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1 Université de Lyon; Université Lyon 1; CNRS, UMR5208, Institut Camille Jordan,
43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France.
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Abstract
In this note, we derive explicit formulas for the Schrödinger wave operators in R2 under the assumption

that 0-energy is neither an eigenvalue nor a resonance. These formulas justify the use of a recently introduced
topological approach of scattering theory to obtain index theorems.
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1 Introduction and main theorem
It has recently been shown that introducing C∗-algebraic methods in scattering theory leads naturally to some
index theorems. The starting point for this approach was the observation made in [13] (see also [3, 7, 14, 15, 20])
that Levinson’s theorem can be reinterpreted as an index theorem. In its original form, Levinson’s theorem
establishes roughly the equality between the number of bound states of a Schrödinger operator and an expression
involving the scattering operator for the underlying physical system. The main idea of the new approach consists
in showing that the corresponding wave operators W± belong to a suitable C∗-algebra, and then in applying
technics of non-commutative topology and cyclic cohomology to obtain an index theorem. For more complex
scattering systems, other topological equalities involving index theorems for families as well as higher degree
traces can also be derived (see [12]).

To apply the new approach, a rather good understanding of the operators W± is necessary. Indeed, these
partial isometries (which are also Fredholm operators under rather weak assumptions) have to be affiliated to
the central C∗-algebra of a short exact sequence, with the algebra of compact operators as an ideal and an
understandable quotient algebra. For that purpose, explicit formulas for W± have been exhibited for various
models of quantum mechanics (see for example [19, 21]). In the present note, we add to this list an explicit
formula for the Schrödinger wave operators in R2 in the generic case. We recall that the 2-dimensional case
presents various difficulties and deserves a special attention; see the seminal works [4, 10, 26] and references
therein, or the more recent papers [5, 6, 16, 17, 22, 23].

So, let us be more precise about our result. We consider in the Hilbert space H := L2(R2) the free
Schrödinger operator H0 := −∆ and the perturbed operator H := −∆ + V , with a potential V ∈ L∞(R2;R)
decaying fast enough at infinity. In such a situation, the wave operators

W± := s- limt→±∞ eitH e−itH0 (1.1)

exist and are asymptotically complete. As a consequence, the scattering operator S := W ∗
+W− is a unitary

operator in H. If B(H) (resp. K (H)) denotes the set of bounded (resp. compact) operators in H, and if A
stands for the generator of dilations in R2, then our main result is the following:
∗Supported by the Chilean Fondecyt Grant 1090008 and by the Iniciativa Cientifica Milenio ICM P07-027-F “Mathematical Theory of

Quantum and Classical Magnetic Systems” from the Chilean Ministry of Economy.

1



Theorem 1.1. Suppose that V satisfies |V (x)| ≤ Const. (1 + |x|)−σ with σ > 11 for almost every x ∈ R2,
and assume that H has neither eigenvalues nor resonances at 0-energy. Then, one has in B(H) the equalities

W− = 1 + R(A)(S − 1) + K and W+ = 1 +
(
1−R(A)

)
(S∗ − 1) + K ′, (1.2)

with R(A) := 1
2

(
1 + tanh(πA/2)

)
and K, K ′ ∈ K (H).

We stress that the absence of eigenvalues or resonances at 0-energy is generic. Their presence leads to
slightly more complicated expressions and will be considered elsewhere. On the other hand, we note that no
spherical symmetry is imposed on V . The rest of the text is devoted to the proof of formulas (1.2) as well as
another formula for W± which does not involve any compact remainder (see Theorem 2.5).

Notations: N := {0, 1, 2, . . .} is the set of natural numbers, R+ := (0,∞), 〈x〉 :=
√

1 + |x|2 and S is the
Schwartz space on R2. The sets Hs

t are the weighted Sobolev spaces over R2 with index s ∈ R associated with
derivatives and index t ∈ R associated with decay at infinity [2, Sec. 4.1] (with the convention that Hs := Hs

0

and Ht := H0
t ). For any s, t ∈ R, the 2-dimensional Fourier transform F is a topological isomorphism of

Hs
t onto Ht

s, and the scalar product 〈 · , · 〉H extends continuously to a duality 〈 · , · 〉Hs
t ,H−s

−t
between Hs

t and

H−s
−t . Given two Banach spaces G1 and G2, B(G1,G2) (resp. K (G1,G2)) stands for the set of bounded (resp.

compact) operators from G1 to G2. Finally, ⊗ (resp. ¯) stands for the closed (resp. algebraic) tensor product of
Hilbert spaces or of operators.

2 Explicit formulas for the wave operators
Throughout this note, we use the Hilbert spaces H := L2(R2), h := L2(S), H := L2

(
R+; h

)
and the unitary

operator (spectral transformation) F0 : H → H satisfying (F0H0f)(λ) = λ(F0f)(λ) ≡ (LF0f)(λ) for
f ∈ H2, a.e. λ ∈ R+, and L the maximal multiplication operator in H by the variable in R+. The explicit
formula for F0 is

(
(F0f)(λ)

)
(ω) = 2−1/2(Ff)(

√
λω), f ∈ S , λ ∈ R+, ω ∈ S. (2.1)

In stationary scattering theory one defines the wave operators W± in terms of suitable limits of the re-
solvents of H0 and H near the real axis. We shall mainly use this approach, noting that for potentials V as
in Theorem 1.1 both definitions for the operators W± coincide (see [24, Thm. 5.3.6]). So, starting from [24,
Eq. 2.7.5] and taking into account the resolvent formula written in the symmetrized form [9, Eq. 4.3], one
obtains for suitable ϕ,ψ ∈ H (precise conditions are given in Theorem 2.5 below) that

〈
F0(W± − 1)F ∗

0 ϕ,ψ
〉
H

= −
∫

R
dλ lim

ε↘0

∫ ∞

0

dµ
〈{

F0vM0(λ∓ iε)−1vF ∗
0 δε(L− λ)ϕ

}
(µ), (µ− λ∓ iε)−1ψ(µ)

〉
h
. (2.2)

with δε(L − λ) := ε
π (L − λ + iε)−1(L − λ − iε)−1, v := |V |1/2, M0(z) := u + vR0(z)v and u(x) := 1 if

V (x) ≥ 0 while u(x) = −1 if V (x) < 0.
In order to exchange the integral over µ and the limit ε ↘ 0, we need a series of preparatory lemmas. First,

we recall that the operator F0(λ) : S → h given by F0(λ)f := (F0f)(λ) extends to an element of B(Hs
t , h)

for each s ∈ R and t > 1/2, and that the map R+ 3 λ 7→ F0(λ) ∈ B(Hs
t , h) is continuous. We also have the

following result which is a direct consequence of what precedes and the estimate [25, Thm. 1.1.4] :

Lemma 2.1. Let s ≥ 0 and t > 1/2. Then, the function R+ 3 λ 7→ 〈λ〉1/4F0(λ) ∈ B(Hs
t , h) is continuous

and bounded.

One also obtains the following result (whose proof is analogous to the one of [21, Lemma 2.2]) :

Lemma 2.2. Let s > −1/2 and t > 1. Then, F0(λ) ∈ K (Hs
t , h) for each λ ∈ R+, and the function

R+ 3 λ 7→ F0(λ) ∈ K (Hs
t , h) is continuous, admits a limit as λ ↘ 0 and vanishes as λ →∞.
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From now on, we use the notation Cc(R+;G) for the set of compactly supported continuous functions from
R+ to some Hilbert space G. With this notation and what precedes, we note that the multiplication operator
N : Cc(R+;Hs

t ) → H given by

(Nξ)(λ) := F0(λ)ξ(λ), ξ ∈ Cc(R+;Hs
t ), λ ∈ R+, (2.3)

extends for s > −1/2 and t > 1 to an element of B
(
L2(R+;Hs

t ), H
)
. We also note that the limit ε ↘ 0 of the

operator F ∗
0 δε(L− λ) appearing in (2.2) satisfies the following (see [21, Lemma 2.3] for a proof) :

Lemma 2.3. For s ≥ 0, t > 1, λ ∈ R+ and ϕ ∈ Cc(R+; h), one has limε↘0 F ∗
0 δε(L− λ)ϕ = F0(λ)∗ϕ(λ)

in H−s
−t .

The next necessary result concerns the limit M0(λ + i0)−1 := limε↘0 M0(λ + iε)−1, λ ∈ R+ (a similar
result holds for M0(λ−i0)−1). First, we recall that H does not have positive eigenvalues [11, Sec. 1]. Therefore,
for V as in Theorem 1.1, one infers from the limiting absorption principles for H0 and H [1, Thm. 4.2] the
existence in B(H) of the limits M0(λ + i0) := limε↘0

(
u + vR0(λ + iε)v

)
and M(λ + i0) := limε↘0

(
u−

vR(λ + iε)v
)
, and their continuity with respect to λ. This, together with the fact that uM(λ + iε)u = M0(λ +

iε)−1 for ε > 0, implies the existence and the continuity of the map R+ 3 λ 7→ M0(λ + i0)−1 ∈ B(H). Also,
one has limλ→∞M0(λ + i0)−1 = u in B(H), since limλ→∞ vR0(λ + i0)v = 0 in B(H) [25, Prop. 7.1.2].
On the other hand, the existence in B(H) of the limit limλ↘0 M0(λ + i0)−1 (which has been studied in detail
in [9]) highly depends on the presence or absence of eigenvalues or resonances at 0-energy; the limit does not
exist in their presence, but in the generic case (i.e. in the absence of eigenvalues or resonances at 0-energy) the
limit exists [9, Eq. (6.55)]. With this information, we obtain the following:

Lemma 2.4. Let V , σ and H be as in Theorem 1.1. Then, the map R+ 3 λ 7→ M0(λ + i0)−1 ∈ B(H) is
continuous and bounded. Furthermore, the multiplication operator B : Cc

(
R+; h

) → L2
(
R+;Hσ/2

)
given by

(Bϕ)(λ) := vM0(λ + i0)−1vF0(λ)∗ϕ(λ) ∈ Hσ/2, ϕ ∈ Cc

(
R+; h

)
, λ ∈ R+, (2.4)

extends to an element of B
(
H , L2(R+;Hσ/2)

)
.

Proof. The condition σ > 11 is imposed in order to fulfill the assumptions of [9, Thm. 6.2 & Eq. (6.55)] for
the existence of the limit limλ↘0 M0(λ + i0)−1 in B(H). The continuity and the boundedness of the map
R+ 3 λ 7→ M0(λ + i0)−1 ∈ B(H) follow then from what has been said before. Finally, the second part of the
statement is a consequence of what precedes and Lemma 2.1.

Before deriving our first formula for W−, we recall that the dilation group {U+
τ }τ∈R in L2(R+) with self-

adjoint generator A+ is given by
(
U+

τ ϕ
)
(λ) := eτ/2 ϕ(eτ λ) for ϕ ∈ Cc(R+), λ ∈ R+ and τ ∈ R. We also

introduce the function ϑ ∈ C(R) ∩ L∞(R) given by ϑ(ν) := 1
2

(
1 − tanh(πν)

)
for ν ∈ R. Finally, we recall

that the Hilbert spaces L2(R+;Hs
t ) and H can be naturally identified with the Hilbert spaces L2(R+)⊗Hs

t and
L2(R+)⊗ h.

Theorem 2.5. Let V , σ and H be as in Theorem 1.1. Then, one has in B(H ) the equality

F0(W− − 1)F ∗
0 = −2πiN

{
ϑ(A+)⊗ 1Hσ/2

}
B, (2.5)

with N and B defined in (2.3) and (2.4).

The proof below consists in two parts. First, we show that the expression (2.2) is well-defined for ϕ and ψ
in dense subsets of H , and then we prove the stated equality.

Proof. Take ϕ ∈ Cc(R+; h) and ψ ∈ C∞c (R+) ¯ C(S), and set t := σ/2. Then, we have for each ε > 0 and
λ ∈ R+ the inclusions gε(λ) := vM0(λ + iε)−1vF ∗

0 δε(L− λ)ϕ ∈ Ht and f(λ) := F0(λ)∗ψ(λ) ∈ H−t. So,
using the formula (µ− λ + iε)−1 = −i

∫∞
0

dz ei(µ−λ)z e−εz and then applying Fubini’s theorem, one obtains
that (2.2) is equal to

−i lim
ε↘0

∫ ∞

0

dz e−εz

〈
gε(λ),

∫ ∞

−λ

dν eiνz f(ν + λ)
〉

Ht,H−t

. (2.6)
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Now, we know from Lemma 2.3 and the paragraph following it that gε(λ) converges to g0(λ) := vM0(λ +
i0)−1vF ∗

0 (λ)ϕ(λ) in Ht as ε ↘ 0. Therefore, the family ‖gε(λ)‖Ht
can be bounded independently of ε ∈

(0, 1), and thus the absolute value of the integrant in (2.6) can also be bounded independently of ε ∈ (0, 1).
To exchange the limit limε↘0 and the integral over z in (2.6), it remains to show that z 7→

∥∥ ∫∞
−λ

dν eiνz f(ν+
λ)

∥∥
H−t

∈ L1(R+,dz). For that purpose, we write hλ for the trivial extension of the function (−λ,∞) 3
ν 7→ f(ν + λ) ∈ H−t to all of R, and then note that

∥∥ ∫∞
−λ

dν eiνz f(ν + λ)
∥∥
H−t

can be rewritten as

(2π)1/2‖(F ∗
1 hλ)(z)‖H−t , with F1 the 1-dimensional Fourier transform. Furthermore, if P1 denotes the self-

adjoint operator −i d
dz on R, then

∥∥(
F ∗

1 hλ

)
(z)

∥∥
H−t

= 〈z〉−2
∥∥(

F ∗
1 〈P1〉2hλ

)
(z)

∥∥
H−t

, z ∈ R+ .

So, one would have that z 7→ ‖(F ∗
1 hλ)(z)‖H−t ∈ L1(R+, dz) if

∥∥(
F ∗

1 〈P1〉2hλ

)
(z)

∥∥
H−t

were bounded inde-
pendently of z. Now, if ψ = η ⊗ ξ with η ∈ C∞c (R+) and ξ ∈ C(S), then one has for any x ∈ R2

(
f(ν + λ)

)
(x) =

1
23/2π

η(ν + λ)
∫

S
dω ei

√
ν+λω·x ξ(ω),

which in turns implies that
∣∣{(

F ∗
1 〈P1〉2hλ

)
(z)

}
(x)

∣∣ ≤ Const. 〈x〉2, with a constant independent of x ∈ R2

and z ∈ R+. Since the r.h.s. belongs to H−t for t > 3, one deduces that
∥∥(

F ∗
1 〈P1〉2hλ

)
(z)

∥∥
H−t

is bounded
independently of z for each ψ = η⊗ ξ, and thus for each ψ ∈ C∞c (R+)¯C(S) by linearity. As a consequence,
one can apply Lebesgue dominated convergence theorem in (2.6), and thus conclude that (2.2) is equal to〈
F0(W± − 1)F ∗

0 ϕ,ψ
〉
H

on the sets of vectors ϕ ∈ Cc(R+; h) and ψ ∈ C∞c (R+)¯ C(S).
The next task is to prove (2.5). Let χ+ denote the characteristic function for R+. Then, a computation as

in the proof of [21, Thm. 2.6] shows, in the sense of distributions with values in H−t, that
∫ ∞

0

dz

∫

R
dν eiνz hλ(ν) =

√
2π

∫

R
dµ

(
F ∗

1 χ+

)(
λ(eµ−1)

)
λ eµ/2

{(
U+

µ ⊗ 1H−t

)
f
}
(λ)

=
∫

R
dµ

(
πδ0(eµ−1) + i Pv

eµ/2

eµ−1

) {(
U+

µ ⊗ 1H−t

)
f
}
(λ),

with δ0 the Dirac delta distribution and Pv the principal value. So, using successively the identity eµ/2

eµ −1 =
1

2 sinh(µ/2) , the equality [8, Table 20.1]
(
F1ϑ

)
(µ) =

√
π
2 δ0

(
eµ−1

)
+ i

2
√

2π
Pv 1

sinh(µ/2) and the equation{
ϑ(A+)⊗ 1H−t

}
f = 1√

2π

∫
R dµ

(
F1ϑ

)
(µ)

(
U+

µ ⊗ 1H−t

)
f , one infers that

〈
F0(W− − 1)F ∗

0 ϕ,ψ
〉
H

= i
√

2π

∫

R+

dλ

〈
g0(λ),

∫

R
dµ

(
F1ϑ

)
(µ)

{(
U+

µ ⊗ 1H−t

)
f
}
(λ)

〉

Ht,H−t

=
〈− 2πiN

{
ϑ(A+)⊗ 1Ht

}
Bϕ, ψ

〉
H

.

This concludes the proof, since the sets of vectors ϕ ∈ Cc(R+; h) and ψ ∈ C∞c (R+) ¯ C(S) are dense in
H .

We now recall a final lemma which is essential for Theorem 1.1. Its proof is identical to the proof of [21,
Lemma 2.7].

Lemma 2.6. Take s > −1/2 and t > 1. Then, the difference
{
ϑ(A+) ⊗ 1h

}
N −N

{
ϑ(A+) ⊗ 1Hs

t

}
belongs

to K
(
L2(R+;Hs

t ),H
)
.

Proof of Theorem 1.1. Theorem 2.5, Lemma 2.6 and the identity F0R(A)F ∗
0 = ϑ(A+)⊗ 1h imply that

W− − 1 = −2πiF ∗
0 N

{
ϑ(A+)⊗ 1Hσ/2

}
BF0 = −2πiF ∗

0

{
ϑ(A+)⊗ 1h

}
NBF0 + K

= R(A)F ∗
0 (−2πiNB)F0 + K,
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with K ∈ K (H). Comparing −2πiNB with the usual expression for the scattering matrix S(λ) (see for
example [18, Eq. (6.2)]), one observes that −2πiNB =

∫ ⊕
R+

dλ
(
S(λ) − 1

)
. Since F0 defines the spectral

representation of H0, one deduces that W− − 1 = R(A)(S − 1) + K. The formula for W+ − 1 follows then
from the relation W+ = W−S∗.
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