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Abstract. The notion of a weak stability boundary has been successfully used to
design low energy trajectories from the Earth to the Moon. The structure of this
boundary has been investigated in a number of studies, where partial results have
been obtained. We propose a generalization of the weak stability boundary. We prove
analytically that, in the context of the planar circular restricted three-body problem,
under certain conditions on the mass ratio of the primaries and on the energy, the
weak stability boundary about the heavier primary coincides with a branch of the
global stable manifold of the Lyapunov orbit about one of the Lagrange points.

1. Introduction

We consider the planar circular restricted three-body problem for a small mass ratio
of the primaries. We give a general definition of the weak stability boundary set in the
region of the heavier primary. We consider the global stable manifold of the Lyapunov
orbit about the Lagrange point located between the primaries. We prove analytically
that, under restrictions on the energy, the weak stability boundary coincides with the
branch of the global stable manifold in the region of the heavier primary.

The concept of WSB was introduced in [1, 2] to design low energy transfers from
Earth to Moon, and subsequently applied to the rescue of the Japanese mission Hiten in
1991.1 (See also [3].) A particular feature of the ‘WSB method’ useful for applications
is that it allows the capture of a spacecraft into an elliptic orbit about the Moon, with
specified eccentricity of the ellipse, and with specified true anomaly at the capture.

There has been considerable work devoted to understand the concept of WSB from
the point of view of dynamical systems, and to enhance its applicability (see, e.g., [6, 13,
4, 12]). A remarkable property of the WSB is that, in the context of the planar circular
restricted three-body problem, for some range of energies, and under some topological
conditions on the hyperbolic invariant manifolds associated to the libration points,
the weak stability boundary points coincide with the points on the stable manifolds
satisfying some additional conditions. This has been observed numerically in [6], and
argued geometrically in [4].

The classical definition of the WSB is as follows: for each radial segment emanating
from the Moon, we consider trajectories that leave that segment at the periapsis of an
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osculating ellipse whose semi-major axis is a part of the radial segment; a trajectory is
called weakly n-stable if it makes n full turns around the Moon without going around
the Earth, and it has negative Kepler energy when it returns to the radial segment; if
the trajectory is weakly (n−1)-stable but fails to be weakly n-stable, it is called weakly
n-unstable; the points that make the transition from the weakly n-stable regime to the
weakly n-unstable regime are by definition the points of the WSB of order n.

We note that WSB points lie on different Hamiltonian energy levels. Also, the
WSB is not an invariant set for the Hamiltonian flow. We remark that, since the
stability/instability criteria, as described above, are concerned with the behavior of
trajectories for finite time, they inherently introduce ‘artifacts’, i.e., points with very
similar trajectories that are categorized differently with respect to these criteria. See
[4, 11].

In the present note, we propose a more general definition of the WSB. We remove
the condition that the infinitesimal mass leaves the radial segment at the periapsis
of an osculating ellipse whose semi-major axis is a part of the radial segment. We
remove the condition on negative Kepler energy at the return. We define a point on
the radial segment as being weakly n-stable provided that it makes n turns around the
primary, such that the distance from the infinitesimal mass to the primary measured
along the trajectory does not get bigger than some critical distance. Otherwise the
point is redeemed as unstable. (Some of these ideas are also suggested in [11].) The
main result of this paper is that the WSB points, which make the transition from the
weakly stable to the weakly unstable regime, are the points on the stable manifold of
the Lyapunov orbit for the corresponding energy level.

The argument for the main result is analytical, relying on topological arguments and
estimates from [5, 10, 9]. For this reason, we deal with the WSB set about the heavier
primary (unlike in the WSB original setting).

An interesting aspect of the WSB method is that it uses ‘local’ information on the
dynamics, namely the return of trajectories to a surface of section about one of the
primaries, to infer some ‘global’ information on the dynamics, namely the existence of
trajectories that execute transfers from one primary to the other.

2. Background

2.1. The planar circular restricted three-body problem. We consider the planar
circular restricted three-body problem (PCRTBP) with the mass ratio of the primaries
sufficiently small. The system consists of two mass points P1, P2, called primaries,
of masses m1 > m2 > 0, respectively, that move under mutual Newtonian gravity
on circular orbits about their barycenter, and a third point P3, of infinitesimal mass,
that moves in the same plane as the primaries under their gravitational influence, but
without exerting any influence on them. Let µ = m2/(m1 +m2) be the relative mass
ratio of m2. In the sequel, we will assume that 0 < µ < 1 is very small, which will be
made precise later.

It is customary to study the motion of the infinitesimal mass in a co-rotating system
of coordinates (x, y) that rotates with the primaries. Relative to this system, P1 is
positioned at (µ, 0) and P2 is positioned at (−1 + µ, 0). After some rescaling, the
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Figure 1. A Hill’s region, H ∈ (H(L1),H(L2)).

equations of motions are given by

(2.1) ẍ− 2ẏ =
∂ω

∂x
, ÿ + 2ẋ =

∂ω

∂y
,

where the effective potential ω is given by

(2.2) ω(x, y) =
1

2
(x2 + y2) +

1− µ

r1
+

µ

r2
+

1

2
µ(1− µ),

with r1 = ((x− µ)2 + y2)1/2, r2 = ((x+ 1− µ)2 + y2)1/2.
The equations of motion can be described by a Hamiltonian system given by the

following Hamiltonian (energy function):

(2.3) H(x, y, px, py) =
1

2
((px + y)2 + (py − x)2)− ω(x, y),

where ẋ = px + y and ẏ = py − x.
For each fixed value H of the Hamiltonian, the energy hypersurface MH is a non-

compact 3-dimensional manifold in the 4-dimensional phase space. The projection of
the energy hypersurface onto the configuration space (x, y) is called a Hill’s region, and
its boundary is a zero velocity curve. See Fig. 1. Every trajectory is confined to the
Hill’s region corresponding to the energy level of that trajectory.

The equilibrium points of the differential equations (2.1) are given by the critical
points of ω. There are five equilibrium points for this problem: three of them, L1, L2

and L3, are collinear with the primaries (where L1 is between L2 and L3), while the
other two, L4, L5, form equilateral triangles with the primaries. The distance from L1

to P2 is given by the only positive solution x+ to Euler’s quintic equation

(2.4) x5 − (3− µ)x4 + (3− 2µ)x3 − µx2 + 2µx− µ = 0,

and so the distance from L1 to P1 is 1− x+.
The values H(Li) of the Hamiltonian (2.3) at the points Li, i = 1, . . . , 5, satisfy

H(L5) = H(L4) > H(L3) > H(L2) > H(L1). For H < H(L1), the Hill’s region has
three components: two bounded components, one about P1 and the other about P2,
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and a third component which is unbounded. For H ∈ (H(L1), H(L2)), the Hill’s region
has two components, one bounded, which is topologically equivalent to the connected
sum of the two bounded components from the case H < H(L1), and the other one
unbounded (Fig. 1).

The linearized stability of the equilibrium point L1 is of saddle-center type, with
the linearized equations possessing a pair of non-zero real eigenvalues ±λ, and a pair
of complex conjugate, purely imaginary eigenvalues ±iν. For each H ' H(L1), near
the equilibrium point L1 there exists a unique hyperbolic periodic orbit γH , referred
as a Lyapunov orbit. This orbit has 2-dimensional stable and unstable manifolds
W s(γH), W u(γH), respectively, that are locally diffeomorphic to 2-dimensional cylin-
ders. These manifolds have the following separatrix property: when restricted to a
compact neighborhood BH(a, b) of γH in the energy hypersurface MH , of the type
BH(a, b) = {a ≤ x ≤ b}, with a < xL1 < b sufficiently close to xL1 , each of the
manifolds W s(γH),W u(γH) separates BH(a, b) into two connected components.

2.2. Conley’s isolating block. Let ϕ : M×R → M be a C1-flow on a C1-differentiable
manifold M . Given a compact submanifold with boundary B ⊆ M , with dim(B) =
dim(M), we define

B− = {p ∈ ∂B | ∃ε > 0 s.t. ϕ(0,ε)(p) ∩B = ∅},
B+ = {p ∈ ∂B | ∃ε > 0 s.t. ϕ(−ε,0)(p) ∩B = ∅},

B0 = {p ∈ ∂B |ϕt is tangent to ∂B at p}.

We obviously have ∂B = B0 ∪B− ∪B+. We call B− the exit set and B+ the entry
set of B.

An open set V is called an isolating neighborhood for the flow if ∂V contains no
orbit of ϕ. An invariant set S for the flow ϕ is an isolated invariant set if there exists
an isolating neighborhood V for the flow such that S is the maximal invariant set in V .
The compact submanifold B is called an isolating block for the flow ϕ provided that:

(i) B− ∩B+ = B0,
(ii) B0 is a smooth submanifold of ∂B of codimension 1, and, consequently, B−, B+

are submanifolds with common boundary B0.

The interior of an isolating block is an isolating neighborhood and so determines an
isolated invariant set, possibly empty.

In the PCRTBP, Conley has constructed an isolating block around L1 that can be
used to study the nearby dynamics. Consider the part of the Hill’s region which satisfies
a ≤ x ≤ b, where (a, b) contains the x-coordinate xL1 of L1. This set determines a
“dynamical channel” which allows for the transit of trajectories between the P1 and
P2 regions. The lift BH = BH(a, b) of this set to the energy hypersurface, where
a, b are chosen close to xL1 , is Conley’s isolating block. Geometrically, this is a 3-
dimensional manifold with boundary ∂BH consisting of the set of points in the energy
hypersurface that projects onto x = a and x = b in the configuration space. It is
diffeomorphic to the product of a line segment with a two sphere, BH ≈ [a, b]×S2, and
its boundary ∂BH is diffeomorphic to the union of two 2-spheres, ∂BH = BH,a∪BH,b ≈
({a} × S2) ∪ ({b} × S2).



GEOMETRY OF WEAK STABILITY BOUNDARIES 5

The isolating block conditions in this case are that every trajectory intersecting ∂B
tangentially must lie outside of BH both before and after the intersection, that is, if
x(t) = a and ẋ(t) = 0 then ẍ(t) < 0 and if x(t) = b, and ẋ(t) = 0 then ẍ(t) > 0. So we
have

B0
H = {(x, y, ẋ, ẏ) ∈ ∂BH |x(t) = a or x(t) = b and ẋ(t) = 0},

B−
H = {(x, y, ẋ, ẏ) ∈ ∂BH |x(t) = a and ẋ(t) < 0, or x(t) = b and ẋ(t) > 0},

B+
H = {(x, y, ẋ, ẏ) ∈ ∂BH |x(t) = a and ẋ(t) > 0, or x(t) = b and ẋ(t) < 0}.

For each component of ∂BH , the exit and entry sets determine a pair of disjoint
open 2-dimensional topological disks, which we denote as follows: B−

H,a, B
−
H,b are the

exit sets of the boundary components BH,a, BH,b, respectively, and B+
H,a, B

+
H,b are the

entry sets of the boundary components BH,a, BH,b, respectively. The complement in

BH,b of B−
H,b ∪ B+

H,b is the set B0
H,b = B0

H ∩ {x = b}. A similar statement holds for
BH,a.

The exit and entry sets are further broken up into components with dynamical
roles. The set B+

H,b is the union of three sets, a spherical cap B+,a
H,b , corresponding to

trajectories that enter the block BH through the entry part of BH,b and later leave the

block through the exit part of BH,a, a spherical zone B
+,b
H,b, corresponding to trajectories

that enter the block BH through the entry part of BH,b and leave the block through
the exit part of BH,b, and a topological circle separating them, corresponding to the

intersection of W s(γH) with BH,b. Similarly, B−
H,b = B−,a

H,b ∪ B−,b
H,b ∪ (BH,b ∩W u(γH)),

where the notation is analogous to the above. There is a similar decomposition for the
entry and exit set components of BH,a. See Fig. 2.

Later in the paper, we will use the following fact, which is a consequence of the
above discussion. There are three possible behaviors for trajectories that start from
the P1-region and enter the isolating block:

(i) Trajectories enter the block through B+,a
H,b , exit the block through B−,b

H,a, and so

they execute a transfer from the P1-region to the P2-region.

(ii) Trajectories enter the block through B+,b
H,b, exit the block through B−,b

H,b, and so

they do not transfer to the P2-region.
(iii) Trajectories enter the block through BH,b∩W s(γH) and are forward asymptotic

to γH , and so they never leave the block.

For further details on this subsection, see [5].

2.3. Hyperbolic invariant manifolds. The geometry of the hyperbolic invariant
manifolds can be described analytically inside the P1-region, for some range of energies
and mass ratios, following some results from [10, 9].

First, there exists an open set O1 in the (µ,H)-parameter plane, with 0 < µ ≪ 1
and H ' H(L1) such that, for (µ,H) ∈ O1, the following hold:

(i) The energy hypersurface MH contains an invariant 2-torus TH separating P1

from L1.
(ii) There exist a < xL1 < b such that the flow inside the isolating block BH =

BH(a, b) is conjugate to the linearized flow.
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BH,b
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Η
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Figure 2. (a) Projection of Conley’s isolating block onto configuration
space. (b) Schematic representation of the dynamics across Conley’s
isolating block.

(iii) In the region NH in MH bounded by TH and BH,b, the longitudinal angular
coordinate θ is increasing along trajectories.

Second, for all 0 < µ ≪ 1 sufficiently small, the (x, y)-projections of the branches of
W u(L1),W

s(L1) inside the P1-region have the following properties:

(iv) The distance d to the zero velocity curve, and the angular coordinate θ satisfy
the following estimates:

d = µ1/3
(
2
3N − 31/6 +M cos t+ o(1)

)
,(2.5)

θ = −π + µ1/3 (Nt+ 2M sin t+ o(1)) ,(2.6)

where M,N are constants, the parameter t means the physical time measured
from a suitable origin, and o(1) → 0 when µ → 0 uniformly in t as t = O(µ−1/3).
These expressions hold true outside BH .

(v) There exists an open set O2 ⊆ O1 in the (µ,H)-parameter plane, with 0 <
µ ≪ 1 and H ' H(L1) such that, for (µ,H) ∈ O2, the (x, y)-projections of
the branches of W u(γH),W s(γH) inside the P1-region satisfy estimates similar
to (2.5) and (2.6). That is, these invariant manifolds turn around P1 in the
region NH bounded by the torus TH and the boundary component BH,b of the
isolating block BH . Moreover, there exists a sequence of mass ratios µk for
which W u(γH) and W s(γH) have symmetric transverse intersections, provided
(µk,H) ∈ O2.

The geometry of the hyperbolic invariant manifolds for the range of parameters
considered above allows to extend the separatrix property of these manifolds from the
local case, as described in Subsection 2.1, to the global case. For as long as the stable
and unstable manifolds do not intersect each other, the cuts of these manifolds with
a surface of section are topological circles. If a point is inside the i-th cut Γs

θ0,i
(γH)

made by the stable manifold W s(γH) with the surface of section Sθ0 , which is assumed
to be a topological circle, then the forward trajectory of that point stays inside the
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pr(pr(pr(T )T )

Figure 3. Projection of McGehee’s separating torus onto configuration
space, and trajectory near the zero velocity curve.

cylinder bounded by W s(γH) in MH for i-turns and transfers from the P1-region to the
P2-region afterwards. If a point in Sθ0 is outside the i-th cut Γs

θ0,i
(γH), then its forward

trajectory stays inside the P1-region for at least (i+1)-turns. A similar statement holds
for the cuts made by the unstable manifold and backwards trajectories.

If the stable and unstable manifolds intersect, say Γs
θ0,i

(γH) intersects Γu
θ0,j

(γH),

then the intersection points are homoclinic points that make (i + j)-turns about P1,
and some future cuts of the invariant manifolds cease to be topological circles. For
example, Γs

θ0,i+j(γH) is a finite union of open curve segments whose endpoints wind

asymptotically towards Γs
θ0,i

(γH). Due to the asymptotic behavior of the endpoints,
each of these open curves divides Sθ0 into transfer and non-transfer orbits. Thus,
the separatrix property extends to the case when the cuts of the hyperbolic invariant
manifolds cease being topological circles. See [7, 4].

There are no analogues of the above analytical results for the P2-region about the
lighter mass.

2.4. Equations of motion relative to polar coordinates. We recall the relations
between the motion of the infinitesimal mass P3 relative relative to the barycentric
rotating coordinates (x, y, ẋ, ẏ), relative to the polar coordinates (r, θ, ṙ, θ̇) about P1,
and relative to the classical orbital elements (a, e, ϕ, τ) about P1.

The relation between barycentric and polar coordinate is r = ((x− µ)2 + y2)1/2 and
tan θ = y/(x− µ).

The orbital elements are characterized by the semi-major axis a of an ellipse with a
focus at P1, the ellipse eccentricity e ∈ [0, 1), the argument of the periapsisis ϕ ∈ [0, 2π],
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and the true anomaly τ ∈ [0, 2π]. We have the following coordinate transformations

x = r cos(ϕ+ τ) + µ,

y = r sin(ϕ+ τ),

ẋ = ṙ cos(ϕ+ τ)− rτ̇ sin(ϕ+ τ) + r sin(ϕ+ τ),

ẏ = ṙ sin(ϕ+ τ) + rτ̇ cos(ϕ+ τ)− r cos(ϕ+ τ),

(2.7)

and the following formulas

r =
a(1− e2)

1 + e cos τ
,

ṙ =
ae(1− e2)τ̇ sin τ

(1 + e cos τ)2
,

θ = ϕ+ τ,

θ̇ = τ̇ =

√
a(1− e2)(1− µ)

r2
.

(2.8)

The Hamiltonian function in polar coordinates is given by

(2.9) H(r, pr, θ, pθ) =
1

2
(p2r +

1

r2
θ2)− pθ + µr cos θ + ω(r, pr, θ, pθ),

where the canonical momenta are given by

pr = ṙ, pθ = r2(θ̇ + 1).

Note that the conservation of energy implies that the initial position (r, θ) relative
to P1 and the initial radial velocity ṙ uniquely determine a trajectory, up to a choice
of a sign for θ̇. Suppose that we know the initial data (r, ṙ, θ) on a trajectory. Using
(2.8), the eccentricity of the osculating ellipse to this trajectory at the initial point
uniquely determines the trajectory, and hence its energy. This implicitly defines ϕ and
τ . Conversely, if we have a trajectory for which the initial angle coordinate θ, the
initial angular velocity ṙ, and the eccentricity of the osculating ellipse e at the initial
condition are fixed, then the energy level H of the trajectory uniquely determines its
initial value of r.

3. Weak Stability Boundary

We consider the system of polar coordinates (r, θ) about P1 as above, and we let

H(r, ṙ, θ, θ̇) be the Hamiltonian relative to this coordinate system. As discussed above,
the energy is also uniquely determined by the (r, ṙ, θ, e)-data, where e is the eccentricity
of the osculating ellipse at the initial point. We consider a Poincaré section through
P1 that makes an angle θ0 with the x-axis, which is given by

Sθ0 = {(r, ṙ, θ, θ̇) | θ = θ0, θ̇ > 0}.
Let lθ0 denote the radial segment obtained as the intersection of Sθ0 with the (x, y)-

space. Any trajectory that meets Sθ0 transversally is uniquely determined by the (r, ṙ)-
coordinates of the intersection point, as the θ-coordinate equals θ0 in this section, and
the θ̇-coordinate can be solved uniquely from the energy condition H(r, ṙ, θ, θ̇) = H,

provided θ̇ > 0.
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Consider a trajectory with the initial condition z0 = z0(r0, ṙ0, θ0, e0) with initial

position r(0) = r0, θ(0) = θ0, initial radial velocity ṙ(0) = ṙ0, and θ̇(0) > 0, for
which the osculating ellipse at the initial point has eccentricity e0. We keep the values
of ṙ0, θ0, e0 fixed and investigate the change of behavior of the trajectories when r0
changes. Note that different initial values of r0 yield different energies H0.

Fix a value of µ sufficiently small for which there exists an open range of energies
(H(L1),H

∗) with (µ,H) ∈ O2 for each H ∈ (H(L1),H
∗), as in Subsection 2.3. For

this range of energies the estimates (2.5) are valid. Fix a < xL1 < b such that BH(a, b)
is an isolating block for all H ∈ (H(L1),H

∗). Let yb be the supremum of the y-
coordinates on the segment x = b inside the Hill’s regions for H ∈ (H(L1), H

∗). Define
θ1 = arctan(yb/(µ− b)). Let D1 be the distance from P1 to x = a, that is D1 = µ− a.

Fix H ∈ (H(L1),H
∗) and consider the projection pr(x,y)(NH) of NH onto the (x, y)-

configuration plane. For each angle coordinate θ ∈ [0, 2π], there exists a well de-
fined interval (r1(H, θ), r2(H, θ)) such that (r, θ) ∈ pr(x,y)(NH) if and only if r ∈
(r1(H, θ), r2(H, θ)). For each trajectory point (r, θ) ∈ pr(x,y)(NH) there exists a set
of admissible values of the radial velocity ṙ and of the eccentricity of the osculat-
ing ellipse e corresponding to the trajectory at that point. When we let H vary in
(H(L1),H

∗), then for each θ ∈ [0, 2π], we obtain an open set of admissible values of
(ṙ, e) corresponding to all trajectories for all of these energy levels.

We fix an angle θ0 and a pair of admissible values (ṙ0, e0). Since the energy H is
uniquely determined by the data (r0, ṙ0, θ0, e0), there exists an open set R(ṙ0, θ0, e0) ⊆
(r1(H, θ), r2(H, θ)) of r0-values such thatH0 = H(r0, ṙ0, θ0, e0) ∈ (H(L1),H

∗) provided
r0 ∈ R(ṙ0, θ0, e0). In the next definition, we will consider trajectories with initial points
z0 lying on the radial segment lθ0 . We will restrict to values of r0 in the set R(ṙ0, θ0, e0).

Definition 3.1. We say that a forward trajectory with initial point z0 = z0(r0, θ0) in
lθ0 , initial radial velocity ṙ0 and initial eccentricity of the osculating ellipse e0, is weakly
n-stable provided that it turns n-times around P1, with all intersections with lθ0 being
transverse, and such that the distance to P1 is always less than D1. If the trajectory
is weakly (n − 1)-stable but fails to be weakly n-stable, we say that the trajectory is
weakly n-unstable.

The conditions on the parameters assumed for the Definition 3.1 are imposed in
order to define the critical distance D1 in a consistent way for the whole range of
energy values H ∈ (H(L1),H

∗). We recall that in the classical definition of the WSB,
a trajectory is called n-stable if it turns n-times around P1, without turning around
P2; in that case one can consider the distance from P1 to P2 as the critical distance.

We note that the transversality requirement in Definition 3.1, on the intersections
of the trajectory of the infinitesimal mass with lθ0 , implies that weak n-stability is an
open condition, that is, if a trajectory starting at some z0 = (r0, ṙ0, θ0, e0) is weakly
n-stable, then all trajectory starting inside some domain of the type

(r, ṙ, θ, e) ∈ (r0 − ε, r0 + ε)× (ṙ0 − ε, ṙ0 + ε)× (θ0 − ε, θ0 + ε)× (e0 − ε, e0 + ε)

with ε > 0 sufficiently small, are also weakly n-stable.
Thus we obtain the following set of weakly stable points in the phase space

Wn = {z0(r0, ṙ0, θ0, e0) | z0 is weakly n-stable relative to lθ0 , θ0 ∈ [0, 2π]}.
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Due to the open conditions on the n-stable trajectories, the set Wn is an open set
of points in the phase space. If we fix the parameters ṙ0, θ0 and e0, then we obtain an
open set Wn(ṙ0, θ0, e0) in lθ0 , which is a countable union of disjoint open intervals

(3.1) Wn(ṙ0, θ0, e0) =
∪
k≥1

(r2k−1, r2k).

The points of the type r2k−1, r2k at the ends of these intervals are weakly n-unstable.

Definition 3.2. TheWSB of order n, denotedW∗
n, is the set of all points r

∗(r0, ṙ0, θ0, e0)
that are at the boundary of the set of the weakly n-stable points, i.e.,

W∗
n = ∂Wn.

We also denote by W∗
n(ṙ0, θ0, e0) the set of WSB points on the radial segment lθ0 of

fixed parameters ṙ0 and e0. Thus, the WSB set W∗
n(ṙ0, θ0, e0) contains the closure of

the set of all points of the type r2k−1, r2k, which are the endpoints of the intervals of
weakly n-stable points within each radial segment lθ0 as in (3.1).

The main result of the paper says that, if we restrict to some angle range of θ0
outside the angle sector [π − θ1, π + θ1], where θ1 is defined as above, then the WSB
set is completely determined by the stable manifolds of Lyapunov orbits. To state
this result, we have to adopt a convention on how to count the number of cuts made
by the stable manifold with a surface of section Sθ0 . We label a cut made by the
stable manifold W s(γH0) with Sθ0 as the i-th cut provided that the net change ∆θ of
the angle θ along all trajectories starting from Sθ0 and ending asymptotically at γH0

satisfies 2iπ ≤ ∆θ < 2(i + 1)π. Note that as long as θ0 ̸∈ [π − θ1, π + θ1] there is no
ambiguity about the labeling of the cuts with the section Sθ0 .

Theorem 3.3. Fix a pair of admissible values (ṙ0, e0) as defined above. Assume θ0 ∈
(−π + θ1, π − θ1), where θ1 is defined as above. Then a point z0 = z0(r0, ṙ0, θ0, e0),
with r0 ∈ R(ṙ0, θ0, e0), is in W∗

n(ṙ0, θ0, e0) if and only if z0 lies on the (n − 1)-st cut
Γs
θ0,n−1(γH0) of the stable manifold W s(γH0) with the surface of section Sθ0, where H0

is the energy level corresponding to z0.

The restrictions imposed on the parameters in Theorem 3.3 are needed to apply
the analytical arguments from Subsection 2.3. It is nevertheless shown in [4] that the
WSB overlaps with some subset of the stable manifold of the Lyapunov orbit under
much weaker conditions, provided that the hyperbolic invariant manifolds satisfy some
topological condition (they turn around the primaries for a long enough time, without
colliding with the primaries). Moreover, in [4] a wider energy range is considered, in
which case the WSB is identified with a subset of the union of the stable manifolds of
the Lyapunov orbits about L1 and about L2. The situation described by Theorem 3.3 is
just a special case when the required topological conditions can be verified analytically.

Now we explain the relation between WSB and hyperbolic invariant manifolds in
a more concrete way. Assume that we fix some energy level H0 ∈ (H(L1), H

∗). We
generate the stable manifold of the Lyapunov orbit γH0 , and we count the successive
cuts made by the stable manifold with some Poincaré surface of section Sθ0 . Let z0 be
a point on the (n − 1)-st cut Γs

θ0,n−1(γH0) of W s(γH0) with Sθ0 . Let ṙ0 be the radial
velocity at z0, and e0 the eccentricity of the osculating ellipse at z0. Then the point z0
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is in the WSB set W∗
n(ṙ0, θ0, e0). Moreover, every WSB point can be obtained in this

way.

4. Proof of the main result

Due to the angle restriction θ0 ∈ (−π + θ1, π − θ1), in Theorem 3.3, we restrict to
the following set of weakly n-stable points

W̃n = {z0(r0, ṙ0, θ0, e0) | z0 is weakly n-stable relative to lθ0 , θ0 ∈ (−π + θ1, π − θ1)}.

Since the n-stability is an open condition and the angle range (−π + θ1, π − θ1) is

also open, the set W̃n is an open set in the phase space.
We prove that a point z0 = z0(r0, ṙ0, θ0, e0) is in W̃∗

n if and only if it is in the (n−1)-
st cut Γs

θ0,n−1(γH0) made by the stable manifold W s(γH0) with Sθ0 , where H0 is the
energy level corresponding to z0. For this, we first show that z0 is a weakly n-stable
point on lθ0 if and only if it is outside the domain in Sθ0 bounded by Γs

θ0,n−1(γH0), and is

weakly n-unstable if and only if it is inside the domain in Sθ0 bounded by Γs
θ0,n−1(γH0).

First, we show that the points inside the cylinder bounded by the stable manifold
are weakly unstable. Let z0 = z0(r0, ṙ0, θ0, e0) be a point in lθ0 . Then (2.9) gives
the value H0 of the energy of the trajectory with initial condition z0. Assume that
z0 is inside the domain in Sθ0 bounded by Γs

θ0,n−1(γH0). By the separatrix property

from Subsection 2.3 the trajectory turns counterclockwise precisely (n−1)-times inside
the domain NH0 , while staying inside the region of the cylinder bounded by W s(γH0),

enters the isolating block BH0 through the entry set region B+,a
H0,b

, crosses the block

and exits it through the exit set region B−,b
H0,a

. When the trajectory leaves the block
BH0 , the distance from P1 is bigger than D1. Since the trajectory achieves a distance
to P1 bigger than the threshold value prior to completing an n-th turn around P1, the
trajectory is weakly n-unstable.

Second, we show that the points outside the cylinder bounded by the stable man-
ifold are weakly stable. Assume that z0 is outside the domain in Sθ0 bounded by
Γs
θ0,n−1(γH0). By the separatrix property from Subsection 2.3 the trajectory will turn

counterclockwise inside the domain NH0 and will keep staying outside the region of the
cylinder bounded by W s(γH0) for at least n turns. If the trajectory leaves the domain

NH0 , it has to meet the block BH0 at B0
H0

or at B+,b
H0,b

. In the first case, the trajectory

bounces back to the domain NH0 and it continues its counterclockwise motion about
P1. In the second case, it cannot leave the block BH0 through BH0,a, since only the
points that are inside the cylinder bounded by W s(γH0) can do that; it cannot remain
inside the block BH0 for all future times since only the points on W s(γH0) have this

property; hence, it has to leave BH0 through the exit set region B−,b
H0,b

, and to go back to

the domain NH0 . The time spent by the trajectory inside the block BH0 does not affect
the count of turns about P1. Since z0 is outside the cut Γs

θ0,n−1(γH0), the trajectory

cannot leave the P1-region after only (n − 1)-turns, so it turns around P1 for at least
n-turns. Thus the trajectory is weakly n-stable.

Now, we prove the statement of the main theorem.
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First, assume that z0 is in Γs
θ0,n−1(γH0). Its forward trajectory turns (n − 1)-times

around P1 and then approaches asymptotically γH0 . Thus the trajectory is weakly
n-unstable. To show that z0 is an WSB point it is sufficient to prove that there exists
a sequence (zk0 )k≥1 with zk0 ∈ W̃n and zk0 → z0 as k → ∞. Take a small 4-dimensional
open ball U around z0 in the phase space. Let T > 0 be such that the time-T map ϕT of
the Hamiltonian flow takes z0 to a point in BH0,b, where H0 = H(z0). The image ϕT (U)
of U by ϕT is a 4-dimensional open topological ball about ϕT (z0). We intersect ϕT (U)
with the 4-dimensional submanifold with boundary

∪
H∈(H(L1),H∗)BH . The ball ϕT (U)

has non-empty intersection with
∪

H∈(H(L1),H∗)B
+,b
H,b. These intersection points yield

weakly n-stable trajectories. Thus ϕT (U)∩
∪

H∈(H(L1),H∗)BH contains a 4-dimensional

open, topological ball V, which contains ϕT (z0) on its boundary, consisting of points
that correspond to weakly n-stable trajectories, i.e., those trajectories that return to
the P1 region for at least one extra turn about P1.

Now consider the set ϕ−T (V). This is a 4-dimensional open, topological ball in U
that contains z0 on its boundary. There exist θ′ arbitrarily close to θ0 such that the
intersection ϕ−T (V) ∩ Sθ′ is a non-empty open set. All points z′ ∈ ϕ−T (V) ∩ Sθ′ are
weakly n-stable points. We note that these points may not lie on lθ0 , nor on the same
energy level as z0; they can also have the eccentricity of the osculating ellipse different
from e0. Thus, arbitrarily near z0 one can always find weakly n-stable points, and since
z0 itself is weakly n-unstable, it follows that z0 ∈ ∂W̃n = W̃∗

n.

Second, assume that z0 ∈ W̃∗
n(ṙ0, θ0, e0). Then there exists a sequence of points

(zk0 )k≥1 on l(θ0) such that zk0 is weakly n-stable and zk0 → z0 as k → ∞. From the
above, we know that the weakly n-stable points are those inside the cylinder bounded
by the stable manifold. Thus, there exists a corresponding sequence of stable manifold
cuts Γs

θ0,n−1(γHk
) where Hk = H(zk0 ), such that zk0 is inside the region in Sθ0 bounded

by Γs
θ0,n−1(γHk

). Since z0k → z0 it follows that H(zk0 ) → H(z0) = H0 as k → ∞.

The stable manifold cuts also depend continuously on the energy, so Γs
θ0,n−1(γHk

)

approaches Γs
θ0,n−1(γH0) as k → ∞. Hence z0 ∈ Γs

θ0,n−1(γH0).
Through double inclusion, we conclude that

z0 ∈ W̃∗
n(ṙ0, θ0, e0) if and only if z0 ∈ Γs

θ0,n−1(γH0).

5. Concluding remarks

We compare the invariant manifold method with the WSB method. The invariant
manifold method is based on identifying geometric objects that serve as building blocks
that organize the global dynamics: equilibrium points, periodic orbits, and their stable
and unstable invariant manifolds, if they exist. The WSB method is a local method
for deciding whether the trajectories about one of the primaries exhibit some kind of
stability in terms of the return to a surface of section. The conclusion of this paper,
corroborated with the results in [6, 4], is that in simple models the two methods overlap
for a substantial range of parameters.

One can think of some other kinds of indicators that mark the passage between the
weakly n-stable and the weakly n-unstable regimes. One such a possible indicator is
the continuity of the Poincaré return map. The n-th return map to Sθ0 is continuous
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at all weakly n-stable points. At the WSB points, the return map exhibits essential
discontinuities of infinite type. Thus, the set of points where the return map fails to
be continuous contains the WSB points.
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