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Abstract. In the present paper we consider problems modeled by the following non-local
fractional equation {

(−∆)su− λu = µf(x, u) in Ω
u = 0 in Rn \ Ω ,

where s ∈ (0, 1) is fixed, (−∆)s is the fractional Laplace operator, λ and µ are real
parameters, Ω is an open bounded subset of Rn, n > 2s , with Lipschitz boundary and f is
a function satisfying suitable regularity and growth conditions. A critical point result for
differentiable functionals is exploited, in order to prove that the problem admits at least
one non-trivial and non-negative (non-positive) solution, provided the parameters λ and
µ lie in a suitable range.

The existence result obtained in the present paper may be seen as a bifurcation theorem,
which extends some results, well known in the classical Laplace setting, to the non-local
fractional framework.
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1. Introduction

Fractional and non-local operators appear in concrete applications in many fields such as,
among the others, optimization, finance, phase transitions, stratified materials, anomalous
diffusion, crystal dislocation, soft thin films, semipermeable membranes, flame propagation,
conservation laws, ultra-relativistic limits of quantum mechanics, quasi-geostrophic flows,
multiple scattering, minimal surfaces, materials science and water waves. This is one of the
reason why, recently, non-local fractional problems are widely studied in the literature.
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In [4, 7, 8, 11, 19, 20, 21, 23, 24, 25, 26, 27, 30] (see also the references therein) the
authors studied non-local fractional Laplacian equations with superlinear and subcritical or
critical nonlinearities, while in [12, 13] the asymptotically linear case was exploited.

There are a lot interesting problems in the standard framework of the Laplacian (and,
more generally, of uniformly elliptic operators), widely studied in the literature. A natural
question is whether or not the existence results got in this classical context can be extended
to the non-local framework of the fractional Laplacian type operators.

In particular in this paper we are interested in equations depending on parameters. In
many mathematical problems deriving from applications the presence of one (or more)
parameter is a relevant feature, and the study of how solutions depend on parameters is
an important topic. Most of the results in this direction were obtained through bifurcation
theory (for an extensive treatment of this matters we refer to [1, 2] and their bibliography).
However, some interesting results can be obtained also by means of variational techniques
(for this see [3] and the references therein), or as a combination of the two methods.

Aim of this paper is to study the existence of solutions for the following general non-local
equation depending on two real parameters

(1.1)
{
LKu+ λu+ µf(x, u) = 0 in Ω
u = 0 in Rn \ Ω ,

using variational techniques.
Here Ω is an open bounded subset of Rn, n > 2s (s ∈ (0, 1)), with smooth boundary ∂Ω,

while LK is the integrodifferential operator defined as follows

(1.2) LKu(x) :=
∫

Rn

(
u(x+ y) + u(x− y)− 2u(x)

)
K(y) dy , x ∈ Rn ,

with the kernel K : Rn \ {0} → (0,+∞) such that

(1.3) mK ∈ L1(Rn), where m(x) = min{|x|2, 1} ;

(1.4) there exists θ > 0 such that K(x) > θ|x|−(n+2s) for any x ∈ Rn \ {0} ;

(1.5) K(x) = K(−x) for any x ∈ Rn \ {0} .

A model for K is given by the singular kernel K(x) = |x|−(n+2s) which gives rise to the
fractional Laplace operator −(−∆)s, which, up to normalization factors, may be defined as

(1.6) −(−∆)su(x) :=
∫

Rn

u(x+ y) + u(x− y)− 2u(x)
|y|n+2s

dy , x ∈ Rn .

The homogeneous Dirichlet datum in (1.1) is given in Rn \ Ω and not simply on the
boundary ∂Ω, as it happens in the classical case of the Laplacian, consistently with the
non-local nature of the operator LK .

Along this paper the nonlinearity in (1.1) is a Carathéodory function f : Ω × R → R
verifying the following growth condition:

(1.7)
there exist a1, a2 > 0 and q ∈ (1, 2∗), 2∗ := 2n/(n− 2s) , such that

|f(x, t)| 6 a1 + a2|t|q−1 a.e. x ∈ Ω, t ∈ R .

Assumption (1.7) says that f has a subcritical growth. Here the exponent 2∗ is the
fractional critical Sobolev exponent. Notice that when s = 1 the above exponent reduces
to the classical critical Sobolev exponent 2∗ := 2n/(n− 2) .

The aim of this paper is to prove the existence of a non-trivial weak solution for prob-
lem (1.1). With this respect, we would like to note that the trivial function u ≡ 0 in Rn

is a solution of problem (1.1) if and only if f(·, 0) = 0 . Hence, in order to get our goal, in
the case when f(·, 0) = 0 we need some extra assumptions on f . Precisely, in this setting
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we assume the following condition, which is a sort of subquadratical growth assumption at
zero:

(1.8)

there exist a non-empty open set D ⊆ Ω and a set B ⊆ D
of positive Lebesgue measure such that

lim sup
t→0+

essinfx∈B F (x, t)
t2

= +∞ and lim inf
t→0+

essinfx∈D F (x, t)
t2

> −∞ .

Here F is the primitive of the nonlinearity f with respect to the second variable, i.e.

(1.9) F (x, t) :=
∫ t

0
f(x, τ)dτ ,

for a.e. x ∈ Ω and any t ∈ R .
As a model for f we can take the function f(x, t) := a(x)|t|r−2t + b(x)|t|q−2t + c(x),

with 1 < r < 2 6 q < 2∗ and a, b, c ∈ L∞(Ω) . If c ≡ 0 a.e. in Ω, we assume also that
essinfx∈Ω a(x) > 0 .

Equation (1.1) in the model case LK = −(−∆)s becomes

(1.10)
{

(−∆)su− λu = µf(x, u) in Ω
u = 0 in Rn \ Ω ,

which is the counterpart of the following Laplace equation

(1.11)
{
−∆u− λu = µf(x, u) in Ω
u = 0 in ∂Ω .

Problem (1.11) was widely studied in the literature. For instance, we refer to [15, 16],
where nonlinear differential equations driven by general uniformly elliptic operators (and
not only by the Laplacian) are considered under certain assumptions about the nonlinear
term f .

In this paper we will prove the existence of non-trivial weak solutions of problem (1.1)
using variational and topological methods. By a weak solutions of (1.1) we mean a solution
of the following problem

(1.12)



∫
Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy − λ
∫

Ω
u(x)ϕ(x) dx

= µ

∫
Ω
f(x, u(x))ϕ(x)dx ∀ ϕ ∈ X0

u ∈ X0 .

Problem (1.12) represents the weak formulation of (1.1). Note that, in order to write such
a weak formulation, we need to assume (1.5).

The space X0 in which we set problem (1.12) is a functional space, inspired by, but not
equivalent to, the usual fractional Sobolev space. This new space was introduced in [22]
(see also [23]). The choice of this space is motivated by the fact that it allows us to correctly
encode the Dirichlet boundary datum in the weak formulation. We will recall its definition
in Section 2, in order to make the present paper self-contained.

1.1. Main theorems. In this paper we will show the existence of a non-trivial non-negative
(non-positive) weak solutions for problem (1.1) , namely non-trivial non-negative (non-
positive) solution of (1.12) , using variational and topological methods.
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To this purpose we will consider the Euler–Lagrange functional JK,λ, µ : X0 → R associ-
ated with problem (1.12), given by

(1.13)
JK,λ, µ(u) :=

1
2

∫
Rn×Rn

|u(x)− u(y)|2K(x− y) dx dy − λ

2

∫
Ω
|u(x)|2 dx

− µ
∫

Ω
F (x, u(x))dx ,

where F is the function defined in (1.9) .
It is well known that JK,λ, µ is Frechét differentiable in X0 and that its critical points

are solutions of problem (1.12) . Then, in order to get our goal, we will look for non-trivial
critical points of this functional in the space X0. A similar variational approach has been
used in [9], where the authors studied the existence of a non-trivial solution for singular
elliptic equations through the Caffarelli-Kohn-Nirenberg inequality.

The main result of the present paper can be stated as follows:

Theorem 1. Let s ∈ (0, 1), n > 2s, Ω be an open bounded set of Rn with Lipschitz boundary
and let λ1 be the first eigenvalue of the operator −LK with homogeneous Dirichlet boundary
data, where K : Rn\{0} → (0,+∞) is a function satisfying conditions (1.3)–(1.5). Further,
let f : Ω × R → R be a Carathéodory function verifying (1.7). In addition, if f(x, 0) = 0
for a.e. x ∈ Ω, assume also (1.8).

Then, for any λ < λ1 there exists µλ > 0, depending on λ, such that, for any µ ∈ (0, µλ)
problem (1.1) admits at least one non-trivial weak solution uµ ∈ X0. Also µλ = +∞,
provided q ∈ (1, 2) .

Moreover,
lim
µ→0+

‖uµ‖X0 = 0

and the function
µ 7→ JK,λ, µ(uµ)

is negative and strictly decreasing in (0, µλ).

Actually, using a truncation argument, we can prove that problem (1.1) admits a non-
trivial non-negative (non-positive) weak solution, provided f(·, 0) = 0 (see Corollary 3
and Subsection 4.1 for more details). In general, when f(·, 0) 6= 0, problem (1.1) admits
changing-sign solutions, as it happens if we look at the classical case of the Laplacian.

As an application of Theorem 1, we can consider the following model problem

(1.14)
{

(−∆)su− λu = µ
(
a(x)|u|r−2u+ b(x)|u|q−2u+ c(x)) in Ω

u = 0 in Rn \ Ω .

In this framework, Theorem 1 (here we take into account also the result stated in Corol-
lary 3) reduces to the following result:

Theorem 2. Let s ∈ (0, 1), n > 2s, Ω be an open bounded set of Rn with Lipschitz
boundary and let λ1, s be the first eigenvalue of (−∆)s with homogeneous Dirichlet boundary
data. Furthermore, assume that 1 < r < 2 6 q < 2∗ and a, b, c : Ω→ R are functions such
that a, b, c ∈ L∞(Ω) . In addition, if c ≡ 0 a.e. in Ω, assume that essinfx∈Ω a(x) > 0 .

Then, for any λ < λ1, s there exists µλ > 0 such that for any µ ∈ (0, µλ) problem (1.14)
admits at least one non-trivial weak solution uµ ∈ Hs(Rn) such that uµ = 0 a.e. in Rn \ Ω
and ∫

Rn×Rn

|uµ(x)− uµ(y)|2

|x− y|n+2s
dx dy → 0

as µ→ 0+ . Also µλ = +∞, provided b ≡ 0 a.e. in Ω .
Furthermore, if c ≡ 0 a.e. in Ω, the solution uµ is non-negative in Rn.
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The proof of Theorem 1 is based on variational and topological techniques. Precisely,
in the sequel we will perform the variational principle of Ricceri contained in [17] (see also
[5, Theorem 2.1; part a)]). For several related topics and a careful analysis of the abstract
framework we refer to the recent monograph [14].

Thanks to assumption (1.7), we will prove the existence of a weak solution uµ for prob-
lem (1.1), provided λ < λ1 and µ is sufficiently small. If f(·, 0) 6= 0, the trivial function
does not solve equation (1.1) and so uµ 6≡ 0 in the space X0. Otherwise, if f(·, 0) = 0,
the proof of the fact that uµ is not the trivial function is more difficult and it relies on the
subquadratical growth assumption (1.8), which will be crucial for our argument.

Theorem 1 may be seen as a bifurcation result for problem (1.1). For more details on
this we refer to Subsection 4.2.

Moreover, Theorem 1 and Theorem 2 extend the existence results, well known in the
classical context of (1.11), to the non-local setting. In particular, Theorem 1 represents the
non-local counterpart of [18, Theorem 1].

The paper is organized as follows. In Section 2 we recall the definition of the functional
space we work in and we give some notations. In Section 3 we prove Theorem 1, while
Section 4 is devoted to some comments on the results of the paper. In particular, in
Corollary 3 we prove that, under the condition that f(·, 0) = 0, the solution given by
Theorem 1 has constant sign, i.e. Theorem 1 provides non-negative (non-positive) solutions.
Finally, in Section 5 we give an application of Theorem 1, studying in particular a non-local
equation driven by the fractional Laplacian. Here we provide the proof of Theorem 2.

2. Some preliminaries

This section is devoted to the notations used along the paper. We also give some prelim-
inary results which will be useful in the sequel.

2.1. The functional space X0. In this subsection we briefly recall the definition of the
functional space X0, firstly introduced in [22], and we give some notations. The reader
familiar with this topic may skip this section and go directly to the next one.

The functional space X denotes the linear space of Lebesgue measurable functions from
Rn to R such that the restriction to Ω of any function g in X belongs to L2(Ω) and

the map (x, y) 7→ (g(x)− g(y))
√
K(x− y) is in L2

(
(Rn × Rn) \ (CΩ× CΩ), dxdy

)
,

(here CΩ := Rn \ Ω). Also, we denote by X0 the following linear subspace of X

X0 :=
{
g ∈ X : g = 0 a.e. in Rn \ Ω

}
.

We remark that X and X0 are non-empty, since C2
0 (Ω) ⊆ X0 by [22, Lemma 11]. Moreover,

the space X is endowed with the norm defined as

(2.1) ‖g‖X := ‖g‖L2(Ω) +
(∫

Q
|g(x)− g(y)|2K(x− y)dx dy

)1/2
,

where Q = (Rn × Rn) \ O and O = (CΩ)× (CΩ) ⊂ Rn × Rn . It is easily seen that ‖ · ‖X is
a norm on X (see, for instance, [23] for a proof).

By [23, Lemmas 6 and 7] in the sequel we can take the function

(2.2) X0 3 v 7→ ‖v‖X0 =
(∫

Q
|v(x)− v(y)|2K(x− y) dx dy

)1/2

as norm on X0. Also (X0, ‖ · ‖X0) is a Hilbert space (for this see [23, Lemmas 7]), with
scalar product

(2.3) 〈u, v〉X0 :=
∫
Q

(
u(x)− u(y)

)(
v(x)− v(y)

)
K(x− y) dx dy .

Note that in (2.2) (and in the related scalar product) the integral can be extended to all
Rn × Rn, since v ∈ X0 (and so v = 0 a.e. in Rn \ Ω).
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In what follows, we denote by λ1 the first eigenvalue of the operator −LK with homoge-
neous Dirichlet boundary data, namely the first eigenvalue of the problem{

−LKu = λu in Ω
u = 0 in Rn \ Ω .

For the existence and the basic properties of this eigenvalue we refer to [24, Proposition 9
and Appendix A], where a spectral theory for general integrodifferential non-local operators
was developed. Further properties can be also found in [19, 26, 28] .

When λ < λ1 we can take as a norm on X0 the function

(2.4) X0 3 v 7→ ‖v‖X0, λ =
(∫

Q
|v(x)− v(y)|2K(x− y) dx dy − λ

∫
Ω
|v(x)|2 dx

)1/2

,

since for any v ∈ X0 it holds true (for this see [24, Lemma 10])

(2.5) mλ‖v‖X0 6 ‖v‖X0, λ 6Mλ‖v‖X0 ,

where

mλ := min
{√λ1 − λ

λ1
, 1
}

and Mλ := max
{√λ1 − λ

λ1
, 1
}
.

Note that (2.5) is a consequence of the variational characterization of λ1 given in [24,
Proposition 9] and of the choice of λ. Of course, also in (2.4) the integral on Q can be
replaced by the integral in all Rn × Rn .

While for a general kernel K satisfying conditions (1.3)–(1.5) we have that X0 ⊂ Hs(Rn),
in the model case K(x) = |x|−(n+2s) the space X0 consists of all the functions of the usual
fractional Sobolev space Hs(Rn) which vanish a.e. outside Ω (see [25, Lemma 7]).

Here Hs(Rn) denotes the usual fractional Sobolev space endowed with the norm (the
so-called Gagliardo norm)

(2.6) ‖g‖Hs(Rn) = ‖g‖L2(Rn) +
(∫

Rn×Rn

|g(x)− g(y)|2

|x− y|n+2s
dx dy

)1/2
.

Before concluding this subsection, we recall the embedding properties of X0 into the
usual Lebesgue spaces (see [23, Lemma 8]). The embedding j : X0 ↪→ Lν(Rn) is continuous
for any ν ∈ [1, 2∗], while it is compact whenever ν ∈ [1, 2∗). Hence, for any ν ∈ [1, 2∗] there
exists a positive constant cν such that

(2.7) ‖v‖Lν(Rn) 6 cν‖v‖X0 6 cνm
−1
λ ‖v‖X0, λ for any v ∈ X0 .

In our setting we used also the fact that the norms defined in (2.2) and (2.4) are equivalent,
as stated in (2.5) .

For further details on the fractional Sobolev spaces we refer to [10] and to the references
therein, while for other details on X and X0 we refer to [22], where these functional spaces
were introduced, and also to [19, 20, 23, 24, 25, 26, 27], where various properties of these
spaces were proved.

2.2. A critical points result for differentiable functionals. In order to prove our main
result, stated in Theorem 1, in the following we will perform the variational principle of
Ricceri (see the quoted paper [17]) in the form given in [5, Theorem 2.1; part a)]. For the
sake of clarity, we recall it here below:

Theorem. ([5, Theorem 2.1; part a)]) Let Y be a reflexive real Banach space, let Φ,Ψ : Y →
R be two Gâteaux differentiable functionals such that Φ is strongly continuous, sequentially
weakly lower semicontinuous and coercive in Y and Ψ is sequentially weakly upper semi-
continuous in Y . Let Jµ be the functional defined as Jµ := Φ − µΨ, µ ∈ R , and for any
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r > inf
Y

Φ let ϕ be the function defined as

ϕ(r) := inf
u∈Φ−1

(
(−∞,r)

)
sup

v∈Φ−1
(

(−∞,r)
)Ψ(v)−Ψ(u)

r − Φ(u)
.

Then, for any r > inf
Y

Φ and any µ ∈ (0, 1/ϕ(r))1, the restriction of the functional Jµ

to Φ−1
(
(−∞, r)

)
admits a global minimum, which is a critical point (precisely a local

minimum) of Jµ in Y .

3. The existence of a non-trivial weak solution

This section is devoted to the proof of the main results of the present paper, that is
Theorem 1 .

Our approach will be variational and will consist in looking for critical points of the
functional JK,λ, µ naturally associated with problem (1.12) (see formula (1.13)).

First of all, we would like to note that, in general, JK,λ, µ can be unbounded from below
in X0. Indeed, for instance, in the case when f(x, t) := 1 + |t|q−2t with q ∈ (2, 2∗), for any
fixed u ∈ X0 \ {0} we get

JK,λ, µ(tu) =
t2

2
‖u‖2X0, λ − µ

∫
Ω
F (x, tu(x)) dx

=
t2

2
‖u‖2X0, λ − µt‖u‖L1(Ω) −

µtq

q
‖u‖qLq(Ω) → −∞

as t→ +∞ .
Hence, in order to find critical points of JK,λ, µ we can not argue, in general, by direct

minimization. For this reason, along the present paper, we will perform a critical point
theorem. Precisely, we will apply [5, Theorem 2.1; part a)] (recalled in Subsection 2.2) to
the Euler–Lagrange functional JK,λ, µ associated with problem (1.12) .

We would like to note that the subcritical assumption (1.7) will be crucial in order to
prove the existence of a weak solution uµ for problem (1.1), provided µ is sufficiently small.
While the subquadratical growth condition (1.8) will be useful, in the case when f(·, 0) = 0,
in order to show that uµ is not the trivial function. Notice that, if f(·, 0) 6= 0, the trivial
function does not solve equation (1.1) and so, obviously, uµ 6≡ 0 .

Finally, we would like to note that, obviously, condition (1.8) is satisfied if the following
stronger assumption holds true:

(3.1)

there exists a non-empty open set B ⊆ Ω
of positive Lebesgue measure such that

lim
t→0+

essinfx∈B F (x, t)
t2

= +∞ ,

where F , as usual, is the function defined in (1.9) .

3.1. Proof of Theorem 1. The idea of the proof consists in applying [5, Theorem 2.1;
part a)]) (recalled in Subsection 2.2) to the functional JK,λ, µ .

To this purpose, we write the functional JK,λ, µ as follows:

JK,λ, µ(u) = ΦK,λ(u)− µΨ(u), u ∈ X0,

with
ΦK,λ(u) :=

1
2

∫
Rn×Rn

|u(x)− u(y)|2K(x− y) dx dy − λ

2

∫
Ω
|u(x)|2 dx ,

1Note that, by definition, ϕ(r) > 0 for any r > inf
Y

Φ . Here and in the following, if ϕ(r) = 0, by 1/ϕ(r)

we mean +∞, i.e. we set 1/ϕ(r) = +∞ .
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as well as

Ψ(u) :=
∫

Ω
F (x, u(x)) dx .

First of all, note that X0 is a Hilbert space (see [23, Lemmas 7]) and the functionals ΦK,λ

and Ψ are Frechét differentiable in X0 .
Also, note that the map

u 7→ ‖u‖2X0, λ

is lower semicontinuous in the weak topology of X0 , so that the functional ΦK,λ is lower
semicontinuous in the weak topology of X0 .

Moreover, the application

u 7→
∫

Ω
F (x, u(x))dx

is continuous in the weak topology of X0. Indeed, if {uj}j∈N is a sequence in X0 such
that uj ⇀ u weakly in X0, then, by (2.7) and [6, Theorem IV.9], up to a subsequence, uj
converges to u strongly in Lν(Ω) and a.e. in Ω as j → +∞, and it is dominated by some
function κν ∈ Lν(Ω) , i.e.

(3.2) |uj(x)| 6 κν(x) a.e. x ∈ Ω for any j ∈ N

for any ν ∈ [1, 2∗) .
Then, by the continuity of F and (1.7) it follows that

F (x, uj(x))→ F (x, u(x)) a.e. x ∈ Ω

as j →∞ and

|F (x, uj(x))| 6 a1|uj(x)|+ a2

q
|uj(x)|q 6 a1κ1(x) +

a2

q
(κq(x))q ∈ L1(Ω)

a.e. x ∈ Ω and for any j ∈ N . Hence, by applying the Lebesgue Dominated Convergence
Theorem in L1(Ω), we have that∫

Ω
F (x, uj(x)) dx→

∫
Ω
F (x, u(x)) dx

as j →∞, that is the map

u 7→
∫

Ω
F (x, u(x))dx

is continuous from X0 with the weak topology to R. Thus, the functional Ψ is continuous
from X0 with the weak topology to R.

Hence, we have shown that the functionals ΦK,λ and Ψ have the regularity required by
[5, Theorem 2.1; part a)] (see Subsection 2.2).

Now, let λ < λ1 . By (2.4) for any u ∈ X0

(3.3) ΦK,λ(u) =
1
2
‖u‖2X0, λ ,

so that the functional ΦK,λ is coercive in X0 and inf
u∈X0

ΦK,λ(u) = 0.

Now, let r > 0 and let ϕK,λ be the function defined as follows

(3.4) ϕK,λ(r) := inf
u∈Φ−1

K,λ

(
(−∞,r)

)
sup

v∈Φ−1
K,λ

(
(−∞,r)

)Ψ(v)−Ψ(u)

r − ΦK,λ(u)
.

It is easy to see that ϕK,λ(r) > 0 for any r > 0 .
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Then, by [5, Theorem 2.1; part a)],

(3.5)

for any r > 0 and any µ ∈
(

0, 1/ϕK,λ(r)
)

the restriction

of JK,λ, µ to Φ−1
K,λ

(
(−∞, r)

)
admits a global minimum uµ, r,

which is a critical point (namely a local minimum) of JK,λ, µ in X0 .

Remember that, when ϕK,λ(r) = 0, by 1/ϕK,λ(r) we mean +∞.
Let µλ be defined as follows

µλ := sup
r>0

1
ϕK,λ(r)

.

Note that µλ > 0, since ϕK,λ(r) > 0 for any r > 0 .
Now, let us fix µ̄ ∈ (0, µλ) . First of all, thanks to the definition of µλ, it is easy to see

that

(3.6) there exists r̄µ̄ > 0 such that µ̄ 6 1/ϕK,λ(r̄µ̄) .

Then, by (3.5) applied with r = r̄µ̄, we have that for any µ such that

0 < µ < µ̄ 6 1/ϕK,λ(r̄µ̄) ,

the function
uµ := uµ, r̄µ̄

is a global minimum of the functional JK,λ, µ restricted to Φ−1
K,λ

(
(−∞, r̄µ̄)

)
, i.e.

(3.7) JK,λ, µ(uµ) 6 JK,λ, µ(u), for any u ∈ X0 such that ΦK,λ(u) < r̄µ̄

and

(3.8) ΦK,λ(uµ) < r̄µ̄ ,

and also uµ is a critical point of JK,λ, µ in X0 and so it is a weak solution of problem (1.1) .
In this way we have shown that for any λ < λ1 and any µ ∈ (0, µλ), problem (1.1) admits

a weak solution uµ ∈ X0.
Now, we have to prove that µλ = +∞, provided q ∈ (1, 2) . To this purpose, note that

by (1.7), one has

(3.9) F (x, t) 6 a1|t|+
a2

q
|t|q ,

for a.e. x ∈ Ω and any t ∈ R . Thus, for any u ∈ X0 we get

(3.10) Ψ(u) =
∫

Ω
F (x, u(x))dx 6 a1‖u‖L1(Ω) +

a2

q
‖u‖qLq(Ω).

Also, by (3.3), for any u ∈ X0 such that ΦK,λ(u) < r, with r > 0, we easily get that

(3.11) ‖u‖X0, λ <
√

2r .

Hence, by (2.7), (3.10) and (3.11) we obtain that for any u ∈ X0 such that ΦK,λ(u) < r

Ψ(u) 6 a1‖u‖L1(Ω) +
a2

q
‖u‖qLq(Ω)

6
a1c1

mλ
‖u‖X0, λ +

a2c
q
q

qmq
λ

‖u‖qX0, λ

<
a1c1

mλ
(2r)1/2 +

a2c
q
q

qmq
λ

(2r)q/2 ,

so that

sup
u∈Φ−1

K,λ

(
(−∞,r)

)Ψ(u) 6
√

2a1c1

mλ
r1/2 +

2q/2a2c
q
q

qmq
λ

rq/2

for any r > 0 .
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Then, denoting by χ the following function

χ(r) :=

sup
u∈Φ−1

K,λ

(
(−∞,r)

)Ψ(u)

r
, r > 0 ,

we have

(3.12) χ(r) 6
√

2a1c1

mλ
r−1/2 +

2q/2a2c
q
q

qmq
λ

rq/2−1,

for every r > 0.
Now, observe that, by definition of ϕK,λ and of χ and by (3.12) for any r > 0 we have

ϕK,λ(r) 6

sup
u∈Φ−1

K,λ

(
(−∞,r)

)Ψ(u)

r
= χ(r)

6

√
2a1c1

mλ
r−1/2 +

2q/2a2c
q
q

qmq
λ

rq/2−1 ,

just because ΦK,λ(0) = Ψ(0) = 0 . Namely,

1
ϕK,λ(r)

>
qmq

λ√
2a1c1qm

q−1
λ r−1/2 + 2q/2a2c

q
q rq/2−1

,

so that

(3.13) µλ = sup
r>0

1
ϕK,λ(r)

> sup
r>0

qmq
λ√

2a1c1qm
q−1
λ r−1/2 + 2q/2a2c

q
q rq/2−1

= +∞ ,

provided q ∈ (1, 2) . Hence, µλ = +∞ if q ∈ (1, 2) and the assertion of Theorem 1 is proved.
Now, we have to show that for any µ ∈ (0, µλ) the solution uµ found here above is not

the trivial function. If f(·, 0) 6= 0, then it easily follows that uµ 6≡ 0 in X0, since the trivial
function does not solve problem (1.1).

Let us consider the case when f(·, 0) = 0 and let us fix µ̄ ∈ (0, µλ) and µ ∈ (0, µ̄) . Finally,
let uµ be as in (3.7) and (3.8) . In this setting, in order to prove that uµ 6≡ 0 in X0 , first
we claim that there exists a sequence

{
wj
}
j∈N in X0 such that

(3.14) lim sup
j→+∞

Ψ(wj)
ΦK,λ(wj)

= +∞ .

By the assumption on the limsup in (1.8) there exists a sequence {ξj}j∈N in R+ such that
ξj → 0+ as j → +∞ and

(3.15) lim
j→+∞

essinfx∈B F (x, ξj)
ξ2
j

= +∞,

namely, we have that for any M > 0 and j sufficiently large

(3.16) essinfx∈B F (x, ξj) > Mξ2
j .

Now, let C be a set of positive Lebesgue measure such that C ⊂ B . Also, let v ∈ X0 be
a function such that

i) v(x) ∈ [0, 1] for every x ∈ Rn;
ii) v(x) = 1 for every x ∈ C;
iii) v(x) = 0 for every x ∈ Ω \D.
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Of course C exists since B has positive Lebesgue measure, while the function v exists thanks
to the fact that C2

0 (Ω) ⊆ X0 (see [22, Lemma 11]).
Finally, let wj := ξjv for any j ∈ N . It is easily seen that wj ∈ X0 for any j ∈ N

(actually, wj ∈ C2
0 (Ω) if v does) . Furthermore, taking into account the properties of v

stated in i)–iii), the fact that C ⊂ B ⊆ D ⊆ Ω and F (·, 0) = 0, and (3.16) we have

(3.17)

Ψ(wj)
Φ(wj)

=

∫
Ω
F (x,wj(x)) dx

ΦK,λ(wj)

=

∫
C
F (x,wj(x)) dx+

∫
D\C

F (x,wj(x)) dx

ΦK,λ(wj)

=

∫
C
F (x, ξj) dx+

∫
D\C

F (x, ξjv(x)) dx

ΦK,λ(wj)

>

2M meas(C)ξ2
j + 2

∫
D\C

F (x, ξjv(x)) dx

ξ2
j ‖v‖2X0, λ

,

for j sufficiently large, thanks to (3.3).
Now we have to distinguish two different cases, i.e. the case when the liminf in (1.8) is

+∞ (and so the liminf is actually a limit) and the one in which the liminf in (1.8) is finite.

Case 1: lim
t→0+

essinfx∈D F (x, t)
t2

= +∞ .

Then, there exists ρM > 0 such that for any t with 0 < t < ρM

(3.18) essinfx∈D F (x, t) >Mt2 .

Since ξj → 0+ and 0 6 v 6 1 in Ω, then wj(x) = ξjv(x) → 0+ as j → +∞ uniformly
in x ∈ Ω. Hence, 0 6 wj(x) < ρM for j sufficiently large and for any x ∈ Ω. Hence, as a
consequence of (3.17) and (3.18) (used here with t = wj(x), j large), we deduce that

Ψ(wj)
Φ(wj)

>

2M meas(C)ξ2
j + 2

∫
D\C

F (x, ξjv(x)) dx

ξ2
j ‖v‖2X0, λ

>

2M meas(C)ξ2
j + 2Mξ2

j

∫
D\C

v2(x) dx

ξ2
j ‖v‖2X0, λ

=
2M meas(C) + 2M

∫
D\C

v2(x) dx

‖v‖2X0, λ

,

for j sufficiently large. The arbitrariness of M gives (3.14) and so the claim is proved.

Case 2: lim inf
t→0+

essinfx∈D F (x, t)
t2

= ` ∈ R .

Then, for any ε > 0 there exists ρε > 0 such that for any t with 0 < t < ρε

(3.19) essinfx∈D F (x, t) > (`− ε)t2 .
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Arguing as above, we can suppose that 0 6 wj(x) = ξjv(x) < ρε for j large enough and any
x ∈ Ω. Thus, by (3.17) and (3.19) (used with t = ξjv(x) with j large) we get

(3.20)

Ψ(wj)
Φ(wj)

>

2M meas(C)ξ2
j + 2

∫
D\C

F (x, ξjv(x)) dx

ξ2
j ‖v‖2X0, λ

>

2M meas(C)ξ2
j + 2(`− ε)ξ2

j

∫
D\C

v2(x) dx

ξ2
j ‖v‖2X0, λ

=
2M meas(C) + 2(`− ε)

∫
D\C

v2(x) dx

‖v‖2X0, λ

,

provided j is sufficiently large.
Choosing M > 0 large enough, say

M meas(C) > max
{

0,−2`
∫
D\C

v2(x) dx
}
,

and ε > 0 small enough so that

ε

∫
D\C

v2(x) dx <
M meas(C)

2
+ `

∫
D\C

v2(x) dx ,

by (3.20) we get

Ψ(wj)
Φ(wj)

>

2M meas(C) + 2(`− ε)
∫
D\C

v2(x)) dx

‖v‖2X0, λ

>
2

‖v‖2X0, λ

(
M meas(C) + `

∫
D\C

v2(x)) dx−M meas(C)/2− `
∫
D\C

v2(x) dx

)

=
M meas(C)
‖v‖2X0, λ

for j large enough. Also in this case the arbitrariness of M gives assertion (3.14).
Now, note that

‖wj‖X0, λ = |ξj | ‖v‖X0, λ → 0,
as j → +∞ , so that for j large enough

‖wj‖X0, λ <
√

2r̄µ̄ ,

where r̄µ̄ is given in (3.6). As a consequence of this and taking into account (3.3)

(3.21) wj ∈ ΦK,λ

(
(−∞, r̄µ̄)

)
,

provided j is large enough. Also, by (3.14) and the fact that µ > 0

(3.22) JK,λ, µ(wj) = ΦK,λ(wj)− µΨ(wj) < 0,

for j sufficiently large.
Since uµ is a global minimum of the restriction of JK,λ, µ to Φ−1

K,λ

(
(−∞, r̄µ)

)
(see (3.7)),

by (3.21) and (3.22) we conclude that

(3.23) JK,λ, µ(uµ) 6 JK,λ, µ(wj) < 0 = JK,λ, µ(0) ,

so that uµ 6≡ 0 in X0 . Thus, uµ is a non-trivial weak solution of problem (1.1) . The
arbitrariness of µ and µ̄ gives that uµ 6≡ 0 for any µ ∈ (0, µλ) .

Moreover, from (3.23) we get that the map

(3.24) (0, µλ) 3 µ 7→ JK,λ, µ(uµ) is negative.
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Now, we claim that lim
µ→0+

‖uµ‖X0 = 0. By (2.5) it is enough to show that

(3.25) ‖uµ‖X0, λ → 0,

as µ→ 0+ .
For this, let again µ̄ ∈ (0, µλ) and µ ∈ (0, µ̄) . Bearing in mind (3.3) and the fact that

ΦK,λ(uµ) < r̄µ̄, for any µ ∈ (0, µ̄) (see (3.8)), one has that

ΦK,λ(uµ) =
1
2
‖uµ‖2X0, λ < r̄µ̄ ,

that is
‖uµ‖X0, λ <

√
2r̄µ̄ .

As a consequence of this and by using the growth condition (1.7) together with the
property (2.7), it follows that

(3.26)

∣∣∣∣∫
Ω
f(x, uµ(x))uµ(x)dx

∣∣∣∣ 6 a1‖uµ‖L1(Ω) + a2‖uµ‖qLq(Ω)

6
a1c1

mλ
‖uµ‖X0, λ +

a2c
q
q

mq
λ

‖uµ‖qX0, λ

<
a1c1

mλ
(2r̄µ̄)1/2 +

a2c
q
q

mq
λ

(2r̄µ̄)q/2 =: Mr̄µ̄ .

Since uµ is a critical point of JK,λ, µ , then 〈J ′K,λ, µ(uµ), ϕ〉 = 0, for any ϕ ∈ X0 and every
µ ∈ (0, µ̄) . In particular 〈JK,λ, µ(uµ), uµ〉 = 0, that is

(3.27) 〈Φ′K,λ(uµ), uµ〉 = µ

∫
Ω
f(x, uµ(x))uµ(x)dx

for every µ ∈ (0, µ̄).
Then, from (3.26) and (3.27), it follows that

0 6 ‖uµ‖2X0, λ = 〈Φ′K,λ(uµ), uµ〉 = µ

∫
Ω
f(x, uµ(x))uµ(x) dx < µMr̄µ̄

for any µ ∈ (0, µ̄) . Letting µ→ 0+, we get lim
µ→0+

‖uµ‖X0, λ = 0 , as claimed.

Finally, we have to show that the map

µ 7→ JK,λ, µ(uµ) is strictly decreasing in (0, µλ) .

For this we observe that for any u ∈ X0

(3.28) JK,λ, µ(u) = µ

(
ΦK,λ(u)

µ
−Ψ(u)

)
.

Now, let us fix 0 < µ1 < µ2 < µ̄ < µλ and let uµi be the global minimum of the func-
tional JK,λ, µi restricted to ΦK,λ

(
(−∞, r̄µ̄)

)
for i = 1, 2 (for this see (3.7)) . Also, let

mµi :=
(

ΦK,λ(uµi)
µi

−Ψ(uµi)
)

= inf
v∈Φ−1

K,λ

(
(−∞,r̄µ̄)

)(ΦK,λ(v)
µi

−Ψ(v)
)
, i = 1, 2 .

Clearly, (3.24), (3.28) and the positivity of µ imply that

(3.29) mµi < 0 for i = 1, 2 .

Moreover,

(3.30) mµ2 6 mµ1 ,

thanks to the fact that 0 < µ1 < µ2 and ΦK,λ > 0 by (3.3). Then, by (3.28)–(3.30) and
again by the fact that 0 < µ1 < µ2, we get that

JK,λ, µ2(uµ2) = µ2mµ2 6 µ2mµ1 < µ1mµ1 = JK,λ, µ1(uµ1) ,
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so that the map µ 7→ JK,λ, µ(uµ) is strictly decreasing in (0, µ̄) . The arbitrariness of µ̄ < µλ
shows that µ 7→ JK,λ, µ(uµ) is strictly decreasing in (0, µλ) . This concludes the proof of
Theorem 1.

4. Some comments on the main result

In this section we discuss some properties of the weak solutions of problem (1.1) provided
by Theorem 1. Also, we give some comments on the main result of the paper.

4.1. Existence of constant-sign solutions. First of all, we would like to note that, as in
the classical case of the Laplacian, it is possible to prove that the solution of problem (1.1)
given by Theorem 1 has constant sign, as stated in the following result:

Corollary 3. Let all the assumptions of Theorem 1 be satisfied and assume f(·, 0) = 0.
Then, problem (1.1) admits a non-negative weak solution u+ ∈ X0 which is not identically
zero.

Proof. In order to prove the existence of a non-negative solution of problem (1.12) it is
enough to introduce the function

F+(x, t) :=
∫ t

0
f+(x, τ)dτ ,

with

f+(x, t) :=

{
f(x, t) if t > 0
0 if t < 0

for a.e. x ∈ Ω and t ∈ R.
First of all, note that both f+ and F+ are well defined a.e. x ∈ Ω and t ∈ R . Furthermore,

since f(·, 0) = 0, then f+ is a Carathéodory function in Ω × R and so t 7→ F+(·, t) is
differentiable in R. Moreover, it is easily seen that f+ and F+ satisfy conditions (1.7) and
(1.8), respectively .

Let J +
K,λ, µ : X0 → R be the functional defined as follows

J +
K,λ, µ(u) := ΦK,λ(u)− µΨ+(u) ,

with

Ψ+(u) :=
∫

Ω
F+(x, u(x)) dx .

It is easy to see that the functional Ψ+ is well defined, is Fréchet differentiable at any
u ∈ X0 (being F+ differentiable in R and since (1.7) holds true for f+) and has the regularity
properties required by [5, Theorem 2.1; part a)] (see Subsection 2.2). For this it is enough
to argue as in the proof of Theorem 1. Also, for any ϕ ∈ X0

(4.1)
〈(J +

K,λ, µ)′(u), ϕ〉 =
∫

Rn×Rn

(
u(x)− u(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

− λ
∫

Ω
u(x)ϕ(x) dx− µ

∫
Ω
f+(x, u(x))ϕ(x) dx .

Hence, by [5, Theorem 2.1; part a)], there exists a critical point u+ ∈ X0 of J +
K,λ, µ .

Also u+ 6≡ 0 in X0. Indeed, since f(·, 0) = 0, also f+(·, 0) = 0 and so, in order to prove
that u+ 6≡ 0, we can argue exactly as in the proof of Theorem 1, jus replacing f with f+,
F with F+ and Ψ with Ψ+ in formulas (3.14)–(3.23).

We claim that u+ is non-negative in Rn. For this we take ϕ := (u+)− in (4.1), where v−

is the negative part of v, i.e. v− := max{−v, 0}. We remark that, since u+ ∈ X0, we have
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that (u+)− ∈ X0, by [22, Lemma 12], and so the choice of such ϕ is admissible. In this way,
since u+ is a critical point of J +

k, λ, µ, we get

(4.2)

0 = 〈(J +
K,λ, µ)′(u+), (u+)−〉

=
∫

Rn×Rn

(
u+(x)− u+(y)

)(
(u+)−(x)− (u+)−(y)

)
K(x− y) dx dy

− λ
∫

Ω
u+(x)(u+)−(x) dx− µ

∫
Ω
f+(x, u+(x))(u+)−(x) dx

=
∫

Rn×Rn

(
u+(x)− u+(y)

)(
(u+)−(x)− (u+)−(y)

)
K(x− y) dx dy

− λ
∫

Ω

∣∣(u+)−(x)
∣∣2 dx ,

thanks to the definition of f+ and of negative part.
Now, we claim that for any w ∈ X0 the following relation holds true a.e. x, y ∈ Rn

(4.3)
(
w(x)− w(y)

)(
w−(x)− w−(y)

)
6 −

∣∣w−(x)− w−(y)
∣∣2 .

Indeed, writing w = w+ − w− and taking into account that

w+(x)w−(x) = 0 and w+(x)w−(y) > 0 a.e. x, y ∈ Rn ,

we get

(w(x)− w(y))(w−(x)− w−(y)) = (w+(x)− w+(y))(w−(x)− w−(y))− (w−(x)− w−(y))2

= −w+(x)w−(y)− w+(y)w−(x)− (w−(x)− w−(y))2

6 −
∣∣w−(x)− w−(y)

∣∣2
a.e. x, y ∈ Rn . Hence, the claim (4.3) is proved.

Thus, by (4.2) and (4.3) applied here with w = u+ we get

0 = 〈(J +
K,λ, µ)′(u+), (u+)−〉

=
∫

Rn×Rn

(
u+(x)− u+(y)

)(
(u+)−(x)− (u+)−(y)

)
K(x− y) dx dy − λ

∫
Ω

∣∣(u+)−(x)
∣∣2 dx

6 −
∫

Rn×Rn

∣∣(u+)−(x)− (u+)−(y)
∣∣2K(x− y) dx dy − λ

∫
Ω

∣∣(u+)−(x)
∣∣2 dx

= −‖(u+)−‖2X0
− λ‖(u+)−‖2L2(Ω)

6 −κλ ‖(u+)−‖2X0
,

recalling that the kernel K is positive and the variational characterization of λ1 . Here κλ
is the positive constant given by κλ = min

{
1, 1 + λ/λ1

}
. Hence, ‖(u+)−‖X0 = 0, so that

(u+)− ≡ 0 a.e. in Rn, that is u+ > 0 a.e. in Rn . The assertion is proved. �

As a remark we would like to note that, if we replace condition (1.8) with the following
one

there exist a non-empty open set D ⊆ Ω and a set B ⊆ D
of positive Lebesgue measure such that

lim sup
t→0−

essinfx∈B F (x, t)
t2

= +∞ and lim inf
t→0−

essinfx∈D F (x, t)
t2

> −∞,

then problem (1.1) admits a non-trivial weak solution. For this we can argue exactly as in
the proof of Theorem 1.
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Of course, in this case we can prove that this solution in non-positive in Rn, provided
f(·, 0) = 0. To this purpose, it is enough to consider the functional

J −K,λ, µ(u) := ΦK,λ(u)− µΨ−(u) , u ∈ X0

with
Ψ−(u) :=

∫
Ω
F−(x, u(x)) dx ,

and

F−(x, t) :=
∫ t

0
f−(x, τ)dτ , f−(x, t) :=

{
0 if t > 0
f(x, t) if t 6 0

a.e. x ∈ Ω and t ∈ R , and argue as in Corollary 3.

4.2. Final remarks. This subsection is devoted to some comments on the main results of
the paper.

First of all, we would like to note that Theorem 1 is a bifurcation result, since µ = 0 is a
bifurcation point for problem (1.1), in the sense that the pair (0, 0) belongs to the closure
of the set {

(uµ, µ) ∈ X0 × (0,+∞) : uµ is a non-trivial weak solution of (1.1)
}

in X0 × R .
Indeed, by Theorem 1 we have that

‖uµ‖X0, λ → 0 as µ→ 0+ .

Hence, there exist two sequences
{
uj
}
j∈N in X0 and

{
µj
}
j∈N in R+ (here uj := uµj ) such

that
µj → 0+ and ‖uj‖X0, λ → 0,

as j → +∞ .

Moreover, we would like to stress that for any µ1, µ2 ∈ (0, µλ), with µ1 6= µ2, the solutions
uµ1 and uµ2 given by Theorem 1 are different, thanks to the fact that the map

(0, µλ) 3 µ 7→ JK,λ, µ(uµ)

is strictly decreasing.

As a final remark, we give an estimate from below for the parameter µλ appearing in
Theorem 1. Indeed, while when q ∈ (1, 2) Theorem 1 assures that µλ = +∞, the exact
value of µλ is not known in the other cases, that is when q ∈ [2, 2∗) .

Following the proof of Theorem 1 (see formula (3.13)) we have that

µλ := sup
r>0

1
ϕK,λ(r)

> sup
r>0

qmq
λ√

2a1c1qm
q−1
λ r−1/2 + 2q/2a2c

q
q rq/2−1

=


m2
λ

a2c2
2

if q = 2

qmq
λ√

2a1c1qm
q−1
λ r

−1/2
max + 2q/2a2c

q
q r

q/2−1
max

if q ∈ (2, 2∗),

where

rmax :=
m2
λ

2

(
a1c1q

a2c
q
q(q − 2)

)2/(q−1)

,

while a1 and a2 are as in (1.7), mλ is given in (2.5) and c1 and cq are as in (2.7) .

Hence, if the term f is sublinear at infinity (i.e. q ∈ (1, 2) in (1.7)), then Theorem 1
ensures that, for any λ < λ1 and µ > 0, problem (1.1) admits at least one non-trivial
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weak solution, while for q ∈ [2, 2∗) we get the existence of a non-trivial solution only if µ
is small enough. Indeed, our approach allows us to treat problem (1.1), in the case when
q ∈ [2, 2∗), only if µ is sufficiently small, say µ < µλ . It should be interesting to investigate
the existence of solution for (1.1) in the superlinear case, when µ is large (i.e. µ > µλ) . As
far as we know, also in the classical Laplacian setting this question is open.

Finally, notice that, when q ∈ (1, 2) the existence of solutions for problem (1.1) can be
obtained using classical direct methods (see, for instance [29, Chapter I]), but, as it happens
with the arguments used along the present paper, we do not know a priori if the solution
provided by these classical theorems is the trivial function or not (of course, we refer to
the case f(·, 0) = 0, otherwise u ≡ 0 does not solve (1.1)). Hence, if f(·, 0) = 0, also when
using classical methods, we need to assume extra conditions on f , in order to prove that
the solution of the problem is not the trivial function.

5. An application to the fractional Laplacian case

This section is devoted to an application of Theorem 1 in the case of a non-local equation
driven by the fractional Laplace operator (−∆)s, when the nonlinearity f is a power-type
function, as in the model. Namely, here we consider problem (1.14) and we prove Theorem 2 .

5.1. Proof of Theorem 2. To our purpose, it is enough to apply Theorem 1 in the case
when LK = −(−∆)s and

f(x, t) := a(x)|t|r−2t+ b(x)|t|q−2t+ c(x) in Ω× R ,

with 1 < r < 2 6 q < 2∗, while a, b and c are as in Theorem 2.
It is easy to verify that

|f(x, t)| 6 3 max{‖a‖L∞(Ω), ‖b‖L∞(Ω), ‖c‖L∞(Ω)}(1 + |t|q−1)

a.e. x ∈ Ω and t ∈ R , so that condition (1.7) holds true.
Furthermore, if c ≡ 0 in Ω (and so f(·, 0) = 0), a direct computation shows that

lim
t→0+

essinfx∈Ω F (x, t)
t2

= lim
t→0+

essinfx∈Ω

(
qa(x)|t|r + rb(x)|t|q

)
qrt2

> lim
t→0+

(
1
r

essinfx∈Ω a(x)|t|r−2 +
1
q

essinfx∈Ω b(x)|t|q−2

)
= +∞ ,

thanks to the choice of r and q (i.e. r < 2 6 q) and to the fact that essinfx∈Ω a(x) > 0 .
Hence, assumption (3.1) with B = Ω (and so (1.8) with B = D = Ω) is verified.

As a consequence of this, by Theorem 1 we get that for any λ < λ1, s there exists µλ > 0
such that problem (1.14) admits a non-trivial weak solution uµ in X0 for any µ ∈ (0, µλ)
such that ∫

Rn×Rn

|uµ(x)− uµ(y)|2

|x− y|n+2s
dx dy → 0

as µ→ 0+ .
It is easily seen that uλ = +∞ if b ≡ 0 a.e. in Ω, since, in this case, f has a subliner

growth.
Since in the model case in which K(x) = |x|−(n+2s) the space X0 can be characterized as

follows (see [25, Lemma 7-b)]

X0 =
{
v ∈ Hs(Rn) : v = 0 a.e. in Rn \ Ω

}
,

we get that uµ ∈ Hs(Rn) and uµ = 0 a.e. in Rn \ Ω.
Finally, the non-negativity of the function uµ comes from Corollary 3. This concludes

the proof of Theorem 2 .
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