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Abstract. We study the fluid/solid phase transition via a mean field model using the
language of large dense random graphs. We show that the entropy density, for fixed particle
and energy densities, is minus the minimum of the large deviation rate function for graphs
with independent edges. We explicitly compute this minimum for small energy density
and a range of particle density, and show that the resulting entropy density must lose its
analyticity at some point. This implies the existence of a phase transition, associated with
the heterogeneous structure of the energy ground states.

1. Introduction

We will adapt an old random graph model of Strauss [S] to provide a mean field model of
the fluid/solid transition of equilibrium matter, in particular to model how high density can
produce the internal (crystalline) structure of solids out of a homogeneous fluid. The energy
ground state in the model exhibits a range of different structures as the particle density
varies, and we use this feature to show there is a phase transition between the structures,
near the energy ground state. We are forced to use a mean field model as there is still no
convincing model of the basic phenomenon of a distinct solid phase; see [A, Br, Uh, AR1]. A
side issue is the use of recent analyses of dense graphs to provide a mathematical framework
for the asymptotics of mean field models.

The following is the usual route for understanding the thermodynamic phases of a noble gas
such as argon, using classical statistical mechanics and a Lennard-Jones, rotation symmetric,
2-body interaction potential V , depending on separation r by V (r) = c1r

−12 − c2r
−6, with

c1, c2 > 0; see Figure 1. This phenomenological interaction contains the desired features
that the (neutral) atoms repel strongly at small separation due to their electron clouds, and
deform at intermediate separation, providing a weak attraction responsible for the ‘molecular
bonds’ in the solid phase. The two basic phase transitions, the gas/liquid and fluid/solid,
are drawn schematically in Figure 2; neither can be proven for this model, and indeed it has
yet to be proven even that the energy ground state is crystalline. (The appropriate crystal
has been proven to be the unique ground state in 1 dimension [GR] and to be a ground state
in 2 dimensions [T].)

Other, less-realistic models supply a convincing theoretical argument for a gas/liquid tran-
sition for such materials. This was first achieved by the well known mean field model of van
der Waals, in which the attraction between particles is simplified by ignoring the separation.
See [LMP] for recent history of the model and improvements beyond mean field. These mod-
els reproduce the basic features of the transition as first order, with coexisting disordered
phases of different energy and particle density, ending in a critical point.
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Figure 1. The Lennard-Jones interaction potential

We note that not just for noble gases but for most materials the gas/liquid transition
is associated with an attractive force between the molecules. For argon the Lennard-Jones
potential is reasonable, but for molecules which utilize other types of bonds in the solid
phase a more complicated modeling would be desired. In contrast, the fluid/solid transition,
at least when the pressure is varied at fixed high temperature, is normally associated with
the repulsion of the two electron clouds, independently of the detailed interaction associated
with the outer electrons. The hard sphere model [Low], in which the only interaction is a
simple hard core—two particles separated by less than the hard core distance produce infinite
energy—is then appropriate quite generally, at least for roundish molecules. Simulation of
the hard sphere model seems to show only a densely packed face centered cubic crystal
([BFMH, W]); the less-dense crystals which appear at lower pressure in some materials
presumably are in part due to other features of the interaction, as in the simple cubic
crystals of ionic solids such as table salt. And of course the hard sphere model does not
show a gas/liquid transition since it does not include an attractive force. But the model does
exhibit the basic phenomenon whereby (crystalline) structure is produced at high density.

Unfortunately our knowledge of the hard sphere model [Low], and more generally the
creation of crystalline structure at high density, is based almost completely on computer
simulation [A, Br, Uh]. We will try to remedy this via an analogue of the van der Waals
result, a mean field analysis but now for the fluid/solid transition. We will adapt a model of
Strauss [S], with particles represented by edges in an abstract graph and the (total) energy
of a graph being the number of triangular subgraphs, providing a repulsion. (There is no
attraction in our model; see however [PN, CD, RY] and references therein for a similar
approach using attraction to model a gas/liquid transition.) Our argument depends on
several recent results on the asymptotics of large graphs. We begin with notation; see
[LS1, LS2, Lov, BCLSV, LS3, CD, CV] for background.

Consider the set Ĝn of simple graphs G with set V (G) of (labelled) vertices, edge set
E(G) and triangle set T (G), where the cardinality |V (G)| = n. (‘Simple’ means the edges

are undirected and there are no multiple edges or loops.) Let Zn,δ
e,t be the microcanonical
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Figure 2. A schematic pressure/temperature phase diagram

partition function, the number of such graphs such that:

(1) e(G) ≡
|E(G)|
(

n
2

) ∈ (e− δ, e + δ) and t(G) ≡
|T (G)|
(

n
3

) ∈ (t− δ, t + δ).

Graphs in ∪n≥1Ĝ
n are known to have edge and triangle densities, (e, t), dense in the region R

in the e, t-plane bounded by three curves, c1 : (e, e
3/2), 0 ≤ e ≤ 1, the line l1 : (e, 0), 0 ≤

e ≤ 1/2 and a certain scalloped curve (e, f(e)), 1/2 ≤ e ≤ 1, lying above the curve
(e, e(2e− 1), 1/2 ≤ e ≤ 1, and meeting it when e = ek = k/(k + 1), k ≥ 1; see [PR] and
references therein, and Figure 3. (1,1)

(0,0)

t = e3/2

(1/2,0)

scallop loop of graph of f(e)

t = e(2e− 1)

edge density e

triangle

density t

Figure 3. The microcanonical phase space R, outlined in solid lines

We are interested in the density of graphs in R, more precisely in the entropy, the expo-
nential rate of growth of the density as n grows, as follows. First consider

(2) sn,δe,t =
ln(Zn,δ

e,t )

n2
, and se,t = lim

δ→0+
lim
n→∞

sn,δe,t .
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We will measure the growth rate by the entropy density se,t, and the main question of
interest for us is the existence of phase transitions (i.e. lack of analyticity of se,t) near the
lower boundary of R in Figure 3. The lower boundary consists of the scalloped curve together
with the ‘first scallop’, the line from (0, 0) to (1/2, 0).

The analysis of phase transitions in traditional models with short range interactions re-
quires the mathematical tools of the infinite volume limit. In this mean field graph setting
appropriate tools have been developed recently under the title of ‘graph limits’, utilizing
‘graphons’, as we sketch next.

2. Graphons

Consider the set W of all symmetric, measurable functions

(3) g : (x, y) ∈ [0, 1]2 → g(x, y) ∈ [0, 1].

Think of each axis as a continuous set of vertices of a graph. For a graph G ∈ Ĝn one
associates

(4) gG(x, y) =

{

1 if (⌈nx⌉, ⌈ny⌉) is an edge of G

0 otherwise,

where ⌈y⌉ denotes the smallest integer greater than or equal to y. For g ∈ W and simple
graph H we define

(5) t(H, g) ≡

∫

[0,1]ℓ

∏

(i,j)∈E(H)

g(xi, xj) dx1 · · · dxℓ,

where ℓ = |V (H)|, and note that for a graph G, t(H, gG) is the density of graph homomor-
phisms H → G:

(6)
|hom(H,G)|

|V (G)||V (H)|
.

We define an equivalence relation on W as follows: f ∼ g if and only if t(H, f) = t(H, g) for
every simple graph H . Elements of W are called “graphons”, elements of the quotient space
W̃ are called “reduced graphons”, and the class containing g ∈ W is denoted g̃. The space
W̃ is compact in the metric topology with metric:

(7) δ (f̃ , g̃) ≡
∑

j≥1

1

2j
|t(Hj, f)− t(Hj, g)|,

where {Hj} is a countable set of simple graphs, one from each graph-equivalence class.
Equivalent functions in W differ by a change of variables in the following sense. Let Σ
be the space of measure preserving bijections σ of [0, 1], and for f in W and σ ∈ Σ, let
fσ(x, y) ≡ f(σ(x), σ(y)). Then f ∼ g if and only if g = fσ for some σ ∈ Σ. Note that if each
vertex of a finite graph is split into the same number of ‘twins’, each connected to the same
vertices, the result stays in the same equivalence class, so for a convergent sequence g̃Gj one
may assume |V (Gj)| → ∞.

The value of this formalism here is that one can use large deviations on graphs with
independent edges [CV] to give an optimization formula for se,t, which allows us to analyze
se,t near the energy ground states, the lower boundary of R in Figure 3. We do this next.



A MEAN FIELD ANALYSIS OF THE FLUID/SOLID PHASE TRANSITION 5

3. The entropy is minus the minimum of the rate function

We next use the large deviations rate function for graphs with independent edges [CV].

Theorem 3.1. For any possible pair (e, t), se,t = −min I(g), where the minimum is over

all graphons g with e(g) = e and t(g) = t, where

e(g) =

∫ 1

0

∫ 1

0

g(x, y) dx dy, t(g) =

∫ 1

0

∫ 1

0

∫ 1

0

g(x, y)g(y, z)g(z, x) dx dy dz

and the rate function is

(8) I(g) =

∫ 1

0

∫ 1

0

I0(g(x, y)) dx dy, where I0(u) =
1

2
[u ln(u) + (1− u) ln(1− u)] .

Proof. Actually, the entropy sn,δe,t is not a-priori well-defined. All we know is that lim inf and

lim sup of ln(Z)/n2 exist as n → ∞. However, we will show that both of them approach
−min I(g) as δ → 0+.

We need to define a few sets. Let Uδ be the set of graphons g with (e(g), t(g)) strictly
within δ of (e, t), i.e. the preimage of an open ball of radius δ in (e, t)-space, and let Fδ be

the preimage of the closed ball of radius δ. Let Ũδ and F̃δ be the corresponding sets in W̃ .
Let |Un

δ | and |F n
δ | denote the number of graphs with n vertices whose checkerboard graphons

(4) lie in Uδ or Fδ. The large deviation principle, Theorem 2.3 of [CV], implies that:

(9) lim sup
n→∞

ln |F n
δ |

n2
≤ − inf

g̃∈F̃δ

I(g̃),

which also equals − inf
g∈Fδ

I(g), and that

(10) lim inf
n→∞

ln |Un
δ |

n2
≥ − inf

g̃∈Ũδ

I(g̃),

which also equals − inf
g∈Uδ

I(g). This yields a chain of inequalities

(11)

− inf
Uδ

I(g) ≤ lim inf
ln |Un

δ |

n2
≤ lim sup

ln |Un
δ |

n2
≤ lim sup

ln |F n
δ |

n2
≤ − inf

Fδ

I(g) ≤ − inf
U
δ+δ2

I(g)

As δ → 0+, the limits of − inf
Uδ

I(g) and − inf
U
δ+δ2

I(g) are the same, and everything in between

is trapped.
So far we have proven that

(12) se,t = − lim
δ→0+

inf
Uδ

I(g).

Next we must show that the right hand side is equal to −min
F0

I(g). By definition, we can

find a sequence of reduced graphons g̃δ ∈ Ũδ such that lim
δ→0

I(g̃δ) = lim inf
Uδ

I(g). Since W̃ is

compact, these reduced graphons converge to a reduced graphon g̃0, represented by a graphon
g0 ∈ F0. Since I is lower-semicontinuous [CV], I(g0) ≤ lim I(gδ), so min

F0

I(g) ≤ lim inf
Uδ

I(g).

(We write min rather than inf since F̃0 is compact.) However, min
F0

I(g) is at least as big as

inf
Uδ

I(g), since F0 ⊂ Uδ. Thus min
F0

I(g) = lim
δ→0

inf
Uδ

I(g). �
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4. Minimizing the rate function on the boundary

From now on we will work exclusively with graphons rather than with actual graphs.
From Theorem 3.1, all questions boil down to “minimize the rate funciton over such-and-
such region”. The first region we study is the lower boundary of (e, t)-space, beginning with
the first (flat) scallop:

Theorem 4.1. If e ≤ 1/2 and t = 0, then min
F0

I(g) is achieved at the graphon

(13) g0(x, y) =







2e if x <
1

2
< y or y <

1

2
< x;

0 otherwise.

Furthermore, any other minimizer is equivalent to g0, corresponding to the same reduced

graphon.

Proof. Since t(g) is identically zero, the measure of the set {(x, y) ∈ [0, 1]2|g(x, y) = 0} is at

least 1/2. Otherwise, the graphon ḡ(x, y) =

{

1 if g(x, y) > 0;

0 otherwise,
would have no triangles and

would have edge density greater than 1/2, which is impossible. So we restrict attention to
graphons that are zero on a set of measure at least 1/2. From the convexity of I0, we know
that the minimum of I among such graphons must be zero on a set of measure 1/2 and must
be constant on the rest . Thus g0 is a minimizer.

Now suppose that g is another minimizer. Since g is zero on a set of measure 1/2 and
is 2e on a set of measure 1/2, ḡ is 1 on a set of measure 1/2, and so describes a graphon
with edge density 1/2 and no triangles. This means that ḡ describes a complete bipartite
graph with the two parts having the same measure. That is, ḡ is equivalent to the graphon

that equals 1 if x <
1

2
< y or y <

1

2
< x and is zero everywhere else. But then g = 2eḡ is

equivalent to g0. �

The situation on the curved scallops is slightly more complicated. Pick an integer t > 1.

(The case t = 1 just gives us our first scallop.) If e ∈

[

1−
1

t
, 1−

1

t + 1

]

, then any graph

G with edge density e and the minimum number of triangles has to take the following form
(see [PR] for the history). Let

(14) c =
t+
√

t(t− e(t + 1))

t(t + 1)
.

There is a partition of {1, . . . , n} into t pieces, the first t − 1 of size ⌊cn⌋ and the last of
size between ⌊cn⌋ and 2⌊cn⌋, such that G is the complete t-partite graph on these pieces,
plus a number of additional edges within the last piece. (⌊y⌋ denotes the largest integer
greater than or equal to y.) These additional edges can take any form, as long as there are
no triangles within the last piece.

This means that, after possibly renumbering the vertices, the graphon for such a graph
can be written as an uneven t× t checkerboard obtained from cutting the unit interval into
pieces Vk = [(k−1)c, kc] for k < t and Vt = [(t−1)c, 1], with the checkerboard being 1 outside
the main diagonal, 0 on the main diagonal except the upper right corner, and corresponding
to a zero-triangle graph in the upper right corner.
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Limits of such graphons in the metric must take the form

(15) g(x, y) =











1 x < kc < y or y < kc < x for an integer k < t;

0 (k − 1)c < x, y < kc for some integer k < t;

unspecified x, y > (t− 1)c,

with

(16)

∫∫∫

[(t−1)c,1]3

g(x, y)g(y, z)g(z, x) dx dy dz = 0,

and with

∫∫

[0,1]2

g(x, y) dx dy = e. Minimizing I(g) on such graphons is easy, since all but the

upper right corner of the graphon is fixed. Applying Theorem 4.1 to that corner, we get

Theorem 4.2. If e > 1/2 and t is the smallest value possible, then the minimum of I(g) on
F0 is achieved by the graphon

(17)

g0(x, y) =











1 x < kc < y or y < kc < x for an integer k < t;

p (t− 1)c < x < [1 + (t− 1)c]/2 < y or (t− 1)c < y < [1 + (t− 1)c]/2 < x;

0 otherwise,

where

(18) p =
4c(1− tc)

(1− (t− 1)c)2

is a number chosen to make

∫ ∫

[0,1]2
g(x, y) dx dy = e. Furthermore, any other minimizer is

equivalent to g0.

5. Minimizing near the first scallop

Now that we know the minimizer at the boundary, we perturb it to get a minimizer near
the boundary.

Theorem 5.1. Pick e < 1/2 and ǫ sufficiently small. Then the graphon

(19) g(x, y) =







2e− ǫ x <
1

2
< y or y <

1

2
< x

ǫ otherwise,

minimizes the rate function to second order in perturbation theory among graphons with

e(g) = e and t(g) = e3 − (e − ǫ)3. For pointwise small variations δg of g, the second

variation in I(g) is bounded from below by
1

2

∫∫

[0,1]2

(δg(x, y))2 dx dy.

Proof. We first consider the first variation in I(g) for general graphons and derive the Euler-
Lagrange equations. It is easy to check that our specific g satisfies these equations. We then
consider the second variation in I(g). Note that the function I0 satisfies

(20) I ′0(u) =
1

2
[ln(u)− ln(1− u)], I ′′0 (u) =

1

2

[

1

u
+

1

1− u

]

≥ 2.
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To find the Euler-Lagrange equations with the constraints that (e(g), t(g)) are equal to
fixed values (e0, t0), we use Lagrange multipliers and vary the function I(g)+λ1(e(g)− e0)+
λ2(t(g)− t0). To first order, the variation with respect to g is

δI(g) =

∫ 1

0

∫ 1

0

I ′0(g(x, y))δg(x, y) dx dy+ λ1

∫ 1

0

∫ 1

0

δg(x, y) dx dy(21)

+3λ2

∫ 1

0

∫ 1

0

h(x, y)δg(x, y) dx dy,(22)

where we have introduced the auxiliary function

(23) h(x, y) =

∫ 1

0

g(x, z)g(y, z) dz.

Setting δI(g) equal to zero, we get

(24) I ′0(g(x, y)) = −λ1 − 3λ2h(x, y).

Our particular g(x, y) satisfies this equation with

(25) 3λ2 =
I ′0(2e− ǫ)− I ′0(ǫ)

2(e− ǫ)2
.

Next we expand δt and δI to second order in δg, ignoring O((δg)3) terms.

δI =

∫∫

I ′0(g(x, y))δg(x, y)dx dy

+
1

2

∫∫

I ′′0 (g(x, y))(δg(x, y))
2dx dy

=

∫∫

(−λ1 − 3λ2h(x, y))δg(x, y)dx dy

+
1

2

∫∫

I ′′0 (g(x, y))(δg(x, y))
2dx dy

= −λ1δe− λ2δt + 3λ2

∫∫∫

g(x, y)δg(x, z)δg(y, z) dx dy dz

+
1

2

∫∫

I ′′0 (g(x, y))(δg(x, y))
2 dx dy

= 3λ2

∫∫∫

g(x, y)δg(x, z)δg(y, z)dx dy dz

+
1

4

∫∫

I ′′0 (g(x, y))δg(x, y)
2dx dy +

1

4

∫∫

I ′′0 (g(x, y))δg(x, y)
2dx dy,(26)

since

(27) δt = 3

∫∫

h(x, y)δg(x, y)dx dy+ 3

∫∫∫

g(x, y)δg(x, z)δg(y, z)dx dy dz +O((δg)3),

and since we are holding e(g) and t(g) fixed. We have split the

∫∫

I ′′δg2 term into two

pieces, as we will be applying different estimates to each piece.
Since h(x, y) and I ′′(g) are piecewise constant, all of our integrals break down into integrals

over different quadrants. Let R1 and R2 be the following subsets of [0, 1]2:

(28) R1 = {x, y < 1/2} ∪ {x, y > 1/2}, R2 = {x < 1/2 < y} ∪ {y < 1/2 < x}.
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For each z, we define the functions f1(z) =

∫ 1/2

0

δg(x, z)dx and f2(z) =

∫ 1

1/2

δg(x, z)dx. The

second variation in I is then

1

4

∫∫

[0,1]2

I ′′0 (g)δg(x, y)
2dx dy +

I ′′0 (ǫ)

4

∫∫

R1

δg(x, y)2dx dy +
I ′′0 (2e− ǫ)

4

∫∫

R2

δg(x, y)2dx dy

+ 3λ2

∫ 1

0

dz



ǫ

∫∫

R1

δg(x, z)δg(y, z)dx dy + (2e− ǫ)

∫∫

R2

δg(x, z)δg(y, z)dx dy





=
1

4

∫∫

[0,1]2

I ′′0 (g(x, y))δg(x, y)
2dx dy +

I ′′0 (ǫ)

4

∫∫

R1

δg(x, z)2dx dz +
I ′′0 (2e− ǫ)

4

∫∫

R2

δg(x, z)2dx dz

+3λ2

∫ 1

0

ǫ
[

f1(z)
2 + f2(z)

2)
]

+ 2(2e− ǫ)f1(z)f2(z) dz(29)

Note that by Cauchy-Schwarz,

∫ 1/2

0

(δg(x, z))2dx ≥ 2

(

∫ 1/2

0

δg(x, z)dx

)2

= 2f1(z)
2(30)

∫ 1

1/2

(δg(x, z))2dx ≥ 2

(
∫ 1

1/2

δg(x, z)dx

)2

= 2f2(z)
2.(31)

Since I ′′0 (ǫ) and I ′′0 (2e− ǫ) are positive, δI is bounded from below by

1

4

∫∫

[0,1]2

I ′′0 (g(x, y))δg(x, y)
2dx dy +

I ′′(ǫ)

2

[

∫ 1/2

0

f1(z)
2dz +

∫ 1

1/2

f2(z)
2dz

]

+
I ′′0 (2e− ǫ)

2

[

∫ 1/2

0

f2(z)
2dz +

∫ 1

1/2

f1(z)
2dz

]

+ 3λ2

∫ 1

0

dz
[

ǫ(f1(z)
2 + f2(z)

2) + 2(2e− ǫ)f1(z)f2(z)
]

(32)

Collecting terms and applying equation (25), this bound becomes

1

4

∫∫

[0,1]2

I ′′0 (g(x, y))δg(x, y)
2dx dy +

∫ 1/2

0

dz[c1f1(z)
2 + c2f2(z)

2 + 2c3f1(z)f2(z)]

+

∫ 1

1/2

dz[c1f2(z)
2 + c2f1(z)

2 + 2c3f1(z)f2(z)],(33)

where

c1 =
I ′′0 (ǫ)

2
+

ǫ(I ′0(2e− ǫ)− I ′0(ǫ))

2(e− ǫ)2
(34)

c2 =
I ′′0 (2e− ǫ)

2
+

ǫ(I ′0(2e− ǫ)− I ′0(ǫ))

2(e− ǫ)2
(35)

c3 =
(2e− ǫ)(I ′0(2e− ǫ)− I ′0(ǫ))

2(e− ǫ)2
.(36)
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Note that all coefficients are positive, and that c2 > 1. As ǫ → 0, c1 goes to +∞ as 1/ǫ,
while c3 only diverges as − ln(ǫ). Since c1c2 > c23 for small ǫ, the integrand for each z is
positive semi-definite, so the integral over z is non-negative, and we obtain

(37) δI ≥
1

4

∫∫

I ′′0 (g)δg
2 ≥

1

2

∫∫

δg(x, y)2,

where we used the fact that I ′′0 (u) ≥ 2 for all u. �

Any global minimizer must be O(ǫ) close to g0, and hence O(ǫ) close to our specified
perturbative minimizer. This means that the only way for them to differ is through a
complicated bifurcation of minimizers at g0, despite the uniform bounds on δI as we approach
the boundary.

Corollary 5.2. Assuming our perturbative solution is the global minimizer, there is a phase

transition near the boundary point (1/2, 0) between the first and second scallop.

Proof. Our perturbative solution yields a formula for the entropy:

(38) se,t =
−1

2
[I0(ǫ) + I0(2e− ǫ).

This formula for the entropy cannot be extended analytically beyond e = (1 + ǫ)/2, as
∂2s/∂e2 diverges as e → (1 + ǫ)/2. However, e = (1 + ǫ)/2 corresponds to t = (ǫ3 + 3ǫ)/4 =
[(2e− 1)3+3(2e− 1)]/4, which is in the interior of (e, t) space. (Since the graphon g(x, y) is
nowhere zero, it differs in form from the graphons describing graphs with minimal t.) Thus
se,t must fail to be analytic in some neighborhood of the first scallop. �

6. Conclusion

Our goal is to understand why materials develop a solid phase at high density (pressure)
or low energy (temperture). As discussed in the introduction, this is presumably due to the
repulsive part of the interaction. Simplifying the Lennard-Jones potential, the interaction
Ṽ (r) = r−12 for separation r should give the desired effect. We have been working in the
microcanonical ensemble, so for this model the main problem would be to show why, at high
particle density, the energy ground state is crystalline and that this survives at low but not
minimum energy density.

This has been a famous unsolved problem for many years [A, Br, Uh, AR1]. We have
taken an unusual path here, working in a model in which there are energy ground states of
different type as one varies the particle density. (A simple model with this property using
short range forces in one spatial dimension is the ‘shift model’ [NR]. Of course the crystal
structures do not survive to higher energy density in one dimensional models such as this.)

Many real materials display a range of crystal structures. Most materials (ignoring qua-
sicrystals) must have a close packed crystal structure at high particle density, but many
are looser packed at lower density, for instance simple cubic for table salt. This feature of
varying crystal structure is useful for us because there is then a phase transition between
the different crystal structures near energy minimization, the lower edge of the phase space
in Figure 2. This is useful because the analysis can focus on a perturbation of the energy
ground state, instead of states far away, where the crystal melts to a fluid.

This is the path we have taken in our mean field model. We have shown that our (bipartite)
graphon g minimizes the entropy density to second order in perturbation theory, among
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states sufficiently close to the low density end of the energy ground state. Assuming it is the
global minimizer we saw that entropy would have to lose analyticity as the density of the
state approaches the tripartite regime. We expect that a more complicated analysis could
be extended to create appropriate graphon perturbations gk, g ≥ 1 near each of the higher
density (multipartite) regimes, with a transition near each scallop intersection.

Intuitively we have given evidence for a mechanism whereby as particle density is increased,
near the energy ground state, the system progressively transitions through finer and finer
structure; for large particle density most configurations would consist of many interacting
‘parts’, in a crude approximation to how the unit cells in a crystal behave.

We have used the graph limit formalism, and the large deviation theorem for independent-
edge graphs, to prove our results. The graphon formalism is a powerful and flexible tool for
analyzing mean field models, for instance modeling the fluid/solid phase transition as we
have done here. To see its power one can contrast the sharpness of results obtained with
([CD, RY]) and without ([PN]) the graphon formalism, on very similar models but with
attractive forces and modeling the gas/liquid transition.
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and Peter Winkler.
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