probability that a centred normal random variable of variance 1,
whose density is denoted φ, exceeds a threshold x > 0 is majorised by φ(x)

x
.

For I1 we get,

I1 ≤
∫
|t|≤bn

∏
y

|Ay(t)|dt.

Now, conditionally on F , the random variable ζy has exponential moments.
Using cumulant expansion, we write Ay(t) = exp(Ky(t)) and determine easily
that for large |y|, we get the estimates

κ1(y) = E(iεyη2n−1(y)|F) = if(y)η2n−1(y)(1− c

|y|β
)

κ2(y) = −η2
2n−1(y) + η2

2n−1(y)(1− c

|y|β
)2 = −2cη2

2n−1(y)
1

|y|β
+O(

1

|y|2β
).

Therefore,

|χ2(t)| ≤
∏
y

exp

(
−t

2

4
η2

2n−1(y)
c

|y|β

)
.

Now, define πn(y) = η2n−1(y)
2n

; obviously
∑

y πn(y) = 1, establishing that

(πn(y))y is a probability measure on G0
2. Therefore, applying Hölder’s in-

equality we obtain I1 ≤
∏′

y Jn(y)πn(y), where
∏′

y means that the product
runs over those y such that η2n−1(y) 6= 0 and

Jn(y) =

∫
|t|≤bn

exp

(
−t

2

4
η2

2n−1(y)
c

|y|β
1

πn(y)

)
=

∫
|t|≤bn

exp

(
−t

2

2
nη2n−1(y)

c

|y|β

)
dt

=

√
2π|y|β

cnη2n−1(y)

∫
|v|≤bn

r
cnη2n−1(y)

2|y|β

exp(−v2/2)
dv

2π

≤
√

4π

c
exp

(
− log 2n− 1

2
log πn(y) +

β

2
log |y|

)
.

We conclude that

I1 ≤
∏
y

′
Jn(y)πn(y) =

√
2π

c
exp

(
− log 2n+

1

2
H(πn) +

β

2

∑
y

πn(y) log |y|

)
,

where H(πn) is the entropy of the probability measure πn, reading

H(πn) := −
∑
y

πn(y) log πn(y) ≤ log cardCn,
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where Cn := supp πn ≤ n
1
2

+δ. We conclude that we can always chose the
parameters δ1 and δ3 such that, for every β < 1 there exists a parameter
δβ > 0 such that

dn,3I1 ≤ Cn−δβ .

Corollary 3.4. ∑
n∈N

pn,2 <∞.

Proof. Recalling that for the standard random walk P(Y2n = 0) = O(n−1/2)
and from the estimates obtained in 3.2 and 3.3, we have

pn,2 = P(X2n = 0;Y2n = 0;An \Bn)

= E(E
(
1 Y2n=0

[
E(1An\BnP(X2n = 0|F ∨ G)|F)

])
)

= O(n−1/2n−δβ

√
lnn

n
)

= O(n−(1+δβ) lnn),

proving thus the summability of pn,2.

We can now complete the

Proof the statement on transience of the theorem 1.5: The transience
is a simple consequence of the previous propositions. As a matter of fact
pn = pn,1 + pn,2 + pn,3 is summable because the partial probabilities pn,i, for
i = 1, 2, 3 are all shown to be summable. �

4 Proof of recurrence

We define additionally the following sequence of random times:

τ0 ≡ 0 and τn+1 = inf{k : k > τn, |Yk − Yτn| = Q} for n ≥ 0.

The random variables (τn+1−τn)n≥0 are independent and for all n the variable
τn+1−τn has the same distribution (under P0) as τ1. It is easy to show further
(see proposition 1.13.4 of the textbook [1] for instance) that these random
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variables have exponential moments i.e. E0(exp(ατ1)) <∞ for |α| sufficiently
small.

Let ZQ = Z/QZ = {0, 1, . . . , Q − 1} with integer addition replaced by
addition modulo Q and for any y ∈ Z denote by y = y mod Q ∈ ZQ.
Consistently, we define Y n = Yn mod Q.

Lemma 4.1. Define for n ≥ 1 and y ∈ ZQ,

Nn(y) =
τn−1∑
k=τn−1

1 y(Y k).

Then

E0N1(y) =
1

2
E0 (N1(y) | Yτ1 = Q) +

1

2
E0 (N1(y) | Yτ1 = −Q) =

E0τ1

Q
.

Proof. Since the random walk (Yn) is symmetric, the probability of exiting
the strip of width Q by up-crossing is the the same as for a down-crossing.
This remark establishes the leftmost equality of the statement.

To prove the rightmost equality, let g : Z → R be a bounded function
and denote by Sn[g] =

∑n−1
k=0 g(Yk). On defining Wn[g] =

∑τn+1−1
k=τn

g(Yk) and
Rn = max{k : τk ≤ n}, we have the decomposition:

Sn[g] =
Rn∑
k=0

Wk[g]−
τRn+1−1∑
k=n

g(Yk).

Since τRn+1 − n ≤ τRn+1 − τRn and the latter random variable is dis-
tributed as τ1 under P0, we have, thanks to the boundedness of g, that
1
n

∣∣∣∑τRn+1−1
k=n g(Yk)

∣∣∣ ≤ τRn+1
−τRn
n

supy∈Z |g(z)| and since τRn+1 − τRn
d
=τ1, the

remainder term tends to 0 in probability.

It remains to estimate Sn[g]
n

by Rn
n

1
Rn

∑Rn
k=1Wk[g]. Obviously Rn → ∞

and, by the renewal theorem (see p. 221 of [1] for instance), Rn
n
→ 1

E0τ1
a.s.

Fix any y ∈ ZQ and choose g(z) := 1 {y}(z mod Q). For this g, we have

Sn[g] = ηn(y), where ηn(y) =
∑n−1

k=0 1 {y}(Y k). But (Y k) is a simple random
walk on the finite set ZQ therefore admits a unique invariant probability

π(y) = 1
Q

. By the ergodic theorem for Markov chains, we have Sn[g]
n
→ 1

Q
a.s.

Additionally, for this choice of g, the sequence (Wk[g])k∈N are independent
random variables, identically distributed as N1(y). We conclude by applying
the law of large numbers to the ratio 1

Rn

∑Rn
k=1Wk[g].
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Lemma 4.2. Fix K > 0. For every δ > 0 there exists a constant c = c(δ) >
0 such that for all n,

P0

(
η2n([−K,K]) > c

√
n
∣∣ Y2n = 0

)
< δ.

Proof. Write

E0 (η2n([−K,K]) | Y2n = 0) =

∑K
y=−K

∑2n
k=0 P0(Yk = y;Y2n = 0)

P0(Y2n = 0)

=

∑K
y=−K

∑2n
k=0 P

k(0, y)P 2n−k(0,−y)

P 2n(0, 0)
.

There exist constants c1, c2, and c3 such that P 2n(0, 0) ∼ c1√
2n

and P l(0, z) ≤
c2√
l
. Comparing now

P2n
k=0 P

k(0,y)P 2n−k(0,−y)

P 2n(0,0)
with

∫ 2n

0

√
2n

t(2n−t)dt = π
√

2n, we

get
E0 (η2n([−K,K]) | Y2n = 0) ≤ c4

√
n.

We conclude by conditional Markov inequality, on choosing c = c4/δ.

To prove recurrence, it is enough to show
∑

k∈N P0 (Xσk = 0, Yσk = 0 | G) =
∞. If β > 1 then

∑
y P(λy = 1) < ∞; hence there is almost surely a

finite number of y such that λy = 1, by Borel-Cantelli theorem, i.e. the G-
measurable random variable l(ω) = max{|y| : λy = 1}/Q is almost surely
finite. Fix an integer L ≥ l(ω) + 1, and introduce the random sets:

FL,2n(ω) =
{
k : 0 ≤ k ≤ 2n− 1; |Yτk | ≤ LQ; |Yτk+1

| ≤ LQ
}

GL,2n(ω) =
{
k : 0 ≤ k ≤ 2n− 1; |Yτk | ≥ LQ; |Yτk+1

| ≥ LQ
}
,

defined on the event {σ1 = τ2n}.

We shall further decompose the latter set into

G+
L,2n(ω) =

{
k ∈ GL,2n : Yτk+1

= Yτk +Q
}
,

G−L,2n(ω) =
{
k ∈ GL,2n : Yτk+1

= Yτk −Q
}
,

corresponding respectively to up-crossing and down-crossing excursions of
the strips of width Q.

Denote by Adm(2n) the set of admissible paths z = (z0, z1, . . . , z2n−1, z2n) ∈
Z2n+1 satisfying |zi+1−zi| = Q for i = 0, . . . 2n−1, z0 = z2n = 0, and |zi| > 0
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for i = 1, . . . , 2n − 1. For any z ∈ Adm(2n), we denote C[z] := C[z, ω] the
random cylinder set

C[z] =
{
Y0 = z0 = 0, Yτ1 = z1, . . . , Yτ2n−1 = z2n−1, Yτ2n = z2n = 0

}
∈ F .

Denote by θk = Xτk+1
−Xτk , for k ∈ {0, . . . , 2n− 1}, and observe that

Xτ2n =
2n−1∑
k=0

θk =
∑

k∈FL,2n

θk +
∑

k∈G+
L,2n

θk +
∑

k∈G−L,2n

θk,

the three sums appearing in the above decomposition referring to disjoint
excursions. On the set C[z] with z ∈ Adm(2n) and since Y0 = Yτ2n = 0, for
every k ∈ G+

L,2n, there exists a k′ ∈ G−L,2n, and a s ∈ {0, . . . , 2n − 1}, with
k′ 6= k verifying simultaneously

zs+1 = zs +Q

Yτk = Yτk′+1
= zs

Yτk′ = Yτk+1
= zs+1,

i.e. while k corresponds to an up-crossing of the strip [zs, zs+1], the excursion
corresponding to k′ down-crosses the same strip. In case the same strip is up-
crossed by several excursions, the index k′ is not unambiguously determined.
Nevertheless, we can always lift the degeneracy so that the mapping G+

L,2n 3
k 7→ d(k) = k′ ∈ G−L,2n becomes a bijection. Therefore∑

k∈G+
L,2n

θk +
∑

k∈G−L,2n

θk =
∑

k∈G+
L,2n

(θk + θd(k)).

Proposition 4.3 (Extended reflection principle). For every k ∈ GL,2n+

and every z ∈ Adm(2n),

a := E0

(
θk + θd(k)

∣∣C[z]
)

= 0.

Proof. Let z be an arbitrary admissible path. Since k corresponds to an
up-crossing denote by z := zs and z + Q = zs+1 the bottom and top levels
of the crossed strip. Since z ∈ Adm(2n), there are random times τ1, . . . , τ2n

that are compatible with z. We have

Yτk = Yτd(k)+1 = z

Yτk+1
= Yτd(k) = z +Q.

19



Therefore T = τk+1 − τk is an up-crossing time of the strip while T ′ =
τd(k+1) − τd(k) is a down-crossing time of the same strip. We shall construct
a new admissible path having T ′ as an up-crossing time and T as a down-
crossing time of the strip while the occupation times of the sites in the strip
(modulo Q) remain unchanged. The figure 1 illustrates the construction.
Consider the path Y , between the times τk and τk+1 = τk + T ; it crosses the

τk τk+1

z

z +Q
T S

R

τd(k) τd(k)+1

T ′

R′

z

z +Q

τk τk + T ′ τd(k)+1τd(k)+1 − T

R′

T ′ S T

R

Figure 1: Illustration of the extended reflexion principle. The top figure
depicts a detail of the up-crossing excursion, occurring between times τk and
τk+1 = τk + T , and of the down-crossing excursion, occurring between times
and τd(k) and τd(k)+1 = τd(k) + T ′. The bottom figure depicts the details
of a new admissible path bijectively obtained by parallel transporting, time
reverting and swapping pieces of the the previous path as explained in the
text.

strip from its bottom z to the top z + Q. Define R := max{t : τk ≤ t <
τk+1, Yt = Yτk = z} − τk. Between times τk and τk + R, the path Y wanders
around the bottom level z. For times t such that τk + R < t < τk+1, the
path remains strictly confined within the (interior of the) strip. We shall
define a new path Z[τd(k)+1−T,τd(k)+1] between the times τd(k)+1− T and τd(k)+1

as follows:

Zt =

{
Yt−S +Q for τd(k)+1 − T ≤ t ≤ τd(k)+1 − T +R
Yτd(k)+1−t−S for τd(k)+1 − T +R ≤ t ≤ τd(k)+1.

Therefore, the first part of the path is parallel transported from level z
to level z + Q while the second part is time reversed. By construction,
the path Z[τd(k)+1−T,τd(k)+1] down-crosses the strip and is in bijection with
Y[τd(k)+1−T,τd(k)+1]. The same construction can be performed to transform the

20



down-crossing path Y[τd(k),τd(k)+1] into an up-crossing one Z[τk,τk+T ′] (see figure
1). Since the time spans T and T ′ were admissible on the top figure, they
remain admissible on the bottom figure. The path Z can be extended out-
side the considered excursions by defining it as coinciding with Y elsewhere.
To distinguish between the occupation times associated with paths Y and Z
continue denoting by η the occupation time for Y and introduce the symbol
κ to denote the occupation time for Z. Introduce finally the symbols η and
κ to denote the occupation times for Y and Z respectively.

The two paths Y and Z arise with the same probability and for all integers
y ∈ Z, by construction of the process Z, we have

ητk,τk+1−1(y) =

τk+T−1∑
t=τk

1 y(Y t) =

τd(k)+1−1∑
t=τd(k)+1−T

1 y(Zt) = κτd(k)+1−T,τd(k)+1−1(y).

We are now in position to complete the proof of the proposition.

a = E0

∑
y∈Z

f(y)

ητk,τk+1−1(y)∑
i=0

ξyi +

ητd(k),τd(k)+1−1(y)∑
i=0

ξ′
y
i

∣∣∣∣∣∣C[z]


= E(ξ0

0)

z+2Q−1∑
y=z−Q+1

f(y)Ez (ηT−1(y)|YT = z +Q;C[z]) Pz(YT = z +Q|C[z])

+E(ξ0
0)

z+2Q−1∑
y=z−Q+1

f(y)Ez+Q (ηT ′−1(y)|YT ′ = z;C[z]) Pz+Q(YT ′ = z|C[z])

= E(ξ0
0)(b1 + b2).
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Consider the first sum arising in the penultimate line of the previous formula

b1 =

z+2Q−1∑
y=z−Q+1

f(y)Ez (ηT−1(y)|YT = z +Q;C[z]) Pz(YT = z +Q|C[z])

=
∑
y=ZQ

f(y)Ez

(
ηT−1(y)

∣∣YT = z +Q
)

Pz(YT = z +Q|C[z])

=
1

2

∑
y=ZQ

f(y)
[
Ez

(
ηT−1(y)

∣∣YT = z +Q
)

Pz(YT = z +Q|C[z])

Ez+Q (κT−1(y)|ZT = z) Pz+Q(ZT = z|C[z])
]

=
∑
y∈ZQ

f(y)P0(N1(y))P0(YT = Q|C[z])

= 0,

where we used lemma 4.1 and the centering condition
∑

y∈ZQ f(y) = 0 to
conclude. With similar arguments, we establish that the term b2 = 0 as well,
so that finally a = 0.

Proof of the recurrence statement of theorem 1.5:

For any δ ∈]0, 1[, and c = c(δ) as in lemma 4.2, we have from this very
same lemma that P0 (cardFL,2n ≤ c(δ)

√
n) ≥ 1− δ. Fix some constant c and

define

ConsAdm(L, 2n, c) =
{
z ∈ Adm(2n) : card{k : 0 ≤ k < 2n, |zk| ≤ LQ; |zk+1| ≤ LQ} ≤ c

√
n
}

the set of constrained admissible paths. Then obviously, omitting the ω
dependence: {cardFL,2n ≤ c

√
n} = ∪z∈ConsAdm(L,2n,c)C[z]. On the event

{σ1 = τ2n} the condition Y2n = 0 is satisfied, hence

P0 (Xτ2n = 0;Yτ2n = 0 | G) ≥ P0

(
Xτ2n = 0;Yτ2n = 0; cardFL,2n ≤ c

√
n
∣∣ G)

=
∑

z∈ConsAdm(L,2n,c)

P0 ({Xτ2n = 0} ∩ C[z] | G)

=
∑

z∈ConsAdm(L,2n,c)

P0 (Xτ2n = 0 | G, C[z]) P0 (C[z] | G) .

Denote, as before, θk = Xτk+1
− Xτk for k ∈ {0, . . . , 2n − 1} and recall

that Xτ2n =
∑2n−1

k=0 θk =
∑

k∈FL,2n θk +
∑

k∈G+
L,2n

(θk + θd(k)). Now, for any
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z ∈ ConsAdm(L, 2n, c),

P0 (Xτ2n = 0 | G, C[z]) =
∑
m∈Z

P0

 ∑
k∈FL,2n

θk = m;
∑

k∈G+
L,2n

(θk + θd(k)) = −m

∣∣∣∣∣∣∣ G, C[z]


≥

∑
|m|≤c

√
n

P0

 ∑
k∈FL,2n

θk = m;
∑

k∈G+
L,2n

(θk + θd(k)) = −m

∣∣∣∣∣∣∣ G, C[z]


=

∑
|m|≤c

√
n

P0

 ∑
k∈FL,2n

θk = m

∣∣∣∣∣∣ G, C[z]


× P0

 ∑
k∈G+

L,2n

(θk + θd(k)) = −m

∣∣∣∣∣∣∣ C[z]

 .

The joint probability factors into the terms appearing in the last line
because occurs because the F -measurable random sets GL,2n and FL,2n are
disjoint, hence the terms in FL,2n and GL,2n refer to different excursions of
the random walk Y . Independence follows as a consequence of the strong
Markov property. Additionally, for k ∈ G+

L,2n, the G-measurable components
of the random variables entering in the sum

∑
k∈G+

L,2n
(θk + θd(k)) are trivial

(i.e. constants); therefore E((θk + θd(k))|G, C[z]) = E((θk + θd(k))|C[z]).

By the proposition 4.3, we know that E((θk + θd(k))|C[z]); moreover, the
sequence of random variables (θk + θd(k))k∈G+

L,2n
have the same conditional

law (under C[z]) for all k ∈ G+
L,2n. Finally, we can majorise the conditional

variance of these random variables as follows:

σ2 = E0((θk + θd(k))
2|C[z])

=
1

2

∑
ε∈{−1,1}

Ez

∑
y

ητ1+τ2−1(y)∑
i=0

ξyi

2∣∣∣∣∣∣Yτ1 = z + εQ, Yτ1+τ2 = z


≤ E(τ1 + τ2)E((ξ0

0)2) + E[(τ1 + τ2)2][E(ξ0
0)]2

< ∞.

Therefore, we are in the situation of applicability of the local central
limit theorem (see proposition 52.15, p. 706 of [20] for instance), reading for
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|m| ≤ c
√
n,

P0

 ∑
k∈G+

L,2n

(θk + θd(k)) = −m

∣∣∣∣∣∣∣ C[z]

 ≥ c11√
cardG+

L,2n

exp

(
− c2n

2σ2cardG+
L,2n

)
.

Now, on C[z], 2n ≥ 2cardG+
L,2n ≥ 2n−c

√
n. Hence, P0

(∑
k∈G+

L,2n
θk = −m

∣∣∣ C[z]
)
≥

c12√
n
, uniformly in z.

Summarising, and using the lemma 4.2,

P0 (Xτ2n = 0, Yτ2n = 0 | G) ≥ c9√
n

∑
z∈ConsAdm(L,2n,c)

P0 (C[z])

=
c9√
n

P0 (FL,2n)

≥ c10

n
.

This concludes the proof of the recurrence. �

5 Conclusion, open problems, and further de-

velopments

As was apparent in the course of the proof of recurrence, the condition β :=
β0 > 1 can be improved. For instance, we can show that if the decay is of
the form c

|y| lnβ1 |y| , with β1 > 1 or c
|y| ln |y| ln lnβ2 |y| , with β2 > 1, etc., then the

random walk is still recurrent. As a matter of fact, the walk is recurrent
provided that there exists an arbitrarily large integer l such that the decay is
of the form c

|y| ln |y|··· lnl−1 |y| ln
βl
l |y|

for some βl > 1 (arbitrarily close to 1), where

lnl is the l-times iterated logarithm. Nevertheless, our methods do not allow
the treatment of the really critical case β0 = 1.

We make however the conjecture that the random walk is recurrent even
when there are infinitely many defects on the orientations of the horizontal
lines provided they are sparse, i.e. their density is zero.

Another interesting question is what happens in more general lattices,
like the hexagonal. Since hexagonal lattice can be deformed to be presented
as below, we can define random horizontal orientations an ask what will be
the type of the walk in random environment.
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Here the vertical and horizontal components of the random walk no longer
factor out completely as was the case in the square lattice.

As stated in the introductory section, regular (undirected) lattices corre-
spond to Cayley graphs of finitely generated groups Γ. More precisely, let Γ
be a finitely generated group, not necessarily Abelian, and SΓ a finite sym-
metric set of generators of Γ. Then the Cayley graph is the infinite graph
Cayley(Γ, SΓ) = (G0,G1, s, t) with G0 = Γ and (u, v) ∈ G1 ⇔ u−1v ∈ SΓ.
This graph is necessarily undirected and the most prominent examples are
the Abelian graphs Zd with some integer d ≥ 1, the homogeneous tree with
d free generators Fd, etc. The construction of the graph can be seen as a
recursive nested construction (G0

n)n∈N with G0
n ⊂ G0

n+1 for all n ≥ 1: let
γ0 ∈ be some fixed element of Γ, for instance the neutral element, identified
as a particular vertex of the graph, and assume G0

0 = {γ0}, be the germ
set. Then adjacent vertices are adjoined to get the recursive sequence of
sets G0

n+1 = {γs : γ ∈ G0
n, s ∈ S}. Now, this construction can be gen-

eralised by introducing a selection mapping F : Γ × S → {0, 1}; new
vertices of the form γs, with s ∈ S, adjacent to γ can be added, solely6 if
F (γ, s) = 1. The generated combinatorial object is not any longer a group
but merely a groupoid or a semi-groupoid. These constructions occur in a
multitude of applications: Penrose lattices obtained from the cut-and-project
method enter into the above groupoid category (diffusive properties [23] or
type problem [5] of random walks on Penrose quasi-crystals), directed lat-
tices considered in this paper into the semi-groupoid one, random graphs are
also of the groupoid or semi-groupoid class. The algebraic object support-
ing these (semi)-groupoids are C∗-algebras. Therefore, there are interesting
counterparts, not yet fully exploited, of the graphs we consider here and
various natural objects like Penrose lattices, Cuntz-Krieger algebras, wavelet
cascades, quantum channels, etc. Several of those extensions towards semi-
groupoids and C∗-algebras are currently under investigation.

6The Cayley graph case corresponds to the trivial function F ≡ 1.
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