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“...The way out lay just in the possibility of attributing to the Hamilton principle,
also, the operation of a wave mechanism on which the point-mechanical processes are
essentially based, just as one had long become accustomed to doing in the case of phe-
nomena relating to light and of the Fermat principle which governs them. Admittedly,
the individual path of a mass point loses its proper physical significance and becomes as
fictitious as the individual isolated ray of light. The essence of the theory, the minimum
principle, however, remains not only intact, but reveals its true and simple meaning
only under the wave-like aspect, as already explained. Strictly speaking, the new theory
is in fact not new, it is a completely organic development, one might almost be tempted
to say a more elaborate exposition, of the old theory.”

Erwin Schrödinger
The fundamental idea of wave mechanics

Nobel Lecture, December 12, 1933.



Contents

1 Introduction 4

2 Pseudodifferential Operators 5
2.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Canonical transformations 7
3.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Generating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 The graph of the Hamiltonian flow . . . . . . . . . . . . . . . . . . . . 11

4 Local theory of Fourier Integral Operators 15
4.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Global theory of Fourier Integral Operators 21
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Parametrices for the quantum evolution 24
6.1 Real and local phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Complex and global phases . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Real and global phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



L. Zanelli Introduction

1 Introduction

The aim of these Lecture Notes is to review the local and global theory of Fourier
Integral Operators (FIO) as introduced by L. Hörmander [16], [17] and subsequently
improved by J.J. Duistermaat [10] and F. Trèves [29]. This is a wide and general theory,
and thus we provide here only a short and comprehensive (but rigorous) description.
From a general viewpoint, we can say that these operators naturally extend the set
of Pseudodifferential Operators (PDO) and that this objective is realized by a link
with the set of the canonical transformations and their graphs viewed as Lagrangian
submanifolds of a symplectic manifold. In particular, the main idea is to require that
FIO are integral operators exhibiting Lagrangian distribution kernels.
There exist meaningful applications of FIO in different frameworks, in particular to the
study of hyperbolic type equations, and the related literature is quite large. In fact, as
L. Hörmander underlined in [17], the original local notion of FIO is due to P.D. Lax
in the paper [20] where the objective was the study of the singularities of hyperbolic
differential equations.
In the last section of these Lecture Notes, we provide a resume the main results in the
first papers as well as in the more recent ones involving the use of FIO to get local and
global in time parametrices of the propagator of Schrödinger type equations.

Acknowledgements: I am very much grateful to S. Graffi, A. Parmeggiani, T. Paul for the

many useful discussions on semiclassical Analysis, and I am very much grateful to F. Cardin

for the many useful discussions on symplectic Geometry.
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L. Zanelli Pseudodifferential Operators

2 Pseudodifferential Operators

In this section we provide the standard setting about the theory of Pseudodifferential
Operators on Rn.

2.1 Settings

To begin, we recall the definition for the set of amplitudes functions.

Definition 2.1. Amplitudes Let m, ρ be real numbers with 0 ≤ ρ ≤ 1. We denote by
Πm
ρ (R3n) the set of all a(x, y, ξ) ∈ C∞(R3n;C) such that for all multiorders α, β, γ and

some m′ satisfy

|∂αx∂βy ∂
γ
ξ a(x, y, ξ)| ≤ Cα,β,γ 〈z〉m−ρ |α+β+γ| 〈x− y〉m′+ρ |α+β+γ|,

where z := (x, y, ξ), 〈z〉 :=
√

1 + |z|2 and Cα,β,γ > 0.

The set of Pseudodifferential Operators associated with the above amplitudes can be
introduced, as done by M.A. Shubin [32], in the following way

Definition 2.2. PDO
Let a ∈ Πm

ρ (R3n;C), the associated PDO is defined as

A(u) := (2π)−n
∫
R2n

ei(x−y)·ξ a(x, y, ξ)u(y)dydξ, u ∈ S(Rn). (2.1)

It can be easily proved that the map A : S(Rn) −→ S(Rn), which is defined on the
Schwartz space, is continuous by using an estimate of Ck-norms.

Looking at simbols a ∈ Πm
ρ (Rn

x ×Rn
ξ ;R) in the form a(x, ξ) :=

∑
1≤j≤n

∑
|α|≤m aα(x)ξαj

we localize a set of Differential Operators on Rn, since it holds A = a(x, ∂x).

About the L2(R2n)-boundedness for a class of PDO, we recall the well known Calderon-
Vaillancourt Theorem (see for example [23]).

Theorem 2.3. Let a ∈ Πm
ρ (R3n) be such that ∂αz a ∈ L∞(R3n) for all α ∈ N. Then, the

operator A defined in (2.1) is continuous with respect to the topology induced by the
L2(Rn)-norm and extends to a bounded operator on L2(Rn). Moreover,

‖A‖L2→L2 ≤ Cn
∑
|α|≤Mn

‖∂αz a‖∞ (2.2)

where Cn,Mn > 0 depend only on the dimension n.
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L. Zanelli Pseudodifferential Operators

2.2 Quantization

In the framework of semiclassical Analysis (see for example A. Martinez [23]) we have
the following important notion

Definition 2.4. Quantization
Let 0 < ~ ≤ 1, 0 ≤ t ≤ 1. A family of quantizations of the classical observables
b ∈ Πm

ρ (R2n;R) reads as

Opt~(b)(u) := (2π~)−n
∫
R2n

e
i
~ (x−y)·ξ b((1− t)x+ ty, ξ)u(y)dydξ, u ∈ S(Rn).

The case t = 0 is the so-called “standard” (or left) quantization, the case t = 1/2 is
known as the “Weyl” quantization and usually reads OpW~ (b), whereas the case t = 1
is the “right” quantization.

Remark 2.5. The Weyl quantization naturally arises in Quantum Mechanics thanks to
the link with the Heisemberg group (see for example G. Folland in [11]). Moreover, we
remark that OpW~ (b) is particularly useful in semiclassical Analysis since it is simmetric
with respect to the L2(Rn) scalar product.

We now remind that the quantum evolution of an observable is closer and closer to its
classical evolution as the Planck constant becomes negligible. This result is known in
the literature as the Egorov’s Theorem. In fact, it can be proved that the semiclassical
asymptotic expansion for the propagation of quantum observables OpW~ (b), for smooth
Hamiltonians growing at most quadratically at infinity, is uniformly dominated at any
order by an exponential term whose argument is linear in time. In particular, it arises
necessarily a time obstruction T (~) ' log (~−1) which is called the “Ehrenfest time”
for the validity of this semiclassical approximation.
To be more precise, let H ∈ C∞(R2n;R) be such that sup(x,ξ)∈Rn |∇2H(x, ξ)| < +∞,

and take the quantum propagator U~(t) := exp(−iOpW~ (H)t/~). Then, for t ∈ [0, TN(~))
with TN(~) := −2 log (~)/(N − 1), we have the semiclassical asymptotics

U~(−t) ◦OpW~ (b) ◦ U~(t) =
N∑
j=0

~jOpW~ (bj(t)) +RN(t) (2.3)

for suitable simbols bj(t) ∈ Πm
ρ (R2n;R) and

‖RN(t)‖L2→L2 ≤ CN (6n+1)N(−~ log (~))N . (2.4)

In particular, the lower order simbol reads b0(t, x, ξ) := b(φtH(x, ξ)), namely the classical
propagation of the simbol b. Whereas the higher order terms bj(t, x, ξ) are determined
by the classical evolution but have a polynomial dependence on the derivatives of the
flow φtH with respect to the variables (x, ξ) up to the order j − 1. About the precise
setting of bj we refer to D. Bambusi, S. Graffi and T. Paul [3].
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L. Zanelli Canonical transformations and generating functions

3 Canonical transformations

3.1 Settings

Adopting standard notations, let M be a manifold and T ?M the corresponding cotan-
gent bundle. We denote by ω = dp∧dx =

∑n
i=1 dpi∧dxi the 2–form on T ?M that defines

its natural symplectic structure. As usual, a differomorphism C : T ?M −→ T ?M is a
canonical transformation if the pull back of the symplectic form is preserved, namely
the condition C?ω = ω.
We say that L ⊂ T ?M is a Lagrangian submanifold if

ω|L = 0, dim(L) = n =
1

2
dim(T ?M). (3.5)

A symplectic structure ω̄ on T ?M × T ?M ∼= T ? (M ×M) is the twofold pull–back of
the standard symplectic 2–form on T ?M defined as ω̄ := pr?2ω − pr?1ω which in fact
equals ω̄ = dp2 ∧ dx2 − dp1 ∧ dx1. Similarly, Λ ⊂ T ?M × T ?M is called Lagrangian
submanifold of T ?M × T ?M if

ω̄|Λ = 0, dim(Λ) = 2n. (3.6)

A diffeomorphism C on T ∗Rn is canonical if and only if its graph

Λ = {(y, ξ;x, p) ∈ T ∗M × T ∗M | (x, p) = C(y, ξ)} (3.7)

is a Lagrangian submanifold with respect to the induced symplectic structure ω̄.
We refer to an Hamiltonian as a C2-function H : T ?M −→ R. It can be esily proved
that the flow solving Hamilton’s equations on T ∗M

γ̇ = J∇H(γ), γ(0) := γ0 ∈ T ?M,

is a one parameter group of canonical transformations

φtH : T ?M −→ T ?M, t ∈ R.

The global well defined character of the flow is guaranteed by the global uniform
Lipschitz behaviour of the Hamiltonian vector field XH := J∇H defined on T ?M . In
all the subsequent results involving Hamiltonian flows, if the particular form of H is
not specified, we will assume this general assumption.
As we will see in the following sections, and in particualar in the last one, the local
and global study of the time dependent family of Lagrangian submanifolds

Λt = {(y, ξ;x, p) ∈ T ∗M × T ∗M | (x, p) = φtH(y, ξ)} (3.8)

is very much important in classical mechanics and as a consequence in the semiclassical
analysis of the related quantum flow.
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L. Zanelli Canonical transformations and generating functions

3.2 Generating functions

We begin this subsection by recalling a well-known and important result of symplectic
Geometry due to V.P. Maslov [25] and L. Hormander [16] which involves the local
parametrization of arbitrary Lagrangian submanifolds.

Theorem 3.1. Local parametrization of Lagrangian submanifolds
Lel M be a manifold and S ∈ C2(Mx × Rk

θ ;R). Let L ⊂ T ?M be the locus defined as

L := {(x, p) ∈ T ?M | p = ∇xS(x, θ), 0 = ∇θS(x, θ) } . (3.9)

Suppose that

rank
(
∇2
xθS(x, θ) ∇2

θθS(x, θ)
)∣∣∣

L
= max. (3.10)

Then, L is a Lagrangian submanifold of T ?M .
Conversely, let L be a Lagrangian submanifold of T ?M and take

L ↪→ T ?M →M

λ 7→ j(λ) = (x, p) 7→ π(x, p) = x.

Then, for any z0 = (x0, p0) ∈ L there exists a local parametrization of type (3.9),
namely

L ∩Br(z0) = {(x, p) ∈ T ?M | p = ∇xS(x, θ), 0 = ∇θS(x, θ) } .

where the dimension k fulfills

k ≥ dim(M)− rank[D(π ◦ j)(z0)].

Remark 3.2. We undeline that the Lagrangian submanifold L is the geometrical object
which is reasuming the local inverse functions of x 7→ ∇xS. In view of the above
result, we underline that the problem of the inversion of gradient maps is close to
the problem of inversion of the Legendre transformation. We can say that the above
family of functions S is a sort of weak analogue of the Hamiltonian function Legendre
related to a Lagrangian function. In other words, the Lagrangian submanifold L can be
interpreted as a sort of multi-valued Legendre relation.

We introduce now the central objects of this section.

Definition 3.3. A generating function for a Lagrangian submanifold L ⊂ T ?Rn is a
C1 function S : Rn × Rk −→ R such that

(i) L = {(x, p) ∈ T ?Rn : p = ∇xS, 0 = ∇θS },

(ii) rank
(
∇2
xθS(x, θ) ∇2

θθS(x, θ)
)

= max.

The second condition is usually equivalently introduced by saying that zero (in Rk) is
a regular value of the map (x, θ) 7−→ ∇θS(x, θ).
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L. Zanelli Canonical transformations and generating functions

In a similar way, we have the following

Definition 3.4. A generating function for a Lagrangian submanifold Λ ⊂ T ?Rn×T ?Rn

is a C1 map S : Rn × Rn × Rk −→ R such that

(i) Λ = {(x, p; y, ξ) ∈ T ?Rn × T ?Rn : p = ∇xS, ξ = −∇yS, 0 = ∇θS },

(ii) zero (in Rk) is a regular value of the map (x, y, θ) 7−→ ∇θS(x, y, θ).

As we will see in the next section, the original setting of local FIO involves phase func-
tions as generating functions which are positive-omogeneous with repect to θ of degree
one. On the other hand, a different class of generating functions naturally arises in sym-
plectic geometry and as a consequence also in semiclassical Analysis (in particular, in
the Schrödinger framework). Indeed, we recall that J. C. Sikorav ([34]) introduced the
important notion of generating function quadratic at infinity. In these Lecture Notes we
refer to the similar setting used in the work of Thèret [36], but involving not compact
setting.

Definition 3.5 (GFQI). A generating function S : Rn × Rk −→ R is called

� weakly quadratic at infinity if there exists a C1-function Q : Rn × Rk −→ R in
the form Q(x, θ) := 〈Q(x)θ, θ〉, a C1 function 〈b(x), θ〉 and a C1-bounded c(x, θ)
such that P (x, θ) := 〈Q(x)θ, θ〉+ 〈b(x), θ〉+ c(x, θ) such that

‖S(x, ·)− P (x, ·)‖C1(Rk) ≤ C, ∀x ∈ Rn. (3.11)

� quadratic at infinity if (3.11) is fulfilled with Q(x) non degenerate.

� exactly quadratic at infinity if S(x, θ) = 〈Q(x)θ, θ〉, with Q(x) non degenerate
outside of a compact set K ⊂ Rn. In particular, if Q(x) = Q, S is called special.

We remember that there exists three operations preserving generating functions:

Definition 3.6. Let S(x, θ) : Rn×Rk −→ R be a generating function for a Lagrangian

submanifold L. We say that S̃ is obtained from S by

� stabilization, if there exists a C1 non degenerate quadratic function 〈a(x)v, v〉,
v ∈ Rh and S̃(x, θ, v) = S(x, θ) + 〈a(x)v, v〉.

� fibered diffeomorphism, if there exists a regular θ : Rn × Rk −→ Rk such that
θ(x, ·) is a diffeomorphism and S̃(x, v) = S(x, θ(x, v)).

� addition of constant, if S̃(x, θ) = S(x, θ) + C.

Remark 3.7. It is usual to consider the equivalence of two generating functions if they
can be made equal after a succession of these three operations. Moreover, the unique-
ness of quadratic generating functions for a Lagrangian submanifold is often considered
with respect to this notion of equivalence.
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L. Zanelli Canonical transformations and generating functions

Now we recall the main results about existence and uniqueness of quadratic generating
functions of the graphs of Hamiltonian isotopies on the cotangent bundle of closed
manifolds M .

Theorem 3.8 (Sikorav [34]). Let L be a closed Lagrangian submanifold in T ?M which
admits a generating function exactly quadratic at infinity, φtH : T ?M → T ?M an
hamiltonian isotopy. Then φtHL also has a gfqi.

Theorem 3.9 (Viterbo [37]). Let us consider an hamiltonian isotopy φtH : T ?M →
T ?M , and Lt = φtHOM . Assuming S1 and S2 are two generating functions exactly
quadratic at infinity for Lt, then they are equivalent.

Remark 3.10. We recall that Thèret ([36]) proved, in the same setting of Thereom
3.9, that any generating function quadratic at infinity is equivalent to a special one
(see def. 3.5). This important fact implies that the previous two theorems still hold for
generating functions quadratic at infinity.

Moreover, if we set a smooth H : T ?M → R, following Brunella [?] we underline that
with an isometric embedding i : M ↪→ RN it can be defined a symplectic embedding
E : T ?M ↪→ T ?Rd such that there exists an extension of the Hamiltonian dynamics. In
what follows we state the precise result:

Theorem 3.11 (Brunella [4]). Let φtH : T ?M → T ?M be an hamiltonian isotopy, then
there exists a symplectic embedding E : T ?M ↪→ T ?Rd and an Hamiltonian isotopy
ψtK : T ?Rd → T ?Rd, such that ∀t ∈ [0, T ]:

(i) E ◦ φtH = ψtK ◦ E

(ii) ψtK leaves invariant T ?Rd|i(B)

moreover, if V ⊂ Rd is a neighborhood of i(B), then we may choose every ψt with
support contained in T ?RN |V .

In view of the above theorem, we underline the problem to determine smooth Hamilto-
nians H : T ?Rn → R such that the graph of corresponding isotopies φtH : T ?Rn → T ?Rn

exhibit existence and uniqueness of generating functions quadratic at infinity. An an-
swer to this problem is given in the paper [13], where it is enquired the construction
and equivalence of smooth global generating functions quadratic at infinity for the
Lagrangian graph

Λt = {(y, ξ;x, p) ∈ T ∗Rn × T ∗Rn | (x, p) = φtH(y, ξ)}, (3.12)

namely S ∈ C1([0, T ]× R2n+k;R) such that

Λt = {(x, p; y, ξ) ∈ T ?Rn × T ?Rn : p = ∇xS, ξ = −∇yS, 0 = ∇θS } (3.13)

as in the setting of Definition 3.5.
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L. Zanelli Canonical transformations and generating functions

3.3 The graph of the Hamiltonian flow

In this subsection we deal with the following class of Hamiltonian functions

Definition 3.12. H ∈ C∞(R2n;R) such that there exists an open set Ω̃ ⊆ R2n which
is invariant under the Hamiltonian flow and such that for any α, β ∈ Zn+

sup
|α|+|β|≥2

sup
(x,p)∈Ω̃

|∂αx∂βpH(x, p)| < +∞.

For example, the class of confining mechanical Hamiltonian functions

H(x, p) :=
1

2m
|p|2 + V (x) (3.14)

where V ∈ C∞(Rn;R) is such that:

c1〈x〉d ≤ V (x) ≤ c2〈x〉d, 0 < c1 < c2, d ≥ 2, ∀ |x| ≥ R,

|∂αxV (x)| ≤ c〈x〉d−|α|, ∀ |α| ≥ 0.

We can also take the class of mechanical Hamiltonians with potentials V ∈ C∞(Rn;R)
such that

sup
x∈Rn

|∇2V (x)| < +∞. (3.15)

We focus our attention on the graph of a Hamiltonian flow φtH : T ?Rn → T ?Rn

Λt :=
{

(y, η;x, p) ∈ T ?Rn × T ?Rn | (x, p) = φtH(y, η)
}

for H as in Definition 3.12 and time intervals [0, T ] arbitrary large. Our objective is to
determine a class of global generating functions for Λt, namely

Λt = {(y, η;x, p) ∈ T ?Rn × T ?Rn | p = ∇xS, y = ∇ηS, 0 = ∇θS(t, x, η, θ)}
(3.16)

In order to do so, we follow a variational approach and in particular the so-called
Amann-Conley-Zhender reduction ([2], [9], [6], [38]).

First, we look at the boundary problem in the function space H1([0, T ];R2n) for the
Hamilton’s equation of motion:

γ̇(s) = J∇H(γ(s)); γx(t) = x, γp(0) = η. (3.17)

It can be easily seen that all the solutions of (3.17) belongs to the following set

Γ0(t, x, η) :=

{(
x−

∫ t

s

φx(τ) dτ ; η +

∫ s

0

φp(τ) dτ

) ∣∣∣ φ ∈ L2([0, T ];R2n)

}
(3.18)

Observe that the Hamilton-Helmholtz functional:

A[(γx, γp)] :=

∫ t

0

γp(s)γ̇x(s)−H(γx(s), γp(s)) ds (3.19)
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L. Zanelli Canonical transformations and generating functions

is well defined and continuous on the path space W 1,2([0, T ];R2n). Now define the
function S : [0, T ]×R2n×L2 → R by the above functional evaluated on γ ∈ Γ0(t, x, η)

S(t, x, η, φ) := 〈γx(0), η〉+

∫ t

0

γp(s)γ̇x(s)−H(γx(s), γp(s)) ds (3.20)

It has been proved in [6], [14] that

Λt =

{
(y, η;x, p) ∈ T ?Rn × T ?Rn | p = ∇xS, y = ∇ηS, 0 =

DS
Dφ

(t, x, η, φ)

}
where DS/Dφ stands for the Gateaux derivative. In view of this fact, we read the
problem (3.17) as a fixed point functional equation:

φ = G(t, x, η, φ) (3.21)

where G : [0, T ]× R2n × L2([0, T ];R2n)→ L2([0, T ];R2n) is given by

G(t, x, η, φx, φp) :=

(
η

m
+

1

m

∫ s

0

φp(τ) dτ,−∇V
(
x−

∫ t

s

φx(τ)dτ

))
(3.22)

It can be easily seen that equation (3.21) is equivalent to the

0 =
DS
Dφ

(t, x, η, φ)

Remark 3.13. This is an infinite dimensional setting, whereas we are looking for
finite dimensional generating functions of Λt. However, this gives the motivation and
the right variational approach that we are going to use in the subsequent part of this
section.

Before going further, we observe that for our class of Hamiltonians first of all we have
to localize the study of the Hamiltonian flow, the related graph and the above fixed
point equation within the invariant set Ω̃:

Γ1(t, x, η) :=
{
γ ∈ Γ0(t, x, η) | γ(s) ∈ Ω̃, ∀s ∈ [0, t]

}
(3.23)

and look at the equation
φ = G(t, x, η;φ) (3.24)

selecting only the solutions of the problem (3.17) in the set Γ̃.
Now, we set a finite dimensional ortogonal projector Pk : L2 → L2, define the dimension
K =: dim(PkL2) = 2n(2k + 1), indicate v ∈ PkL2 and θ ∈ RK the coordinates of v[θ]
with respect a fixed ortonormal basis of PkL2. Define Qk := id − Pk and f ∈ QkL

2.
Decompose equation (3.21) into the following

v = Pk ◦G(t, x, η;φ) (3.25)

f = Qk ◦G(t, x, η;φ) (3.26)

where v = Pkφ and f = Qkφ.
We are now ready to recall the

Page 12
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Theorem 3.14. If the lower bound

k > C T 2 sup
|α|+|β|≥2

sup
(y,η)∈Ω̃

|∂αx∂βpH(y, η)|2 (3.27)

is satysfied, then there exists a unique smooth f = f(t, x, η, v)

f : [0, T ]× R2n × PkL2([0, T ];R2n)→ QkL
2([0, T ];R2n)

solving the contraction equation on QkL
2([0, T ];R2n):

f = Qk ◦G(t, x, η; v + f)

Moreover, we have the L2-norm estimates

‖∂αx∂βη f(t, x, η, v)(·)‖L2 ≤ Cαβ(T )

for some Cαβ(T ) > 0 and v ∈ PkL2([0, T ];R2n).

The previous result allow to localize the finite space of curves

Definition 3.15. By the identification

φ(t, x, η, θ) := v[θ] + f(t, x, η, v[θ]) (3.28)

where θ ∈ RK are the coordinates of v ∈ PkL2([0, T ];R2n) with dimension

K = 2n · (2k + 1) (3.29)

we can reduce the space of curves (3.18) to the finite dimensional one

Γ2 :=

{(
x−

∫ t

s

φx(t, x, η, θ)(τ) dτ ; η +

∫ s

0

φp(t, x, η, θ)(τ) dτ

) ∣∣∣ θ ∈ RK

}
As a consequence, we realize the following inclusions:

Γ2(t, x, η) ⊂ Γ1(t, x, η) ⊂ Γ0(t, x, η) (3.30)

This fact allow a finite dimensional variational reduction of the Action functional:

Definition 3.16.

S(t, x, η, θ) := 〈γx(0), η〉+

∫ t

0

γp(s)γ̇x(s)−H(γx(s), γp(s)) ds (3.31)

with γ = γ(t, x, η, θ) ∈ Γ(t, x, η).
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Theorem 3.17. The function S as in (3.31) is a global generating function for

Λt :=
{

(y, η;x, p) ∈ Ω̃× Ω̃ | (x, p) = φtH(y, η)
}

namely we have the parametrization:

Λt =
{

(y, η;x, p) ∈ Ω̃× Ω̃ | p = ∇xS, y = ∇ηS, 0 = ∇θS(t, x, η, θ)
}

Moreover, it is fulfilled the rank condition:

rank
(
∇2
xθS ∇2

ηθS ∇2
θθS
)∣∣∣

Λt

= max.

Remark 3.18. We remind that here we are dealing with phase functions obtained by
a finite dimensional variational reduction of the Action functional. In this setting, we
underline that for mechanical Hamiltonians as in Definition 3.12, the transition between
the case of asymptotic quadratic potentials and the asymptotic polinomial potentials of
higher order shows important features.

� First, we observe that if d > 2 we can take the sublevel set

Ω̃E := {(y, η) ∈ R2n | E0 < H(y, η) < E}, E0 := inf
(y,η)∈R2n

H(y, η).

Moreover, if E → +∞ then K(E) increases and the topology of the set ΓE in-
volves the whole infinite dimensional space H1([0, T ];R2n).

� Second, we observe that in the case d = 2 we can construction the phase function
not depending on bounded energy sublevels. Indeed, recalling condition (3.27), in
this case the finite variational reduction (3.31) is globally well defined without
requiring the constraint of the curves into bounded ΩE.

� Third, as in the case d = 2, the same holds true for smooth potentials only
satisfying ‖∇2V ‖∞ < +∞, which is an assumption used in many papers involving
the semiclassical analysis of Schrödinger type problems; for example this is the
case of smooth periodic potentials used for models in solid-state physics.
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4 Local theory of Fourier Integral Operators

Here we summarize the local theory of FIO, in particular we will refer to the books
of Hörmander [16], [17], Duistermaat [10], Trèves [29], where the reader can find the
exhaustive exposure.

4.1 Settings

Let Ω ⊂ Rn be an open subset, it is customary to define E(Ω) := C∞(Ω) and
D(Ω) := C∞0 (Ω) where C∞0 (Ω) :=

⋃
K<<ΩDK and DK := {u ∈ C∞(Ω) | supp u ∈ K}

with K is a compact subset in the topology of Ω; it can be easily shown that they have
the structure of Fréchet spaces. In this settings, E ′(Ω) and D′(Ω) are the sets of linear
continuous functionals on these spaces.

Now we remember the definition of simbols space Smρ,δ (as originally introduced by
Hörmander and also mainly used by Duistermaat). This is in fact a generalization of
the simbols used in the standard theory of Pseudodifferential Operators.

Definition 4.1. Symbols
Let m, ρ, δ be real numbers with 0 ≤ ρ ≤ 1, 0 ≤ δ ≤ 1. Then we denote by Smρ,δ(Rn×RN)
the set of all a ∈ C∞(Rn × RN) such that for every compact set K ⊂ X and all
multiorders α β the estimate

|Dβ
xD

α
θ a(x, θ)| ≤ Cα,β,K (1 + |θ|)m−ρ|α|+δ|β|, x ∈ K, θ ∈ RN ,

is valid for some constant Cα,β,K. The elements of Smρ,δ are called symbols of order m
and type (ρ, δ). If ρ + δ = 1 we also use the notation Smρ , and when ρ = 1 and δ = 0
we sometimes write only Sm and talk about symbols of order m. Finally we set

S∞ρ,δ := ∪m Smρ,δ, S−∞ρ,δ := ∩m Smρ,δ

We begin with the definition of Fourier Integrals, see [10], [16].

Definition 4.2. Fourier Integrals
Let Ω be open subset of Rn; the integral

Iϕ(au) =

∫
Ω⊂Rn

∫
RN

eiϕ(x,θ)a(x, θ)u(x) dx dθ, u ∈ C∞0

is absolutely convergent if ϕ is real, a ∈ Sµρ (Ω × RN) and µ + ρ < 0. In this case
u → Iϕ(au) is continuous on C0

0(Ω) and therefore define a distribution A on in Ω of
order 0.

We continue with the following two definitions, due to Hörmander [16].
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Definition 4.3. Phase functions
Let Ω be an open subet of Rn, N ∈ N; we define the class Φ of phase functions

φ : Ω× Ω× RN → R

such that:

(i) φ is real valued C∞ function in Ω× Ω× RN/{0};

(ii) φ is positive-omogeneous with repect to θ of degree one.

Definition 4.4. Fourier Integral Operators
Let consider a simbol a ∈ Smρ,δ, and a phase function φ ∈ Φ. Now we can define the
corresponding Fourier Integral Operator A on the functions u ∈ C∞0 (Ω):

Au(x) :=

∫
Rn

∫
RN

eiφ(x,y,θ)a(x, y, θ)dθ u(y)dy (4.32)

We say that A has oder m and type (ρ, δ).

Now we remember a result about linear operators and distribution theory that will be
used in the next theorem.

Theorem 4.5. For every linear continuous operator A in the space S(Rn) there exists
a family of tempered distributions A(x, ·) depending on the parameter x ∈ Rn such that

Av(x) = 〈A(x, y), v(y)〉 ∀x ∈ Rn, (4.33)

Moreover for every µ ∈ S ′(Rn), the map:

v 7−→ 〈µ,Av〉 = 〈µ(x), 〈A(x, y), v(y)〉〉 v ∈ S(Rn), (4.34)

is a tempered distribution.

Definition 4.6. The family of distributions A is said to be the Schwartz kernel of the
linear operator A.

We underline that Definition 4.4 is very much general, and for this reason it is useful
to add non-degenerate conditions on the class of phase functions Φ in order to prove
the well defined setting of the FIO.
Moreover we will see that many authors make different hypothesis on phase functions
in order to prove more properties about the related FIO.

With respect to this problem, we recall an Hörmander’s result (see [16]).
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Theorem 4.7. Existence and continuity

(i) If φ ∈ Φ has no critical points as function of (x, y, θ) with θ 6= 0 then the oscil-
latory integral (4.32) exists in the sense of distributions. Moreover if

m+N < kρ, m+N < k(1− δ), (4.35)

then 〈Au, v〉 is a continuous bilinear form for the Ck
0 topologies on u, v.

Moreover A is a continuous linear map from Ck
0 (Ω) to D′k(Ω) wich has a distri-

bution kernel KA ∈ D′k(Ω× Ω) given by the oscillatory integral

KA(w) =

∫
RN

eiφ(x,y,θ)a(y, θ)w(x, y)dxdydθ, (4.36)

(ii) If φ ∈ Φ has no critical points as function of (y, θ) with θ 6= 0, then the oscillatory
integral (4.32) exists in the sense of distributions. When (4.35) is valid then A is
a continuous linear map from Ck

0 (Ω) to C(Ω).
If it is satisfied:

m+N + j < kρ, m+N + j < k(1− δ), (4.37)

then A is a continuous linear map from Ck
0 (Ω) to Cj(Ω).

(iii) If φ ∈ Φ has no critical points as function of (x, θ) with θ 6= 0, then the adjoint of
A has the properties listed in (ii) so A is continuous map from E ′j(Ω) to D′k(Ω)
when (4.37) is fulfilled. In particular A defines a continuous map from E ′(Ω) to
D′(Ω)

(iv) Let Rφ be the set of all (x, y) ∈ Ω × Ω such that φ(x, y, θ) has no critical point
θ 6= 0 as a function of θ. Then

KA(x, y) =

∫
RN

eiφ(x,y,θ)a(y, θ)dθ (4.38)

defines a function in C∞(Rφ) which is equal to the distribution (4.36) in Rφ. If
Rφ = Ω × Ω, it follows that A is an integral operator with a C∞ kernel, so A is
a continuous map of E ′(Ω) into C∞(Ω).

This theorem is still quite general and it turns out that it is useful to encrease the
hypothesis made on the phase functions, in order to obtain more features, for example
continuity on C∞c (Ω) and moreover L2 local and global boundedness. With respect to
this aim we begin by reporting the following theorem due to Trèves [29]:

Theorem 4.8. Consider the Fourier Integral Operator A as in definition (4.32) related
to a simbol a ∈ Smρ,δ and a phase function φ ∈ Φ as in (4.3). We assume the non-
degeneracy condition: dx,θφ and dy,θφ, the differentials of φ with respect to (x, θ) and
(y, θ) respectively, do not vanish anywhere in Ω× Ω× RN/{0}.
Then A is a continuous linear map from C∞c (Ω)→ C∞(Ω) which can be extended as a
continuous map E ′(Ω)→ D′(Ω).
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Some recent papers of Ruzhansky and Sugimoto (see [26] and [27]) deal with L2-
boundedness for FIO, within different hypothesis on phase functions and symbols.
Here we provide a result on FIO directly generalizing a class of PDO.

Theorem 4.9. Let T be defined by

Tu(x) :=

∫
Rn

∫
Rn

ei(x·ξ+φ(y,ξ))a(x, y, ξ)u(y)dydξ (4.39)

Let φ ∈ C∞(R2n;R) be such that ∀|γ| ≥ 1∣∣∣det
(
∂x∂ξφ(x, ξ)

)∣∣∣ ≥ C > 0, (4.40)

|∂γξ φ(y, ξ)| ≤ Cγ〈y〉. (4.41)

Let a = a(x, y, ξ) ∈ C∞(Rn × Rn × Rn) be such that

|∂αx∂βy ∂
γ
ξ a(x, y, ξ)| ≤ Cαβγ〈x〉−α, (4.42)

for all α, β, γ. Then T is L2(Rn) - bounded.

4.2 Properties

Here we summarize some important features of FIO, in particular we report the equiv-
alence of phase functions theorem, and another result with the proof that the compo-
sition of two such operators is still of the same type. Moreover we will see how suitable
equivalence classes of these operators are directly related to Lagrangian submanifolds,
and it is exactly from this observation that arises the Global definition of Fourier Inte-
gral Operators that will be drawed in the section.

For the following theorem and lemma I refer to Düistermaat [10].

Theorem 4.10. Equivalence of phase functions
Suppose ϕ(x, θ) and ϕ̃(x, θ̃) are nondegenerate phase functions at (x, θ0) ∈ Rn×RN\{0}
and at (x, θ̃0) ∈ Rn × RÑ\{0}, with N and Ñ suitable related. Let Γ and Γ̃ be conic

neighborhoods of (x0, θ0) and (x0, θ̃0) such that Tϕ : Cϕ → Λϕ and Tϕ̃ : Cϕ̃ → Λϕ̃ are
injective, respectively. If Λϕ = Λϕ̃ then any Fourier Integral A, defined by the phase
function ϕ and amplitude a ∈ Sµρ (Rn × RN), ρ > 1

2
, with ess supp a contained in a

sufficently conic neighborhood of (x0, θ0) is equal to a Fourier Integral defined by the

phase function ϕ̃ and an amplitude ã ∈ Sµ+ 1
2

(N−Ñ)
ρ (Rn × RN)

The following lemma states exactly the suitable relation between N and Ñ used in the
previous theorem.
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Lemma 4.11. The number Ñ of θ-variables verifies the inequality N ≥ k, where k is
the dimension of the intersection of the tangent spaces of Λϕ, and the fiber of T ?(Rn) at
(x0, ξ0). Moreover, every Fourier integral defined by the phase function ϕ and amplitude
a ∈ Sµρ (Rn×RN), ess supp in a sufficently small conic neighborhood of (x0, θ0) can also

be defined by a phase function in k variables and amplitude b ∈ Sµ+ 1
2

(N−k)
ρ (Rn × Rk).

The above theorems show that one should rather speak of distributions A defined by
a conic manifold Λ in T ?(Rn)\0, wich locally is equal to Λϕ, ϕ a non degenerate phase
function, instead of distributions defined by some phase functions ϕ.

Suppose Λ ⊂ T ?(Rn ×Rn) is a Lagrangian submanifold with two generating functions
ϕ1 and ϕ2. We recall that the associated symplectic 2-form is ω̄ := dx ∧ dξ − dy ∧ dη.
The corresponding submanifold

Λ′ := {(x, ξ; y, η) ∈ T ?(Rn)× T ?(Rn) | (x, ξ; y,−η) ∈ Λ},

is a Lagrangian submanifold with respect to the symplectic 2-form ω̃ := dx∧dξ+dy∧dη.
Next results states that the composition of two FIO is still a FIO, and the proof is
contained in Duistermaat [10].

Theorem 4.12. Compostion of FIO
Let X, Y, Z be open in RnX , RnY , RnZ respectively. Let A1 be a FIO:C∞0 (Y )→ D′(X)
defined by a nondegenerate phase function ϕ1 in an open cone Γ1 ∈ X × Y ×RN1\{0}
and an amplitude a1 ∈ Sµ1ρ (X × Y × RN1), ess supp a1 ∈ Γ1. Similarly A2 is a FIO
: C∞0 (Z) → D′(Y ) defined by a nondegenerate phase function ϕ2 in an open cone Γ2

∈ Y × Z × RN2\{0} and an amplitude a1 ∈ Sµ1ρ (Y × Z × RN2), ess supp a2 ∈ Γ2.
Assume ρ > 1

2
and:

The projection from πX×Y (suppa1)× πY×Z(suppa2) ∩X × (diagY )× Z
into X × Z is a proper mapping, (4.43)

η 6= 0 if (x, ξ, y, η) ∈ Λ′ϕ1
or (y, η, z, xi) ∈ Λ′ϕ2

, (4.44)

ξ 6= 0 or ζ 6= 0 if (x, ξ, y, η) ∈ Λ′ϕ1
and (y, η, z, ζ, ) ∈ Λ′ϕ2

, (4.45)

Λ′ϕ1
× Λ′ϕ2

intersects T ?X × (diagT ?Y )× T ?Z transversally. (4.46)

Then A1 ◦ A2 is well defined and, modulo an operator with C∞ kernel, it is equal to a
FIO: C∞0 (Z) → D′(X) defined by a nondegenerate phase function ϕ in an open cone
Γ ∈ X ×Z ×RN\{0}, N = N1 +N2 +nY , and an amplitude a ∈ Sµρ (Y ×Z ×RN), ess
supp a ∈ Γ. Moreover,

Λ′ϕ = Λ′ϕ1
◦ Λ′ϕ2

. (4.47)
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We now recall a general result about the asymptotic study of a class of oscillatory
integrals depending on a parameter, more precisely written in the form

Iλ :=

∫
RN

eiλφ(z) a(z) dz (4.48)

for smooth complex valued phase functions and smooth compactly supported ampli-
tudes functions.

Theorem 4.13. Stationary Phase Theorem
Let K ⊂ RN a compact set, X an open neighborhood of K. Let λ > 0, phase function
φ ∈ Ck+1(X;C) with Im(φ) ≥ 0 and amplitude function a ∈ Ck(K;C). Then,∣∣∣ ∫

RN

eiλφ(z) (Imφ(z))ja(z) dz
∣∣∣ ≤ Cλ−(j+k)

∑
|α|≤k

sup
z∈RN

|Dαa(z)|
(
|∇φ(z)|2 + Imφ(z)

)|α|/2−k
(4.49)

where j, k ∈ N and C is bounded when φ stays in a bounded subset of Ck+1(X;C).
When f is real valued the bove estimate reduces to∣∣∣ ∫

RN

eiλφ(z) a(z) dz
∣∣∣ ≤ Cλ−k

∑
|α|≤k

sup
z∈RN

|Dαa(z)| · |∇φ(z)|(|α|−2k). (4.50)

Remark 4.14.

1. In the case of existence for some critical points of a real valued phase function, the
estimate on the righthand side of (4.49) depends on the behaviour of the simbol
a(z) around the set of critical points of the phase functions

Σφ := {z ∈ X ⊂ RN | ∇φ(z) = 0}.

In particular, a(z) must have a suitable (depending on φ) vanishing behaviour
around Σφ.

2. The application of the Stationary Phase Theorem is very much useful in the study
of FIO, and in particular for L2(Rn)-boundedness theorems.

3. The original idea of this result is due to Stokes and Kelvin, with subsequent refine-
ment of Van der Corput. A well written proof, together with various corollaries,
can be found in Hörmander [17].

4. In the case of ~-FIO, we have λ = ~−1 and thus the estimate (4.49) becomes
a semiclassical estimate of order O(~j+k). This is a central tool in the study
quantum observables and related time evolution, as well as in the determination
of the parametrices of the quantum dynamics.
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5 Global theory of Fourier Integral Operators

In this section we report two global, namely intrinsic, definitions of FIO, due to
Hörmander [16] and Duistermaat [10].
Duistermaat provide a direct generalization of local definition, moreover he establish a
caracterization of the set of FIO associated to a Lagrangian submanifold.
Hörmander provides a very general formulation for a Fourier Integral Operator that,
on the other hand, it is not so easy to connect with local definition.

5.1 Preliminaries

Let V be an n-dimensional vector space over R, ΛnV the space of the n-vectors in V ,
defined as the dual of the vector space of the n-linear alternanting forms: V n → R.
ΛnV is one dimensional over R. For any α ∈ R we call a complex valued density of order
α each mapping ρ : ΛnV \{0} → C such that ρ(λw) = |λ|αρ(w) for each w ∈ ΛnV \{0},
λ ∈ R\{0}. The space of all densities of order α is 1-dimensional over C and will be
denoted by Ωα(V ).
Now let X a n-dimensional C∞ manifold. The Ωx(T

?
xX), x ∈ X, are the fibers of a C∞

complex line bundle Ωα(X) over X in a natural way. A C∞ density on X of order α is
now defined as a C∞ section ρ : X → Ωα(X). The space of C∞ densities on X of order
α will be denoted by C∞(X,Ωα). Note that after the choice of of a nowhere vanishing
standard density of order α, the space C∞(X,Ωα) can be identified with C∞(X). Using
a partition of unity it is always contruct a strictly positive C∞ density of order α on
X if X is paracompact.
If ρ ∈ C∞(X,Ωα), σ ∈ C∞(X,Ωβ) then pointwise multiplication leads to a product
ρ · σ ∈ C∞(X,Ωα+β). In particular

(ρ, σ)→
∫

ρ · σ dx

defines a continuous bilinear form on C∞(X,Ωα)×C∞0 (X,Ω1−α) so σ →
∫
ρ·σ dx is an

element of (C∞0 (X,Ω1−α))′ that will be also denoted by ρ. It follows that we have a con-
tinuous embedding: C∞(X,Ωα)→ (C∞0 (X,Ω1−α))′, and for this reason (C∞0 (X,Ω1−α))′

is called the space D′(X,Ωα) of distribution densities of order α.

5.2 Settings

By following Duistermaat [10], and Hörmander [16], here we report the Global definition
of Fourier Integrals and Fourier Integral Operators.
To begin we remember that, in the local definition, a Fourier Integral is an integral
that assume the form:

Iϕ(au) =

∫
Ω⊂Rn

∫
RN

eiϕ(x,θ)a(x, θ)u(x) dx dθ, u ∈ C∞0
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where Ω is an open subset of Rn. It is absolutely convergent if ϕ is real, a ∈ Sµρ (Ω×RN)
and µ + ρ < 0. In this case u→ Iϕ(au) is continuous on C0

0(Ω) and therefore define a
distribution A on in Ω of order 0.

While in the global setting we have the following (see [10]):

Definition 5.1. Global Fourier Integrals
Let X be an n-dimensional smooth manifold, Λ an immersed conic Lagrangian subman-
ifold in T ?(X)\0. A Global Fourier Integral of order m and type ρ by Λ is a distribution

A ∈ D′(X,Ω 1
2 ) such that

A =
∑
j∈J

Aj, (5.51)

where Aj ∈ D′(X,Ω
1
2 ) with locally finite supp Aj, and Aj is a FIO defined by a

nondegenerate phase function ϕj on a open cone Γj in X × RNj such that (x, θ) 7→
(x, dxϕj(x, θ)) is a diffeomorphims from Cφj = {(x, θ) ∈ Γj | dθϕj(x, θ) = 0} onto an

open cone in Λ. For the amplitude aj it is required that aj ∈ Sm−Nj/2+n/4(X × RNj),
cone supp aj ⊂ Γj.
The space of all such Fourier integrals will be denoted by Imρ (X,Λ).

Now we refer to Hörmander [17], and I remember the following definition:

Definition 5.2. Let X be a C∞ manifold with dimX = n, and Y a submanifold of
X. The space Im(X, Y ;E) of conormal distribution sections of vector bundle E is the
largest subspace of ∞H loc

−m−n/4(X,E), which is left invarant by all first order differential
operators tangent to the submanifold Y .

It has proved (see [16], Th. 18.2.12) that it is even invariant under first order Pseu-
dodifferential operators from E to E with principal symbol vanishing on the conormal
bundle of Y . The definition is therefore applicable with no change to any Lagrangian
manifold:

Definition 5.3. Lagrangian Distributions
Let X be a C∞ manifold with dimX = n, and Λ ⊂ T ?X/0 a C∞ closed conic La-
grangian submanifold, E a C∞ vector bundle over X. Then the space Im(X,Λ;E) of
Lagrangian distributions of E, of order m, is defined as the set of all u ∈ D′(X,E)
such that:

L1...LNu ∈ ∞H loc
−m−n/4(X,E) (5.52)

for all N and all properly supported Lj ∈ Ψ1(X;E,E) with principal symbols L0
j van-

ishing on Λ.

Definition 5.4. Let X, Y be two C∞ manifolds and E,F two complex vector bundles
on X, Y . Then every D′(X × Y,C ′; ΩX×Y ⊗Hom(F,E)) defines a continuous map

A : C∞0 (Y,Ω
1
2
Y ⊗ F )→ D′(X,Ω

1
2
Y ⊗ E) (5.53)

and conversely.
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Here the fiber of the vector bundle Hom(F,E) at (x, y) consists of the linear maps Fy
to Ex. In particular if Λ is a conic Lagrangian submanifold of T ?(X × Y )\0 we can
identify Im(X × Y,Λ; ΩX×Y ⊗Hom(F,E)) with a space of such maps.
If we have Λ ⊂ T ?(X)\0×T ?(Y )\0 then it follows (see [16], Th. 25.1.2) that A is even
continuous map from C∞0 (Y ) to C∞(X) which can be extended to a continuous map
from E ′ to D′ with

WF (Au) = C(WF (u)) u ∈ E ′(Y,Ω
1
2
Y ⊗ F ), (5.54)

where
C = Λ′ = {(x, ξ, y, η) ∈ T ?(X)\0× T ?(Y )\0 ; (x, ξ, y, η) ∈ Λ} (5.55)

is a canonical relation from T ?(X)\0 to T ?(X)\0. We call Λ = C ′ the twisted canonical
relation.

Definition 5.5. Global Fourier Integral Operators
Let C be a homogeneous canonical relation from T ?(Y )\0 to T ?(Y )\0 wich is closed in
T ?(X × Y )\0 and let E,F be vectors bundles on X, Y . Then the operators with kernel
belonging to Im(X × Y,C ′; ΩX×Y ⊗Hom(F,E)) are called Fourier Integral Operators
of order m from sections of F to sections of E, associated with the canonical relation
C.

5.3 Characterization

Here I report a characterization, due to Duistermaat [10], about the set of Fuorier
Integrals associated to a fixed Lagrangian submanifold of T ?(Rn).

Definition 5.6. Principal symbol
For a FIO A of order a defined by nondegenerate phase function ϕ and amplitude

a ∈ Sm−Nj/2+n/4
ρ (X × RN), the principal symbol of order m is the element in

Sm+n/4
ρ (Λ,Ω

1
2 ⊗ L)/Sm+n/4+1−2ρ

ρ (Λ,Ω
1
2 ⊗ L), (5.56)

given by
Λ 3 α 7→ eiψ(π(α),α)〈ue−iψ(x,α), A〉. (5.57)

Here L is the complex Keller Maslov line bundle of Λ (see Keller...). While Λ = Λϕ

is the conic Lagrangian manifold in T ?(X)\0 defined by ϕ. Sµρ (Λ,Ω
1
2 ⊗ L) denotes the

symbol space of sections of the complex line bundle Ω
1
2 ⊗ L over Λ, of growh order µ.

Moreover, u ∈ C∞0 (X × Λ) and ψ ∈ C∞(X × Λ), ψ(x, α) is homogeneous of degree 1
in α and the graph x 7→ dxψ(x, α) intersects Λ transversally at α. Regarding (5.56) as
a function of u and ψ, it becomes an element of (5.56).

With respect to these definitions we have the following results:

Theorem 5.7. If the immersion Λ 7→ T ?(X)\0 is proper and injective (that is an
embedding), then the mapping A 7→ principal symbol of A, is an isomorphism:

Imρ (X,Λ)/Imρ (X,Λ)→ Sm+n/4
ρ (Λ,Ω

1
2 ⊗ L)/Sm+n/4+1−2ρ

ρ (Λ,Ω
1
2 ⊗ L) (5.58)
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6 Parametrices for the quantum evolution

Here we summurize some recents papers, about the use of global FIO with non omo-
geneous phase functions to represent solutions of Schrödinger equations.
From a general viewpoint, we can mainly divide the large related literature into three
parts. More precisely, the papers involving the use of oscillatory integrals with local in
time and real phases, with the global in time and complex phases and finally with the
global in time and real phases.
In particular, about the first approach we refer to the papers of J. Chazarain [8], D.
Fujiwara [12], Kitada and Hitoshi Kumano-go [18]. About the second appoach we refer
to A. Hassel and J. Wunsch [15], A. Laptev and I.M. Sigal [21], L. Kapitansky and Y.
Safarov [19], T. Swart and V. Rousse [33], D. Robert [30]. About the last approach we
refer to S. Graffi and L. Z. [14], L. Z. [40].

6.1 Real and local phases

In the local in time approach to the study of the Schrödinger equation (see for example
J. Chazarain [8], D. Fujiwara [12], Kitada and Hitoshi Kumano-go [18]), the objective
is the study of the problem

i~∂tψ(t, x) = − ~2

2m
∆xψ(t, x) + V (x)ψ(t, x) (6.59)

ψ(0, x) = ϕ(x) ∈ S(Rn),

with |∂αxV (x)| ≤ C, |α| = 2, for the time interval t ∈ [0, T0) where T0 is the first time
of appearence of the caustics phenomena in the phase space (see for example [1], [39]).
Roughly speaking, the graph of the Hamiltonian flow can be globally parametrized with
a generating function without θ-auxiliary parameters. Within this local in time setting,
it can be constructed approximated parametrices for the Schrödinger propagator in the
so-called WKB semiclassical asymptotics,

ψ(t, x) = (U~(t)ϕ)(x) =

∫
Rn

U~(t, x, η)ϕ̂~(η)dη

where ϕ̂~(η) is the ~-Fourier transform of the initial datum. Obviously, it can be equiv-
alently studied the fundamental solution of the above problem, namely Ū~(t, x, y). The
first equation naturally arising is the evolutive Hamilton-Jacobi equation

|∇xS|2

2m
(t, x, η) + V (x) + ∂tS(t, x, η) = 0 (6.60)

with the initial condition S(0, x, η) := x · η.
The second equation is the coupled transport equation,

∂tρ0 +
1

m
∇xS ∇xρ0 +

1

2m
∆xS ρ0 = 0, (6.61)
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with the initial condition ρ0(0, x, η) := 1.
The third equation is a recoursive transport type equation

∂tρj +
1

m
∇xS ∇xρj +

1

2m
∆xS ρj =

i

2m
∆xρj−1, (6.62)

with initial condition ρj(0, x, η) := 0, j ∈ N, j ≥ 1.
We are now ready to provide the family of operators

ÛN,~(t)ϕ := (2π~)−n
N∑
j=0

~j
∫
Rn

e
i
~S(t,x,η) ρj(t, y, η)ϕ̂~(η) dη (6.63)

which satisfies, for t ∈ [0, T0), the estimate

‖U~(t)− ÛN,~(t)‖L2→L2 ≤ RN(T0)~N+1.

In order to construct a parametrices for U~(t) with t ∈ [0, T ] for T ≥ T0, we recall the
semigroup property,

U~(t) = U~

(
t

M

)M
, M := [T/T0].

Hence, for t ∈ [0, T ] it holds∥∥∥U~(t)− ÛN,~
(
t

M

)M ∥∥∥
L2→L2

≤ R̃N(T ) ~N+1.

6.2 Complex and global phases

In the work of Laptev and Sigal it is considered an Hamiltonian function H(t, x, ξ) real
and smooth on R× T ?Rn, it is assumed that there are m > 0 and Cµν > 0 such that:
for every (t, x) ∈ R× Rn

|∂µx∂νξH(t, x, ξ)| < Cµν(1 + |ξ|)m.

Let Ĥ~(t) be the ~-PDO with symbol H, i.e.

Ĥ~(t)f = (2π~)−n
∫
R2n

H(t, x, ξ)e
i
~ (x−y)·ξf(y)dydξ,

defined on the functions f ∈ C∞0 (Rn). Let Ω̃ ⊆ R2n be an open bounded set and XΩ̃

the characteristic function; the associated PDO reads

X̂Ω̃f = (2π~)−n
∫
R2n

XΩ̃(y, η)e
i
~ (x−y)·ηf(y)dydη,

Within this settings, it is considered the family of operators U~(t) solving the Scrödinger
equation in the functional form:

i~∂tU~(t) = Ĥ~(t) ◦ U~(t), (6.64)

U~(0) = I. (6.65)
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In order to localize a family of oscillatory integrals giving approximated parametrices,
it is first defined the set of complex phase functions ϕ(t, x, y, ξ) ∈ C∞([0, T ]×Rn×Ω̃;C)
related to the Hamiltonian flow (xt(y, η); ξt(y, η)) and the action function

S(t, y, η) :=

∫ t

0

hξ(s, x
s, ξs) · ξs − h(s, xs, ξs) ds, (6.66)

by the following conditions

1. ϕ(t, xt(y, η), y, η) = S(t, y, η),

2. ϕx(t, x
t(y, η), y, η) = ξt(y, η),

3. −iϕxx(t, x, y, η) ≥ 0 and is indipendent of x,

4. det ϕxy(t, x
t(y, η), y, η) 6= 0 for (t, y, η) ∈ [0, T )× Ω̃.

It is proved that these phase functions admit the representations:

ϕ(t, x, y, ξ) = S(t, y, η) + (x− xt) · ξt + i(x− xt) ·B(x− xt)/2 (6.67)

where B = B(y, η, t) are non-negative definite n× n matrix.

The main result of this paper consists on the construction of a family of L2-bounded
operator UN with Schwartz kernel

UN,~(t, x, y) = (2π~)−n
∫
Rn

eiϕ/~ uN,~(t, y, η) dη (6.68)

and simbol uN,~ :=
∑N

k=0 ~kukN,~(t, y, η), ϕ in the class descripted above, and where it
is fulfilled the approximation result:

sup
0≤t≤T

‖ (U~(t)− UN,~(t)) ◦ XΩ̃ ‖L2→L2 ≤ C ~N . (6.69)

with C = C(T,N, Ω̃) > 0.

Remark 6.1. Note that here it is not required the invariance of the set Ω̃ ⊆ R2n under
the Hamiltonian flow. However, it is still an open problem to exhibit a more precise
estimate of this constant with respect to (T,N, Ω̃).
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6.3 Real and global phases

Let us consider the Schrödinger equation:

i~∂tψ(t, x) = − ~2

2m
∆ψ(t, x) + V (x)ψ(t, x), (6.70)

ψ(0, x) = ϕ(x),

where ϕ ∈ S(Rn) and the confining potential V ∈ C∞(Rn;R) is such that:

c1〈x〉d ≤ V (x) ≤ c2〈x〉d, 0 < c1 < c2, d ≥ 2, ∀ |x| ≥ R,

|∂αxV (x)| ≤ c〈x〉d−|α|, ∀ |α| ≥ 0.

Our objective is to determine, for arbitrary large time intervals t ∈ [0, T ], a family of
semiclassical series of global Fourier Integral Operators for the one parameter unitary
transformations U(t) := e−iĤt/~ where Ĥ = − ~2

2m
∆ + V (x). More precisely, in this

general setting we make a phase-space localization of the propagator within sublevels
of the energy function H(x, p) := 1

2m
|p|2 + V (x). In fact, we follow a similar approach

with respect to the paper of Laptev and Sigal in [21], by looking at bounded sets which
are invariant under the Hamiltonian flow,

Ω̃E := {(y, η) ∈ R2n | E0 < H(y, η) < E}, E0 := inf
(y,η)∈R2n

H(y, η) < E,

and defining the related Pseudodifferential operators:

XEϕ := (2π~)−n
∫
R2n

e
i
~ 〈x−y,η〉χΩ̃E

(y, η)ϕ(y)dydη.

The aim is to exhibit semiclassical approximations for U(t) ◦ XE through a family of
global Fourier Integral Operators.
We are now ready to state the main result of the paper

Theorem 6.2. For all E > E0, N ≥ 0 and t ∈ [0, T ] there exists a series of L2-bounded
global Fourier Integral Operators

Uj,E(t)ϕ(x) := (2π~)−n+j

∫
R2n

∫
Rk

e
i
~SE(t,x,η,θ)−〈y,η〉ρj,E(t, x, y, η, θ)dθϕ(y)dydη, (6.71)

such that the following remainder estimate fulfills∥∥∥U(t) ◦ XE −
N∑
j=0

Uj,E(t)
∥∥∥
L2→L2

≤ CN(T )~N+1. (6.72)

with CN(T ) not depending on the energy value. The phase SE belongs to a class of global
generating functions for the graph of the Hamiltonian flow φtH : R2n → R2n within the

bounded energy set Ω̃E, namely:

ΛE
t :=

{
(y, η;x, p) ∈ Ω̃E × Ω̃E | (x, p) = φtH(y, η)

}
=

{
(y, η;x, p) ∈ Ω̃E × Ω̃E | p = ∇xSE, y = ∇ηSE, 0 = ∇θSE

}
(6.73)
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where θ ∈ Rk and the dimension must fulfill the lower bound:

k > 2n+Kd,E,N T 4 (6.74)

where KE,N,d is shown in Section 3.3. The zero order simbol ρ0 ∈ C∞([0, T ] × R3n ×
Rk;R) belongs to a class of solutions of the transport equation written in the following
geometrical setting:

∂tρ0,E +
1

m
∇xSE ∇xρ0,E +

1

2m
∆xSE ρ0,E = 0, ∇θSE = 0, (6.75)

where the initial condition ρ0,E(0, x, y, η, θ) := σ(θ)χΩ̃E
(y, η) is arbitrary fixed with a

probability measure:

σ ∈ S(Rk;R+),

∫
Rk

σ(θ)dθ = 1, σ(θ) ≤ cd e
−|θ|d . (6.76)

The higher order simbols ρj,E ∈ C∞([0, T ]×R3n×Rk;R) belongs to a class of solutions
of the following recoursive transport equations:

∂tρj,E +
1

m
∇xSE ∇xρj,E +

1

2m
∆xSE ρj,E =

i

2m
∆xρj−1,E, ∇θSE = 0, (6.77)

with initial condition ρj,E(0, x, y, η, θ) = 0, ∀j ≥ 1.

In the asymptotic quadratic case d = 2, we can deal with a global FIO framework not
depending on the energy. Indeed, in this case there exists a global generating function
S not depending on the energy E and with finite auxiliary variables θ ∈ Rk with global
lower bound

k > 2n+ K̄NT
4. (6.78)

This fact allow a construction as in the previous theorem, but now without the Pseu-
dodifferential operator XE and with simbols not depending on y-variables. We can
determine semiclassical series of global FIO directly representing the ~-Fourier trans-
form F~ of the foundamental solution of the propagator.

Theorem 6.3. In the case d = 2, for all N ≥ 0 and t ∈ [0, T ] we have a series of
L2-bounded global Fourier Integral Operators:

Uj(t)ϕ(x) = (2π~)−n+j

∫
Rn

∫
Rk

e
i
~S(t,x,η,θ)ρj(t, x, η, θ)dθϕ̂~(η)dη, (6.79)

where ϕ̂~ := F~ϕ, and the remainder fulfills

∥∥∥U(t)−
N∑
j=0

Uj(t)
∥∥∥
L2→L2

≤ CN(T )~N+1. (6.80)
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Remark 6.4.

1. As a consequence of the above construction, the function S is a smooth solution
for the Hamilton-Jacobi equation written in the geometrical setting:

|∇xS|2

2m
+ V (x) + ∂tS = 0, ∇θS = 0, (6.81)

with initial condition S(0, x, η, θ) = 〈x, η〉. This enlarged geometrical framework
allow to overcome the well known problem of the caustics. Indeed, here the global
simbols simbols ρj solve transport type equations in the large time regime. This
is an improvement with respect to the WKB method (see for example Chazarain
[8], Fujiwara [12]) where the global in time construction is made by multiple
composition of FIO’s and so by the product of local in time simbolds, which not
gives an intrinsic approach.

2. The time interval [0, T ] is not depending on ~, so our construction works also
beyond the so called Ehrenfest time T (~) ' −c log ~; this is a problem arising
frequently in the literature, see for example the recent paper of Swart and Rousse
[33] or Robert [30] for the parametrices of the propagator, or the paper of Bambusi,
Graffi and Paul [3] for the evolution of the quantum observables.

3. The time interval [0, T ] is not depending on the energy values E. Indeed, our
technique overcomes the obstruction shown by Yajima and Zang in [31] related to
the limitation in time T (E) for the approximated representation of the integral
kernel of the propagator in the case of same class of superquadratic potentials.

4. This paper shows that the use of global FIO with complex valued phase functions
are not necessary in order to determine global in time parametrices of the prop-
agator, as instead it is suggested in the papers of Swart and Rousse [33], Robert
[30], Laptev and Sigal [21], Kapitansky and Safarov [19].

5. The constant for the operator norm estimate in (6.72) does not depend on the

energy, invariant set Ω̃ and ~; this is an improvement with respect to the same
type of computation on the remainder operator of a semiclassical FIO series,
shown by Laptev and Sigal in [21].

6. Here we improve our previous result [14] bsed on the same type of semiclassical
series of global FIO for the propagator, but now it is exhibited for a larger class
of confining potentials.
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